
ISO/IEC/JTC 1/SC 22/WG 23 N1469

18 Feb 2025

Notes on Java Switch Statement, Erhard P and Stephen M

• Here are summarized findings for the new switch expressions and statements for basic types
and their enhanced versions for reference types:

In general, violating switch rules that result in compiler error(s) prohibits vulnerabilities from occurring
since the program simply will not run. However, due to the long and confusing evolution of the Java switch
statement and expression, I agree that a moderate sampling of the java switch permutations deserves
representation in the document even if it is somewhat tutorial in nature. Section 5 may be a good home for
some of this material.

Note: Section 5 of the Java document does not have the detail that the Python document does (just an
observation).

• The manual for Java 23 states in 14.11.2 : For compatibility reasons, switch statements that are
not enhanced switch statements are not required to be exhaustive. ... If the switch statement is
an enhanced switch statement, then it must be exhaustive.

Below is some additional information that may be useful if we want to define “enhanced switch statement”
(potentially in Section 5):
"
Enhanced switch Statement:
Introduced in Java 12 and refined in subsequent versions, the enhanced switch statement provides a more
concise and flexible way to handle multiple conditional branches. It offers several key improvements over the
traditional switch statement.

o Arrow Syntax:
The enhanced switch uses -> instead of case and break, making the code more readable and less
prone to errors caused by accidental fall-through.

o Multiple case Labels:
It allows multiple values to be associated with a single case, simplifying code when several inputs
should result in the same action.

o switch Expressions:
The enhanced switch can be used as an expression, returning a value directly, which is assigned to
a variable or used in another expression.

o yield Keyword:
When used as an expression, the yield keyword is employed to return a value from a case block,
replacing the need for break with a value.

"
• For switch expressions, it states in 15.28.1: It is a compile-time error if a switch expression is

not exhaustive.

Perhaps we should define "exhaustive" in Section 5 using14.11.1.1 as a guide:

"
o There is a default label associated with the switch block.
o There is a case null, default label associated with the switch block.
o The set containing all the case constants and case patterns appearing in an unguarded case label

(collectively known as case elements) associated with the switch block is non-empty and covers
the type of the selector expression e.

"

• So, a general claim for completeness checks would be incorrect.

Agree.

• An issue that surprised me along the way was that the new switch rules and guards can be used

in old-style case statements that need breaks to not proceed into the next case, but that such
continuations are (necessarily) allowed only into branches that do not include variable
declarations in their switch rules. The language rules to prevent that are a dilly.

This surprised me as well. Below is a simple example that illustrates how the old (:) and new (->) nomenclature
is valid for switch statements:
--
int value = 5;
switch (value){
 case 1:
 System.out.println("Value is 1");
 case 2:
 System.out.println("Value is 2");
 case 5:
 System.out.println("Value is 5");
 default:
 System.out.println("No Matches");
}
Output:
Value is 5
No Matches
--
int value = 5;
switch (value){
 case 1 -> System.out.println("Value is 1");
 case 2, 3 -> System.out.println("Value is 2"); // This is OK
 case 5 -> System.out.println("Value is 5");
 default -> System.out.println("No Matches ");
}
Output:
Value is 5

===

It’s worth noting that multiple consecutive case statements can share a variable declaration in certain
scenarios, as show in the example below, as long as fall-through is not restricted (via. break or ->):

int choice = 1;
switch (choice) {
 case 1:
 case 2:{
 String message1 = "First and Second case";
 System.out.println(message1);
 break;
 }
 case 3: {
 String message2 = "Third case";
 System.out.println(message2);
 break;
 }
 default: {
 System.out.println("Default case");
 }
}

Output:
First and Second case

In the above example, message1 is exclusively accessible to the case 1 and case 2 shared code
block, and message2 is only accessible within the case 3 code block.

• And, as Sean already pointed out, a later switch rule must not be dominated (in a Java-defined
sense) by an earlier one. It was interesting to see the pages of rules that prevent undecidability
because of guards and complication by other interactions, e.g., of unboxing.

The following additional context may help if we need it:

“
In Java's switch statements with pattern matching, case dominance refers to the order in which
case labels are evaluated. When multiple case labels could potentially match the selector
expression, the case that appears earlier in the switch block takes precedence. This means that
if a case label "dominates" another, the dominated case will never be executed.

Dominance is determined based on the type and structure of the patterns in the case labels. A
case label with a more general pattern dominates a case label with a more specific pattern. For
instance, case Number n dominates case Integer i because every Integer is also
a Number.

The compiler enforces dominance rules to prevent unreachable code. If a case label is
dominated by a preceding case, a compile-time error will occur. This ensures that the switch
statement is well-defined and behaves as expected. To avoid dominance issues, case labels
should be ordered from most specific to most general.
“

The following findings from tests are consistent with the manual.

• Incompleteness checks switches for Enum types: Agree

switch expression: static error message naming the missing case

 enum Status {
 OPEN,
 IN_PROGRESS,
 CLOSED
 }

 Status currentStatus = Status.OPEN;

 String result = switch (currentStatus) {
 case OPEN -> "Status is Open";
 //case IN_PROGRESS -> "Status is In Progress";
 case CLOSED -> "Status is Closed";
 };

 System.out.println(result);

Output:
The switch expression does not cover all input values

switch statement: static warning, no runtime checks, Fall-Thru semantics for missing cases!

There were no incompleteness warnings for the example below on my platform (using the default
settings, but this could be configured if desired)

Product Version: Apache NetBeans IDE 24
Java: 22.0.1; Java HotSpot(TM) 64-Bit Server VM 22.0.1+8-16

 enum Status {
 OPEN,
 IN_PROGRESS,
 CLOSED
 }

 Status currentStatus = Status.OPEN;

 switch (currentStatus) {
 case OPEN:
 System.out.println("Status is Open");
 break;
// case IN_PROGRESS:
// System.out.println("Status is In Progress");
// break;
 case CLOSED:
 System.out.println("Status is Closed");
 break;
 }

Output:

Status is Open

• Incompleteness checks for int types: Agree

switch expression: static error message asking for "default" case
switch statement: NO warning, no runtime checks, Fall-Thru semantics for missing cases!

• Incompleteness checks for classes: Agree

both switch statements and switch expressions produce a static error message, asking for
"default" case

• Incompleteness checks for subclasses of sealed classes (where the set of subclasses is final
and known)

both switch statements and switch expressions check complete coverage (and, in case of error,
ask for "default" rather than naming the missing class)

Next actions: Read the existing text with all this in mind....

===

Another interesting scenario uses the continue statement within the switch. The results are not overly
surprising, but the behavior is something to be aware of and could lead to unexpected results if not implemented
correctly:

for (int i = 0; i < 4; i++) {
 switch (i) {
 case 1:
 System.out.println("Case 1");
 continue; // This continue applies to the for loop
 case 2:
 System.out.println("Case 2");
 break;
 default:
 System.out.println("Default case");
 }
 System.out.println("After switch");
}

OUTPUT:
Default case
After switch
Case 1
Case 2
After switch
Default case
After switch

