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Recap of Python … 
 
Python and Java have different approaches to concurrency due to their underlying 
architectures. Thus, we will not be able to structure the vulnerability avoidance sections for 
concurrency as we did for Python.  
 
It’s essential to distinguish between concurrency and parallelism: 

• Concurrency implies dealing with many things at once. 
• Parallelism implies doing many things at once. 

 
In Python, "concurrency" can be achieved through threading, multiprocessing, and 
asynchronous programming. While threading deals with concurrent execution, 
multiprocessing bypasses the GIL and achieves parallelism by using separate memory 
spaces. 
 
Here's a breakdown for Python: 
 

Attribute Threading Multiprocessing Asyncio 

Concurrency / Parallelism 

• Achieve concurrency by 
running multiple threads 
within a single process.  

 
• Share the same memory 

space.  
 
• Use preemptive 

multitasking. The 
operating system 
scheduler interrupts 
running threads to allow 
others to execute 

 
•  Limited by the GIL for 

CPU-bound tasks.  

• Achieve parallelism on 
multi-core systems by 
creating multiple 
processes, each with its 
own memory space and 
Python interpreter. 

• Achieve concurrency 
using a single thread and 
an event loop.  

 
• Coroutines (defined 

with async/await) are 
executed cooperatively 
(cooperative 
multitasking), yielding 
control to the event loop 
when waiting. 

•  
• Multiple tasks can be 

managed concurrently, 
but they don't run in 
parallel. 

•  



Attribute Threading Multiprocessing Asyncio 

Global Interpreter Lock 
(GIL) 

• Python's GIL allows only 
one thread to execute 
Python bytecode at a 
time, limiting true 
parallelism for CPU-
bound tasks. 

 
• Can run truly in parallel 

on multi-core 
processors.  

 
• Each thread has its own 

call stack and resources. 

• Each process has its 
own GIL, so CPU-bound 
tasks can run in parallel, 
utilizing multiple CPU 
cores. 

• Tasks run sequentially 
within a single thread, so 
it is not affected by the 
GIL. 

 
• Tasks share the same 

stack and have lower 
memory overhead 
compared to threads.  

Use Cases 

• Ideal for I/O-bound tasks 
(e.g., waiting for network 
requests), where threads 
spend time waiting, and 
the GIL doesn't 
significantly hinder 
performance (not a 
bottleneck). 

• Ideal for CPU-bound 
tasks (e.g., numerical 
computations, image 
processing) where true 
parallelism is needed. 

• Best suited for I/O-
bound tasks where there 
is a lot of waiting (e.g., 
handling multiple 
network requests, 
database queries). It's 
designed for high 
concurrency with 
minimal blocking. 

Overhead 

• Lower overhead 
compared to 
multiprocessing, as 
threads share memory. 

 
• Threads consume more 

memory due to their 
individual stacks 

• Higher overhead 
compared to threading 
because processes are 
heavier and require inter-
process communication 
(IPC) for data sharing. 

• Lower overhead than 
threading and 
multiprocessing 
because it avoids 
context switching. 

Complexity 

• Relatively 
straightforward to 
implement but can 
introduce complexities 
like race conditions and 
deadlocks 

• More complex than 
threading due to the 
need for IPC. 

• Can have a steeper 
learning curve because it 
requires a different 
programming style. 

 
• Provides a more 

structured approach to 
concurrency, reducing 
the risk of race 
conditions. 

 
In summary … 
 
Concurrency in Python: 

• Threading: The threading module is great for I/O-bound tasks but doesn't give true 
parallelism due to the GIL. Think of it as multitasking but with a bit of a bottleneck. 

• Asyncio: The asyncio module is perfect for handling lots of I/O-bound tasks at once 
without the overhead of threading. It uses an event loop to switch between tasks, 
making it efficient. 

Parallelism in Python: 



• Multiprocessing: This module creates separate memory spaces and bypasses the 
GIL, making it ideal for CPU-bound tasks. Each process runs independently, so the 
application can truly run tasks in parallel. 

 
The following pages are suggestions for the various sections in the Java document. 

 
 

 
  



5.1.x Concurrency 

Java excels in both concurrency and parallelism, but there are many scenarios that can be 
fairly complicated. Attempting to cover all possible concurrency scenarios, and their 
vulnerabilities, is beyond the scope of this document.  
 
It is essential to distinguish between concurrency and parallelism. This document uses the 
general term "concurrency" to include both Concurrency and Parallelism as follows:  
 

• Concurrency - Involves handling many things at once. 
 

Concurrency refers to the ability of a program to handle multiple tasks seemingly 
simultaneously, even if they are not truly running at the exact same time. This is 
achieved through techniques like time-slicing, where the CPU quickly switches 
between different tasks.  
 

• Parallelism involves doing many things at once. 
 

Parallelism refers to the actual simultaneous execution of multiple tasks on multiple 
CPU cores or processing units.  

 
Concurrency in Java: 
 
• Threading: Java has built-in support for threading. The Thread class and 

the java.util.concurrent package facilitate the creation and management of  
multiple threads. Each thread can execute a different part of the program concurrently. 

 
• Executors: The Executors framework enhances thread handling by automating the 

management of worker threads reducing the burden on the programmer. The Executors 
framework is primarily designed to facilitate concurrency, not necessarily parallelism. 
While the Executors framework can be used to achieve parallelism, its core functionality 
lies in managing concurrent execution of tasks through the efficient use of thread pools.  
Executors, particularly through the ExecutorService interface, manage a pool of 
threads, allowing for the reuse of threads instead of creating a new thread for every 
task. This significantly improves performance and resource utilization.  
The ExecutorService interface can track the progress and results of submitted tasks 
using Future objects, giving the programmer the ability to monitor and handle the 
outcomes of concurrent operations. 

 
Parallelism in Java: 
 

• Fork/Join Framework: The ForkJoinPool is a specialized implementation of the  
ExecutorService interface and facilitates dividing tasks into smaller subtasks 
that can be executed in parallel and then combining the results. This is especially 



useful when dealing with a large number of small tasks. It uses a work-stealing 
algorithm to efficiently distribute tasks across threads. Work stealing was introduced 
in Java 7 with the aim of reducing contention in multi-threaded applications.  

  



6.59 Concurrency – Activation [CGA]  

Java's concurrency be generally categorized into either the "Concurrency Model" or 
"Parallelism Model" (reference 5.1.x Concurrency).  
 
The potential vulnerabilities for each concurrency model are described in the following 
sections: 
  

• 6.59 Concurrency – Activation [CGA] 
• 6.60 Concurrency – Directed termination [CGT]) 
• 6.61 Concurrent data access [CGX] 
• 6.62 Concurrency – Premature termination [CGS] 

 
  



Concurrency Model 
 

Threading: 
 
Here are some common problems related to thread activation in Java and their mitigations: 
 
1. Race Conditions: 
 
Problem: Multiple threads attempt to access and modify shared data simultaneously, leading to 
unpredictable and inconsistent results. 
 
Mitigations: 

• Synchronization: Use keywords like synchronized or Lock objects to ensure only one 
thread can access the critical section (code that modifies shared resources) at a time. 

• Atomic Operations: Use atomic variables like AtomicInteger or 
AtomicReference for simple, atomic operations on shared data without explicit 
synchronization. 

• Thread-Safe Collections: Use concurrent collections like ConcurrentHashMap or 
CopyOnWriteArrayList to handle shared data structures safely. 

• Immutability: Design objects as immutable when possible to prevent race conditions by 
making them unmodifiable once created. 

 
2. Deadlocks: 
 
Problem: Two or more threads are blocked indefinitely, each waiting for a resource held by 
another thread. 
 
Mitigations: 

• Avoid Nested Locks: Refrain from having threads acquire locks in a circular order. 
• Use try-lock: Employ tryLock() to attempt to acquire a lock without blocking 

indefinitely. 
• Resource Ordering: Establish a consistent order for acquiring locks to prevent circular 

waiting. 
 
3. Thread Starvation: 
 
Problem: A thread is unable to make progress because other threads repeatedly acquire resources, 
leaving it "starved". 
 
Mitigations: 

• Thread Pools: Use thread pools to manage threads efficiently and ensure fair access to 
resources. 

• Avoid Long-Running Tasks: Break down lengthy or blocking operations to prevent them 
from dominating resources. 

• Careful Synchronization: Optimize the scope and duration of locks to minimize contention. 



• Thread Priorities: Use thread priorities judiciously, but avoid relying solely on them as they 
may not be guaranteed. 

• Monitoring and Diagnosis: Use tools like jstack or profilers to identify and troubleshoot 
thread starvation issues. 

 
4. Creating Too Many Threads: 
 
Problem: Excessive thread creation can lead to high resource consumption and performance 
degradation. 
 
Mitigation:  

• Use thread pools like those provided by ExecutorService to manage threads 
efficiently. 

 
5. Ignoring Exception Handling: 
 
Problem: Uncaught exceptions in threads can cause unpredictable application behavior. 
 
Mitigation:  

• Handle exceptions within threads properly to prevent unexpected termination. 
 
6. Using Non-Thread-Safe Objects: 
 
Problem: Modifying objects not designed for concurrent access from multiple threads can lead to 
inconsistent data. 
 
Mitigation:  

• Use thread-safe alternatives like CopyOnWriteArrayList or 
Collections.synchronizedList. 

 
7. Improperly Stopping Threads: 
 
Problem: Using deprecated methods like Thread.stop() can leave the application in an 
unpredictable state. 
 
Mitigation:  

• Design threads to be interruptible by checking an interrupt flag and exiting their run() 
method gracefully. 

 
8. Calling run() instead of start(): 
 
Problem: Invoking the run() method directly executes the code in the current thread, not a new 
one. 
 



Mitigation:  
• Always call the start() method to create and launch a new thread that will execute the 

run() method. 
 
9. Attempting to restart a stopped thread: 
 
Problem: Once a thread has finished execution, it cannot be restarted. 
 
Mitigation:  

• Create a new thread instance to execute the desired code. 
 
Key Concepts: 

• Synchronization: A mechanism to control access to shared resources by multiple threads. 
• Critical Section: A portion of code that must be executed by only one thread at a time. 
• Atomic Operation: An operation that completes in a single, indivisible step, ensuring data 

integrity. 
• Thread-Safe: Describes code or data structures that are free of race conditions when 

accessed by multiple threads. 
• Thread Pool: A collection of reusable threads that can execute tasks, reducing the overhead 

of thread creation. 
 
By understanding and addressing these common threading problems and applying the appropriate 
solutions, developers can write robust and efficient multithreaded applications in Java. 
 

  



Executors: 

Here are some common problems encountered with Java Executors during activation, and 
their mitigations: 

1. Resource Management: 

Problem: Creating too many threads can lead to excessive resource consumption and 
performance degradation. 
 
Mitigation: 

• Use ThreadPoolExecutor with a fixed or cached thread pool. This allows the 
programmer to control the number of threads and reuse them for multiple tasks. 

2. Task Submission: 

Problem: Tasks may fail to execute due to exceptions. 

Mitigation:  
• Use Callable instead of Runnable to handle exceptions in tasks, or use 

ManagedTask and ManagedTaskListener. Additionally, consider using a 
dynamic proxy to achieve the desired behavior. 

3. Shutdown Issues: 

Problem: Threads may not terminate properly after the executor is shut down (also applies 
to 6.62 Concurrency - Premature Termination). 

Mitigation: 
• Call shutdown() to stop accepting new tasks and then awaitTermination() to 

wait for existing tasks to complete. Use shutdownNow() to attempt to stop all active 
tasks immediately. 

4. Deadlocks: 

Problem: Circular dependencies between tasks can cause deadlocks. 

Mitigation: 
• Carefully design code to avoid circular dependencies and use proper 

synchronization mechanisms like locks or semaphores. 

5. Uncaught Exceptions: 

Problem: Uncaught exceptions in tasks can lead to unexpected behavior. 



Mitigation: 
• Implement proper exception handling within tasks to prevent unexpected behavior, 

and log errors. 

6. Blocking Operations: 

Problem: Calling Future.get() immediately after submitting a task can block the main 
thread, negating the benefits of multithreading. 

Mitigation: 
• Submit all tasks first, save the Future results, and then call get() to retrieve results. 

Alternatively, use invokeAll() to submit a collection of Callable objects. 

7. Premature Optimization: 

Problem: Introducing database connection pools without a clear bottleneck can lead to 
unnecessary complexity. 

Mitigation: 
• Start with fresh connections and only consider a pool if it's proven to be a 

performance bottleneck. 

8. Infinite Loops: 

Problem: Tasks with infinite loops can cause issues if not handled correctly. 

Mitigation:  
• Catch Errors in addition to Exceptions and implement a back-off strategy to 

avoid escalating problems. 

9. Incorrect Use of Threads: 

Problem: Passing a Thread object directly to Executor.execute() is not appropriate 
since, as the run() method of a basic Thread does nothing. 

Mitigation:  
• Implement Runnable or Callable for tasks that need to be executed. 

10. Task Cancellation: 

Problem: Tasks may need to be canceled before completion (also applies to 6.62 
Concurrency - Premature Termination). 

. 



Mitigation:  
• Use Future.cancel() to attempt to cancel a task and check 

Future.isCancelled() to verify if the task was canceled. 

11. Executor Types: 

Problem: Not choosing the appropriate executor type for the task. 

Mitigation:  
• Use Executors class to create different types of executor services like 

newFixedThreadPool, newCachedThreadPool, 
newSingleThreadExecutor, or newWorkStealingPool based on the 
specific needs. 

 
Parallelism Model  
 

Fork/Join Framework: 

When using the Fork/Join framework in Java, the programmer might encounter issues related 
to task activation and performance. Here are some common problems and their mitigations: 

1. Overhead of Task Splitting:  

• Problem: Splitting tasks too finely can introduce excessive overhead, negating the 
benefits of parallel execution. 

• Mitigation: Implement a proper threshold for task splitting. This means processing small 
subtasks sequentially within a single thread instead of creating further smaller tasks.  

2. Blocking Operations: 

• Problem: Using blocking operations within ForkJoinTasks can reduce performance. 
• Mitigation: Avoid blocking calls in tasks or handle them outside the framework. 

3. Inefficient Merging of Results: 

• Problem: Inefficient result merging can negate parallelism benefits. 
• Mitigation: Optimize the merge logic for efficiency. 

4. Not Handling Exceptions Properly: 

• Problem: Exceptions in tasks may not propagate as expected. 
• Mitigation: Implement proper exception handling using methods like getException(). 



5. Not Tuning the ForkJoinPool: 

• Problem: Default configurations may not be optimal for all applications. 
• Mitigation: Tune the ForkJoinPool by adjusting the parallelism level. 

6. Over-reliance on the Common Pool: 

• Problem: Using the common pool for tasks with blocking operations or different 
parallelism needs can cause performance issues. 

• Mitigation: Use dedicated executors for tasks that are not strictly CPU-bound. 

7. Deadlocks and Starvation: 

• Problem: Deadlocks can occur when tasks are submitted to a busy thread's local queue. 
• Mitigation: Avoid submitting tasks to the common pool from within a task already in that 

pool, especially for CPU-bound tasks. 

8. Work-Stealing Issues: 

• Problem: The default Last-In, First Out (LIFO) work-stealing approach can lead to thread 
imbalance. 

• Mitigation: Consider a First-In, First Out (FIFO) approach if thread balance is critical and 
understand the trade-offs. 

9. Task Granularity: 

• Problem: Incorrect task granularity can hinder performance. 
• Mitigation: Find a balance between task size and splitting/merging overhead. 

10. Debugging Complexity: 

• Problem: Debugging parallel execution is challenging. 
• Mitigation: Use tools and techniques for concurrent programming debugging. 

 
 
 
  



6.60 Concurrency – Directed termination [CGT]) 

Concurrency Model 
 

Threading: 
 
Effectively terminating Java threads requires careful consideration to avoid potential issues 
such as resource leaks and inconsistent states. Here are some methods to mitigate the 
pitfalls of directed thread termination: 
 
Cooperative Thread Interruption: 
 
Mitigation: 

• Instead of forcefully stopping a thread, use Thread.interrupt() to set the 
thread's interrupt status to true. The thread's code should then periodically check 
this flag using Thread.currentThread().isInterrupted()and gracefully 
terminate when the flag is set. This approach allows the thread to finish its current 
operation and clean up resources before stopping. 

• Many blocking operations (like Thread.sleep(), Object.wait(), etc.) throw an 
InterruptedException when the thread is interrupted. The code should catch 
this exception and use it as a signal to terminate the thread gracefully, ensuring 
proper cleanup. 

 
Using a Volatile Flag: 
 
Mitigation: 

• Define a volatile boolean variable (e.g., running or shouldStop) within the 
thread's class. The volatile keyword ensures that changes to the flag are 
immediately visible to all threads. The thread's main loop should check this flag and 
exit when it is set to false. 

• Create a public method (e.g., stopThread()) to set the volatile flag to false, 
signaling the thread to terminate. 

 
Utilize ExecutorService: 
 
Mitigation: 

• Leverage ExecutorService for managed thread termination: If using an 
ExecutorService, use its shutdown() method to initiate an orderly shutdown 
of the thread pool. This allows submitted tasks to complete before the threads 
terminate. 

• If a more urgent termination is needed, use shutdownNow(). However, be aware 
that this attempts to stop all running threads immediately, which might lead to 
unpredictable behavior if not handled carefully. 



 
Avoid Deprecated Methods: 
 
Mitigation: 

• Refrain from using Thread.stop(), Thread.suspend(), and 
Thread.resume(). These methods are deprecated because they are inherently 
unsafe and can lead to data inconsistencies and deadlocks. They should not be used 
in modern Java applications. 

 
Key Pitfalls and Mitigation Strategies: 

 
Problem:  
Resource leaks: Forceful termination can leave resources (e.g., file handles, database 
connections) open.  

 
Mitigation:  

• Implement cleanup logic within the thread's termination handling (e.g., in a finally 
block or by catching InterruptedException). 

 
Problem: 
Inconsistent state: Abruptly stopping a thread might leave shared data structures in an 
inconsistent state.  

 
Mitigation:  

• Use synchronization mechanisms (e.g., synchronized blocks, Lock objects) and 
ensure atomic operations to protect shared resources. 

 
Problem: 
Deadlocks: If a thread holds locks while being terminated, it can lead to deadlocks.  

 
Mitigation:  

• Design the threading logic to avoid holding locks during termination or use the 
cooperative termination approaches described above.  

 
By following these best practices, the programmer can ensure the graceful termination of 
Java threads and mitigate the risks associated with directed thread termination. 
 

Executors: 
 
Using ExecutorServices in Java is a common way to manage thread pools and execute 
tasks concurrently. However, terminating an ExecutorService and ensuring graceful 
shutdown can sometimes present challenges.  
 



Here are some common problems and their solutions regarding ExecutorService termination 
in Java: 
 
1. ExecutorService Not Terminating Immediately: 
 
Problem: After calling shutdown(), the ExecutorService might not terminate 
immediately because it waits for currently executing tasks to complete. If the tasks are long-
running or get stuck, the ExecutorService won't terminate until those tasks finish or are 
interrupted. 
 
Solution: 

• Properly Shutdown: Call shutdown() to initiate an orderly shutdown where previously 
submitted tasks are allowed to complete, but no new tasks are accepted. 

• Use awaitTermination(): Use awaitTermination (long timeout, 
TimeUnit unit) after calling shutdown() to wait for a specified period for all tasks to 
complete. This allows for a graceful shutdown within a set time limit. 

• Handle Tasks that Don't Respond to Interrupts: If awaitTermination() returns false 
(meaning the timeout was reached before all tasks finished), the programmer can consider 
calling shutdownNow() as a last resort. This attempts to interrupt running tasks, but 
there's no guarantee they will terminate if they don't properly handle interruptions. 

• Always call shutdown() after submitting tasks. Use awaitTermination() to 
wait for tasks to complete or use shutdownNow() to cancel them. For example: 
 
executor.shutdown(); 
 
try { 

if (!executor.awaitTermination(5, TimeUnit.SECONDS)) { 
       executor.shutdownNow(); 
   } 
} catch (InterruptedException e) { 
    executor.shutdownNow(); 
} 

 
2. JVM Not Terminating Due to Non-Daemon Threads: 
 
Problem: If the ExecutorService uses non-daemon threads and is not shut down, the JVM 
won't exit even after all tasks submitted to the executor have completed, because the non-daemon 
threads are still alive and waiting for new tasks. 
 
Solution: 
• Call shutdown(): Ensure to call shutdown() on the ExecutorService after submitting 

all tasks to allow for graceful shutdown and resource cleanup. 
• Use Daemon Threads (with caution): Programmers can create the ExecutorService with 

a custom ThreadFactory that creates daemon threads. However, be mindful that daemon 
threads will be abruptly terminated when the JVM exits, potentially leading to incomplete 
tasks. 

 



3. Tasks Not Being Interrupted by shutdownNow(): 
 
Problem: Calling shutdownNow() attempts to interrupt running tasks, but tasks that don't check 
for or respond to the interruption signal (Thread.currentThread().isInterrupted()) 
will continue executing. 
 
Solution: 

• Implement Interruption Logic: Design tasks (Runnables or Callables) to periodically check 
if their thread has been interrupted and handle the interruption appropriately (e.g., by 
stopping execution and cleaning up resources). 

• Consider Alternatives for Non-Responsive Tasks: If tasks cannot be reliably interrupted, 
the programmer may need to find alternative ways to manage their lifecycle or use more 
robust shutdown mechanisms if necessary. 

 
4. awaitTermination() Getting Stuck: 
 
Problem: awaitTermination() might get stuck indefinitely if there are tasks that never 
complete or never respond to interruption signals. 
 
Solution: 

• Use a Timeout: Always use the version of awaitTermination() that includes a timeout 
to prevent the application from hanging indefinitely. 

• Investigate Stalling Tasks: If awaitTermination() times out, debug the tasks that are 
still running to understand why they are not completing or responding to interruptions. 

 
5. Handling Task Failures During Shutdown: 
 
Problem: If a task within the ExecutorService throws an unhandled exception, it can affect 
the overall shutdown process and may prevent the ExecutorService from terminating 
gracefully. 
 
Solution: 

• Exception Handling within Tasks: Implement proper exception handling within tasks to 
catch and manage exceptions that occur during execution. 

• Monitor Task Completion: Use Future objects returned by submit() or invokeAll() to 
monitor task completion and handle exceptions asynchronously. 

• Centralized Exception Handling: Consider using an ExecutorCompletionService 
to process the results of tasks and handle exceptions in a centralized manner. 

 
By addressing these common issues and implementing proper shutdown and exception handling 
mechanisms, the programmer can ensure the correct and reliable termination of 
ExecutorService in Java applications. 
 



Parallelism Model  
 

Fork/Join Framework: 
NOTE: This section needs to be reworked since it mistakeably addresses 6.61 Concurrent 
data access only (it was inadvertently misplaced and duplicated) … 
 
The Fork/Join framework in Java facilitates parallel execution by dividing tasks into smaller 
subtasks, processing them concurrently, and then combining the results. However, it's essential 
to address potential pitfalls related to concurrent data access. 
 
Pitfalls and Mitigations 
 
Race Conditions: 
Multiple threads attempting to modify shared data simultaneously can lead to data corruption. 

• Mitigation: Use thread-safe data structures from the 
java.util.concurrent package, such as ConcurrentHashMap or 
AtomicInteger, which provide atomic operations for safe concurrent access. 

 
Lost Updates: 
When multiple threads read, modify, and write to shared data, updates can be lost if not properly 
synchronized. 

• Mitigation: Employ atomic operations like putIfAbsent, incrementAndGet, or 
use locks to ensure that modifications are performed as a single, indivisible operation. 

 
Deadlocks: 
When threads are blocked indefinitely, waiting for each other to release resources. 

• Mitigation: Avoid circular dependencies in locking. Use timeouts when acquiring locks, 
or consider lock-free algorithms. 

 
Excessive Thread Creation: 
Creating too many threads can lead to high overhead, impacting performance. 

• Mitigation: Use a ForkJoinPool with a suitable level of parallelism, typically based 
on the number of available processors. Avoid creating a large number of threads. 

 
Incorrect Threshold: 
When implementing a Fork/Join algorithm, it's important to choose a threshold that determines 
whether a task will execute sequentially or fork into subtasks. 

• Mitigation: Experiment to find the optimal threshold. For very small tasks, sequential 
execution may be faster than forking. 

 
Work Stealing Issues: 
If a thread in the ForkJoinPool runs out of tasks, it can steal tasks from other threads. 

• Mitigation: Ensure that tasks are reasonably sized and balanced to avoid contention and 
work stealing overhead. 

 



Misuse of Common Pool: 
The common ForkJoinPool can be overloaded if used for all tasks, leading to performance issues. 

• Mitigation: Use custom ForkJoinPools for specific tasks, especially if they are long-
running or have special requirements. 

 
Non-Associative Operations: 
The Fork/Join framework relies on operations being associative for combining results. 

• Mitigation: Ensure that the operation used to combine results is associative to avoid 
incorrect results. 

 
General Recommendations 
 
Use Thread-Safe Data Structures: 

• When sharing data between tasks, use thread-safe data structures from the 
java.util.concurrent package. 

 
Minimize Shared Mutable Data: 

• Reduce the use of shared mutable data to minimize the need for synchronization. 
 
Understand the Fork/Join Framework: 

• Thoroughly understand the Fork/Join framework's mechanics, including work stealing 
and task decomposition. 

 
Proper Task Decomposition: 

• Decompose tasks into smaller, independent subtasks. 
 
Test Thoroughly: 

• Test concurrent code thoroughly to identify and resolve potential concurrency issues. 
 

  



6.61 Concurrent data access [CGX] 

Concurrency Model 
 

Threading: 
 
Concurrent data access in Java arises when multiple threads attempt to read or modify shared 
data simultaneously. This can lead to several problems: 
 
Problems: 
 
1. Race Conditions: 

• Occur when the outcome of a program depends on the unpredictable order in which 
threads execute. 

• Two threads incrementing a shared counter variable. The final value might be 
incorrect if the increment operations are not atomic, for example: 

• Can result in data corruption or inconsistent state if multiple threads try to modify 
the same data concurrently.  

 
When multiple threads access and modify the same shared resource concurrently 
without proper synchronization, the outcome becomes unpredictable, leading to race 
conditions. This can result in data corruption, incorrect results, or even application 
crashes. The following example illustrates a race condition scenario when accessing 
synchronized and un-synchronized data: 

  
public class RaceConditionExample { 
    public static void main(String[] args) throws InterruptedException { 
        Counter counter = new Counter(); 
        Runnable task = () -> { 
            for (int i = 0; i < 1000; i++) { 
                counter.increment(); 
            } 
        }; 
 
        Thread thread1 = new Thread(task); 
        Thread thread2 = new Thread(task); 
 
        thread1.start(); 
        thread2.start(); 
 
        thread1.join(); 
        thread2.join(); 
 
        System.out.println("Counter: " + counter.getCount()); 
    } 
} 
 



class Counter { 
    private int count = 0; 
 

// NOTE: Scenario without the "synchronized" keyword is unpredictable     
public synchronized void increment() { 

        count++;   
    } 
 
    public int getCount() { 
        return count; 
    } 
} 

 
Output: 
Scenario 1, (with synchronized): 2000 
Scenario 2, (without synchronized): < varies, unpredictable > 

 
In the above example, two threads increment a shared count variable. The 
increment() operation is not atomic, which means it can be broken down into three 
steps:  

1. Read the current value of count 
2. Increment count 
3. Write the new value back to the variable count  

 
If both threads execute these steps simultaneously, they can interfere with each 
other, leading to a lower final count than expected. The lack of synchronization on the 
increment() method creates a race condition, where the final value of count is 
unpredictable. Depending on usage, unsynchronized data can result in deadlocks, 
livelocks, and starvation. 

 
2. Data Inconsistency: 

• When threads read data while another thread is modifying it, the reading thread might 
get an inconsistent or outdated view of the data. 

• This can lead to unexpected program behavior. 
 
3. Deadlocks:  

• Occur when two or more threads are blocked indefinitely, waiting for each other to 
release resources. 

• Example: Thread A holds a lock on resource X and waits for a lock on resource Y, while 
Thread B holds a lock on resource Y and waits for a lock on resource X. 

 
4. Starvation: 

• A thread is repeatedly denied access to necessary resources, preventing it from 
completing its task. 

• Can happen if some threads have higher priority or if a thread repeatedly loses the 
race for a resource. 

 



5. Memory Consistency Errors: 
• Occur when different threads have inconsistent views of shared data due to caching 

or compiler optimizations. 
• One thread might update a variable, but other threads might not see the updated 

value. 
 
6. Performance Issues: 

• Excessive contention for shared resources can lead to performance degradation. 
• Threads might spend a lot of time waiting for locks, reducing overall throughput. 

 
Solutions: 
 
Synchronization: 

• Use synchronized blocks or methods to ensure that only one thread can access a 
critical section of code at a time. 

 
Locks: 

• Use explicit locks from the java.util.concurrent.locks package for more 
fine-grained control over synchronization. 

 
Concurrent Collections: 

• Use thread-safe collections like ConcurrentHashMap, 
CopyOnWriteArrayList, and others from the java.util.concurrent 
package, which are designed for concurrent access. 

 
Atomic Variables: 

• Use atomic classes like AtomicInteger, AtomicLong, etc., for thread-safe 
updates to single variables. 

 
Immutable Objects: 

• Use immutable objects whenever possible, as they are inherently thread-safe. 
 
Thread Pools: 

• Use ExecutorService to manage a pool of threads efficiently, reducing the 
overhead of creating and destroying threads. 

 
Careful Design: 

• Design code to minimize shared mutable state and the need for complex 
synchronization mechanisms. 

 



Executors: 
 
Concurrent data access in Java executors can lead to issues like race conditions, 
deadlocks, and data corruption. By following the mitigations listed below, the programmer 
can effectively lessen the consequences of concurrent data access in Java executors and 
build robust, reliable, and scalable applications. 
 
Mitigation: 

• Use Thread-Safe Data Structures: Employ concurrent collections from 
java.util.concurrent, such as ConcurrentHashMap, 
ConcurrentLinkedQueue, or CopyOnWriteArrayList. These are designed for 
concurrent access and minimize the need for explicit synchronization. 

• Use the synchronized keyword to protect critical sections of code where shared 
data is accessed. This ensures that only one thread can access the synchronized 
code at a time. 

• Utilize explicit Lock objects (e.g., ReentrantLock) from 
java.util.concurrent.locks. These offer more flexibility and control over 
locking than synchronized. 

• For simple operations on single variables, use atomic classes like AtomicInteger, 
AtomicLong, or AtomicReference. These provide thread-safe operations 
without explicit locking. 

• If possible, reduce the amount of shared mutable data. Prefer immutable objects or 
make copies of data before passing it to different threads. 

• ThreadLocal variables provide each thread with its own copy of a variable, avoiding 
the need for synchronization when a variable is specific to a thread. 

• Use thread pools from Executors to manage threads efficiently. Avoid creating a 
new thread for every task. 

• Be mindful of lock acquisition order. Acquire locks in a consistent order to prevent 
deadlocks. 

• Implement monitoring and logging mechanisms to diagnose and resolve concurrency 
issues. 

• Use message passing or data aggregation techniques to reduce the need for shared 
state. For example: 

 
import java.util.concurrent.ExecutorService; 
import java.util.concurrent.Executors; 
import java.util.concurrent.atomic.AtomicInteger; 
 
public class ConcurrentCounter { 
    private AtomicInteger count = new AtomicInteger(0); 
    public void increment() { 
        count.incrementAndGet(); 
    } 
 
    public int getCount() { 



        return count.get(); 
    } 
 
    public static void main(String[] args) { 
        ExecutorService executor = Executors.newFixedThreadPool(10); 
        ConcurrentCounter counter = new ConcurrentCounter(); 
 
        for (int i = 0; i < 1000; i++) { 
            executor.submit(counter::increment); 
        } 
 
        executor.shutdown(); 
        while (!executor.isTerminated()) { 
        // Wait for all threads to finish 
        } 
        System.out.println("Count: " + counter.getCount()); 
    } 
} 

 
Output: 
Count: 1000 
 
In the above example, AtomicInteger ensures thread-safe increment operations. 

 
Parallelism Model  
 

Fork/Join Framework: 
 
The Fork/Join framework in Java facilitates parallel execution by dividing tasks into smaller 
subtasks, processing them concurrently, and then combining the results. However, it's essential to 
address potential pitfalls related to concurrent data access. 
 
Pitfalls and Mitigations 
 
Race Conditions: 
Multiple threads attempting to modify shared data simultaneously can lead to data corruption. 

• Mitigation: Use thread-safe data structures from the java.util.concurrent 
package, such as ConcurrentHashMap or AtomicInteger, which provide atomic 
operations for safe concurrent access. 

 
Lost Updates: 
When multiple threads read, modify, and write to shared data, updates can be lost if not properly 
synchronized. 

• Mitigation: Employ atomic operations like putIfAbsent, incrementAndGet, or 
use locks to ensure that modifications are performed as a single, indivisible operation. 

 
Deadlocks: 
When threads are blocked indefinitely, waiting for each other to release resources. 



• Mitigation: Avoid circular dependencies in locking. Use timeouts when acquiring locks, 
or consider lock-free algorithms. 

 
Excessive Thread Creation: 
Creating too many threads can lead to high overhead, impacting performance. 

• Mitigation: Use a ForkJoinPool with a suitable level of parallelism, typically based 
on the number of available processors. Avoid creating a large number of threads. 

 
Incorrect Threshold: 
When implementing a Fork/Join algorithm, it's important to choose a threshold that determines 
whether a task will execute sequentially or fork into subtasks. 

• Mitigation: Experiment to find the optimal threshold. For very small tasks, sequential 
execution may be faster than forking. 

 
Work Stealing Issues: 
If a thread in the ForkJoinPool runs out of tasks, it can steal tasks from other threads. 

• Mitigation: Ensure that tasks are reasonably sized and balanced to avoid contention and 
work stealing overhead. 

 
Misuse of Common Pool: 
The common ForkJoinPool can be overloaded if used for all tasks, leading to performance 
issues. 

• Mitigation: Use custom ForkJoinPools for specific tasks, especially if they are long-
running or have special requirements. 

 
Non-Associative Operations: 
The Fork/Join framework relies on operations being associative for combining results. 

• Mitigation: Ensure that the operation used to combine results is associative to avoid 
incorrect results. An associative operation is one where the grouping of operands does not 
affect the result. This is particularly relevant when dealing with multiple operations of the 
same type 

 
General Recommendations 
 
Use Thread-Safe Data Structures: 

• When sharing data between tasks, use thread-safe data structures from the 
java.util.concurrent package. 

Minimize Shared Mutable Data: 
• Reduce the use of shared mutable data to minimize the need for synchronization. 

 
  



6.62 Concurrency – Premature termination [CGS] 

Concurrency Model 
 

Threading: 
 
Premature thread termination in Java can occur for several reasons, including uncaught exceptions, 
explicit thread termination, or unhandled interruptions. Here's how to address and mitigate 
premature thread termination: 
 
1. Proper Exception Handling: 
 

• Try-catch blocks: Wrap potentially problematic code within a try-catch block to 
handle exceptions gracefully within the thread's execution. 

• Unhandled exceptions: If an exception is not caught, it can lead to thread termination. The 
programmer might need to use UncaughtExceptionHandler to log unhandled 
exceptions and potentially restart the thread or trigger a process-wide shutdown if 
necessary. 

• Logging: Log any exceptions to understand the root cause of the termination.  
 
2. Graceful Thread Termination: 
 

• Avoid Thread.stop(): This method is deprecated and unsafe as it can lead to 
inconsistent state and resource leaks. 

• Use volatile flags: Use a volatile boolean flag that the thread checks periodically to 
determine if it should stop. 

• Use Thread.interrupt(): This method sets the thread's interrupt status to true, 
allowing the thread to check this status and exit gracefully. 

• Handle InterruptedException: When a thread is interrupted while waiting or 
sleeping, it throws InterruptedException. Catch this exception and take 
appropriate actions, like breaking out of the current task and exiting the thread. 

• ExecutorService: For managing a pool of threads, use shutdown() to allow tasks to 
complete gracefully or shutdownNow() to attempt an immediate stop. 

 
3. Thread Lifecycle Management: 
 

• Daemon threads: If it is desired to have a thread to terminate when the main thread exits, 
set it as a daemon thread using set Daemon(true). 

• Join threads: Use thread.join() to wait for a thread to complete before the main thread 
continues. 

 



4. Best Practices: 
 

• Limit the number of threads: Creating too many threads can overload the CPU and lead to 
performance issues. 

• Use thread pools: Use ExecutorService to manage a pool of reusable threads for 
better performance and resource management. 

• Minimize synchronization: Use java.util.concurrent utilities like 
ConcurrentHashMap or BlockingQueue to reduce contention and improve 
performance. 

• Monitor thread states: Use Thread.getState() to debug and understand thread 
behavior. 

 
 

Executors: 
 
Premature termination of an ExecutorService in Java can lead to unexpected program 
behavior, resource leaks, or incomplete processing. Here are common problems and mitigations 
for premature termination:  
 
1. Improper Shutdown: 
 
Problem:  

• Not properly shutting down the ExecutorService after use. This can lead to resource 
leaks (e.g., threads not being released) and prevent the application from exiting. 

 
Mitigation: 

• Always call shutdown() or shutdownNow() when the ExecutorService is no 
longer needed. 

• shutdown(): Allows currently executing tasks to complete before terminating. 
• shutdownNow(): Attempts to stop currently running tasks and prevents waiting tasks 

from starting. 
• Consider using awaitTermination() after calling shutdown() to wait for a specific 

duration for tasks to finish. 
• Use a finally block to ensure shutdown is called even if exceptions occur. 
• In application server environments (like Java EE), use a ManagedExecutorService 

which is managed by the framework and handled automatically. 
 
2. Task Failures and Exceptions: 
 
Problem:  

• Unhandled exceptions within tasks can cause individual threads to terminate prematurely, 
impacting the overall ExecutorService. 

 



Mitigation: 
• Implement robust exception handling within the tasks themselves using try-catch 

blocks. 
• Use Future objects (returned by submit()) and call get() to retrieve the result or 

exception of the task after completion. 
• Set an UncaughtExceptionHandler for threads using a custom ThreadFactory 

to log or manage exceptions globally or per-thread. 
• If using scheduleAtFixedRate, and tasks take longer than the period, consider using 

scheduleWithFixedDelay to avoid overlapping executions. 
 
3. Stuck or Deadlocked Tasks: 
 
Problem: 

• Tasks that get stuck (e.g., due to infinite loops or resource deadlocks) can prevent the 
ExecutorService from completing its work. 

 
Mitigation: 

• Use timeouts on tasks or futures to prevent them from running indefinitely. 
• Monitor the ExecutorService to detect stuck tasks or deadlocks. 
• Use thread dumps to diagnose hangs or loops within the application or library code. 
• Consider implementing a monitoring task to set a flag or signal when other tasks fail, 

allowing for potential shutdown. 
 
4. Incorrect Thread Pool Configuration: 
 
Problem: 

• An improperly sized thread pool can lead to problems like performance degradation, 
memory leaks, or tasks being rejected. 

 
Mitigation: 

• Choose the appropriate thread pool size based on the task nature (CPU-bound vs. I/O-
bound), workload characteristics, and system constraints. 

• Utilize bounded queues to prevent out-of-memory errors and handle task bursts. 
• Avoid creating excessive threads, which can lead to context switching overhead and 

reduced performance. 
• Consider using a ThreadPoolExecutor with a minimum of 0 threads and a keep-alive 

time to automatically clean up idle threads. 
 
5. Other Considerations: 
 

• Task Design: Avoid submitting tasks that block for extended periods on external resources, 
such as network or database operations. 

• Thread Naming: Use a custom ThreadFactory to provide meaningful names for 
threads, aiding in debugging and monitoring. 



• Monitoring: Regularly monitor thread pool metrics (active threads, queue size, task 
throughput) to identify bottlenecks and fine-tune configurations. 

• CompletableFuture: Use CompletableFuture for more advanced asynchronous 
programming and task composition. 

• Virtual Threads: If tasks involve blocking operations, consider using virtual threads 
(available in Java 21+) for increased throughput. 

• Shutdown Hooks: Use addShutdownHook to shut down 
the ExecutorService gracefully when the application terminates naturally. 
 

By carefully managing the lifecycle of the ExecutorService, handling exceptions, and 
configuring the thread pool appropriately, the programmer can mitigate the risk of premature 
termination and ensure the reliable execution of the tasks and a graceful shutdown. 
 
Parallelism Model  
 

Fork/Join Framework: 
 
In Java's Fork/Join framework, premature termination (or unexpected termination) can occur in 
various scenarios, potentially leading to incomplete results or deadlocks. Here's a breakdown of 
common causes and mitigation strategies: 
 
1. Blocking Operations: 
 
Problem:  

• Fork/Join is designed for CPU-bound, non-blocking tasks. When a ForkJoinTask 
performs blocking operations (like I/O, database calls, or waiting on locks), the worker 
thread becomes unavailable to execute other tasks, potentially causing deadlocks or 
starvation. 

 
Mitigation: 

• Avoid Blocking: Refactor tasks to avoid blocking operations within the compute() 
method. 

• Use Asynchronous Alternatives: Consider using asynchronous programming models or 
non-blocking I/O when needed. 

• External Blocking: If external blocking is unavoidable, use standard ExecutorService 
and Callable instead of ForkJoinPool. 

 
2. Incorrect Usage of join(): 
 
Problem:  

• Calling join() too early or incorrectly can cause the current thread to block 
unnecessarily, hindering parallel execution. 

 



Mitigation: 
• Call join() as the last step: After forking subtasks, call join() on them only when 

their results are needed. 
• Use invokeAll() for multiple tasks: This method efficiently forks and joins a collection 

of tasks, often avoiding manual joining logic errors.  
 
3. Task Dependency Issues: 
 
Problem:  

• If a task depends on the completion of another task that is not forked or has stalled, it can 
lead to premature termination or deadlock. 

Mitigation: 
• Proper Task Structuring: Ensure tasks are structured as a Directed Acyclic Graph (DAG) 

to avoid cyclic dependencies that can cause deadlocks. 
• Check isDone() before join(): While not always necessary, checking isDone() 

can provide a sanity check, but it's important to remember that it only indicates the 
completion state of a task, not the queue. 

 
4. Exceptions: 
 
Problem:  

• Unhandled exceptions within a ForkJoinTask can cause the task to terminate 
prematurely, potentially leaving other tasks incomplete or in an inconsistent state. 

 
Mitigation: 

• Exception Handling: Wrap potentially problematic code within try-catch blocks to handle 
exceptions gracefully. 

• Propagate Exceptions: If necessary, propagate exceptions to the calling task for appropriate 
handling or cancellation of other tasks. 

 
5. ForkJoinPool Configuration Issues: 
 
Problem:  

• Incorrectly configuring the ForkJoinPool (e.g., inadequate parallelism or misuse of 
asyncMode) can impact performance and lead to unexpected behavior. 

 
Mitigation: 

• Use the Common Pool: For most applications, use the default common pool provided by 
ForkJoinPool.commonPool(). 

• Consider Custom Pools: If specific tuning is needed, create a custom pool with a suitable 
parallelism level. 

• Tune for Performance: Test and tune the application's Fork/Join configuration for optimal 
performance on target hardware. 

 



6. Daemon Threads: 
 
Problem:  

• By default, ForkJoinPool uses daemon threads, meaning the application can exit 
before submitted tasks complete if no non-daemon threads are active. 

 
Mitigation: 

• Block or Wait: If necessary, ensure the main thread waits for the completion of tasks (e.g., 
by calling join() on the root task) before exiting. 

 
In summary, effective mitigation involves careful task design, avoiding blocking operations, 
correct use of join() and invokeAll(), robust exception handling, and appropriate 
ForkJoinPool configuration. 
 
 


