10

11

12
13

14
15

16
17
18

19

20
21

22
23

Chapter 1

Introduction

1.1 Scope

The scope of IEEE Std.1003.1-200x is described in the Base Definitions volume of

IEEE Std. 1003.1-200x.

1.2 Conformance

Conformance requirements for IEEE Std. 1003.1-200x are defined in the Base Definitions volume

of IEEE Std. 1003.1-200x, Chapter 2, Conformance.

1.3 Normative References

Normative references for IEEE Std. 1003.1-200x are defined in the Base Definitions volume of

IEEE Std. 1003.1-200x.

1.4 Changes from Issue 4

Notes to Reviewers
This section with side shading will not appear in the final copy. - Ed.

The change history is subject to revision. The intention is to keep change history from Issue 4,
and in the Issue 5 to Issue 6 change history to note changes from POSIX.2-1992 as well as Issue 5.

The following sections describe changes made to this volume of IEEE Std. 1003.1-200x since

Issue 4. The CHANGE HISTORY section for each utility describes technical changes made to

that utility since Issue 4. Changes made between Issue 2 and Issue 4 are not included.

1.4.1 Changes from Issue 4 to Issue 4, Version 2

The following list summarizes the major changes that were made in this volume of

IEEE Std. 1003.1-200x from Issue 4 to Issue 4, Version 2:

« The X/0Open UNIX extension was added, which specifies the common core utilities of 4.3

Berkeley Software Distribution (4.3 BSD), the OSF AES, and SVID lIssue 3.

Shell and Utilities, Issue 6

2203

24

25
26

27

28

29

30
31

32

33
34
35
36
37

38

39
40

M
42

43
44

45
46

47
48
49

50
51
52

53
54

55

Changes from Issue 4 Introduction

1.42 Changes from Issue 4, Version 2 to Issue 5

The following list summarizes the major changes that were made in this volume of
IEEE Std. 1003.1-200x from Issue 4, Version 2 to Issue 5:

- Large File Summit (LFS) Extensions were added.
- Some utilities were updated to reflect changes for the POSIX Realtime Extension.
- Some utilities were updated to reflect changes for the POSIX Threads Extension.

- The LEGACY category of utilities was introduced as a replacement for the TO BE
WITHDRAWN, WITHDRAWN, and Possibly Unsupportable categories.

- The following utilities were added:
fuser
ipcrm
ipcs
link
unlink

1.43 Changes from Issue 5 to Issue 6

The following list summarizes the major changes that were made in this volume of
IEEE Std. 1003.1-200x from Issue 5 to Issue 6:

« This volume of IEEE Std. 1003.1-200x is extensively revised so it can be both an IEEE POSIX
Standard and an Open Group Technical Standard.

« this volume of IEEE Std. 1003.1-200x is updated to mandate support of FIPS 151-2. The
following changes were made:

— Support is mandated for the capabilities associated with the following symbolic
constants:

_POSIX_CHOWN_RESTRICTED
_POSIX_JOB_CONTROL
_POSIX_SAVED_IDS

— In the environment for the login shell, the environment variables LOGNAME and HOME
shall be defined and have the properties described in the Base Definitions volume of
IEEE Std. 1003.1-200x, Chapter 7, Locale.

- this volume of IEEE Std. 1003.1-200x is updated to align with some features of the Single
UNIX Specification.

« A RATIONALE section is added to each reference page.

2204 Technical Standard (2000) (Draft July 31, 2000)

56

57
58

59

60
61
62
63

64
65
66
67
68
69

70
71

72
73
74
75
76

7
78
79
80
81

82

83
84
85
86

87

88
89
90
91
92

93
94

95
96
97

98
99
100

Introduction Terminology

1.5

Terminology

This section appears in the Base Definitions volume of IEEE Std. 1003.1-200x, but is repeated
here for convenience:

For the purposes of IEEE Std. 1003.1-200x, the following terminology definitions apply:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to
IEEE Std. 1003.1-200x. An application can rely on the existence of the feature or behavior.

implementation-defined
Describes a value or behavior that is not defined by IEEE Std. 1003.1-200x but is selected by
an implementor. The value or behavior may vary among implementations that conform to
IEEE Std. 1003.1-200x. An application should not rely on the existence of the value or
behavior. An application that relies on such a value or behavior cannot be assured to be
portable across conforming implementations.

The implementor shall document such a value or behavior so that it can be used correctly
by an application.

legacy
Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to
IEEE Std. 1003.1-200x. An application should not rely on the existence of the feature or
behavior. An application that relies on such a feature or behavior cannot be assured to be
portable across conforming implementations.

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

shall
For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or
behavior that is mandatory. An application can rely on the existence of the feature or
behavior.

For an application or user, describes a behavior that is mandatory.

should
For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or
behavior that is recommended but not mandatory. An application should not rely on the
existence of the feature or behavior. An application that relies on such a feature or behavior
cannot be assured to be portable across conforming implementations.

For an application, describes a feature or behavior that is recommended programming
practice for optimum portability.

undefined
Describes the nature of a value or behavior not defined by IEEE Std. 1003.1-200x which
results from use of an invalid program construct or invalid data input.

The wvalue or behavior may vary among implementations that conform to
IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or behavior cannot be

Shell and Utilities, Issue 6 2205

101

102
103
104

105
106
107
108

Terminology Introduction

2206

assured to be portable across conforming implementations.

unspecified

Describes the nature of a value or behavior not specified by IEEE Std. 1003.1-200x which
results from use of a valid program construct or valid data input.

The wvalue or behavior may vary among implementations that conform to
IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or behavior cannot be
assured to be portable across conforming implementations.

Technical Standard (2000) (Draft July 31, 2000)

109

110

Introduction Definitions

1.6 Definitions
Concepts and definitions are defined in the Base Definitions volume of IEEE Std. 1003.1-200x.

Shell and Utilities, Issue 6 2207

111

112

113
114
115
116
117
118
119

120
121
122

123

124
125
126

127
128
129
130
131
132
133
134

135

136

137
138
139

140
141

142
143
144
145
146

147

148
149
150

Relationship to Other Documents Introduction

1.7

1.7.1

1711

1712

1713

2208

Relationship to Other Documents

The System Interfaces volume of IEEE Std. 1003.1-200x

This subsection describes some of the features provided by the System Interfaces volume of
IEEE Std. 1003.1-200x that are assumed to be globally available by all systems conforming to this
volume of IEEE Std. 1003.1-200x. This subsection does not attempt to detail all of the features
defined in the System Interfaces volume of IEEE Std. 1003.1-200x that are required by all of the
utilities defined in this volume of IEEE Std. 1003.1-200x; the utility and function descriptions
point out additional functionality required to provide the corresponding specific features
needed by each.

The following subsections describe frequently used concepts. Many of these concepts are
described in the Base Definitions volume of IEEE Std. 1003.1-200x. Utility and function
description statements override these defaults when appropriate.

Process Attributes

The following process attributes, as described in the System Interfaces volume of
IEEE Std. 1003.1-200x, are assumed to be supported for all processes in this volume of
IEEE Std. 1003.1-200x:

Controlling Terminal Real Group ID

Current Working Directory Real User ID

Effective Group ID Root Directory

Effective User ID Saved Set-Group-I1D

File Descriptors Saved Set-User-1D

File Mode Creation Mask Session Membership
Process Group 1D Supplementary Group IDs
Process ID

A conforming implementation may include additional process attributes.

Concurrent Execution of Processes

The following functionality of the fork() function defined in the System Interfaces volume of
IEEE Std. 1003.1-200x shall be available on all systems conforming to this volume of
IEEE Std. 1003.1-200x:

1. Independent processes shall be capable of executing independently without either process
terminating.

2. A process shall be able to create a new process with all of the attributes referenced in
Section 1.7.1.1, determined according to the semantics of a call to the fork() function
defined in the System Interfaces volume of IEEE Std. 1003.1-200x followed by a call in the
child process to one of the exec functions defined in the System Interfaces volume of
IEEE Std. 1003.1-200x.

File Access Permissions

The file access control mechanism described by the Base Definitions volume of
IEEE Std. 1003.1-200x, Section 4.1, File Access Permissions applies to all files on an
implementation conforming to this volume of IEEE Std. 1003.1-200x.

Technical Standard (2000) (Draft July 31, 2000)

151

152
153

154
155
156

157

158
159

160

161

162
163
164

165

166

167
168

169
170

171
172

173

174
175

176
177
178

179

180

181

182

183

184
185
186

187
188
189

Introduction Relationship to Other Documents

1714

File Read, Write, and Creation

If a file that does not exist is to be written, it shall be created as described below, unless the
utility description states otherwise.

When a file that does not exist is created, the following features defined in the System Interfaces
volume of IEEE Std. 1003.1-200x shall apply unless the utility or function description states
otherwise:

1. The user ID of the file is set to the effective user ID of the calling process.

2. The group ID of the file is set to the effective group ID of the calling process or the group
ID of the directory in which the file is being created.

3. Ifthe fileis aregular file, the permission bits of the file are set to:
S_IROTH | S_IWOTH | S_IRGRP | S_IWGRP | S_IRUSR | S_IWUSR

(see the description of File Modes in the Base Definitions volume of IEEE Std. 1003.1-200x,
Chapter 13, Headers, <sys/stat.h>) except that the bits specified by the file mode creation
mask of the process are cleared. If the file is a directory, the permission bits are set to:

S_IRWXU | S_IRWXG | S_IRWXO
except that the bits specified by the file mode creation mask of the process are cleared.

4. The st_atime, st_ctime, and st_ mtime fields of the file shall be updated as specified in the
System Interfaces volume of IEEE Std. 1003.1-200x, Section 2.5, Standard 1/0 Streams.

5. If the file is a directory, it shall be an empty directory; otherwise, the file shall have length
zero.

6. If the file is a symbolic link, the effect shall be undefined unless the {POSIX2_SYMLINKS}
variable is in effect for the directory in which the symbolic link would be created.

7. Unless otherwise specified, the file created shall be a regular file.

When an attempt is made to create a file that already exists, the action shall depend on the file
type:

1. For directories and FIFO special files, the attempt shall fail and the utility shall either
continue with its operation or exit immediately with a non-zero status, depending on the
description of the utility.

2. Forregular files:
a. Theuser ID, group ID, and permission bits of the file shall not be changed.
b. The file shall be truncated to zero length.
c. Thest_ctime and st_mtime fields shall be marked for update.

3. For other file types, the effect is implementation-defined.

When a file is to be appended, the file shall be opened in a manner equivalent to using the
O_APPEND flag, without the O_TRUNC flag, in the open() function defined in the System
Interfaces volume of IEEE Std. 1003.1-200x.

When a file is to be read or written, the file shall be opened with an access mode corresponding
to the operation to be performed. If file access permissions deny access, the requested operation
shall fail.

Shell and Utilities, Issue 6 2209

190

191
192
193

194

195

196
197

198
199

200
201

202

203

204

205
206

207
208

209

210

211

212
213

214

215
216
217

218
219

220
221
222

223

224
225
226

227
228
229

Relationship to Other Documents Introduction

1.7.15

1.7.16

1.7.1.7

2210

File Removal

When a directory that is the root directory or current working directory of any process is
removed, the effect is implementation-defined. If file access permissions deny access, the
requested operation fails. Otherwise, when a file is removed:

1. Itsdirectory entry is removed from the file system.
2. The link count of the file is decremented.

3. If the file is an empty directory (see the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 3.145, Empty Directory):

a. If no process has the directory open, the space occupied by the directory is freed and
the directory is no longer accessible.

b. If one or more processes have the directory open, the directory contents are
preserved until all references to the file have been closed.

4. Ifthefile is a directory that is not empty, the st_ctime field is marked for update.
5. If the file is not a directory:
a. If the link count becomes zero:

i. If no process has the file open, the space occupied by the file is freed and the
file is no longer accessible.

ii. Ifone or more processes have the file open, the file contents are preserved until
all references to the file have been closed.

b. Ifthe link count is not reduced to zero, the st_ctime field is marked for update.

6. The st_ctime and st_mtime fields of the containing directory are marked for update.

File Time Values

All files shall have the three time values described by the Base Definitions volume of
IEEE Std. 1003.1-200x, Section 4.3, File Times Update.

File Contents

When a reference is made to the contents of a file, pathname, this means the equivalent of all of
the data placed in the space pointed to by buf when performing the read() function calls in the
following operations defined in the System Interfaces volume of IEEE Std. 1003.1-200x:

while (read (fildes, buf, nbytes) > 0)

If the file is indicated by a path name pathname, the file descriptor shall be determined by the
equivalent of the following operation defined in the System Interfaces volume of
IEEE Std. 1003.1-200x:

fildes = open (pathname, O_RDONLY);

The value of nbytes in the above sequence is unspecified; if the file is of a type where the data
returned by read() would vary with different values, the value is one that results in the most
data being returned.

If the read () function calls would return an error, it is unspecified whether the contents of the file
are considered to include any data from offsets in the file beyond where the error would be
returned.

Technical Standard (2000) (Draft July 31, 2000)

230

231
232
233
234

235

236
237
238
239
240

241

242
243
244
245
246

247

248
249
250
251

Introduction Relationship to Other Documents

1.7.18

1.7.19

1.7.1.10

1.7.111

Path Name Resolution

The path name resolution algorithm, described by the Base Definitions volume of
IEEE Std. 1003.1-200x, Section 4.5, Path Name Resolution, is used by implementations
conforming to this volume of IEEE Std. 1003.1-200x; see also the Base Definitions volume of
IEEE Std. 1003.1-200x, Section 4.4, File Hierarchy.

Changing the Current Working Directory

When the current working directory (see the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 3.438, Working Directory) is to be changed, unless the utility or function description
states otherwise, the operation shall succeed unless a call to the chdir() function defined in the
System Interfaces volume of IEEE Std. 1003.1-200x would fail when invoked with the new
working directory path name as its argument.

Establish the Locale

The functionality of the setlocale() function defined in the System Interfaces volume of
IEEE Std. 1003.1-200x is assumed to be available on all systems conforming to this volume of
IEEE Std. 1003.1-200x; that is, utilities that require the capability of establishing an international
operating environment shall be permitted to set the specified category of the international
environment.

Actions Equivalent to Functions

Some utility descriptions specify that a utility performs actions equivalent to a function defined
in the System Interfaces volume of IEEE Std. 1003.1-200x. Such specifications require only that
the external effects be equivalent, not that any effect within the utility and visible only to the
utility be equivalent.

Shell and Utilities, Issue 6 2211

252

253
254
255
256

257
258
259

260
261
262
263
264
265

266

267
268

269
270
271

272
273
274

275
276
277

278
279
280

281
282
283

284
285
286

287
288

289
290
291

292
293

294
295

Portability Introduction

1.8

181

ADV

AIO

BAR

BE

CD

2212

Portability

Some of the utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x and functions in
the System Interfaces volume of IEEE Std. 1003.1-200x describe functionality that might not be
fully portable to systems meeting the requirements for POSIX conformance (see the Base
Definitions volume of IEEE Std. 1003.1-200x, Chapter 2, Conformance).

Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
the margin identifies the nature of the option, extension, or warning (see Section 1.8.1). For
maximum portability, an application should avoid such functionality.

Unless the primary task of a utility is to produce textual material on its standard output,
application developers should not rely on the format or content of any such material that may be
produced. Where the primary task is to provide such material, but the output format is
incompletely specified, the description is marked with the OF margin code and shading.
Application developers are warned not to expect that the output of such an interface on one
system is any guide to its behavior on another system.

Codes

Codes and their meanings are listed in the Base Definitions volume of IEEE Std. 1003.1-200x, but
are repeated here for convenience:

Advisory Information
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ADV
margin legend.

Asynchronous Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the AIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the AIO
margin legend.

Barriers
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the BAR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the BAR
margin legend.

Batch Environment Services and Utilities
The functionality described is optional.

Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the BE margin
legend.

C-Language Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the CD margin

Technical Standard (2000) (Draft July 31, 2000)

296

297
298
299

300
301
302

303
304
305

306
307
308

309
310
311

312
313

314
315
316

317
318

319
320
321

322
323
324

325
326
327

328
329
330

331
332
333

334
335
336
337
338

339
340

Introduction Portability

CPT

CS

CX

FD

FR

FSC

1P6

MAN

MF

legend.

Process CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the CPT
margin legend.

Clock Selection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the CS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the CS
margin legend.

Extension to the ISO C standard
The functionality described is an extension to the ISO C standard. Application writers may
make use of an extension as it is supported on all IEEE Std. 1003.1-200x-conforming systems.

FORTRAN Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FD margin
legend.

FORTRAN Runtime Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FR margin
legend.

File Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the FSC
margin legend.

IPV6
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the IP6
margin legend.

Mandatory in the Next Draft

This is an interim draft code used to aid reviewers during the development of
IEEE Std. 1003.1-200x. It denotes a feature that was previously an option or extension that is
being brought into the mandatory base functionality. This margin code will be removed from the
final draft.

Memory Mapped Files
The functionality described is optional. The functionality described is also an extension to the

Shell and Utilities, Issue 6 2213

341

342
343
344

345
346
347

348
349
350

351
352
353

354
355
356

357
358
359

360
361
362

363
364
365

366
367
368

369
370
371

372
373
374

375
376
377
378

379
380
381
382

383
384
385

Portability Introduction

ML

MLR

MON

MPR

MSG

oB

OF

OH

2214

ISO C standard.

Where applicable, functions are marked with the MF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MF
margin legend.

Process Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ML
margin legend.

Range Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MLR
margin legend.

Monotonic Clock
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MON
margin legend.

Memory Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MPR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MPR
margin legend.

Message Passing
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MSG
margin legend.

Obsolescent

The functionality described may be withdrawn in a future version of this volume of
IEEE Std. 1003.1-200x. Strictly Conforming POSIX Applications and Strictly Conforming XSI
Applications shall not use obsolescent features.

Output Format Incompletely Specified

The functionality described is an XSI extension. The format of the output produced by the utility
is not fully specified. It is therefore not possible to post-process this output in a consistent
fashion. Typical problems include unknown length of strings and unspecified field delimiters.

Optional Header
In the SYNOPSIS section of some interfaces in the System Interfaces volume of
IEEE Std. 1003.1-200x an included header is marked as in the following example:

Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

386 OH #include <sys/types.h>

387 #include <grp.h>

388 struct group *getgrnam(const char *name);

389 This indicates that the marked header is not required on XSI-conformant systems.

390 PIO Prioritized Input and Output

391 The functionality described is optional. The functionality described is also an extension to the
392 ISO C standard.

393 Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
394 Where additional semantics apply to a function, the material is identified by use of the PIO
395 margin legend.

396 Ps Process Scheduling

397 The functionality described is optional. The functionality described is also an extension to the
398 ISO C standard.

399 Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
400 Where additional semantics apply to a function, the material is identified by use of the PS
401 margin legend.

402 RTS Realtime Signals Extension

403 The functionality described is optional. The functionality described is also an extension to the
404 ISO C standard.

405 Where applicable, functions are marked with the RTS margin legend in the SYNOPSIS section.
406 Where additional semantics apply to a function, the material is identified by use of the RTS
407 margin legend.

408 sD Software Development Utilities

409 The functionality described is optional.

410 Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
411 Where additional semantics apply to a utility, the material is identified by use of the SD margin
412 legend.

413 SEM Semaphores

414 The functionality described is optional. The functionality described is also an extension to the
415 ISO C standard.

416 Where applicable, functions are marked with the SEM margin legend in the SYNOPSIS section.
417 Where additional semantics apply to a function, the material is identified by use of the SEM
418 margin legend.

419 SHM Shared Memory Objects

420 The functionality described is optional. The functionality described is also an extension to the
421 ISO C standard.

422 Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
423 Where additional semantics apply to a function, the material is identified by use of the SHM
424 margin legend.

425 sio Synchronized Input and Output

426 The functionality described is optional. The functionality described is also an extension to the
427 ISO C standard.

428 Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
429 Where additional semantics apply to a function, the material is identified by use of the SIO
430 margin legend.

Shell and Utilities, Issue 6 2215

431
432
433

434
435
436

437
438
439

440
441
442

443
444
445

446
447
448

449
450
451

452
453
454

455
456
457

458
459
460

461
462
463

464
465
466

467
468
469

470
471
472

473
474
475

Portability Introduction

SPI

SPN

SS

TCT

THR

T™MO

TMR

TPI

2216

Spin Locks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SPI
margin legend.

Spawn
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SPN
margin legend.

Process Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SS
margin legend.

Thread CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TCT
margin legend.

Threads
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the THR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the THR
margin legend.

Timeouts
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TMO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TMO
margin legend.

Timers
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TMR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TMR
margin legend.

Threads Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Technical Standard (2000) (Draft July 31, 2000)

476
477
478

479
480
481

482
483
484

485
486
487

488
489
490

491
492
493

494
495
496

497
498
499

500
501
502

503
504
505

506
507
508

509
510
511

512
513
514

515
516
517

518
519
520

Introduction Portability

TPP

TPS

TRC

TEF

TRL

TRI

TSA

Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPI
margin legend.

Thread Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPP
margin legend.

Thread Execution Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPS
margin legend.

Trace
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRC
margin legend.

Trace Event Filter
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TEF
margin legend.

Trace Log
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRL
margin legend.

Trace Inherit
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRl margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRI
margin legend.

Thread Stack Address Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSA
margin legend.

Shell and Utilities, Issue 6 2217

521
522
523

524
525
526

527
528
529

530
531
532

533
534
535

536
537
538

539
540
541

542
543
544

545
546
547

548
549
550

551
552
553
554
555

556
557

558
559
560

561
562
563
564

Portability Introduction

TSF

TSH

TSP

TSS

TYM

UN

UP

XSl

2218

Thread-Safe Functions
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSF
margin legend.

Thread Process-Shared Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSH
margin legend.

Thread Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSP
margin legend.

Thread Stack Address Size
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSS
margin legend.

Typed Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TYM
margin legend.

Possibly Unsupportable Feature

The functionality described is an XSI extension. It need not be possible to implement the
required functionality (as defined) on all conformant systems and the functionality need not be
present. This may, for example, be the case where the conformant system is hosted and the
underlying system provides the service in an alternative way.

User Portability Utilities
The functionality described is optional.

Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the UP margin
legend.

Extension

The functionality described is an XSI extension. Functionality marked XSl is also an extension to
the ISO C standard. Application writers may confidently make use of an extension on all
systems supporting the X/Open System Interfaces Extension.

Technical Standard (2000) (Draft July 31, 2000)

565
566
567

568
569
570

571
572
573

Introduction Portability

If an entire SYNOPSIS section is shaded and marked with one XSlI, all the functionality described
in that reference page is an extension. See the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 3.441, XSI.

XSR XSI STREAMS
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the XSR
margin legend.

Shell and Utilities, Issue 6 2219

574

575
576
577

578

579

580
581

582
583

584
585

586
587

588
589
590
591
592
593

594
595

596
597
598
599
600

601
602
603
604
605

606
607
608
609

610
611
612
613
614
615
616

617
618

619
620

Utility Limits Introduction

1.9

2220

Utility Limits
This section lists magnitude limitations imposed by a specific implementation. The braces

notation, {LIMIT}, is used in this volume of IEEE Std. 1003.1-200x to indicate these values, but
the braces are not part of the name.

Table 1-1 Utility Limit Minimum Values

Name Description Value
{POSIX2_BC_BASE_MAX} The maximum obase value allowed by the hc 99
utility.
{POSIX2_BC _DIM_MAX} The maximum number of elements permitted in 2048
an array by the bc utility.
{POSIX2_BC_SCALE_MAX} The maximum scale value allowed by the bc 99
utility.
{POSIX2_BC _STRING_MAX} The maximum length of a string constant 1000
accepted by the bc utility.
{POSIX2_COLL_WEIGHTS_MAX}| The maximum number of weights that can be 2

assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see the
border_start keyword in the Base Definitions
volume of IEEE Std. 1003.1-200x, Section 7.3.2,

LC_COLLATE.
{POSIX2_EXPR_NEST_MAX} The maximum number of expressions that can 32
be nested within parentheses by the expr utility.
{POSIX2_LINE_MAX} Unless otherwise noted, the maximum length, in | 2048

bytes, of the input line of a utility (either
standard input or another file), when the utility
is described as processing text files. The length
includes room for the trailing newline.
{POSIX2_RE_DUP_MAX} The maximum number of repeated occurrences 255
of a BRE permitted when using the interval
notation \{m,n\}; see the Base Definitions
volume of IEEE Std. 1003.1-200x, Section 9.3.6,
BREs Matching Multiple Characters.
{POSIX2_VERSION} This value indicates the version of the utilities in | 199209
this volume of IEEE Std. 1003.1-200x that are
provided by the implementation. It changes
with each published version.

The values specified in Table 1-1 represent the lowest values conforming implementations shall
provide and, consequently, the largest values on which an application can rely without further
enquiries, as described below. These values shall be accessible to applications via the getconf
utility (see getconf (on page 2692)) and through the sysconf() function defined in the System
Interfaces volume of IEEE Std. 1003.1-200x. The literal names shown in Table 1-1 apply only to
the getconf utility; the high-level language binding describes the exact form of each name to be
used by the interfaces in that binding.

Implementations may provide more liberal, or less restrictive, values than shown in Table 1-1.
These possibly more liberal values are accessible using the symbols in Table 1-2 (on page 2221).

The sysconf() function defined in the System Interfaces volume of IEEE Std. 1003.1-200x or the
getconf utility return the value of each symbol on each specific implementation. The value so

Technical Standard (2000) (Draft July 31, 2000)

Introduction Utility Limits

621 retrieved is the largest, or most liberal, value that is available throughout the session lifetime, as
622 determined at session creation. The literal names shown in the table apply only to the getconf
623 utility; the high-level language binding describes the exact form of each name to be used by the
624 interfaces in that binding.

625 All numeric limits defined by the System Interfaces volume of IEEE Std. 1003.1-200x, such as
626 {PATH_MAX}, also apply to this volume of IEEE Std. 1003.1-200x. All the utilities defined by this
627 volume of IEEE Std. 1003.1-200x are implicitly limited by these values, unless otherwise noted in
628 the utility descriptions.

629 It is not guaranteed that the application can actually reach the specified limit of an
630 implementation in any given case, or at all, as a lack of virtual memory or other resources may
631 prevent this. The limit value indicates only that the implementation does not specifically impose
632 any arbitrary, more restrictive limit.

633 Table 1-2 Symbolic Utility Limits

634

635 Name Description Minimum Value

636 {BC_BASE_MAX} The maximum obase value |{POSIX2_BC_BASE_MAX}

637 allowed by the bc utility.

638 {BC_DIM_MAX} The maximum number of |{POSIX2_BC_DIM_MAX}

639 elements permitted in an

640 array by the bc utility.

641 {BC_SCALE_MAX} The maximum scale value [{POSIX2_BC_SCALE_MAX}

642 allowed by the bc utility.

643 {BC_STRING_MAX} The maximum length of a [{POSIX2_BC_STRING_MAX}

644 string constant accepted by

645 the be utility.

646 {COLL_WEIGHTS_MAX}| The maximum number of |[{POSIX2_COLL_WEIGHTS_MAX}
647 weights that can be

648 assigned to an entry of the

649 LC_COLLATE order

650 keyword in the locale

651 definition file; see the

652 order_start keyword in the

653 Base Definitions volume of

654 IEEE Std. 1003.1-200x,

655 Section 7.3.2, LC_COLLATE.

656 {EXPR_NEST_MAX} The maximum number of |{POSIX2_EXPR_NEST_MAX}

657 expressions that can be

658 nested within parentheses

659 by the expr utility.

660 {LINE_MAX} Unless otherwise noted, the |{POSIX2_LINE_MAX}

661 maximum length, in bytes,

662 of the input line of a utility

663 (either standard input or

664 another file), when the

665 utility is described as

666 processing text files. The

667 length includes room for the

668

Shell and Utilities, Issue 6 2221

Utility Limits Introduction

669

670 Name Description Minimum Value

671 trailing newline.

672 {RE_DUP_MAX} The maximum number of [{POSIX2_RE_DUP_MAX}

673 repeated occurrences of a

674 BRE permitted when using

675 the interval notation

676 \{m,n\}; see the Base

677 Definitions volume of

678 IEEE Std. 1003.1-200x,

679 Section 9.3.6, BREs

680 Matching Multiple

681 Characters.

682 The following value may be a constant within an implementation or may vary from one path
683 name to another.

684 {POSIX2_SYMLINKS}

685 When referring to a directory, the system supports the creation of symbolic links within that
686 directory; for non-directory files, the meaning of {POSIX2_SYMLINKS} is undefined.

2222 Technical Standard (2000) (Draft July 31, 2000)

687

688
689
690
691
692
693
694
695
696
697

698
699

700
701

702
703

704

Introduction Grammar Conventions

1.10

Grammar Conventions

Portions of this volume of IEEE Std. 1003.1-200x are expressed in terms of a special grammar
notation. It is used to portray the complex syntax of certain program input. The grammar is
based on the syntax used by the yacc utility. However, it does not represent fully functional yacc
input, suitable for program use; the lexical processing and all semantic requirements are
described only in textual form. The grammar is not based on source used in any traditional
implementation and has not been tested with the semantic code that would normally be
required to accompany it. Furthermore, there is no implication that the partial yacc code
presented represents the most efficient, or only, means of supporting the complex syntax within
the utility. Implementations may use other programming languages or algorithms, as long as the
syntax supported is the same as that represented by the grammar.

The following typographical conventions are used in the grammar; they have no significance
except to aid in reading.

- The identifiers for the reserved words of the language are shown with a leading capital letter.
(These are terminals in the grammar; for example, While, Case.)

« The identifiers for terminals in the grammar are all named with uppercase letters and
underscores; for example, NEWLINE, ASSIGN_OP, NAME.

- The identifiers for non-terminals are all lowercase.

Shell and Utilities, Issue 6 2223

705

706

707

708

709
710

711
712
713
714
715

716
717

718
719
720
721
722
723

724
725
726
727
728

729
730
731
732
733
734
735
736

737
738
739
740
741
742
743

744
745
746
747

748
749
750

Utility Description Defaults Introduction

1.11

2224

Utility Description Defaults

This section describes all of the subsections used within the utility descriptions, including:
« Intended usage of the section
+ Global defaults that affect all the standard utilities

- The meanings of notations used in this volume of IEEE Std. 1003.1-200x that are specific to
individual utility sections

Integer variables and constants, including the values of operands and option-arguments, used
by the utilities listed in this volume of IEEE Std. 1003.1-200x shall be implemented as equivalent
to the ISO C standard signed long data type. Conversion between types shall be as described in
the 1SO C standard. The evaluation of arithmetic expressions shall be equivalent to that
described in Section 6.3 of the ISO C standard.

NAME
This section gives the name or names of the utility and briefly states its purpose.

SYNOPSIS
The SYNOPSIS section summarizes the syntax of the calling sequence for the utility,
including options, option-arguments, and operands. Standards for utility naming are
described in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, Utility
Syntax Guidelines; for describing the utility’s arguments in the Base Definitions volume
of IEEE Std. 1003.1-200x, Section 12.1, Utility Argument Syntax.

DESCRIPTION
The DESCRIPTION section describes the actions of the utility. If the utility has a very
complex set of subcommands or its own procedural language, an EXTENDED
DESCRIPTION section is also provided. Most explanations of optional functionality are
omitted here, as they are usually explained in the OPTIONS section.

Some utilities in this volume of IEEE Std. 1003.1-200x are described in terms of
functionality equivalent to the System Interfaces volume of IEEE Std. 1003.1-200x.
When specific functions are cited, the underlying operating system provides equivalent
functionality and all side effects associated with successful execution of the function.
The treatment of errors and intermediate results from the individual functions cited is
generally not specified by this volume of IEEE Std. 1003.1-200x. See the utility’s EXIT
STATUS and CONSEQUENCES OF ERRORS sections for all actions associated with
errors encountered by the utility.

OPTIONS
The OPTIONS section describes the utility options and option-arguments, and how
they modify the actions of the utility. Standard utilities that have options either fully
comply with the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, Utility
Syntax Guidelines or describe all deviations. Apparent disagreements between
functionality descriptions in the OPTIONS and DESCRIPTION (or EXTENDED
DESCRIPTION) sections are always resolved in favor of the OPTIONS section.

Each OPTIONS section that uses the phrase “The ... utility shall conform to the Utility
Syntax Guidelines ...” refers only to the use of the utility as specified by this volume of
IEEE Std. 1003.1-200x; implementation extensions should also conform to the
guidelines, but may allow exceptions for historical practice.

Unless otherwise stated in the utility description, when given an option unrecognized
by the implementation, or when a required option-argument is not provided, standard
utilities shall issue a diagnostic message to standard error and exit with a non-zero exit

Technical Standard (2000) (Draft July 31, 2000)

751

752
753

754
755
756
757

758
759
760
761
762

763

764

765
766
767
768
769

770
771
772
773

774
775

776
7

778
779
780
781
782

783
784
785

786
787
788

789
790
791

792
793
794
795

Introduction

XSl

Utility Description Defaults

status.

All utilities in this volume of IEEE Std. 1003.1-200x shall be capable of processing
arguments using 8-bit transparency.

Default Behavior: When this section is listed as ‘““None.”, it means that the
implementation need not support any options. Standard utilities that do not accept

options, but that do accept operands, shall recognize "—" as a first argument to be
discarded.
The requirement for recognizing " —" is because portable applications need a way to

shield their operands from any arbitrary options that the implementation may provide
as an extension. For example, if the standard utility foo is listed as taking no options,
and the application needed to give it a path name with a leading hyphen, it could safely
doitas:

foo —— -myfile

and avoid any problems with —-m used as an extension.

OPERANDS

STDIN

The OPERANDS section describes the utility operands, and how they affect the actions
of the utility. Apparent disagreements between functionality descriptions in the
OPERANDS and DESCRIPTION (or EXTENDED DESCRIPTION) sections shall be
resolved in favor of the OPERANDS section.

If an operand naming a file can be specified as * ', which means to use the standard
input instead of a hamed file, this is explicitly stated in this section. Unless otherwise
stated, the use of multiple instances of ' = to mean standard input in a single
command produces unspecified results.

Unless otherwise stated, the standard utilities that accept operands shall process those
operands in the order specified in the command line.

Default Behavior: When this section is listed as ‘““None.”, it means that the
implementation need not support any operands.

The STDIN section describes the standard input of the utility. This section is frequently
merely a reference to the following section, as many utilities treat standard input and
input files in the same manner. Unless otherwise stated, all restrictions described in the
INPUT FILES section shall apply to this section as well.

Use of a terminal for standard input can cause any of the standard utilities that read
standard input to stop when used in the background. For this reason, applications
should not use interactive features in scripts to be placed in the background.

The specified standard input format of the standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of
IEEE Std. 1003.1-200x, except as provided by this volume of IEEE Std. 1003.1-200x.

Default Behavior: When this section is listed as ‘“Not used.”, it means that the
standard input shall not be read when the utility is used as described by this volume of
IEEE Std. 1003.1-200x.

INPUT FILES

The INPUT FILES section describes the files, other than the standard input, used as
input by the utility. It includes files named as operands and option-arguments as well
as other files that are referred to, such as start-up and initialization files, databases, and

Shell and Utilities, Issue 6 2225

796
797

798
799

800
801
802
803
804
805

806
807
808

809
810
811

812
813
814
815
816
817
818
819
820
821
822

823
824
825
826
827
828
829
830

831
832
833
834
835
836
837

838
839
840

841
842
843

Utility Description Defaults Introduction

XSl

2226

so on. Commonly-used files are generally described in one place and cross-referenced
by other utilities.

All utilities in this volume of IEEE Std. 1003.1-200x shall be capable of processing input
files using 8-bit transparency.

When a standard utility reads a seekable input file and terminates without an error
before it reaches end-of-file, the utility shall ensure that the file offset in the open file
description is properly positioned just past the last byte processed by the utility. For
files that are not seekable, the state of the file offset in the open file description for that
file is unspecified. A portable application shall not assume that the following three
commands are equivalent;

tail -n +2 file
(sed -n 1q; cat) < file
cat file | (sed -n 1q; cat)

The second command is equivalent to the first only when the file is seekable. The third
command leaves the file offset in the open file description in an unspecified state. Other
utilities, such as head, read, and sh, have similar properties.

Some of the standard utilities, such as filters, process input files a line or a block at a
time and have no restrictions on the maximum input file size. Some utilities may have
size limitations that are not as obvious as file space or memory limitations. Such
limitations should reflect resource limitations of some sort, not arbitrary limits set by
implementors. Implementations shall document those utilities that are limited by
constraints other than file system space, available memory, and other limits specifically
cited by this volume of IEEE Std. 1003.1-200%, and identify what the constraint is and
indicate a way of estimating when the constraint would be reached. Similarly, some
utilities descend the directory tree (recursively). Implementations shall also document
any limits that they may have in descending the directory tree that are beyond limits
cited by this volume of IEEE Std. 1003.1-200x.

When an input file is described as a text file, the utility produces undefined results if
given input that is not from a text file, unless otherwise stated. Some utilities (for
example, make, read, sh) allow for continued input lines using an escaped <newline>
convention; unless otherwise stated, the utility need not be able to accumulate more
than {LINE_MAX} bytes from a set of multiple, continued input lines. Thus, for a
portable application the total of all the continued lines in a set cannot exceed
{LINE_MAX}. If a utility using the escaped <newline> convention detects an end-of-
file condition immediately after an escaped <newline>, the results are unspecified.

Record formats are described in a notation similar to that used by the C-language
function, printf(). See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5,
File Format Notation for a description of this notation. The format description is
intended to be sufficiently rigorous to allow other applications to generate these input
files. However, since <blank> characters can legitimately be included in some of the
fields described by the standard utilities, particularly in locales other than the POSIX
locale, this intent is not always realized.

Default Behavior: When this section is listed as ‘““None.”, it means that no input files
are required to be supplied when the utility is used as described by this volume of
IEEE Std. 1003.1-200x.

ENVIRONMENT VARIABLES

The ENVIRONMENT VARIABLES section lists what variables affect the utility’s
execution.

Technical Standard (2000) (Draft July 31, 2000)

844
845
846
847
848
849
850
851
852

853
854
855
856

857
858

859
860
861
862

863
864
865

866
867
868

869
870

871
872

873

874
875
876

877
878
879
880

881
882
883

884
885
886

887
888
889

Introduction

XSl

XSl

Utility Description Defaults

The entire manner in which environment variables described in this volume of
IEEE Std. 1003.1-200x affect the behavior of each utility is described in the
ENVIRONMENT VARIABLES section for that utility, in conjunction with the global
effects of the LANG, LC_ALL, and NLSPATH environment variables described in the
Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables.
The existence or value of environment variables described in this volume of
IEEE Std. 1003.1-200x shall not otherwise affect the specified behavior of the standard
utilities. Any effects of the existence or value of environment variables not described by
this volume of IEEE Std. 1003.1-200x upon the standard utilities are unspecified.

For those standard utilities that use environment variables as a means for selecting a
utility to execute (such as CC in make), the string provided to the utility is subjected to
the path search described for PATH in the Base Definitions wvolume of
IEEE Std. 1003.1-200x, Chapter 8, Environment Variables.

All utilities in this volume of IEEE Std. 1003.1-200x shall be capable of processing
environment variable names and values using 8-bit transparency.

Default Behavior: When this section is listed as ‘““None.”, it means that the behavior of
the utility is not directly affected by environment variables described by this volume of
IEEE Std. 1003.1-200x when the utility is used as described by this volume of
IEEE Std. 1003.1-200x.

ASYNCHRONOUS EVENTS

The ASYNCHRONOUS EVENTS section lists how the utility reacts to such events as
signals and what signals are caught.

Default Behavior: When this section is listed as “‘Default.”, or it refers to “‘the standard
action for all other signals; see Section 1.11 (on page 2224)” it means that the action
taken as a result of the signal shall be one of the following:

1. The action is that inherited from the parent according to the rules of inheritance
of signal actions defined in the System Interfaces volume of IEEE Std. 1003.1-200x.

2. When no action has been taken to change the default, the default action is that
specified by the System Interfaces volume of IEEE Std. 1003.1-200x.

3. The result of the utility’s execution is as if default actions had been taken.

A utility is permitted to catch a signal, perform some additional processing (such as
deleting temporary files), restore the default signal action (or action inherited from the
parent process), and resignal itself.

STDOUT

The STDOUT section describes the standard output of the utility. This section is
frequently merely a reference to the following section, OUTPUT FILES, because many
utilities treat standard output and output files in the same manner.

Use of a terminal for standard output may cause any of the standard utilities that write
standard output to stop when used in the background. For this reason, applications
should not use interactive features in scripts to be placed in the background.

Record formats are described in a notation similar to that used by the C-language
function, printf(). See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5,
File Format Notation for a description of this notation.

The specified standard output of the standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of
IEEE Std. 1003.1-200x, except as provided by this volume of IEEE Std. 1003.1-200x.

Shell and Utilities, Issue 6 2227

890
891
892
893
894

895
896
897

898
899
900

901
902
903
904

905
906
907
908

909
910
911

912
913
914
915

916
917

918
919
920
921
922
923
924
925

926
927
928
929

930
931

932
933
934
935

Utility Description Defaults Introduction

XSl

2228

Some of the standard utilities describe their output using the verb display, defined in
the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.135, Display. Output
described in the STDOUT sections of such utilities may be produced using means other
than standard output. When standard output is directed to a terminal, the output
described shall be written directly to the terminal. Otherwise, the results are undefined.

Default Behavior: When this section is listed as ‘“Not used.”, it means that the
standard output shall not be written when the utility is used as described by this
volume of IEEE Std. 1003.1-200x.

STDERR

The STDERR section describes the standard error output of the utility. Only those
messages that are purposely sent by the utility are described.

Use of a terminal for standard error may cause any of the standard utilities that write
standard error output to stop when used in the background. For this reason,
applications should not use interactive features in scripts to be placed in the
background.

The format of diagnostic messages for most utilities is unspecified, but the language
and cultural conventions of diagnostic and informative messages whose format is
unspecified by this volume of IEEE Std. 1003.1-200x should be affected by the setting of
LC_MESSAGES and NLSPATH.

The specified standard error output of standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of
IEEE Std. 1003.1-200x, except as provided by this volume of IEEE Std. 1003.1-200x.

Default Behavior: When this section is listed as ““Used only for diagnostic messages.”,
it means that, unless otherwise stated, the diagnostic messages shall be sent to the
standard error only when the exit status is non-zero and the utility is used as described
by this volume of IEEE Std. 1003.1-200x.

When this section is listed as “Not used.”, it means that the standard error shall not be
used when the utility is used as described in this volume of IEEE Std. 1003.1-200x.

OUTPUT FILES

The OUTPUT FILES section describes the files created or modified by the utility.
Temporary or system files that are created for internal usage by this utility or other
parts of the implementation (for example, spool, log, and audit files) are not described
in this, or any, section. The utilities creating such files and the names of such files are
unspecified. If applications are written to use temporary or intermediate files, they
should use the TMPDIR environment variable, if it is set and represents an accessible
directory, to select the location of temporary files.

Implementations shall ensure that temporary files, when used by the standard utilities,
are named so that different utilities or multiple instances of the same utility can operate
simultaneously without regard to their working directories, or any other process
characteristic other than process ID. There are two exceptions to this rule:

1. Resources for temporary files other than the name space (for example, disk space,
available directory entries, or number of processes allowed) are not guaranteed.

2. Certain standard utilities generate output files that are intended as input for other
utilities (for example, lex generates lex.yy.c), and these cannot have unique
names. These cases are explicitly identified in the descriptions of the respective
utilities.

Technical Standard (2000) (Draft July 31, 2000)

936
937
938
939

940
941

942
943
944

945
946
947
948
949

950
951
952
953

954
955

956
957
958
959
960
961
962
963

964
965
966
967
968
969

970
971

972
973
974
975

976
977
978
979
980

981

Introduction

Utility Description Defaults

Any temporary file created by the implementation shall be removed by the
implementation upon a utility’s successful exit, exit because of errors, or before
termination by any of the SIGHUP, SIGINT, or SIGTERM signals, unless specified
otherwise by the utility description.

Receipt of the SIGQUIT signal should generally cause termination (unless in some
debugging mode) that would bypass any attempted recovery actions.

Record formats are described in a notation similar to that used by the C-language
function, printf(); see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5,
File Format Notation for a description of this notation.

Default Behavior: When this section is listed as ‘“None.”, it means that no files are
created or modified as a consequence of direct action on the part of the utility when the
utility is used as described by this volume of IEEE Std. 1003.1-200x. However, the
utility may create or modify system files, such as log files, that are outside the utility’s
normal execution environment.

EXTENDED DESCRIPTION

The EXTENDED DESCRIPTION section provides a place for describing the actions of
very complicated utilities, such as text editors or language processors, which typically
have elaborate command languages.

Default Behavior: When this section is listed as ‘““None.”, no further description is
necessary.

EXIT STATUS

The EXIT STATUS section describes the values the utility shall return to the calling
program, or shell, and the conditions that cause these values to be returned. Usually,
utilities return zero for successful completion and values greater than zero for various
error conditions. If specific numeric values are listed in this section, the system shall
use those values for the errors described. In some cases, status values are listed more
loosely, such as >0. A portable application shall not rely on any specific value in the
range shown and shall be prepared to receive any value in the range.

For example, a utility may list zero as a successful return, 1 as a failure for a specific
reason, and >1 as “‘an error occurred”. In this case, unspecified conditions may cause a
2 or 3, or other value, to be returned. A portable application should be written so that it
tests for successful exit status values (zero in this case), rather than relying upon the
single specific error value listed in this volume of IEEE Std. 1003.1-200x. In that way, it
has maximum portability, even on implementations with extensions.

Unspecified error conditions may be represented by specific values not listed in this
volume of IEEE Std. 1003.1-200x.

CONSEQUENCES OF ERRORS

The CONSEQUENCES OF ERRORS section describes the effects on the environment,
file systems, process state, and so on, when error conditions occur. It does not describe
error messages produced or exit status values used.

The many reasons for failure of a utility are generally not specified by the utility
descriptions. Utilities may terminate prematurely if they encounter: invalid usage of
options, arguments, or environment variables; invalid usage of the complex syntaxes
expressed in EXTENDED DESCRIPTION sections; difficulties accessing, creating,
reading, or writing files; or difficulties associated with the privileges of the process.

The following shall apply to each utility, unless otherwise stated:

Shell and Utilities, Issue 6 2229

Utility Description Defaults Introduction

982 - If the requested action cannot be performed on an operand representing a file,
983 directory, user, process, and so on, the utility shall issue a diagnostic message to
984 standard error and continue processing the next operand in sequence, but the final
985 exit status shall be returned as non-zero.

986 For a utility that recursively traverses a file hierarchy (such as find or chown —-R), if
987 the requested action cannot be performed on a file or directory encountered in the
988 hierarchy, the utility shall issue a diagnostic message to standard error and continue
989 processing the remaining files in the hierarchy, but the final exit status shall be
990 returned as non-zero.

991 . If the requested action characterized by an option or option-argument cannot be
992 performed, the utility shall issue a diagnostic message to standard error and the exit
993 status returned shall be non-zero.

994 - When an unrecoverable error condition is encountered, the utility shall exit with a
995 non-zero exit status.

996 « A diagnostic message shall be written to standard error whenever an error
997 condition occurs.

998 When a utility encounters an error condition several actions are possible, depending on
999 the severity of the error and the state of the utility. Included in the possible actions of
1000 various utilities are: deletion of temporary or intermediate work files; deletion of
1001 incomplete files; validity checking of the file system or directory.

1002 Default Behavior: When this section is listed as ‘‘Default.”, it means that any changes
1003 to the environment are unspecified.

1004 APPLICATION USAGE

1005 This section is non-normative.

1006 The APPLICATION USAGE section gives advice to the application programmer or user
1007 about the way the utility should be used.

1008 EXAMPLES

1009 This section is non-normative.

1010 The EXAMPLES section gives one or more examples of usage, where appropriate. In
1011 the event of conflict between an example and a normative part of the specification, the
1012 normative material is to be taken as correct.

1013 In all examples, quoting has been used, showing how sample commands (utility names
1014 combined with arguments) could be passed correctly to a shell (see sh) or as a string to
1015 the system() function defined in the System Interfaces volume of IEEE Std. 1003.1-200x.
1016 Such quoting would not be used if the utility is invoked using one of the exec functions
1017 defined in the System Interfaces volume of IEEE Std. 1003.1-200x.

1018 RATIONALE

1019 This section is non-normative.

1020 This section contains historical information concerning the contents of this volume of
1021 IEEE Std. 1003.1-200x and why features were included or discarded by the standard
1022 developers.

1023 FUTURE DIRECTIONS

1024 This section is non-normative.

1025 The FUTURE DIRECTIONS section should be used as a guide to current thinking; there
1026 is not necessarily a commitment to implement all of these future directions in their

2230 Technical Standard (2000) (Draft July 31, 2000)

1027

1028
1029

1030

1031
1032

1033
1034
1035

1036
1037
1038
1039
1040

Introduction Utility Description Defaults

entirety.

SEE ALSO
This section is non-normative.

The SEE ALSO section lists related entries.

CHANGE HISTORY
This section is non-normative.

The CHANGE HISTORY section shows the derivation of the description used by this
volume of IEEE Std. 1003.1-200x and lists the functional differences between Issues 4
and 6.

Certain of the standard utilities describe how they can invoke other utilities or applications, such
as by passing a command string to the command interpreter. The external influences (STDIN,
ENVIRONMENT VARIABLES, and so on) and external effects (STDOUT, CONSEQUENCES OF
ERRORS, and so on) of such invoked utilities are not described in the section concerning the
standard utility that invokes them.

Shell and Utilities, Issue 6 2231

1041 1.12

1042
1043
1044
1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073
1074

1075
1076

Considerations for Utilities in Support of Files of Arbitrary Size Introduction

2232

Considerations for Utilities in Support of Files of Arbitrary Size

The following utilities support files of any size up to the maximum that can be created by the
implementation. This support includes correct writing of file size-related values (such as file
sizes and offsets, line numbers, and block counts) and correct interpretation of command line
arguments that contain such values.

basename
cat

cd
chgrp
chmod
chown
cksum
cmp

cp

dd

df
dirname
du

find

In

Is
mkdir
mv
pathchk
pwd

rm
rmdir
sh

sum
test
touch

ulimit

Return non-directory portion of path name.

Concatenate and print files.
Change working directory.
Change file group ownership.
Change file modes.

Change file ownership.

Write file checksums and sizes.
Compare two files.

Copy files.

Convert and copy a file.

Report free disk space.

Return directory portion of path name.

Estimate file space usage.

Find files.

Link files.

List directory contents.

Make directories.

Move files.

Check path names.

Return working directory name.
Remove directory entries.

Remove directories.

Shell, the standard command language interpreter.

Print checksum and block or byte count of a file.

Evaluate expression.

Change file access and modification times.

Set or report file size limit.

Exceptions to the requirement that utilities support files of any size up to the maximum are as

follows:

1. Uses of files as command scripts, or for configuration or control, are exempt. For example,
it is not required that sh be able to read an arbitrarily large .profile.

Technical Standard (2000) (Draft July 31, 2000)

Introduction Considerations for Utilities in Support of Files of Arbitrary Size

1077 2. Shell input and output redirection are exempt. For example, it is not required that the
1078 redirections sum < file or echo foo > file succeed for an arbitrarily large existing file.

Shell and Utilities, Issue 6 2233

Introduction

1079

2234 Technical Standard (2000) (Draft July 31, 2000)

Chapter 2

Shell Command Language

1080

1081 This chapter contains the definition of the Shell Command Language.

1082 2.1 Shell Introduction

1083 The shell is a command language interpreter. This chapter describes the syntax of that command
1084 language as it is used by the sh utility and the system() and popen() functions defined in the
1085 System Interfaces volume of IEEE Std. 1003.1-200x.

1086 The shell operates according to the following general overview of operations. The specific
1087 details are included in the cited sections of this chapter.

1088 1. The shell reads its input from a file (see sh), from the —c option or from the system() and
1089 popen() functions defined in the System Interfaces volume of IEEE Std. 1003.1-200x. If the
1090 first line of a file of shell commands starts with the characters "#!" , the results are
1091 Xl unspecified. On XSl-conformant systems, if the first two characters of a file are "#!" | it
1092 shall behave as described for executable scripts in Section 2.10 (on page 2265).

1093 2. The shell breaks the input into tokens: words and operators; see Section 2.3 (on page 2238).
1094 3. The shell parses the input into simple commands (see Section 2.9.1 (on page 2256)) and
1095 compound commands (see Section 2.9.4 (on page 2261)).

1096 4. The shell performs various expansions (separately) on different parts of each command,
1097 resulting in a list of path names and fields to be treated as a command and arguments; see
1098 Section 2.6 (on page 2244).

1099 5. The shell performs redirection (see Section 2.7 (on page 2251)) and removes redirection
1100 operators and their operands from the parameter list.

1101 6. The shell executes a function (see Section 2.9.5 (on page 2263)), built-in (see Section 2.15
1102 (on page 2276)), executable file, or script, giving the names of the arguments as positional
1103 parameters numbered 1 to n, and the name of the command (or in the case of a function
1104 within a script, the name of the script) as the positional parameter numbered 0 (see Section
1105 2.9.1.1 (on page 2257)).

1106 7. The shell optionally waits for the command to complete and collects the exit status (see
1107 Section 2.8.2 (on page 2255)).

Shell and Utilities, Issue 6 2235

1108

1109
1110
1111
1112
1113

1114

1115

1116
1117
1118

1119

1120
1121

1122

1123
1124
1125
1126
1127
1128

1129

1130
1131

1132

1133
1134
1135

1136
1137
1138

1139
1140
1141
1142

1143
1144
1145
1146

1147
1148
1149

Quoting Shell Command Language

2.2

221

2.2.2

2.2.3

2236

Quoting

Quoting is used to remove the special meaning of certain characters or words to the shell.
Quoting can be used to preserve the literal meaning of the special characters in the next
paragraph, prevent reserved words from being recognized as such, and prevent parameter
expansion and command substitution within here-document processing (see Section 2.7.4 (on
page 2252)).

The application shall quote the following characters if they are to represent themselves:
| & ;3 < > () & * v "7 <space> <tab> <newline>

and the following may need to be quoted under certain circumstances. That is, these characters
may be special depending on conditions described elsewhere in this wvolume of
IEEE Std. 1003.1-200x:

2 # o~ = %

The various quoting mechanisms are the escape character, single-quotes, and double-quotes.
The here-document represents another form of quoting; see Section 2.7.4 (on page 2252).

Escape Character (Backslash)

A backslash that is not quoted shall preserve the literal value of the following character, with the
exception of a <newline> character. If a <newline> character follows the backslash, the shell
shall interpret this as line continuation. The backslash and <newline> characters shall be
removed before splitting the input into tokens. Since the escaped <newline> character is
removed entirely from the input and is not replaced by any white space, it cannot serve as a
token separator.

Single-Quotes

Enclosing characters in single-quotes ('’) shall preserve the literal value of each character
within the single-quotes. A single-quote cannot occur within single-quotes.

Double-Quotes

Enclosing characters in double-quotes ("") shall preserve the literal value of all characters
within the double-quotes, with the exception of the characters dollar sign, backquote, and
backslash, as follows:

$ The dollar sign shall retain its special meaning introducing parameter expansion (see
Section 2.6.2 (on page 2245)), a form of command substitution (see Section 2.6.3 (on page
2247)), and arithmetic expansion (see Section 2.6.4 (on page 2248)).

The input characters within the quoted string that are also enclosed between "$(" and the
matching ')’ is not affected by the double-quotes, but rather shall define that command
whose output replaces the "$(...)" when the word is expanded. The tokenizing rules in
Section 2.3 (on page 2238) shall be applied recursively to find the matching ’)’

Within the string of characters from an enclosed "${" to the matching '’} , an even number
of unescaped double-quotes or single-quotes, if any, shall occur. A preceding backslash
character shall be used to escape a literal '{" or '} . The rule in Section 2.6.2 (on page
2245) shall be used to determine the matching '}’

The backquote shall retain its special meaning introducing the other form of command
substitution (see Section 2.6.3 (on page 2247)). The portion of the quoted string from the
initial backquote and the characters up to the next backquote that is not preceded by a

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Quoting

1150 backslash, having escape characters removed, defines that command whose output replaces
1151 when the word is expanded. Either of the following cases produces undefined
1152 results:

1153 « A single-quoted or double-quoted string that begins, but does not end, within the
1154 sequence

1155 < ALY sequence that begins, but does not end, within the same double-quoted
1156 string

1157 \ The backslash shall retain its special meaning as an escape character (see Section 2.2.1 (on
1158 page 2236)) only when followed by one of the following characters when considered special:
1159 $ "N <newline>

1160 The application shall ensure that a double-quote is preceded by a backslash to be included
1161 within double-quotes. The parameter '@’ has special meaning inside double-quotes and is
1162 described in Section 2.5.2 (on page 2241).

Shell and Utilities, Issue 6 2237

1163

1164
1165
1166
1167

1168
1169
1170
1171

1172
1173
1174
1175
1176
1177

1178
1179

1180
1181
1182

1183
1184

1185

1186
1187

1188
1189
1190
1191

1192
1193
1194

1195
1196
1197
1198
1199
1200
1201
1202

1203
1204
1205
1206
1207
1208

Token Recognition Shell Command Language

2.3

2238

Token Recognition

The shell reads its input in terms of lines from a file, from a terminal in the case of an interactive
shell, or from a string in the case of sh —c or system(). The input lines can be of unlimited length.
These lines are parsed using two major modes: ordinary token recognition and processing of
here-documents.

When an io_here token has been recognized by the grammar (see Section 2.11 (on page 2266)),
one or more of the subsequent lines immediately following the next NEWLINE token form the
body of one or more here-documents and shall be parsed according to the rules of Section 2.7.4
(on page 2252).

When it is not processing an io_here, the shell shall break its input into tokens by applying the
first applicable rule below to the next character in its input. The token shall be from the current
position in the input until a token is delimited according to one of the rules below; the characters
forming the token are exactly those in the input, including any quoting characters. If it is
indicated that a token is delimited, and no characters have been included in a token, processing
shall continue until an actual token is delimited.

1. If the end of input is recognized, the current token shall be delimited. If there is no current
token, the end-of-input indicator shall be returned as the token.

2. If the previous character was used as part of an operator and the current character is not
quoted and can be used with the current characters to form an operator, it shall be used as
part of that (operator) token.

On some systems, the symbol "((" is a control operator; its use produces unspecified
results. Applications that wish to have nested subshells, such as:

((echo Hello);(echo World))

shall separate the "((" characters into two tokens by including white space between them.
Some systems may treat these as invalid arithmetic expressions instead of subshells.

Certain combinations of characters are invalid in portable scripts, as shown in the
grammar, and that some systems have assigned these combinations (such as "|&") as
valid control operators. Portable scripts cannot rely on receiving errors in all cases where
this volume of IEEE Std. 1003.1-200x indicates that a syntax is invalid.

3. If the previous character was used as part of an operator and the current character cannot
be used with the current characters to form an operator, the operator containing the
previous character shall be delimited.

4. If the current character is backslash, single-quote, or double-quote (\\' ,\" ,or™)
and it is not quoted, it shall affect quoting for subsequent characters up to the end of the
quoted text. The rules for quoting are as described in Section 2.2 (on page 2236). During
token recognition no substitutions shall be actually performed, and the result token shall
contain exactly the characters that appear in the input (except for <newline> character
joining), unmodified, including any embedded or enclosing quotes or substitution
operators, between the quote mark and the end of the quoted text. The token shall not be
delimited by the end of the quoted field.

5. If the current character is an unquoted '$’ or’” |, the shell shall identify the start of any
candidates for parameter expansion (Section 2.6.2 (on page 2245)), command substitution
(Section 2.6.3 (on page 2247)), or arithmetic expansion (Section 2.6.4 (on page 2248)) from
their introductory unquoted character sequences: '$" or "${" ,"$(" or’ ,and "$((" ,
respectively. The shell shall read sufficient input to determine the end of the unit to be
expanded (as explained in the cited sections). While processing the characters, if instances

Technical Standard (2000) (Draft July 31, 2000)

1209
1210
1211
1212
1213
1214

1215
1216
1217

1218
1219

1220
1221

1222
1223

1224
1225
1226

1227

1228
1229

1230

1231
1232
1233

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243

1244
1245
1246

1247
1248
1249

Shell Command Language Token Recognition

231

UP XSI

of expansions or quoting are found nested within the substitution, the shell shall
recursively process them in the manner specified for the construct that is found. The
characters found from the beginning of the substitution to its end, allowing for any
recursion necessary to recognize embedded constructs, shall be included unmodified in the
result token, including any embedded or enclosing substitution operators or quotes. The
token shall not be delimited by the end of the substitution.

6. If the current character is not quoted and can be used as the first character of a new
operator, the current token (if any) shall be delimited. The current character shall be used
as the beginning of the next (operator) token.

7. If the current character is an unquoted <newline> character, the current token shall be
delimited.

8. If the current character is an unquoted <blank> character, any token containing the
previous character is delimited and the current character shall be discarded.

9. If the previous character was part of a word, the current character shall be appended to
that word.

10. If the current character is a'# , it and all subsequent characters up to, but excluding, the
next <newline> character shall be discarded as a comment. The <newline> character that
ends the line is not considered part of the comment.

11. The current character is used as the start of a new word.

Once a token is delimited, it is categorized as required by the grammar in Section 2.11 (on page
2266).

Alias Substitution

The processing of aliases shall be supported on all XSl-conformant systems or if the system
supports the User Portability Utilities option (and the rest of this section is not further shaded for
these options).

After a token has been delimited, but before applying the grammatical rules in Section 2.11 (on
page 2266), a resulting word that is identified to be the command name word of a simple
command shall be examined to determine whether it is an unquoted, valid alias name. However,
reserved words in correct grammatical context shall not be candidates for alias substitution. A
valid alias name (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.10, Alias
Name) shall be one that has been defined by the alias utility and not subsequently undefined
using unalias. Implementations also may provide predefined valid aliases that are in effect when
the shell is invoked. To prevent infinite loops in recursive aliasing, if the shell is not currently
processing an alias of the same name, the word shall be replaced by the value of the alias;
otherwise, it shall not be replaced.

If the value of the alias replacing the word ends in a <blank> character, the shell shall check the
next command word for alias substitution; this process shall continue until a word is found that
is not a valid alias or an alias value does not end in a <blank> character.

When used as specified by this volume of IEEE Std. 1003.1-200x, alias definitions shall not be
inherited by separate invocations of the shell or by the utility execution environments invoked
by the shell; see Section 2.13 (on page 2273).

Shell and Utilities, Issue 6 2239

1250

1251
1252

1253
1254
1255
1256

1257
1258

1259

1260

1261

1262

1263
1264

1265

1266
1267
1268

Reserved Words Shell Command Language

2.4

2240

Reserved Words

Reserved words are words that have special meaning to the shell; see Section 2.9 (on page 2256).
The following words shall be recognized as reserved words:

! do esac in

{ done fi then

} elif for until

case else if while

This recognition shall only occur when none of the characters is quoted and when the word is
used as:

+ The first word of a command
« The first word following one of the reserved words other than case, for, or in
« The third word in a case or for command (only in is valid in this case)

See the grammar in Section 2.11 (on page 2266).

The following words may be recognized as reserved words on some systems (when none of the
characters are quoted), causing unspecified results:

[[11 function select

Words that are the concatenation of a name and a colon (:') are reserved; their use produces
unspecified results. This reservation is to allow future implementations that support named
labels for flow control.

Technical Standard (2000) (Draft July 31, 2000)

1269

1270
1271

1272
1273

1274

1275
1276
1277
1278
1279
1280
1281

1282

1283
1284
1285

1286
1287
1288
1289
1290
1291
1292

1293
1294
1295
1296
1297

1298
1299
1300

1301
1302

1303
1304
1305

1306
1307

1308
1309
1310
1311

Shell Command Language Parameters and Variables

2.5

251

25.2

Parameters and Variables

A parameter can be denoted by a name, a number, or one of the special characters listed in
Section 2.5.2. A variable is a parameter denoted by a hame.

A parameter is set if it has an assigned value (null is a valid value). Once a variable is set, it can
only be unset by using the unset special built-in command.

Positional Parameters

A positional parameter is a parameter denoted by the decimal value represented by one or more
digits, other than the single digit 0. The digits denoting the positional parameters shall always be
interpreted as a decimal value, even if there is a leading zero. When a positional parameter with
more than one digit is specified, the application shall enclose the digits in braces (see Section
2.6.2 (on page 2245)). Positional parameters are initially assigned when the shell is invoked (see
sh), temporarily replaced when a shell function is invoked (see Section 2.9.5 (on page 2263)), and
can be reassigned with the set special built-in command.

Special Parameters

Listed below are the special parameters and the values to which they shall expand. Only the
values of the special parameters are listed; see Section 2.6 (on page 2244) for a detailed summary
of all the stages involved in expanding words.

@ Expands to the positional parameters, starting from one. When the expansion occurs within
double-quotes, and where field splitting (see Section 2.6.5 (on page 2249)) is performed,
each positional parameter expands as a separate field, with the provision that the expansion
of the first parameter is still joined with the beginning part of the original word (assuming
that the expanded parameter was embedded within a word), and the expansion of the last
parameter is still joined with the last part of the original word. If there are no positional
parameters, the expansion of '@’ generates zero fields, even when '@’ is double-quoted.

* Expands to the positional parameters, starting from one. When the expansion occurs within
a double-quoted string (see Section 2.2.3 (on page 2236)), it expands to a single field with the
value of each parameter separated by the first character of the IFS variable, or by a <space>
character if IFS is unset. If IFS is set to a null string, this is not equivalent to unsetting it; its
first character does not exist, so the parameter values are concatenated.

Expands to the decimal number of positional parameters. The command name (parameter
0) is not counted in the number given by '# because it is a special parameter, not a
positional parameter.

? Expands to the decimal exit status of the most recent pipeline (see Section 2.9.2 (on page
2258)).

- (Hyphen.) Expands to the current option flags (the single-letter option names concatenated
into a string) as specified on invocation by the set special built-in command or implicitly by
the shell.

$ Expands to the decimal process ID of the invoked shell. In a subshell (see Section 2.13 (on
page 2273)),'$’ shall expand to the same value as that of the current shell.

! Expands to the decimal process ID of the most recent background command (see Section
2.9.3 (on page 2259)) executed from the current shell. (For example, background commands
executed from subshells do not affect the value of "$!" in the current shell environment.)
For a pipeline, the process ID is that of the last command in the pipeline.

Shell and Utilities, Issue 6 2241

1312
1313

1314

1315

1316
1317
1318
1319
1320
1321
1322
1323

1324

1325
1326
1327
1328
1329
1330
1331

1332
1333
1334

1335
1336
1337

1338
1339
1340
1341

1342
1343
1344
1345
1346

1347
1348
1349

1350
1351

1352
1353
1354
1355
1356
1357

Parameters and Variables

253

UP XSI

2242

Shell Command Language

0 (Zero.) Expands to the name of the shell or shell script. See sh (on page 3060) for a detailed
description of how this name is derived.

See the description of the IFS variable in Section 2.5.3.

Shell Variables

Variables shall be initialized from the environment (as defined by the Base Definitions volume of
IEEE Std. 1003.1-200x, Chapter 8, Environment Variables and the exec function in the System
Interfaces volume of IEEE Std. 1003.1-200x) and can be given new values with variable
assignment commands. If a variable is initialized from the environment, it shall be marked for
export immediately; see the export special built-in. New variables can be defined and initialized
with variable assignments, with the read or getopts utilities, with the name parameter in a for
loop, with the ${name=word} expansion, or with other mechanisms provided as implementation
extensions.

The following variables shall affect the execution of the shell.

ENV This variable, when and only when an interactive shell is invoked, shall be
subjected to parameter expansion (see Section 2.6.2 (on page 2245)) by the
shell and the resulting value shall be used as a path name of a file containing
shell commands to execute in the current environment. The file need not be
executable. If the expanded value of ENV is not an absolute path name, the
results are unspecified. ENV shall be ignored if the user’s real and effective
user IDs or real and effective group IDs are different.

The processing of the ENV shell variable shall be supported on all XSI-
conformant systems or if the system supports the User Portability Utilities
option.

HOME This variable shall be interpreted as the path name of the user's home
directory. The contents of HOME are used in tilde expansion (see Section 2.6.1
(on page 2244)).

IFS (Input Field Separators.) A string treated as a list of characters that is used for
field splitting and to split lines into fields with the read command. If IFS is not
set, the shell shall behave as if the value of IFS were the <space>, <tab>, and
<newline> characters; see Section 2.6.5 (on page 2249).

LANG This variable shall provide a default value for the internationalization
variables that are unset or null. If LANG is unset or null, the corresponding
value from the implementation-defined default locale is used. If any of the
internationalization variables contains an invalid setting, the utility behaves as
if none of the variables had been defined.

LC_ALL This variable shall provide a default value for the LC_* variables, as described
in the Base Definitions volume of IEEE Std.1003.1-200x, Chapter 8,
Environment Variables.

LC_COLLATE This variable shall determine the behavior of range expressions, equivalence
classes, and multi-character collating elements within pattern matching.

LC CTYPE This variable shall determine the interpretation of sequences of bytes of text
data as characters (for example, single-byte as opposed to multi-byte
characters), which characters are defined as letters (character class alpha) and
<blank> characters (character class blank), and the behavior of character
classes within pattern matching. Changing the value of LC_CTYPE after the
shell has started shall not affect the lexical processing of shell commands in

Technical Standard (2000) (Draft July 31, 2000)

1358
1359
1360

1361
1362

1363
1364
1365
1366
1367
1368
1369

1370
1371

1372
1373
1374

1375
1376
1377
1378
1379
1380

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390

1391
1392
1393
1394
1395

1396
1397
1398
1399
1400

1401
1402
1403
1404
1405

Shell Command Language Parameters and Variables

LC_MESSAGES

LINENO

XSl NLSPATH

PATH

PPID

PS1

PS2

PS4

PWD

Shell and Utilities, Issue 6

the current shell execution environment or its subshells. Invoking a shell
script or performing exec sh subjects the new shell to the changes in
LC_CTYPE.

This variable shall determine the language in which messages should be
written.

This variable shall be set by the shell to a decimal number representing the
current sequential line number (numbered starting with 1) within a script or
function before it executes each command. If the user unsets or resets
LINENO, the variable may lose its special meaning for the life of the shell. If
the shell is not currently executing a script or function, the value of LINENO is
unspecified. This volume of IEEE Std. 1003.1-200x specifies the effects of the
variable only for systems supporting the User Portability Utilities option.

This variable shall determine the location of message catalogs for the
processing of LC_ MESSAGES.

This variable represents a string formatted as described in the Base Definitions
volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables, used to
effect command interpretation; see Section 2.9.1.1 (on page 2257).

This variable shall be set by the shell to the decimal process ID of the process
that invoked this shell. In a subshell (see Section 2.13 (on page 2273)), PPID
shall be set to the same value as that of the parent of the current shell. For
example, echo$PPID and (echo$PPID) would produce the same value. This
volume of IEEE Std. 1003.1-200x specifies the effects of the variable only for
systems supporting the User Portability Utilities option.

Each time an interactive shell is ready to read a command, the value of this
variable shall be subjected to parameter expansion and written to standard
error. The default value shall be "$ " . For users who have specific additional
implementation-defined privileges, the default may be another,
implementation-defined value. (Historically, the superuser has had a prompt
of '# .) The shell shall replace each instance of the character 'I" in PS1 with
the history file number of the next command to be typed. Escaping the '’
with another 'I" (that is, "Il") shall place the literal character 'I" in the
prompt. This volume of IEEE Std. 1003.1-200x specifies the effects of the
variable only for systems supporting the User Portability Utilities option.

Each time the user enters a <newline> character prior to completing a
command line in an interactive shell, the value of this variable shall be
subjected to parameter expansion and written to standard error. The default
value is">" . This volume of IEEE Std. 1003.1-200x specifies the effects of the
variable only for systems supporting the User Portability Utilities option.

When an execution trace (set —x) is being performed in an interactive shell,
before each line in the execution trace, the value of this variable shall be
subjected to parameter expansion and written to standard error. The default
value is"+" . This volume of IEEE Std. 1003.1-200x specifies the effects of the
variable only for systems supporting the User Portability Utilities option.

This variable shall be set by the shell to be an absolute path name of the
current working directory, containing no components of type symbolic link,
no components that are dot, and no components that are dot-dot when the
shell is initialized. If an application sets or unsets the value of PWD, the
behaviors of the cd and pwd utilities are unspecified.

2243

1406

1407
1408

1409
1410
1411
1412
1413

1414

1415
1416
1417
1418

1419
1420

1421
1422

1423

1424
1425

1426
1427
1428

1429
1430
1431
1432
1433

1434

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450

Parameters and Variables Shell Command Language

2.6

2.6.1

2244

Word Expansions

This section describes the various expansions that are performed on words. Not all expansions
are performed on every word, as explained in the following sections.

Tilde expansions, parameter expansions, command substitutions, arithmetic expansions, and
quote removals that occur within a single word expand to a single field. It is only field splitting
or path name expansion that can create multiple fields from a single word. The single exception
to this rule is the expansion of the special parameter '@’ within double-quotes, as described in
Section 2.5.2 (on page 2241).

The order of word expansion shall be as follows:

1. Tilde expansion (see Section 2.6.1), parameter expansion (see Section 2.6.2 (on page 2245)),
command substitution (see Section 2.6.3 (on page 2247)), and arithmetic expansion (see
Section 2.6.4 (on page 2248)) shall be performed, beginning to end. See item 5 in Section 2.3
(on page 2238).

2. Field splitting (see Section 2.6.5 (on page 2249)) shall be performed on the portions of the
fields generated by step 1, unless IFS is null.

3. Path name expansion (see Section 2.6.6 (on page 2249)) shall be performed, unless set —f is
in effect.

4. Quote removal (see Section 2.6.7 (on page 2250)) shall always be performed last.

The expansions described in this section shall occur in the same shell environment as that in
which the command is executed.

If the complete expansion appropriate for a word results in an empty field, that empty field shall
be deleted from the list of fields that form the completely expanded command, unless the
original word contained single-quote or double-quote characters.

The '$ character is used to introduce parameter expansion, command substitution, or
arithmetic evaluation. If an unquoted '$’ is followed by a character that is either not numeric,
the name of one of the special parameters (see Section 2.5.2 (on page 2241)), a valid first
character of a variable name, a left curly brace ('{) or a left parenthesis, the result is
unspecified.

Tilde Expansion

A tilde-prefix consists of an unquoted tilde character at the beginning of a word, followed by all
of the characters preceding the first unquoted slash in the word, or all the characters in the word
if there is no slash. In an assignment (see the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 4.16, Variable Assignment), multiple tilde-prefixes can be used: at the beginning of the
word (that is, following the equal sign of the assignment), following any unquoted colon, or
both. A tilde-prefix in an assignment is terminated by the first unquoted colon or slash. If none
of the characters in the tilde-prefix are quoted, the characters in the tilde-prefix following the
tilde are treated as a possible login name from the user database. A portable login name cannot
contain characters outside the set given in the description of the LOGNAME environment
variable in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 8.3, Other Environment
Variables. If the login name is null (that is, the tilde-prefix contains only the tilde), the tilde-
prefix is replaced by the value of the variable HOME. If HOME is unset, the results are
unspecified. Otherwise, the tilde-prefix is replaced by a path name of the initial working
directory associated with the login name obtained using the getpwnam() function as defined in
the System Interfaces volume of IEEE Std. 1003.1-200x. If the system does not recognize the login
name, the results are undefined.

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Word Expansions

1451 2.6.2
1452
1453

1454
1455
1456
1457

1458
1459
1460

1461
1462
1463
1464

1465
1466
1467

1468
1469

1470
1471

1472
1473
1474
1475
1476
1477
1478
1479

1480
1481

1482
1483
1484
1485

1486
1487
1488
1489
1490

1491
1492

1493
1494

Parameter Expansion
The format for parameter expansion is as follows:
${ expression '}

where expression consists of all characters until the matching '} . Any '} escaped by a
backslash or within a quoted string, and characters in embedded arithmetic expansions,
command substitutions, and variable expansions, shall not be examined in determining the
matching '}

The simplest form for parameter expansion is:
${ parameter }
The value, if any, of parameter shall be substituted.

The parameter name or symbol can be enclosed in braces, which are optional except for
positional parameters with more than one digit or when parameter is followed by a character that
could be interpreted as part of the name. The matching closing brace shall be determined by
counting brace levels, skipping over enclosed quoted strings, and command substitutions.

If the parameter name or symbol is not enclosed in braces, the expansion shall use the longest
valid name (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.232, Name),
whether or not the symbol represented by that name exists.

If a parameter expansion occurs inside double-quotes:
- Path name expansion shall not be performed on the results of the expansion.

- Field splitting shall not be performed on the results of the expansion, with the exception of
'@’ ; see Section 2.5.2 (on page 2241).

In addition, a parameter expansion can be modified by using one of the following formats. In
each case that a value of word is needed (based on the state of parameter, as described below),
word shall be subjected to tilde expansion, parameter expansion, command substitution, and
arithmetic expansion. If word is not needed, it shall not be expanded. The '}’ character that
delimits the following parameter expansion modifications shall be determined as described
previously in this section and in Section 2.2.3 (on page 2236). (For example, ${foo-bar}xyz}
would result in the expansion of foo followed by the string xyz} if foo is set, else the string
"barxyz}").

${parameter :-word} Use Default Values. If parameter is unset or null, the expansion of word
shall be substituted; otherwise, the value of parameter shall be substituted.

${parameter :=word} Assign Default Values. If parameter is unset or null, the expansion of
word shall be assigned to parameter. In all cases, the final value of
parameter shall be substituted. Only variables, not positional parameters
or special parameters, can be assigned in this way.

${parameter :?[word]} Indicate Error if Null or Unset. If parameter is unset or null, the
expansion of word (or a message indicating it is unset if word is omitted)
shall be written to standard error and the shell exits with a non-zero exit
status. Otherwise, the value of parameter shall be substituted. An
interactive shell need not exit.

${parameter :+word} Use Alternative Value. If parameter is unset or null, null shall be
substituted; otherwise, the expansion of word shall be substituted.

In the parameter expansions shown previously, use of the colon in the format results in a test for
a parameter that is unset or null; omission of the colon results in a test for a parameter that is

Shell and Utilities, Issue 6 2245

1495

1496
1497

1498
1499
1500
1501
1502
1503
1504
1505

1506
1507

1508
1509
1510

1511
1512
1513
1514
1515
1516

1517
1518
1519

1520
1521
1522

1523
1524
1525

1526
1527
1528

1529

1530
1531
1532

1533

1534
1535
1536
1537

1538
1539

Word Expansions Shell Command Language

2246

only unset. The following table summarizes the effect of the colon:

parameter parameter parameter

Set and Not Null Set But Null Unset
${parameter:-word} | substitute parameter | substitute word substitute word
${parameter—word} substitute parameter | substitute null substitute word
${parameter:=word} | substitute parameter | assign word assign word
${parameter=word} | substitute parameter | substitute parameter | assign null
${parameter:?word} | substitute parameter | error, exit error, exit
${parameter?word} substitute parameter | substitute null error, exit
${parameter:+word} | substitute word substitute null substitute null
${parameter+word} | substitute word substitute word substitute null

In all cases shown with ““substitute’, the expression is replaced with the value shown. In all
cases shown with “‘assign’, parameter is assigned that value, which also replaces the expression.

${#parameter} String Length. The length in characters of the value of parameter shall be
substituted. If parameter is ** or '@’ , the result of the expansion is
unspecified.

The following four varieties of parameter expansion provide for substring processing. In each
case, pattern matching notation (see Section 2.14 (on page 2274)), rather than regular expression
notation, shall be used to evaluate the patterns. If parameter is * or '@’ , the result of the
expansion is unspecified. Enclosing the full parameter expansion string in double-quotes shall
not cause the following four varieties of pattern characters to be quoted, whereas quoting
characters within the braces shall have this effect.

${parameter%word} Remove Smallest Suffix Pattern. The word is expanded to produce a
pattern. The parameter expansion then results in parameter, with the
smallest portion of the suffix matched by the pattern deleted.

${parameter%%word} Remove Largest Suffix Pattern. The word shall be expanded to produce a
pattern. The parameter expansion then results in parameter, with the
largest portion of the suffix matched by the pattern deleted.

${parameter#word} Remove Smallest Prefix Pattern. The word shall be expanded to produce
a pattern. The parameter expansion then results in parameter, with the
smallest portion of the prefix matched by the pattern deleted.

${parameter##word} Remove Largest Prefix Pattern. The word shall be expanded to produce a
pattern. The parameter expansion then results in parameter, with the
largest portion of the prefix matched by the pattern deleted.

Examples

${parameter :~word}
In this example, Is is executed only if x is null or unset. (The $(Is) command substitution
notation is explained in Section 2.6.3 (on page 2247).)

${x: -$(Is)}

${parameter :=word}
unset X
echo ${X:=abc}
abc

${parameter :?word}
unset posix

Technical Standard (2000) (Draft July 31, 2000)

1540
1541

1542
1543
1544
1545

1546
1547
1548
1549

1550
1551
1552
1553

1554
1555
1556
1557

1558
1559
1560
1561

1562
1563
1564
1565

1566

1567

1568

1569

1570
1571
1572

1573

1574

1575

1576
1577
1578
1579
1580
1581
1582

Shell Command Language Word Expansions

2.6.3

echo ${posix:?}
sh: posix: parameter null or not set

${parameter :+word}
set abc
echo ${3:+posix}
posix

${#tparameter}
HOME=/usr/posix
echo ${#HOME}
10

${parameter%word}
x=file.c
echo ${x%.c}.0
file.o

${parameter%%word}
X=posix/src/std
echo ${x%%/*}
posix

${parameter#word}
x=$HOME/src/cmd
echo ${x#$HOME}
/src/cmd

${parameter##word}
x=/one/two/three
echo ${x##*/}
three

The double-quoting of patterns is different depending on where the double-quotes are placed:
"S{x#*}" The asterisk is a pattern character.

S{x#"*"} The literal asterisk is quoted and not special.

Command Substitution

Command substitution allows the output of a command to be substituted in place of the
command name itself. Command substitution shall occur when the command is enclosed as
follows:

$(command
or (backquoted version):
* command

The shell shall expand the command substitution by executing command in a subshell
environment (see Section 2.13 (on page 2273)) and replacing the command substitution (the text
of command plus the enclosing "$()" or backquotes) with the standard output of the command,
removing sequences of one or more <newline> characters at the end of the substitution.
Embedded <newline> characters before the end of the output shall not be removed; however,
they may be treated as field delimiters and eliminated during field splitting, depending on the
value of IFS and quoting that is in effect.

Shell and Utilities, Issue 6 2247

1583
1584
1585
1586
1587
1588
1589

1590
1591

1592

1593

1594
1595
1596
1597

1598
1599

1600

1601

1602

1603
1604

1605

1606
1607

1608

1609
1610
1611

1612
1613
1614

1615

1616

1617

1618
1619
1620

Word Expansions Shell Command Language

2.6.4

2248

Within the backquoted style of command substitution, backslash shall retain its literal meaning,
except when followed by: '$’ ,™ ,or’\\' (dollar sign, backquote, backslash). The search for
the matching backquote shall be satisfied by the first backquote found without a preceding
backslash; during this search, if a non-escaped backquote is encountered within a shell
comment, a here-document, an embedded command substitution of the $(command) form, or a
quoted string, undefined results occur. A single-quoted or double-quoted string that begins, but

does not end, within the ... sequence produces undefined results.

With the $(command) form, all characters following the open parenthesis to the matching closing
parenthesis constitute the command. Any valid shell script can be used for command, except:

« A script consisting solely of redirections produces unspecified results
- See the restriction on single subshells described below

The results of command substitution shall not be processed for further tilde expansion,
parameter expansion, command substitution, or arithmetic expansion. If a command
substitution occurs inside double-quotes, it shall not be performed on the results of the
substitution.

Command substitution can be nested. To specify nesting within the backquoted version, the
application shall precede the inner backquotes with backslashes, for example:

\' command'
If the command substitution consists of a single subshell, such as:
$((commang)

a portable application shall separate the "$(" and’(" into two tokens (that is, separate them
with white space). This is required to avoid any ambiguities with arithmetic expansion.

Arithmetic Expansion

Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and
substituting its value. The format for arithmetic expansion shall be as follows:

$((expression))

The expression shall be treated as if it were in double-quotes, except that a double-quote inside
the expression is not treated specially. The shell expands all tokens in the expression for
parameter expansion, command substitution, and quote removal.

Next, the shell shall treat this as an arithmetic expression and substitutes the value of the
expression. The arithmetic expression shall be processed according to the rules of the ISO C
standard, with the following exceptions:

« Only integer arithmetic is required.
« The sizeof () operator and the prefix and postfix "++" and " —" operators are not required.
- Selection, iteration, and jump statements are not supported.

As an extension, the shell may recognize arithmetic expressions beyond those listed. If the
expression is invalid, the expansion fails and the shell shall write a message to standard error
indicating the failure.

Technical Standard (2000) (Draft July 31, 2000)

1621

1622

1623
1624
1625
1626
1627
1628
1629

1630

1631
1632
1633
1634

1635
1636

1637
1638
1639
1640

1641

1642

1643

1644
1645
1646
1647

1648

1649
1650

1651

1652

1653
1654
1655

Shell Command Language Word Expansions

2.6.5

2.6.6

Examples

A simple example using arithmetic expansion:

repeat a command 100 times

x=100
while [$x —gt 0]
do
command
x=$(($x -1))
done
Field Splitting

After parameter expansion (Section 2.6.2 (on page 2245)), command substitution (Section 2.6.3
(on page 2247)), and arithmetic expansion (Section 2.6.4 (on page 2248)), the shell shall scan the
results of expansions and substitutions that did not occur in double-quotes for field splitting and
multiple fields can result.

The shell shall treat each character of the IFS as a delimiter and uses the delimiters to split the
results of parameter expansion and command substitution into fields.

1.

If the value of IFS is a <space>, <tab>, and <newline> character, or if it is unset, any
sequence of <space>, <tab>, or <newline> characters at the beginning or end of the input
shall be ignored and any sequence of those characters within the input shall delimit a field.
For example, the input:

<newline><space><tab>foo<tab><tab>bar<space>
yields two fields, foo and bar.
If the value of IFS is null, no field splitting shall be performed.

Otherwise, the following rules shall be applied in sequence. The term “IFS white space’ is
used to mean any sequence (zero or more instances) of white space characters that are in
the IFS value (for example, if IFS contains <space>/<comma>/<tab>, any sequence of
<space> and <tab> characters is considered IFS white space).

a. IFS white space shall be ignored at the beginning and end of the input.

b. Each occurrence in the input of an IFS character that is not IFS white space, along
with any adjacent IFS white space, shall delimit a field, as described previously.

c. Non-zero-length IFS white space shall delimit a field.

Path Name Expansion

After field splitting, if set —f is not in effect, each field in the resulting command line shall be
expanded using the algorithm described in Section 2.14 (on page 2274), qualified by the rules in
Section 2.14.3 (on page 2275).

Shell and Utilities, Issue 6 2249

Word Expansions Shell Command Language

1656 2.6.7 Quote Removal

1657 The quote characters: '\ ,'\" ,and ™ (backslash, single-quote, double-quote) that were |
1658 present in the original word shall be removed unless they have themselves been quoted.

2250 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Redirection

1659 2.7

1660
1661
1662
1663

1664
1665

1666
1667
1668
1669

1670

1671
1672

1673

1674
1675

1676
1677
1678
1679
1680
1681
1682
1683
1684

1685
1686
1687
1688
1689
1690
1691

1692
1693

1694

Redirection

Redirection is used to open and close files for the current shell execution environment (see
Section 2.13 (on page 2273)) or for any command. Redirection operators can be used with numbers
representing file descriptors (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section
3.167, File Descriptor) as described below.

The overall format used for redirection is:
[n] redir-op word

The number n is an optional decimal number designating the file descriptor number; the
application shall ensure it is delimited from any preceding text and immediately precede the
redirection operator redir-op. If n is quoted, the number shall not be recognized as part of the
redirection expression. For example:

echo \2>a

writes the character 2 into file a. If any part of redir-op is quoted, no redirection expression is
recognized. For example:

echo 2\>a

writes the characters 2>a to standard output. The optional nhumber, redirection operator, and
word shall not appear in the arguments provided to the command to be executed (if any).

Open files are represented by decimal numbers starting with zero. The largest possible value is
implementation-defined; however, all implementations shall support at least 0 to 9, inclusive, for
use by the application. These numbers are called file descriptors. The values 0, 1, and 2 have
special meaning and conventional uses and are implied by certain redirection operations; they
are referred to as standard input, standard output, and standard error, respectively. Programs
usually take their input from standard input, and write output on standard output. Error
messages are usually written on standard error. The redirection operators can be preceded by
one or more digits (with no intervening <blank> characters allowed) to designate the file
descriptor number.

If the redirection operator is "<<" or "<< =", the word that follows the redirection operator shall
be subjected to quote removal; it is unspecified whether any of the other expansions occur. For
the other redirection operators, the word that follows the redirection operator shall be subjected
to tilde expansion, parameter expansion, command substitution, arithmetic expansion, and
quote removal. Path name expansion shall not be performed on the word by a non-interactive
shell; an interactive shell may perform it, but does do so only when the expansion would result
in one word.

If more than one redirection operator is specified with a command, the order of evaluation is
from beginning to end.

A failure to open or create a file shall cause a redirection to fail.

Shell and Utilities, Issue 6 2251

1695

1696
1697
1698

1699

1700

1701
1702

1703

1704

1705
1706

1707
1708

1709
1710
1711
1712
1713
1714

1715

1716
1717
1718
1719

1720

1721

1722
1723

1724

1725
1726

1727
1728
1729

1730
1731
1732

1733
1734

Redirection Shell Command Language

2.7.1

2.1.2

2.1.3

2.7.4

2252

Redirecting Input

Input redirection shall cause the file whose name results from the expansion of word to be
opened for reading on the designated file descriptor, or standard input if the file descriptor is not
specified.

The general format for redirecting input is:
[n] <word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection shall refer to standard input (file descriptor 0).

Redirecting Output
The two general formats for redirecting output are:

[n] >word
[n] >| word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection shall refer to standard output (file descriptor 1).

Output redirection using the >’ format shall fail if the noclobber option is set (see the
description of set —C) and the file named by the expansion of word exists and is a regular file.
Otherwise, redirection using the '>" or ">|" formats shall cause the file whose name results
from the expansion of word to be created and opened for output on the designated file
descriptor, or standard output if none is specified. If the file does not exist, it shall be created,;
otherwise, it shall be truncated to be an empty file after being opened.

Appending Redirected Output

Appended output redirection shall cause the file whose name results from the expansion of
word to be opened for output on the designated file descriptor. The file is opened as if the open()
function as defined in the System Interfaces volume of IEEE Std. 1003.1-200x was called with the
O_APPEND flag. If the file does not exist, it shall be created.

The general format for appending redirected output is as follows:
[n] >>word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection refers to standard output (file descriptor 1).

Here-Document

The redirection operators "<<" and "<< =" both allow redirection of lines contained in a shell
input file, known as a here-document, to the input of a command.

The here-document shall be treated as a single word that begins after the next <newline>
character and continues until there is a line containing only the delimiter, with no trailing
<blank> characters. Then the next here-document starts, if there is one. The format is as follows:

[n] <<word
here-document
delimiter

where the optional n represents the file descriptor number. If the number is omitted, the here-
document refers to standard output (file descriptor 0).

Technical Standard (2000) (Draft July 31, 2000)

1735
1736
1737

1738
1739
1740
1741
1742

1743
1744
1745
1746

1747

1748

1749
1750
1751
1752
1753

1754

1755

1756

1757
1758
1759
1760
1761
1762

1763

1764

1765

1766
1767
1768
1769
1770
1771

Shell Command Language Redirection

2.7.5

2.7.6

If any character in word is quoted, the delimiter shall be formed by performing quote removal on
word, and the here-document lines are not expanded. Otherwise, the delimiter shall be the word
itself.

If no characters in word are quoted, all lines of the here-document shall be expanded for
parameter expansion, command substitution, and arithmetic expansion. In this case, the
backslash in the input behaves as the backslash inside double-quotes (see Section 2.2.3 (on page
2236)). However, the double-quote character (") shall not be treated specially within a here-
document, except when the double-quote appears within "$()" , ™" , or "${}"

If the redirection symbol is "<< —", all leading tab characters shall be stripped from input lines
and the line containing the trailing delimiter. If more than one "<<" or "<< -" operator is
specified on a line, the here-document associated with the first operator shall be supplied first by
the application and shall be read first by the shell.

Examples
An example of a here-document follows:

cat <<eofl; cat <<eof2
Hi,

eofl

Helene.

eof2

Duplicating an Input File Descriptor
The redirection operator:
[n] <&word

is used to duplicate one input file descriptor from another, or to close one. If word evaluates to
one or more digits, the file descriptor denoted by n, or standard input if n is not specified, shall
be made to be a copy of the file descriptor denoted by word; if the digits in word do not represent
a file descriptor already open for input, a redirection error shall result; see Section 2.8.1 (on page
2255). If word evaluates to ' -, file descriptor n, or standard input if n is not specified, shall be
closed. If word evaluates to something else, the behavior is unspecified.

Duplicating an Output File Descriptor
The redirection operator:
[n] >&word

is used to duplicate one output file descriptor from another, or to close one. If word evaluates to
one or more digits, the file descriptor denoted by n, or standard output if n is not specified, shall
be made to be a copy of the file descriptor denoted by word; if the digits in word do not represent
a file descriptor already open for output, a redirection error shall result; see Section 2.8.1 (on
page 2255). If word evaluates to’ ', file descriptor n, or standard output if n is not specified, is
closed. If word evaluates to something else, the behavior is unspecified.

Shell and Utilities, Issue 6 2253

1772

1773

1774

1775
1776
1777

Redirection

2.1.7

2254

Open File Descriptors for Reading and Writing
The redirection operator:

[n] <>word

Shell Command Language

shall cause the file whose name is the expansion of word to be opened for both reading and
writing on the file descriptor denoted by n, or standard input if n is not specified. If the file does

not exist, it shall be created.

Technical Standard (2000) (Draft July 31, 2000)

1778

1779

1780
1781
1782

1783

1784
1785
1786
1787
1788
1789
1790

1791
1792
1793
1794

1795
1796
1797

1798
1799

1800

1801
1802
1803

1804
1805
1806

1807
1808

1809
1810
1811
1812
1813
1814

Shell Command Language Exit Status and Errors

2.8

2.8.1

2.8.2

Exit Status and Errors

Consequences of Shell Errors

For a non-interactive shell, an error condition encountered by a special built-in (see Section 2.15
(on page 2276)) or other type of utility shall cause the shell to write a diagnostic message to
standard error and exit as shown in the following table:

Error Special Built-In | Other Utilities

Shell language syntax error Shall exit Shall exit
Utility syntax error (option or operand error) | Shall exit Shall not exit
Redirection error Shall exit Shall not exit
Variable assignment error Shall exit Shall not exit
Expansion error Shall exit Shall exit
Command not found N/A May exit

Dot script not found Shall exit N/A

An expansion error is one that occurs when the shell expansions defined in Section 2.6 (on page
2244) are carried out (for example, "${xly}* , because '!" is not a valid operator); an
implementation may treat these as syntax errors if it is able to detect them during tokenization,
rather than during expansion.

If any of the errors shown as “‘shall exit”” or “(may) exit” occur in a subshell, the subshell shall
(or may exit) with a non-zero status, but the script containing the subshell shall not exit because
of the error.

In all of the cases shown in the table, an interactive shell shall write a diagnostic message to
standard error without exiting.

Exit Status for Commands

Each command has an exit status that can influence the behavior of other shell commands. The
exit status of commands that are not utilities is documented in this section. The exit status of the
standard utilities is documented in their respective sections.

If a command is not found, the exit status shall be 127. If the command name is found, but it is
not an executable utility, the exit status shall be 126. Applications that invoke utilities without
using the shell should use these exit status values to report similar errors.

If a command fails during word expansion or redirection, its exit status shall be greater than
zero.

Internally, for purposes of deciding whether a command exits with a non-zero exit status, the
shell shall recognize the entire status value retrieved for the command by the equivalent of the
wait() function WEXITSTATUS macro (as defined in the System Interfaces volume of
IEEE Std. 1003.1-200x). When reporting the exit status with the special parameter '?’ , the shell
shall report the full eight bits of exit status available. The exit status of a command that
terminated because it received a signal shall be reported as greater than 128.

Shell and Utilities, Issue 6 2255

1815

1816
1817
1818
1819
1820

1821

1822

1823

1824

1825

1826

1827
1828
1829

1830

1831
1832

1833
1834
1835
1836

1837
1838

1839
1840
1841

1842

1843
1844
1845

1846
1847

1848
1849
1850
1851
1852
1853

1854
1855
1856
1857

Shell Commands Shell Command Language

2.9

29.1

2256

Shell Commands

This section describes the basic structure of shell commands. The following command
descriptions each describe a format of the command that is only used to aid the reader in
recognizing the command type, and does not formally represent the syntax. Each description
discusses the semantics of the command; for a formal definition of the command language,
consult Section 2.11 (on page 2266).

A command is one of the following:
« Simple command (see Section 2.9.1)
« Pipeline (see Section 2.9.2 (on page 2258))
- List or compound-list (see Section 2.9.3 (on page 2259))
« Compound command (see Section 2.9.4 (on page 2261))
« Function definition (see Section 2.9.5 (on page 2263))

Unless otherwise stated, the exit status of a command is that of the last simple command
executed by the command. There is no limit on the size of any shell command other than that
imposed by the underlying system (memory constraints, {ARG_MAX}, and so on).

Simple Commands

A simple command is a sequence of optional variable assignments and redirections, in any
sequence, optionally followed by words and redirections, terminated by a control operator.

When a given simple command is required to be executed (that is, when any conditional
construct such as an AND-OR list or a case statement has not bypassed the simple command),
the following expansions, assignments, and redirections are all performed from the beginning of
the command text to the end:

1. The words that are recognized as variable assignments or redirections according to Section
2.11.2 (on page 2266) are saved for processing in steps 3 and 4.

2. The words that are not variable assignments or redirections shall be expanded. If any fields
remain following their expansion, the first field shall be considered the command name
and remaining fields are the arguments for the command.

3. Redirections shall be performed as described in Section 2.7 (on page 2251).

4. Each variable assignment shall be expanded for tilde expansion, parameter expansion,
command substitution, arithmetic expansion, and quote removal prior to assigning the
value.

In the preceding list, the order of steps 3 and 4 may be reversed for the processing of special
built-in utilities; see Section 2.15 (on page 2276).

If no command name results, variable assignments shall affect the current execution
environment. Otherwise, the variable assignments shall be exported for the execution
environment of the command and shall not affect the current execution environment (except for
special built-ins). If any of the variable assignments attempt to assign a value to a read-only
variable, a variable assignment error occurs. See Section 2.8.1 (on page 2255) for the
consequences of these errors.

If there is no command name, any redirections shall be performed in a subshell environment; it
is unspecified whether this subshell environment is the same one as that used for a command
substitution within the command. (To affect the current execution environment, see the exec (on
page 2287) special built-in.) If any of the redirections performed in the current shell execution

Technical Standard (2000) (Draft July 31, 2000)

1858
1859
1860

1861
1862
1863
1864

1865

1866
1867

1868
1869

1870
1871

1872
1873
1874
1875
1876

1877
1878

1879
1880
1881
1882

1883
1884
1885

1886

1887
1888

1889
1890
1891
1892
1893
1894

1895
1896
1897
1898
1899
1900
1901

Shell Command Language Shell Commands

29.11

environment fail, the command shall immediately fail with an exit status greater than zero, and
the shell shall write an error message indicating the failure. See Section 2.8.1 (on page 2255) for
the consequences of these failures on interactive and non-interactive shells.

If there is a command name, execution shall continue as described in Section 2.9.1.1. If there is
no command name, but the command contained a command substitution, the command shall
complete with the exit status of the last command substitution performed. Otherwise, the
command shall complete with a zero exit status.

Command Search and Execution

If a simple command results in a command name and an optional list of arguments, the
following actions shall be performed:

1. If the command name does not contain any slashes, the first successful step in the
following sequence shall occur:

a.

If the command name matches the name of a special built-in utility, that special
built-in utility shall be invoked.

If the command name matches the name of a function known to this shell, the
function shall be invoked as described in Section 2.9.5 (on page 2263). If the
implementation has provided a standard utility in the form of a function, it shall not
be recognized at this point. It shall be invoked in conjunction with the path search in
step 1d.

If the command name matches the name of a utility listed in the following table, that
utility shall be invoked.

alias false jobs true

bg fc kill umask
cd fg newgrp unalias
command getopts read wait

Otherwise, the command is searched for using the PATH environment variable as
described in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8,
Environment Variables:

i. Ifthe search is successful:

a. If the system has implemented the utility as a regular built-in or as a shell
function, it shall be invoked at this point in the path search.

b. Otherwise, the shell executes the utility in a separate utility environment
(see Section 2.13 (on page 2273)) with actions equivalent to calling the
execve() function as defined in the System Interfaces volume of
IEEE Std. 1003.1-200x with the path argument set to the path name
resulting from the search, arg0 set to the command name, and the
remaining arguments set to the operands, if any.

If the execve() function fails due to an error equivalent to the [ENOEXEC]
error defined in the System Interfaces volume of IEEE Std. 1003.1-200x,
the shell shall execute a command equivalent to having a shell invoked
with the command name as its first operand, along with any remaining
arguments passed along. If the executable file is not a text file, the shell
may bypass this command execution, write an error message, and return
an exit status of 126.

Shell and Utilities, Issue 6 2257

1902
1903
1904
1905
1906
1907

1908
1909

1910
1911
1912
1913
1914

1915
1916
1917
1918
1919

1920

1921
1922
1923

1924

1925

1926
1927
1928
1929

1930
1931
1932

1933

1934
1935
1936
1937

Shell Commands Shell Command Language

2.9.2

2258

Once a utility has been searched for and found (either as a result of this specific
search or as part of an unspecified shell start-up activity), an implementation
may remember its location and need not search for the utility again unless the
PATH variable has been the subject of an assignment. If the remembered
location fails for a subsequent invocation, the shell shall repeat the search to
find the new location for the utility, if any.

ii. If the search is unsuccessful, the command shall fail with an exit status of 127
and the shell shall write an error message.

2. If the command name contains at least one slash, the shell shall execute the utility in a
separate utility environment with actions equivalent to calling the execve() function
defined in the System Interfaces volume of IEEE Std. 1003.1-200x with the path and arg0
arguments set to the command name, and the remaining arguments set to the operands, if
any.

If the execve() function fails due to an error equivalent to the [ENOEXEC] error, the shell
shall execute a command equivalent to having a shell invoked with the command name as
its first operand, along with any remaining arguments passed along. If the executable file is
not a text file, the shell may bypass this command execution, write an error message, and
return an exit status of 126.

Pipelines

A pipeline is a sequence of one or more commands separated by the control operator ’|" . The
standard output of all but the last command shall be connected to the standard input of the next
command.

The format for a pipeline is:
['] commandl [| command?2 ... |

The standard output of commandl shall be connected to the standard input of command2. The
standard input, standard output, or both of a command shall be considered to be assigned by the
pipeline before any redirection specified by redirection operators that are part of the command
(see Section 2.7 (on page 2251)).

If the pipeline is not in the background (see Section 2.9.3.1 (on page 2259)), the shell shall wait for
the last command specified in the pipeline to complete, and may also wait for all commands to
complete.

Exit Status

If the reserved word ! does not precede the pipeline, the exit status shall be the exit status of the
last command specified in the pipeline. Otherwise, the exit status shall be the logical NOT of the
exit status of the last command. That is, if the last command returns zero, the exit status shall be
1; if the last command returns greater than zero, the exit status shall be zero.

Technical Standard (2000) (Draft July 31, 2000)

1938

1939
1940

1941
1942

1943
1944

1945
1946

1947
1948

1949
1950
1951

1952

1953

1954
1955

1956
1957
1958

1959
1960

1961
1962
1963
1964
1965

1966

1967
1968
1969

1970

1971

1972
1973
1974
1975

1976
1977
1978
1979

Shell Command Language Shell Commands

2.9.3

29.3.1

Lists

An AND-OR list is a sequence of one or more pipelines separated by the operators "&&" and

A list is a sequence of one or more AND-OR lists separated by the operators ’;’ and'& and
optionally terminated by ’;’ ,’& , or <newline>,
The operators "&&" and "||" shall have equal precedence and are evaluated from beginning to

end. For example, both of the following commands write solely bar to standard output:

false && echo foo || echo bar
true || echo foo && echo bar

A’ or <newline> character terminator shall cause the preceding AND-OR list to be executed
sequentially; an'&’ shall cause asynchronous execution of the preceding AND-OR list.

The term compound-list is derived from the grammar in Section 2.11 (on page 2266); it is
equivalent to a sequence of lists, separated by <newline> characters, that can be preceded or
followed by an arbitrary number of <newline> characters.

Examples

The following is an example that illustrates <newline> characters in compound-lists:

while
a couple of <newline>s

a list
date && who || Is; cat file
a couple of <newline>s

another list
wc file > output & true

do
2 lists
Is
cat file
done

Asynchronous Lists

If a command is terminated by the control operator ampersand (‘&'), the shell shall execute the
command asynchronously in a subshell. This means that the shell shall not wait for the
command to finish before executing the next command.

The format for running a command in the background is:
commandl & [command2 & ...]

The standard input for an asynchronous list, before any explicit redirections are performed, shall
be considered to be assigned to a file that has the same properties as /dev/null. If it is an
interactive shell, this need not happen. In all cases, explicit redirection of standard input shall
override this activity.

When an element of an asynchronous list (the portion of the list ended by an ampersand, such as
commandl, above) is started by the shell, the process ID of the last command in the asynchronous
list element shall become known in the current shell execution environment; see Section 2.13 (on
page 2273). This process ID shall remain known until:

Shell and Utilities, Issue 6 2259

1980

1981
1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009
2010

Shell Commands Shell Command Language

2.9.3.2

2.9.3.3

29.3.4

2260

1. The command terminates and the application waits for the process ID.

2. Another asynchronous list invoked before "$!" (corresponding to the previous
asynchronous list) is expanded in the current execution environment.

The implementation need not retain more than the {CHILD_MAX} most recent entries in its list
of known process IDs in the current shell execution environment.
Exit Status

The exit status of an asynchronous list shall be zero.

Sequential Lists
Commands that are separated by a semicolon (’;’) shall be executed sequentially.
The format for executing commands sequentially shall be:

commandl [; commandd

Each command shall be expanded and executed in the order specified.

Exit Status

The exit status of a sequential list shall be the exit status of the last command in the list.

AND Lists
The control operator "&&" denotes an AND list. The format shall be:
commandl [&& command2

First commandl shall be executed. If its exit status is zero, command2 shall be executed, and so on,
until a command has a non-zero exit status or there are no more commands left to execute. The
commands are expanded only if they are executed.

Exit Status

The exit status of an AND list shall be the exit status of the last command that is executed in the
list.

OR Lists
The control operator "||* denotes an OR List. The format shall be:
commandl [|| command2

First, commandl shall be executed. If its exit status is non-zero, command2 shall be executed, and
so on, until acommand has a zero exit status or there are no more commands left to execute.

Exit Status

The exit status of an OR list shall be the exit status of the last command that is executed in the
list.

Technical Standard (2000) (Draft July 31, 2000)

2011

2012
2013
2014
2015
2016
2017

2018

2019

2020
2021
2022

2023
2024
2025
2026
2027

2028

2029

2030
2031

2032

2033
2034
2035
2036

2037
2038
2039

2040

2041

2042

2043

2044
2045

Shell Command Language Shell Commands

294

2941

2942

Compound Commands

The shell has several programming constructs that are compound commands, which provide
control flow for commands. Each of these compound commands has a reserved word or control
operator at the beginning, and a corresponding terminator reserved word or operator at the end.
In addition, each can be followed by redirections on the same line as the terminator. Each
redirection shall apply to all the commands within the compound command that do not
explicitly override that redirection.

Grouping Commands

The format for grouping commands is as follows:

(compound-list) Execute compound-list in a subshell environment; see Section 2.13 (on page
2273). Variable assignments and built-in commands that affect the
environment shall not remain in effect after the list finishes.

{ compound-list;} Execute compound-list in the current process environment. The semicolon
shown here is an example of a control operator delimiting the } reserved
word. Other delimiters are possible, as shown in Section 2.11 (on page
2266); a <newline> character is frequently used.

Exit Status

The exit status of a grouping command shall be the exit status of list.

For Loop

The for loop executes a sequence of commands for each member in a list of items. The for loop
requires that the reserved words do and done be used to delimit the sequence of commands.

The format for the for loop is as follows:

for name [in [word ..]
do

compound-list
done

First, the list of words following in shall be expanded to generate a list of items. Then, the
variable name shall be set to each item, in turn, and the compound-list executed each time. If no
items result from the expansion, the compound-list shall not be executed. Omitting:

in word ...
is equivalent to:
In II$@II

Exit Status

The exit status of a for command shall be the exit status of the last command that executes. If
there are no items, the exit status shall be zero.

Shell and Utilities, Issue 6 2261

2046

2047
2048
2049
2050
2051
2052
2053
2054

2055

2056
2057
2058
2059
2060

2061

2062
2063
2064
2065
2066
2067
2068

2069

2070
2071

2072

2073
2074

2075

2076
2077
2078
2079
2080
2081
2082
2083

2084
2085
2086
2087

Shell Commands Shell Command Language

2943

2944

2262

Case Conditional Construct

The conditional construct case shall execute the compound-list corresponding to the first one of
several patterns (see Section 2.14 (on page 2274)) that is matched by the string resulting from the
tilde expansion, parameter expansion, command substitution, arithmetic expansion, and quote
removal of the given word. The reserved word in shall denote the beginning of the patterns to be
matched. Multiple patterns with the same compound-list shall be delimited by the ’|' symbol.
The control operator *)’ terminates a list of patterns corresponding to a given action. The
compound-list for each list of patterns, with the possible exception of the last, shall be terminated
with ";;" . The case construct terminates with the reserved word esac (case reversed).

The format for the case construct is as follows:

case word in
[(] pattern1) compound-list ;;

[[(]pattern [| pattern] ..) compound-list ;;]
[[(]pattern [| pattern] ..) compound-list]
esac
The";;" is optional for the last compound-list.

In order from the beginning to the end of the case statement, each pattern that labels a
compound-list shall be subjected to tilde expansion, parameter expansion, command substitution,
and arithmetic expansion, and the result of these expansions shall be compared against the
expansion of word, according to the rules described in Section 2.14 (on page 2274) (which also
describes the effect of quoting parts of the pattern). After the first match, no more patterns shall
be expanded, and the compound-list shall be executed. The order of expansion and comparison of
multiple patterns that label a compound-list statement is unspecified.

Exit Status

The exit status of case shall be zero if no patterns are matched. Otherwise, the exit status shall be
the exit status of the last command executed in the compound-list.

If Conditional Construct

The if command shall execute a compound-list and use its exit status to determine whether to
execute another compound-list.

The format for the if construct is as follows:

if compound-list
then

compound-list
[elif compound-list
then

compound-list]
[else

compound-list]

The if compound-list shall be executed; if its exit status is zero, the then compound-list shall be
executed and the command shall complete. Otherwise, each elif compound-list shall be executed,
in turn, and if its exit status is zero, the then compound-list shall be executed and the command
shall complete. Otherwise, the else compound-list shall be executed.

Technical Standard (2000) (Draft July 31, 2000)

2088

2089

2090

2091

2092
2093

2094

2095
2096
2097
2098

2099

2100

2101

2102

2103

2104

2105
2106

2107

2108
2109
2110
2111

2112

2113

2114

2115
2116

2117

2118
2119
2120

2121

2122

2123
2124
2125
2126

Shell Command Language Shell Commands

2945

2946

295

Exit Status

The exit status of the if command shall be the exit status of the then or else compound-list that
was executed, or zero, if none was executed.

While Loop

The while loop shall continuously execute one compound-list as long as another compound-list has
a zero exit status.

The format of the while loop is as follows:

while compound-list-1
do

compound-list-2
done

The compound-list-1 shall be executed, and if it has a non-zero exit status, the while command
shall complete. Otherwise, the compound-list-2 shall be executed, and the process shall repeat.
Exit Status

The exit status of the while loop shall be the exit status of the last compound-list-2 executed, or
zero if none was executed.

Until Loop

The until loop shall continuously execute one compound-list as long as another compound-list has
a non-zero exit status.

The format of the until loop is as follows:

until compound-list-1
do

compound-list-2
done

The compound-list-1 shall be executed, and if it has a zero exit status, the until command
completes. Otherwise, the compound-list-2 shall be executed, and the process repeats.
Exit Status

The exit status of the until loop shall be the exit status of the last compound-list-2 executed, or
zero if none was executed.

Function Definition Command

A function is a user-defined name that is used as a simple command to call a compound
command with new positional parameters. A function is defined with a function definition
command.

The format of a function definition command is as follows:
fname() compound-command| io-redirect v]

The function is named fname; the application shall ensure that it is a name (see the Base
Definitions volume of IEEE Std. 1003.1-200x, Section 3.232, Name). An implementation may
allow other characters in a function name as an extension. The implementation shall maintain
separate name spaces for functions and variables.

Shell and Utilities, Issue 6 2263

2127
2128

2129
2130
2131
2132
2133
2134

2135
2136
2137

2138
2139
2140
2141
2142
2143
2144
2145
2146

2147

2148
2149
2150

Shell Commands Shell Command Language

2264

The argument compound-command represents a compound command, as described in Section
2.9.4 (on page 2261).

When the function is declared, none of the expansions in Section 2.6 (on page 2244) shall be
performed on the text in compound-command or io-redirect; all expansions shall be performed as
normal each time the function is called. Similarly, the optional io-redirect redirections and any
variable assignments within compound-command shall be performed during the execution of the
function itself, not the function definition. See Section 2.8.1 (on page 2255) for the consequences
of failures of these operations on interactive and non-interactive shells.

When a function is executed, it shall have the syntax-error and variable-assignment properties
described for special built-in utilities in the enumerated list at the beginning of Section 2.15 (on
page 2276).

The compound-command shall be executed whenever the function name is specified as the name
of a simple command (see Section 2.9.1.1 (on page 2257)). The operands to the command
temporarily shall become the positional parameters during the execution of the compound-
command; the special parameter '# also shall be changed to reflect the number of operands. The
special parameter 0 shall be unchanged. When the function completes, the values of the
positional parameters and the special parameter '# shall be restored to the values they had
before the function was executed. If the special built-in return is executed in the compound-
command, the function completes and execution shall resume with the next command after the
function call.

Exit Status

The exit status of a function definition shall be zero if the function was declared successfully;
otherwise, it shall be greater than zero. The exit status of a function invocation shall be the exit
status of the last command executed by the function.

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Executable Script

2151 2.10

2152 XSl
2153
2154
2155

2156
2157

2158
2159
2160

2161
2162

2163
2164

2165

2166
2167
2168
2169

2170
2171

2172
2173

2174
2175

2176
2177

Executable Script

XSI-Conformant systems shall support executable scripts. A successful call to a function of the
exec family with an executable script as the first parameter shall result in a new process, where
the process image that is started is that of the interpreter. The path name of the interpreter
follows the "#!" characters.

If the executable script has a first line:
#! interpreter [arg |

then the interpreter shall be called with an argument array consisting of an unspecified zero’'th
argument, followed by arg (if present), followed by a path name for the script, followed by the
arguments following the zero'th argument in the exec call of the script.

No shell operations (as described in Section 2.1 (on page 2235)) shall be performed on the first
line of an executable script.

The behavior shall be unspecified if the first line of the executable script does not meet all of the
following criteria:

1. The first line shall be in one of the formats below:

"#1%s\n" interpreter

"#l<delta>%s\n" interpreter
"#1%s<delta>%s\n" interpreter arg
"#l<delta>%s<delta>%s\n" interpreter arg

2. The interpreter argument shall be an absolute path name of an executable file other than an
executable script.

3. The interpreter argument and the arg argument, if present, shall not contain any quoting
characters.

4. The interpreter argument and the arg argument, if present, shall not contain any white-
space characters.

5. The length of the first line shall be no longer than 80 bytes.

Shell and Utilities, Issue 6 2265

2178

2179
2180

2181

2182
2183
2184
2185

2186

2187

2188
2189

2190

2191
2192
2193
2194
2195
2196
2197
2198
2199

2200
2201

2202

2203

2204
2205
2206
2207
2208
2209
2210
2211
2212

2213
2214
2215
2216
2217
2218
2219
2220

Shell Grammar Shell Command Language

2.11

2.11.1

2.11.2

2266

Shell Grammar

The following grammar defines the Shell Command Language. This formal syntax shall take
precedence over the preceding text syntax description.

Shell Grammar Lexical Conventions

The input language to the shell must be first recognized at the character level. The resulting
tokens shall be classified by their immediate context according to the following rules (applied in
order). These rules are used to determine what a ‘“‘token’ is that is subject to parsing at the
token level. The rules for token recognition in Section 2.3 (on page 2238) shall apply.

1. A <newline> character shall be returned as the token identifier NEWLINE.
2. If the token is an operator, the token identifier for that operator shall result.

3. If the string consists solely of digits and the delimiter character is one of '<’ or'>' | the
token identifier IO_NUMBER shall be returned.

4. Otherwise, the token identifier TOKEN results.

Further distinction on TOKEN is context-dependent. It may be that the same TOKEN vyields
WORD, a NAME, an ASSIGNMENT, or one of the reserved words below, dependent upon the
context. Some of the productions in the grammar below are annotated with a rule number from
the following list. When a TOKEN is seen where one of those annotated productions could be
used to reduce the symbol, the applicable rule shall be applied to convert the token identifier
type of the TOKEN to a token identifier acceptable at that point in the grammar. The reduction
shall then proceed based upon the token identifier type yielded by the rule applied. When more
than one rule applies, the highest numbered rule shall apply (which in turn may refer to another
rule). (Note that except in rule 7, the presence of an'=" in the token has no effect.)

The WORD tokens shall have the word expansion rules applied to them immediately before the
associated command is executed, not at the time the command is parsed.

Shell Grammar Rules
1. [Command Name]

When the TOKEN is exactly a reserved word, the token identifier for that reserved word
shall result. Otherwise, the token WORD shall be returned. Also, if the parser is in any
state where only a reserved word could be the next correct token, proceed as above. This
rule applies rather narrowly: when a compound list is terminated by some clear delimiter
(such as the closing fi of an inner if_clause) then it would apply; where the compound list
might continue (as in after a’;”), rule 7a (and consequently the first sentence of this rule)
would apply. In many instances the two conditions are identical, but this part of this rule
does not give license to treating a WORD as a reserved word unless it is in a place where a
reserved word shall appear.

Note: Because at this point quote marks are retained in the token, quoted strings
cannot be recognized as reserved words. This rule also implies that reserved
words are not recognized except in certain positions in the input, such as after a
<newline> character or semicolon; the grammar presumes that if the reserved
word is intended, it is properly delimited by the user, and does not attempt to
reflect that requirement directly. Also note that line joining is done before
tokenization, as described in Section 2.2.1 (on page 2236), so escaped
<newline>s are already removed at this point.

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Grammar

2221 Rule 1 is not directly referenced in the grammar, but is referred to by other rules, or applies
2222 globally.

2223 2. [Redirection to or from file name]

2224 The expansions specified in Section 2.7 (on page 2251) shall occur. As specified there,
2225 exactly one field can result (or the result is unspecified), and there are additional
2226 requirements on path name expansion.

2227 3. [Redirection from here-document]

2228 Quote removal shall be applied to the word to determine the delimiter that is used to find
2229 the end of the here-document that begins after the next <newline> character.

2230 4. [Case statement termination]

2231 When the TOKEN is exactly the reserved word esac, the token identifier for esac shall
2232 result. Otherwise, the token WORD shall be returned.

2233 5. [NAME in for]

2234 When the TOKEN meets the requirements for a name (see the Base Definitions volume of |
2235 IEEE Std. 1003.1-200x, Section 3.232, Name), the token identifier NAME shall result. |
2236 Otherwise, the token WORD shall be returned.

2237 6. [Third word of for and case]

2238 When the TOKEN is exactly the reserved word in, the token identifier for in shall result.
2239 Otherwise, the token WORD shall be returned. (As indicated in the grammar, a linebreak
2240 precedes the token in. If <newline> characters are present at the indicated location, it is
2241 the token after them that is treated in this fashion.)

2242 7. [Assignment preceding command name]

2243 a. [When the first word]

2244 If the TOKEN does not contain the character '=" | rule 1 is applied. Otherwise, 7b
2245 shall be applied.

2246 b. [Not the first word]

2247 If the TOKEN contains the equal sign character:

2248 — Ifit begins with '=" | the token WORD shall be returned.

2249 — If all the characters preceding '=" form a valid name (see the Base Definitions |
2250 volume of IEEE Std. 1003.1-200x, Section 3.232, Name), the token |
2251 ASSIGNMENT_WORD shall be returned. (Quoted characters cannot participate
2252 in forming a valid name.)

2253 — Otherwise, it is unspecified whether it is ASSIGNMENT_WORD or WORD that
2254 is returned.

2255 Assignment to the NAME shall occur as specified in Section 2.9.1 (on page 2256).

2256 8. [NAME in function]

2257 When the TOKEN is exactly a reserved word, the token identifier for that reserved word
2258 shall result. Otherwise, when the TOKEN meets the requirements for a name, the token
2259 identifier NAME shall result. Otherwise, rule 7 applies.

2260 9. [Body of function]

Shell and Utilities, Issue 6 2267

2261
2262
2263
2264

2265
2266
2267

2268
2269
2270
2271
2272

2273

2274
2275

2276
2277

2278
2279

2280

2281
2282

2283
2284

2285
2286

2287
2288

2289
2290

2291
2292
2293

2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305

Shell Grammar Shell Command Language

2268

Word expansion and assignment shall never occur, even when required by the rules above,
when this rule is being parsed. Each TOKEN that might either be expanded or have
assignment applied to it shall instead be returned as a single WORD consisting only of
characters that are exactly the token described in Section 2.3 (on page 2238).

/*
The grammar symbols
*/

%token WORD

%token ASSIGNMENT _WORD
%token NAME

%token NEWLINE

%token |1O_NUMBER

[* The following are the operators mentioned above. */
%token AND_IF OR_IF DSEMI

/* &8 o
%token DLESS DGREAT LESSAND GREATAND LESSGREAT DLESSDASH
/* <<’ >>' <&’ >&’ <> << -’ */
%token CLOBBER

[* >’ */

[* The following are the reserved words. */
%token If Then Else Elif Fi Do Done

[* i 'then’ else’ elif fi' 'do’ ’'done’ */
%token Case Esac While Until For
[* ‘case’ ’'esac’ ‘'while’ ‘until’ ‘for’ */

[* These are reserved words, not operator tokens, and are
recognized when reserved words are recognized. */

%token Lbrace Rbrace Bang
/* 1{1 1}1 1!1 */
%token In
I* it ¥/
/*
The Grammar
*/
%start complete_command
%%
complete_command : list separator
| list
list . list separator_op and_or
| and_or
and_or : pipeline

| and_or AND_IF linebreak pipeline
| and_or OR_IF linebreak pipeline

Technical Standard (2000) (Draft July 31, 2000)

2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357

Shell Command Language

pipeline

pipe_sequence

command

Shell Grammar

pipe_sequence
| Bang pipe_sequence

command
| pipe_sequence ’|' linebreak command

. simple_command

| compound_command
compound_command redirect_list
function_definition

compound_command : brace_group

subshell

compound_list

term

for_clause

name

in

wordlist

case_clause

case_list_ns

case_list

case_item_ns

Shell and Utilities, Issue 6

| subshell
| for_clause
| case_ clause
| if_clause
| while_clause
| until_clause
'’ compound_list)’
term
| newline_list term
| term separator
| newline_list term separator
. term separator and_or
| and_or

For name linebreak do_group

| For name linebreak in sequential_sep_do_group

| For name linebreak in wordlist sequential_sep do_group
NAME [* Apply rule 5 */

cIn /* Apply rule 6 */

: wordlist WORD

| WORD

. Case WORD linebreak in linebreak case_list Esac

| Case WORD linebreak in linebreak case_list ns Esac
| Case WORD linebreak in linebreak Esac

. case_list case _item_ns

| case_item_ns

. case_list case_item

| case_item

pattern ')’ linebreak linebreak
| pattern ') compound_list linebreak

2269

2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409

Shell Grammar

2270

| 'C pattern ’)" linebreak linebreak

| 'C pattern ')’ compound_list linebreak
case_item . pattern)’ linebreak DSEMI linebreak

| pattern ') compound_list linebreak

| 'C pattern ’)" linebreak linebreak

| 'C pattern ')’ compound_list linebreak

pattern : WORD [* Apply rule 4 */

| pattern ’|' WORD /* Do not apply rule (4) */
if clause . If compound_list Then compound_list else_part Fi

| If compound_list Then compound_list Fi
else_part . Elif compound_list Then else_part

| Else compound_list
while_clause : While compound_list do_group
until_clause : Ur;til compound_list do_group
function_definition : fn’ame ' ")y linebreak function_body

function_body : compound_command /* Apply rule 9 */
| compound_command redirect_list /* Apply rule 9 */

fname . NAME /* Apply rule 8 */
brace_group . Lbrace compound_list Rbrace
do_group : Do compound_list Done
simple_command . cmd_prefix cmd_word cmd_suffix

| emd_prefix cmd_word

| cmd_prefix

| emd_name cmd_suffix

| cmd_name
cmd_name : WORD /* Apply rule 7a */
cmd_word : WORD /* Apply rule 7b */
cmd_ prefix : io_redirect

cmd_prefix io_redirect
[ASSIGNMENT_WORD
cmd_prefix ASSIGNMENT_WORD

cmd_suffix : io_redirect
cmd_suffix io_redirect
[WORD
cmd_suffix WORD

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language

2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447

Shell Command Language

redirect_list

io_redirect

io_file

filename

io_here

here_end

newline_list

linebreak

separator_op

separator

sequential_sep

Shell and Utilities, Issue 6

<

: WORD

. DLESS

io_redirect
| redirect_list io_redirect

io_file
| IO_NUMBER io_file
| io_here
| 10_NUMBER io_here
' filename
| LESSAND filename
| >’ filename
| GREATAND filename
| DGREAT filename
| LESSGREAT filename
| CLOBBER filename

[* Apply rule 2 */

here_end
| DLESSDASH here_end

: WORD

/* Apply rule 3 */

NEWLINE
| newline_list NEWLINE

: newline_list

| /* empty */

D&

. separator_op linebreak

| newline_list

. 77 linebreak

| newline_list

Shell Grammar

2271

2a48 2,12

2449
2450
2451

2452
2453
2454
2455
2456
2457

2458
2459

Signals and Error Handling Shell Command Language

2272

Signals and Error Handling

When a command is in an asynchronous list, the shell shall prevent SIGQUIT and SIGINT
signals from the keyboard from interrupting the command. Otherwise, signals shall have the
values inherited by the shell from its parent (see also the trap (on page 2307) special built-in).

When a signal for which a trap has been set is received while the shell is waiting for the
completion of a utility executing a foreground command, the trap associated with that signal
shall not be executed until after the foreground command has completed. When the shell is
waiting, by means of the wait utility, for asynchronous commands to complete, the reception of a
signal for which a trap has been set shall cause the wait utility to return immediately with an exit
status >128, immediately after which the trap associated with that signal shall be taken.

If multiple signals are pending for the shell for which there are associated trap actions, the order
of execution of trap actions is unspecified.

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Execution Environment

2460 2.13
2461
2462
2463
2464
2465

2466
2467
2468

2469
2470

2471
2472

2473

2474
2475
2476

2477
2478

2479
2480

2481
2482
2483
2484

2485
2486
2487

2488
2489

2490
2491
2492
2493
2494
2495
2496
2497

Shell Execution Environment
A shell execution environment consists of the following:
- Open files inherited upon invocation of the shell, plus open files controlled by exec
« Working directory as set by cd
- File creation mask set by umask
« Current traps set by trap

- Shell parameters that are set by variable assignment (see the set (on page 2297) special built-
in) or from the System Interfaces volume of IEEE Std. 1003.1-200x environment inherited by
the shell when it begins (see the export (on page 2291) special built-in)

- Shell functions; see Section 2.9.5 (on page 2263)
« Options turned on at invocation or by set

« Process IDs of the last commands in asynchronous lists known to this shell environment; see
Section 2.9.3.1 (on page 2259)

- Shell aliases; see Section 2.3.1 (on page 2239)

Utilities other than the special built-ins (see Section 2.15 (on page 2276)) shall be invoked in a
separate environment that consists of the following. The initial value of these objects shall be the
same as that for the parent shell, except as noted below.

- Open files inherited on invocation of the shell, open files controlled by the exec special built-
in plus any modifications, and additions specified by any redirections to the utility

« Current working directory
« File creation mask

- If the utility is a shell script, traps caught by the shell shall be set to the default values and
traps ignored by the shell shall be set to be ignored by the utility; if the utility is not a shell
script, the trap actions (default or ignore) shall be mapped into the appropriate signal
handling actions for the utility

- Variables with the export attribute, along with those explicitly exported for the duration of the
command, shall be passed to the utility as System Interfaces volume of IEEE Std. 1003.1-200x
environment variables

The environment of the shell process shall not be changed by the utility unless explicitly
specified by the utility description (for example, cd and umask).

A subshell environment shall be created as a duplicate of the shell environment, except that
signal traps set by that shell environment shall be set to the default values. Changes made to the
subshell environment shall not affect the shell environment. Command substitution, commands
that are grouped with parentheses, and asynchronous lists shall be executed in a subshell
environment. Additionally, each command of a multi-command pipeline is in a subshell
environment; as an extension, however, any or all commands in a pipeline may be executed in
the current environment. All other commands shall be executed in the current shell
environment.

Shell and Utilities, Issue 6 2273

2498

2499
2500
2501
2502
2503
2504

2505

2506
2507
2508
2509

2510
2511
2512
2513
2514
2515

2516
2517

2518

2519

2520

2521
2522
2523
2524
2525

2526
2527
2528
2529
2530
2531
2532

2533

2534
2535

2536

2537
2538
2539

Pattern Matching Notation Shell Command Language

2.14

2.14.1

2.14.2

2274

Pattern Matching Notation

The pattern matching notation described in this section is used to specify patterns for matching
strings in the shell. Historically, pattern matching notation is related to, but slightly different
from, the regular expression notation described in the Base Definitions volume of
IEEE Std. 1003.1-200x, Chapter 9, Regular Expressions. For this reason, the description of the
rules for this pattern matching notation are based on the description of regular expression
notation, modified to include backslash escape processing.

Patterns Matching a Single Character

The following patterns matching a single character match a single character: ordinary characters,
special pattern characters, and pattern bracket expressions. The pattern bracket expression also shall
match a single collating element. A backslash character shall escape the following character. The
escaping backslash shall be discarded.

An ordinary character is a pattern that shall match itself. It can be any character in the supported
character set except for NUL, those special shell characters in Section 2.2 (on page 2236) that
require quoting, and the following three special pattern characters. Matching shall be based on
the bit pattern used for encoding the character, not on the graphic representation of the
character. If any character (ordinary, shell special, or pattern special) is quoted, that pattern shall
match the character itself. The shell special characters always require quoting.

When unquoted and outside a bracket expression, the following three characters shall have
special meaning in the specification of patterns:

? A question-mark is a pattern that shall match any character.
* Anasterisk is a pattern that shall match multiple characters, as described in Section 2.14.2.
[The open bracket shall introduce a pattern bracket expression.

The description of basic regular expression bracket expressions in the Base Definitions volume
of IEEE Std. 1003.1-200x, Section 9.3.5, RE Bracket Expression shall also apply to the pattern
bracket expression, except that the exclamation mark character (") shall replace the
circumflex character (") in its role in a non-matching list in the regular expression notation. A
bracket expression starting with an unquoted circumflex character produces unspecified results.

When pattern matching is used where shell quote removal is not performed (such as in the
argument to the find name primary when find is being called using one of the exec functions as
defined in the System Interfaces volume of IEEE Std. 1003.1-200x, or in the pattern argument to
the fnmatch() function), special characters can be escaped to remove their special meaning by
preceding them with a backslash character. This escaping backslash is discarded. The sequence
"W* represents one literal backslash. All of the requirements and effects of quoting on ordinary,
shell special, and special pattern characters shall apply to escaping in this context.

Patterns Matching Multiple Characters

The following rules are used to construct patterns matching multiple characters from patterns
matching a single character:

1. Theasterisk ("*') is a pattern that shall match any string, including the null string.

2. The concatenation of patterns matching a single character is a valid pattern that shall match
the concatenation of the single characters or collating elements matched by each of the
concatenated patterns.

Technical Standard (2000) (Draft July 31, 2000)

2540
2541
2542
2543

2544

2545
2546
2547

2548
2549
2550
2551
2552
2553
2554
2555
2556

2557
2558
2559

2560

2561
2562

2563
2564

2565
2566
2567
2568

2569

2570
2571
2572
2573
2574
2575

Shell Command Language

Pattern Matching Notation

The concatenation of one or more patterns matching a single character with one or more
asterisks is a valid pattern. In such patterns, each asterisk shall match a string of zero or
more characters, matching the greatest possible number of characters that still allows the
remainder of the pattern to match the string.

2.14.3 Patterns Used for File Name Expansion

The rules described so far in Section 2.14.1 (on page 2274) and Section 2.14.2 (on page 2274) are
qualified by the following rules that apply when pattern matching notation is used for file name
expansion:

1.

The application shall ensure that the slash character in a path name is explicitly matched
by using one or more slashes in the pattern; it cannot be matched by the asterisk or
question-mark special characters or by a bracket expression. Slashes in the pattern are
identified before bracket expressions; thus, a slash cannot be included in a pattern bracket
expression used for file name expansion. If a slash character is found following an
unescaped open square bracket character before a corresponding closing square bracket is
found, the open bracket is treated as an ordinary character. For example, the pattern
"a[b/c]d" does not match such path names as abd or a/d. It only matches a path name
of literally a[b/c]d.

If a file name begins with a period ("."), the application shall ensure that the period is
explicitly matched by using a period as the first character of the pattern or immediately
following a slash character. The leading period shall not be matched by:

- The asterisk or question-mark special characters

« A bracket expression containing a non-matching list, such as "[!la]" , a range
expression, such as "[% —0]" , or a character class expression, such as "[[:punct:]]"

It is unspecified whether an explicit period in a bracket expression matching list, such as
"[.abc]" , can match a leading period in a file name.

Specified patterns are matched against existing file names and path names, as appropriate.
Each component that contains a pattern character requires read permission in the directory
containing that component. Any component, except the last, that does not contain a
pattern character requires search permission. For example, given the pattern:

[foo/bar/x*/bam

search permission is needed for directories / and foo, search and read permissions are
needed for directory bar, and search permission is needed for each x* directory. If the
pattern matches any existing file names or path names, the pattern shall be replaced with
those file names and path names, sorted according to the collating sequence in effect in the
current locale. If the pattern contains an invalid bracket expression or does not match any
existing file names or path names, the pattern string shall be left unchanged.

Shell and Utilities, Issue 6 2275

2576 2.15

2577
2578
2579

2580
2581
2582

2583
2584
2585
2586
2587

2588
2589

2590
2591

2592
2593
2594
2595

Special Built-In Utilities Shell Command Language

2276

Special Built-In Utilities

The following special built-in utilities shall be supported in the shell command language. The
output of each command, if any, shall be written to standard output, subject to the normal
redirection and piping possible with all commands.

The term built-in implies that the shell can execute the utility directly and does not need to
search for it. An implementation can choose to make any utility a built-in; however, the special
built-in utilities described here differ from regular built-in utilities in two respects:

1. A syntax error in a special built-in utility may cause a shell executing that utility to abort,
while a syntax error in a regular built-in utility shall not cause a shell executing that utility
to abort. (See Section 2.8.1 (on page 2255) for the consequences of errors on interactive and
non-interactive shells.) If a special built-in utility encountering a syntax error does not
abort the shell, its exit value shall be non-zero.

2. Variable assignments specified with special built-in utilities remain in effect after the
built-in completes; this shall not be the case with a regular built-in or other utility.

The special built-in utilities in this section need not be provided in a manner accessible via the
exec family of functions defined in the System Interfaces volume of IEEE Std. 1003.1-200x.

Some of the special built-ins are described as conforming to the Base Definitions volume of
IEEE Std. 1003.1-200x, Section 12.2, Utility Syntax Guidelines. For those that are not, the
requirement in Section 1.11 (on page 2224) that " —" be recognized as a first argument to be
discarded does not apply and a portable application shall not use that argument.

Technical Standard (2000) (Draft July 31, 2000)

2596
2597

2598
2599

2600
2601
2602
2603
2604
2605

2606
2607

2608
2609

2610
2611

2612
2613

2614
2615

2616
2617

2618
2619

2620
2621

2622
2623

2624
2625

2626

2627

2628

2629
2630

Shell Command Language break

NAME
break — exit from for, while, or until loop

SYNOPSIS
break [n]

DESCRIPTION
The break utility shall exit from the smallest enclosing for, while, or until loop, if any; or from the
nth enclosing loop if n is specified. The value of n is an unsigned decimal integer greater than or
equal to 1. The default shall be equivalent to n=1. If n is greater than the number of enclosing
loops, the last enclosing loop shall be exited from. Execution shall continue with the command
immediately following the loop.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
None.

STDOUT
None.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
0 Successful completion.
>0 The nvalue was not an unsigned decimal integer greater than or equal to 1.

CONSEQUENCES OF ERRORS
None.

Shell and Utilities, Issue 6 2277

break Shell Command Language

2631 APPLICATION USAGE

2632 None.

2633 EXAMPLES

2634 for i in * do

2635 if test -d "$i" then break fi done

2636 RATIONALE

2637 In early proposals, consideration was given to expanding the syntax of break and continue to refer
2638 to a label associated with the appropriate loop as a preferable alternative to the n method.
2639 However, this volume of IEEE Std. 1003.1-200x does reserve the namespace of command names
2640 ending with a colon. It is anticipated that a future implementation could take advantage of this
2641 and provide something like:

2642 outofloop: for i i nabcde

2643 do

2644 forjin 01234567829

2645 do

2646 if test -r "${i}s{}"

2647 then break outofloop

2648 fi

2649 done

2650 done

2651 and that this might be standardized after implementation experience is achieved.

2652 FUTURE DIRECTIONS

2653 None.

2654 SEE ALSO

2655 Section 2.15 (on page 2276)

2656 CHANGE HISTORY

2657 None.

2278 Technical Standard (2000) (Draft July 31, 2000)

2658
2659

2660
2661

2662
2663
2664

2665
2666

2667
2668

2669
2670

2671
2672

2673
2674

2675
2676

2677
2678

2679
2680

2681
2682

2683
2684

2685
2686

2687
2688

2689
2690

2691
2692
2693
2694
2695
2696
2697

2698
2699

Shell Command Language

NAME
colon — null utility

SYNOPSIS
[argument ...]

DESCRIPTION

colon

This utility shall only expand command arguments. It is used when a command is needed, as in

the then condition of an if command, but nothing is to be done by the command.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
None.

STDOUT
None.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
None.

APPLICATION USAGE
None.

EXAMPLES
. ${X=abc}
if false
then
else echo $X
fi
abc

As with any of the special built-ins, the null utility can also have variable assignments and

redirections associated with it, such as:

Shell and Utilities, Issue 6

2279

2700

2701
2702

2703
2704

2705
2706

2707
2708

2709
2710

colon

X=y : >z

Shell Command Language

which sets variable x to the value y (so that it persists after the null utility completes) and creates

or truncates file z.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15 (on page 2276)

CHANGE HISTORY
None.

2280

Technical Standard (2000) (Draft July 31, 2000)

2711
2712

2713
2714

2715
2716
2717
2718
2719

2720
2721

2722
2723

2724
2725

2726
2727

2728
2729

2730
2731

2732
2733

2734
2735

2736
2737

2738
2739

2740
2741

2742

2743

2744

2745
2746

Shell Command Language continue

NAME
continue — continue for, while, or until loop

SYNOPSIS
continue [n]

DESCRIPTION
The continue utility shall return to the top of the smallest enclosing for, while, or until loop, or to
the top of the nth enclosing loop, if n is specified. This involves repeating the condition list of a
while or until loop or performing the next assignment of a for loop, and reexecuting the loop if
appropriate.

The value of n is a decimal integer greater than or equal to 1. The default is equivalent to n=1. If
n is greater than the number of enclosing loops, the last enclosing loop shall be used.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
None.

STDOUT
None.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
0 Successful completion.
>0 The nvalue was not an unsigned decimal integer greater than or equal to 1.

CONSEQUENCES OF ERRORS
None.

Shell and Utilities, Issue 6 2281

2747
2748

2749
2750
2751
2752
2753
2754
2755
2756

2757
2758

2759
2760

2761
2762

2763
2764

continue

APPLICATION USAGE

None.
EXAMPLES
for i in *
do
if test -d "$i'
then continue
fi

echo "\"$i\"" is not a directory.
done

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.15 (on page 2276)

CHANGE HISTORY

2282

None.

Shell Command Language

Technical Standard (2000) (Draft July 31, 2000)

2765
2766

2767
2768

2769
2770

2771
2772
2773
2774
2775

2776
2777

2778
2779

2780
2781

2782
2783

2784
2785

2786
2787

2788
2789

2790
2791

2792
2793

2794
2795

2796
2797

2798
2799

2800
2801

2802
2803
2804
2805
2806
2807

Shell Command Language dot

NAME
dot — execute commands in current environment

SYNOPSIS
file

DESCRIPTION
The shell shall execute commands from the file in the current environment.

If file does not contain a slash, the shell shall use the search path specified by PATH to find the
directory containing file. Unlike normal command search, however, the file searched for by the
dot utility need not be executable. If no readable file is found, a non-interactive shell shall abort;
an interactive shell shall write a diagnostic message to standard error, but this condition shall
not be considered a syntax error.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
None.

STDOUT
None.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Returns the value of the last command executed, or a zero exit status if no command is executed.

CONSEQUENCES OF ERRORS
None.

APPLICATION USAGE
None.

EXAMPLES
cat foobar
foo=hello bar=world
. foobar
echo $foo $bar
hello world

Shell and Utilities, Issue 6 2283

2808
2809
2810
2811
2812

2813
2814

2815
2816

2817
2818

2819
2820

dot Shell Command Language

RATIONALE
Some older implementations searched the current directory for the file, even if the value of PATH
disallowed it. This behavior was omitted from this volume of IEEE Std. 1003.1-200x due to
concerns about introducing the susceptibility to trojan horses that the user might be trying to
avoid by leaving dot out of PATH.

The KornShell version of dot takes optional arguments that are set to the positional parameters.
This is a valid extension that allows a dot script to behave identically to a function.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15 (on page 2276)

CHANGE HISTORY
None.

2284 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language eval

2821 NAME

2822 eval — construct command by concatenating arguments
2823 SYNOPSIS

2824 eval [argument .. |

2825 DESCRIPTION

2826 The eval utility shall construct a command by concatenating arguments together, separating each
2827 with a <space> character. The constructed command shall be read and executed by the shell.
2828 OPTIONS

2829 None.

2830 OPERANDS

2831 None.

2832 STDIN

2833 None.

2834 INPUT FILES

2835 None.

2836 ENVIRONMENT VARIABLES

2837 None.

2838 ASYNCHRONOUS EVENTS

2839 None.

2840 STDOUT

2841 None.

2842 STDERR

2843 None.

2844 OUTPUT FILES

2845 None.

2846 EXTENDED DESCRIPTION

2847 None.

2848 EXIT STATUS

2849 If there are no arguments, or only null arguments, eval shall return a zero exit status; otherwise, it
2850 shall return the exit status of the command defined by the string of concatenated arguments
2851 separated by spaces.

2852 CONSEQUENCES OF ERRORS

2853 None.

2854 APPLICATION USAGE

2855 None.

2856 EXAMPLES

2857 foo=10 x=foo

2858 y="$"$x

2859 echo $y

2860 $foo

2861 eval y="$'$x

2862 echo $y

2863 10

Shell and Utilities, Issue 6 2285

2864
2865

2866
2867

2868
2869

2870
2871

eval

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15 (on page 2276)

CHANGE HISTORY
None.

2286

Shell Command Language

Technical Standard (2000) (Draft July 31, 2000)

2872
2873

2874
2875

2876
2877
2878

2879
2880
2881
2882
2883

2884
2885
2886

2887
2888

2889
2890

2891
2892

2893
2894

2895
2896

2897
2898

2899
2900

2901
2902

2903
2904

2905
2906

2907
2908
2909
2910
2911
2912

Shell Command Language exec

NAME
exec — execute commands and open, close, or copy file descriptors

SYNOPSIS
exec [command [argument ...]|

DESCRIPTION
The exec utility shall open, close, and/or copy file descriptors as specified by any redirections as
part of the command.
If exec is specified without command or arguments, and any file descriptors with numbers greater
than 2 are opened with associated redirection statements, it is unspecified whether those file
descriptors remain open when the shell invokes another utility. Scripts concerned that child
shells could misuse open file descriptors can always close them explicitly, as shown in one of the
following examples.
If exec is specified with command, it shall replace the shell with command without creating a new
process. If arguments are specified, they shall be arguments to command. Redirection affects the
current shell execution environment.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
None.

STDOUT
None.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

If command is specified, exec shall not return to the shell; rather, the exit status of the process shall
be the exit status of the program implementing command, which overlaid the shell. If command is
not found, the exit status shall be 127. If command is found, but it is not an executable utility, the
exit status shall be 126. If a redirection error occurs (see Section 2.8.1 (on page 2255)), the shell
shall exit with a value in the range 1-125. Otherwise, exec shall return a zero exit status.

Shell and Utilities, Issue 6 2287

exec Shell Command Language

2913 CONSEQUENCES OF ERRORS

2914 None.

2015 APPLICATION USAGE

2916 None.

2017 EXAMPLES

2918 Open readfile as file descriptor 3 for reading:

2919 exec 3< readfile

2920 Open writefile as file descriptor 4 for writing:
2921 exec 4> writefile

2922 Make file descriptor 5 a copy of file descriptor O:
2923 exec 5<&0

2924 Close file descriptor 3:

2925 exec 3<& -

2926 Cat the file maggie by replacing the current shell with the cat utility:
2927 exec cat maggie

2928 RATIONALE

2929 Most historical implementations were not conformant in that:
2930 foo=bar exec cmd

2931 did not pass foo to cmd.

2032 FUTURE DIRECTIONS

2933 None.

2934 SEE ALSO

2935 Section 2.15 (on page 2276)

2036 CHANGE HISTORY

2937 None.

2288 Technical Standard (2000) (Draft July 31, 2000)

2938
2939

2940
2941

2942
2943
2944
2945

2946
2947

2948
2949

2950
2951

2952
2953

2954
2955

2956
2957

2958
2959

2960
2961

2962
2963

2964
2965

2966
2967

2968
2969
2970
2971
2972

2973
2974

2975
2976

2977
2978

2979

Shell Command Language exit

NAME
exit — cause the shell to exit
SYNOPSIS
exit [n]
DESCRIPTION
The exit utility shall cause the shell to exit with the exit status specified by the unsigned decimal
integer n. If n is specified, but its value is not between 0 and 255 inclusively, the exit status is
undefined.
A trap on EXIT shall be executed before the shell terminates, except when the exit utility is
invoked in that trap itself, in which case the shell shall exit immediately.
OPTIONS
None.
OPERANDS
None.
STDIN
None.
INPUT FILES
None.
ENVIRONMENT VARIABLES
None.
ASYNCHRONOUS EVENTS
None.
STDOUT
None.
STDERR
None.
OUTPUT FILES
None.
EXTENDED DESCRIPTION
None.
EXIT STATUS
The exit status shall be n, if specified. Otherwise, the value shall be the exit value of the last
command executed, or zero if no command was executed. When exit is executed in a trap action,
the last command is considered to be the command that executed immediately preceding the
trap action.
CONSEQUENCES OF ERRORS
None.
APPLICATION USAGE
None.
EXAMPLES

Exit with a true value:

exit O

Shell and Utilities, Issue 6 2289

2980

2981

2982
2983
2984

2985

2986

2987

2988
2989

2990
2991

2992
2993

Exit with a false value:

exit 1

RATIONALE
As explained in other sections, certain exit status values have been reserved for special uses and
should be used by applications only for those purposes:

Shell Command Language

126 A file to be executed was found, but it was not an executable utility.

127 A utility to be executed was not found.

>128 A command was interrupted by a signal.

FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.15 (on page 2276)

CHANGE HISTORY

2290

None.

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language export

2994 NAME

2995 export — set export attribute for variables

2996 SYNOPSIS

2997 export name [=word] ...

2998 export —p

2099 DESCRIPTION

3000 The shell shall give the export attribute to the variables corresponding to the specified names,
3001 which shall cause them to be in the environment of subsequently executed commands.

3002 The export special built-in shall support the Base Definitions volume of IEEE Std. 1003.1-200x,
3003 Section 12.2, Utility Syntax Guidelines.

3004 When —p is specified, export shall write to the standard output the names and values of all
3005 exported variables, in the following format:

3006 "export %s=%s\n", < name>, < value >

3007 The shell shall format the output, including the proper use of quoting, so that it is suitable for
3008 reinput to the shell as commands that achieve the same exporting results.

3009 When no arguments are given, the results are unspecified.

3010 OPTIONS

3011 None.

3012 OPERANDS

3013 None.

3014 STDIN

3015 None.

3016 INPUT FILES

3017 None.

3018 ENVIRONMENT VARIABLES

3019 None.

3020 ASYNCHRONOUS EVENTS

3021 None.

3022 STDOUT

3023 None.

3024 STDERR

3025 None.

3026 OUTPUT FILES

3027 None.

3028 EXTENDED DESCRIPTION

3029 None.

3030 EXIT STATUS

3031 Zero.

Shell and Utilities, Issue 6 2291

3032
3033

3034
3035

3036
3037

3038

3039

3040

3041

3042
3043
3044
3045

3046
3047
3048
3049
3050
3051
3052

3053
3054

3055
3056

3057
3058

export Shell Command Language

CONSEQUENCES OF ERRORS
None.

APPLICATION USAGE
None.

EXAMPLES
Export PWD and HOME variables:

export PWD HOME
Set and export the PATH variable:
export PATH=/local/bin:$PATH
Save and restore all exported variables:

export -p > temp-file
unset a lot of variables
processing
temp-file

RATIONALE
Some historical shells use the no-argument case as the functional equivalent of what is required
here with —p. This feature was left unspecified because it is not historical practice in all shells,
and some scripts may rely on the now-unspecified results on their implementations. Attempts to
specify the —p output as the default case were unsuccessful in achieving consensus. The —p
option was added to allow portable access to the values that can be saved and then later restored
using; for example, a dot script.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.15 (on page 2276)

CHANGE HISTORY
None.

2292 Technical Standard (2000) (Draft July 31, 2000)

3059
3060

3061
3062

3063

3064
3065
3066
3067

3068
3069

3070
3071

3072

3073
3074

3075

3076
3077

3078
3079

3080
3081

3082
3083

3084
3085

3086
3087

3088
3089

3090
3091

3092
3093

3094
3095

3096
3097

Shell Command Language readonly

NAME
readonly — set read-only attribute for variables

SYNOPSIS
readonly name [=word] ...

readonly -p

DESCRIPTION
The variables whose names are specified shall be given the readonly attribute. The values of
variables with the readonly attribute cannot be changed by subsequent assignment, nor can those
variables be unset by the unset utility.

The readonly special built-in shall support the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 12.2, Utility Syntax Guidelines.

When —p is specified, readonly writes to the standard output the names and values of all read-
only variables, in the following format:

"readonly %s=%s\n", < name>, < value >

The shell shall format the output, including the proper use of quoting, so that it is suitable for
reinput to the shell as commands that achieve the same attribute-setting results.

When no arguments are given, the results are unspecified.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
None.

STDOUT
None.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

Shell and Utilities, Issue 6 2293

3098
3099

3100
3101

3102
3103

3104
3105
3106

3107
3108
3109

3110
3111
3112
3113
3114

3115
3116

3117
3118

3119
3120

readonly Shell Command Language

CONSEQUENCES OF ERRORS

None.

APPLICATION USAGE
None.

EXAMPLES
readonly HOME PWD

RATIONALE
Some historical shells preserve the read-only attribute across separate invocations. This volume
of IEEE Std. 1003.1-200x allows this behavior, but does not require it.
The —p option allows portable access to the values that can be saved and then later restored
using; for example, a dot script. Also see the RATIONALE for export (on page 2291) for a
description of the no-argument and —p output cases and a related example.
Read-only functions were considered, but they were omitted as not being historical practice or
particularly useful. Furthermore, functions must not be readonly across invocations to preclude
spoofing (spoofing is the term for the practice of creating a program that acts like a well-known
utility with the intent of subverting the real intent of the user) of administrative or security-
relevant (or security-conscious) shell scripts.

FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.15 (on page 2276)

CHANGE HISTORY

2294

None.

Technical Standard (2000) (Draft July 31, 2000)

3121
3122

3123
3124

3125
3126
3127

3128
3129

3130
3131

3132
3133

3134
3135

3136
3137

3138
3139

3140
3141

3142
3143

3144
3145

3146
3147

3148
3149
3150
3151
3152

3153
3154

3155
3156

3157
3158

3159
3160
3161
3162

Shell Command Language return

NAME
return — return from a function

SYNOPSIS
return [n]

DESCRIPTION
The return utility shall cause the shell to stop executing the current function or dot script. If the
shell is not currently executing a function or dot script, the results are unspecified.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
None.

STDOUT
None.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The value of the special parameter '?" shall be set to n, an unsigned decimal integer, or to the
exit status of the last command executed if n is not specified. If the value of n is greater than 255,
the results are undefined. When return is executed in a trap action, the last command is
considered to be the command that executed immediately preceding the trap action.

CONSEQUENCES OF ERRORS
None.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The behavior of return when not in a function or dot script differs between the System V shell
and the KornShell. In the System V shell this is an error, whereas in the KornShell, the effect is
the same as exit.

Shell and Utilities, Issue 6 2295

3163
3164
3165

3166

3167
3168

3169
3170

3171
3172

return

Shell Command Language

The results of returning a number greater than 255 are undefined because of differing practices
in the various historical implementations. Some shells AND out all but the low-order 8 bits;

others allow larger values, but not of unlimited size.

See the discussion of appropriate exit status values under exit (on page 2289).
FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.15 (on page 2276)

CHANGE HISTORY

2296

None.

Technical Standard (2000) (Draft July 31, 2000)

3173
3174

3175
3176

3177

3178

3179

3180

3181
3182
3183
3184

3185

3186
3187
3188

3189
3190
3191
3192

3193
3194
3195

3196
3197

3198
3199
3200
3201
3202
3203
3204
3205

3206
3207
3208

3209

3210

3211
3212
3213
3214
3215
3216

Shell Command Language set

NAME
set — set or unset options and positional parameters
SYNOPSIS
Xsl set [—-abCefmnuvx][-h][—o option][argument ... |
Xsl set [+abCefmnuvx] [+h][+0 option][argument ...]
set —J[argument ... |
set -0
set +0
DESCRIPTION

If no options or arguments are specified, set shall write the names and values of all shell variables
in the collation sequence of the current locale. Each name shall start on a separate line, using the
format:

"%s=%s\n", < name>, < value >

The value string shall be written with appropriate quoting so that it is suitable for reinput to the
shell, setting or resetting, as far as possible, the variables that are currently set. Read-only
variables cannot be reset; see the description of shell quoting in Section 2.2 (on page 2236).

When options are specified, they shall set or unset attributes of the shell, as described below.
When arguments are specified, they cause positional parameters to be set or unset, as described
below. Setting or unsetting attributes and positional parameters are not necessarily related
actions, but they can be combined in a single invocation of set.

The set special built-in shall support the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 12.2, Utility Syntax Guidelines except that options can be specified with either a leading
hyphen (meaning enable the option) or plus sign (meaning disable it).

Implementations shall support the options in the following list in both their hyphen and plus-
sign forms. These options can also be specified as options to sh.

-a When this option is on, the export attribute shall be set for each variable to which an
assignment is performed; see the Base Definitions volume of IEEE Std. 1003.1-200x, Section
4.16, Variable Assignment. If the assignment precedes a utility name in a command, the
export attribute shall not persist in the current execution environment after the utility
completes, with the exception that preceding one of the special built-in utilities causes the
export attribute to persist after the built-in has completed. If the assignment does not
precede a utility name in the command, or if the assignment is a result of the operation of
the getopts or read utilities, the export attribute shall persist until the variable is unset.

—b This option is supported if the system supports the User Portability Utilities option. It shall
cause the shell to notify the user asynchronously of background job completions. The
following message is written to standard error:

"[%d]%c %s%s\n", < job-number >, < current >, <status>, <job-name>
where the fields shall be as follows:

<current> The character '+’ identifies the job that would be used as a default for
the fg or bg utilities; this job can also be specified using the job_id "%+" or
"%%". The character’ - identifies the job that would become the default
if the current default job were to exit; this job can also be specified using
the job_id "%—". For other jobs, this field is a <space> character. At most
one job can be identified with '+ and at most one job can be identified

Shell and Utilities, Issue 6 2297

3217
3218
3219

3220
3221
3222

3223

3224

3225
3226
3227

3228
3229
3230

3231
3232
3233
3234

3235

3236
3237

3238
3239
3240
3241
3242
3243
3244
3245

3246
3247

3248

3249
3250

3251
3252
3253
3254

3255

3256

3257
3258
3259

set

XSl

2298

-m

Shell Command Language

with ' =" . If there is any suspended job, then the current job shall be a
suspended job. If there are at least two suspended jobs, then the previous
job also shall be a suspended job.

<job-number> A number that can be used to identify the process group to the wait, fg, bg,
and Kkill utilities. Using these utilities, the job can be identified by
prefixing the job number with "%’ .

<status> Unspecified.
<job-name> Unspecified.

When the shell notifies the user a job has been completed, it may remove the job’s process
ID from the list of those known in the current shell execution environment; see Section
2.9.3.1 (on page 2259). Asynchronous notification shall not be enabled by default.

(Uppercase C.) Prevent existing files from being overwritten by the shell’s '>’ redirection
operator (see Section 2.7.2 (on page 2252)); the ">|" redirection operator shall override this
noclobber option for an individual file.

When this option is on, if a simple command fails for any of the reasons listed in Section
2.8.1 (on page 2255) or returns an exit status value >0, and is not part of the compound list
following a while, until, or if keyword, and is not a part of an AND or OR list, and is not a
pipeline preceded by the ! reserved word, then the shell shall immediately exit.

The shell shall disable path name expansion.

Locate and remember utilities invoked by functions as those functions are defined (the
utilities are normally located when the function is executed).

This option is supported if the system supports the User Portability Utilities option. All jobs
shall be run in their own process groups. Immediately before the shell issues a prompt after
completion of the background job, a message reporting the exit status of the background job
shall be written to standard error. If a foreground job stops, the shell shall write a message
to standard error to that effect, formatted as described by the jobs utility. In addition, if a job
changes status other than exiting (for example, if it stops for input or output or is stopped
by a SIGSTOP signal), the shell shall write a similar message immediately prior to writing
the next prompt. This option is enabled by default for interactive shells.

The shell shall read commands but does not execute them; this can be used to check for
shell script syntax errors. An interactive shell may ignore this option.

Write the current settings of the options to standard output in an unspecified format.

Write the current option settings to standard output in a format that is suitable for reinput
to the shell as commands that achieve the same options settings.

—0 option

This option is supported if the system supports the User Portability Utilities option. It shall
set various options, many of which shall be equivalent to the single option letters. The
following values of option shall be supported:

allexport Equivalent to —a.
errexit Equivalent to —e.
ignoreeof Prevent an interactive shell from exiting on end-of-file. This setting prevents

accidental logouts when <control>-D is entered. A user shall explicitly exit to
leave the interactive shell.

Technical Standard (2000) (Draft July 31, 2000)

3260
3261

3262

3263

3264

3265
3266

3267

3268

3269

3270
3271
3272

3273

3274

3275
3276

3277

3278
3279
3280

3281

3282
3283
3284

3285
3286
3287
3288

3289
3290

3291
3292

3293
3294

3295
3296

3297
3298

Shell Command Language set

monitor Equivalent to -m. This option is supported if the system supports the User
Portability Utilities option.

noclobber Equivalent to —C (uppercase C).

noglob Equivalent to —f.

noexec Equivalent to —n.

nolog Prevent the entry of function definitions into the command history; see
Command History List (on page 3064).

notify Equivalent to -b.

nounset Equivalent to —u.

verbose Equivalent to —-v.

vi Allow shell command line editing using the built-in vi editor. Enabling vi

mode shall disable any other command line editing mode provided as an
implementation extension.

It need not be possible to set vi mode on for certain block-mode terminals.
xtrace Equivalent to —x.

—u The shell writes a message to standard error when it tries to expand a variable that is not set
and immediately exit. An interactive shell shall not exit.

—-v The shell writes its input to standard error as it is read.

—X The shell writes to standard error a trace for each command after it expands the command
and before it executes it. It is unspecified whether the command that turns tracing off is
traced.

The default for all these options is off (unset) unless the shell was invoked with them on; see sh.

The remaining arguments shall be assigned in order to the positional parameters. The special
parameter '# shall be set to reflect the number of positional parameters. All positional
parameters shall be unset before any new values are assigned.

The special argument " —" immediately following the set command name can be used to delimit
the arguments if the first argument begins with '+ or’ -, or to prevent inadvertent listing of
all shell variables when there are no arguments. The command set—— without argument shall
unset all positional parameters and set the special parameter '# to zero.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

Shell and Utilities, Issue 6 2299

3299
3300

3301
3302

3303
3304

3305
3306

3307
3308

3309
3310

3311
3312

3313
3314

3315
3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328
3329
3330
3331
3332
3333
3334
3335

3336

3337
3338

set

Shell Command Language

ASYNCHRONOUS EVENTS

None.

STDOUT

None.

STDERR

None.

OUTPUT FILES

None.

EXTENDED DESCRIPTION

None.

EXIT STATUS

Zero.

CONSEQUENCES OF ERRORS

None.

APPLICATION USAGE

None.

EXAMPLES

Write out all variables and their values:
set

Set $1, $2, and $3 and set "$#" to 3:
setcab

Turn on the —x and —v options:
set —xv

Unset all positional parameters:

set —-
Set $1 to the value of —x, even if x begins with’ = or '+’
set —— "$x"
Set the positional parameters to the expansion of x, even if x expands with a leading’ =’ or '+’
set —— $x
RATIONALE

2300

The set —— form is listed specifically in the SYNOPSIS even though this usage is implied by the
Utility Syntax Guidelines. The explanation of this feature removes any ambiguity about whether
the set —— form might be misinterpreted as being equivalent to set without any options or
arguments. The functionality of this form has been adopted from the KornShell. In System V, set
——only unsets parameters if there is at least one argument; the only way to unset all parameters
is to use shift. Using the KornShell version should not affect System V scripts because there
should be no reason to issue it without arguments deliberately; if it were issued as, for example:

set — "$@"

and there were in fact no arguments resulting from "$@", unsetting the parameters would have
no result.

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language set

3339 The set + form in early proposals was omitted as being an unnecessary duplication of set alone
3340 and not widespread historical practice.

3341 The noclobber option was changed to allow set —C as well as the set —o0 noclobber option. The
3342 single-letter version was added so that the historical "$ =" paradigm would not be broken; see
3343 Section 2.5.2 (on page 2241).

3344 The —-h flag is related to command name hashing and is only required on XSl-conformant
3345 systems.

3346 The following set flags were omitted intentionally with the following rationale:

3347 -k The -k flag was originally added by the author of the Bourne shell to make it easier for
3348 users of pre-release versions of the shell. In early versions of the Bourne shell the construct
3349 set name=value, had to be used to assign values to shell variables. The problem with -k is
3350 that the behavior affects parsing, virtually precluding writing any compilers. To explain the
3351 behavior of -k, it is necessary to describe the parsing algorithm, which is implementation-
3352 defined. For example:

3353 set —k; echo name=value

3354 and:

3355 set x ——k

3356 echo name=value

3357 behave differently. The interaction with functions is even more complex. What is more, the
3358 -k flag is never needed, since the command line could have been reordered.

3359 -t The -t flag is hard to specify and almost never used. The only known use could be done
3360 with here-documents. Moreover, the behavior with ksh and sh differs. The reference page
3361 says that it exits after reading and executing one command. What is one command? If the
3362 input is date;date, sh executes both date commands while ksh does only the first.

3363 Consideration was given to rewriting set to simplify its confusing syntax. A specific suggestion
3364 was that the unset utility should be used to unset options instead of using the non-getopt()-able
3365 +option syntax. However, the conclusion was reached that the historical practice of using +option
3366 was satisfactory and that there was no compelling reason to modify such widespread historical
3367 practice.

3368 The —o option was adopted from the KornShell to address user needs. In addition to its generally
3369 friendly interface, —o is needed to provide the vi command line editing mode, for which
3370 historical practice yields no single-letter option name. (Although it might have been possible to
3371 invent such a letter, it was recognized that other editing modes would be developed and -0
3372 provides ample name space for describing such extensions.)

3373 Historical implementations are inconsistent in the format used for —o option status reporting.
3374 The +o format without an option-argument was added to allow portable access to the options
3375 that can be saved and then later restored using, for instance, a dot script.

3376 Historically, sh did trace the command set +x, but ksh did not.

3377 The ignoreeof setting prevents accidental logouts when the end-of-file character (typically
3378 <control>-D) is entered. A user shall explicitly exit to leave the interactive shell.

3379 The set —m option was added to apply only to the UPE because it applies primarily to interactive
3380 use, not shell script applications.

3381 The ability to do asynchronous notification became available in the 1988 version of the
3382 KornShell. To have it occur, the user had to issue the command:

Shell and Utilities, Issue 6 2301

3383

3384
3385
3386
3387

3388

3389

3390
3391
3392

3393
3394
3395

3396

3397
3398

3399
3400

3401
3402

3403

3404
3405

3406
3407

3408

set

Shell Command Language

trap "jobs -n" CLD

The C shell provides two different levels of an asynchronous notification capability. The
environment variable notify is analogous to what is done in set —b or set —o notify. When set, it
notifies the user immediately of background job completions. When unset, this capability is
turned off.

The other notification ability comes through the built-in utility notify. The syntax is:
notify [%job ...]

By issuing notify with no operands, it causes the C shell to notify the user asynchronously when
the state of the current job changes. If given operands, notify asynchronously informs the user of
changes in the states of the specified jobs.

To add asynchronous notification to the POSIX shell, neither the KornShell extensions to trap,
nor the C shell notify environment variable seemed appropriate (notify is not a proper POSIX
environment variable name).

The set —b option was selected as a compromise.

The notify built-in was considered to have more functionality than was required for simple
asynchronous notification.

FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.15 (on page 2276)

CHANGE HISTORY

Issue 6

2302

The obsolescent set command name followed by * =" has been removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

- The nolog option is added to set —o.

Technical Standard (2000) (Draft July 31, 2000)

3409
3410

3411
3412

3413
3414
3415
3416
3417

3418
3419
3420

3421
3422

3423
3424

3425
3426

3427
3428

3429
3430

3431
3432

3433
3434

3435
3436

3437
3438

3439
3440

3441
3442

3443
3444

Shell Command Language shift

NAME
shift — shift positional parameters
SYNOPSIS
shift [n]
DESCRIPTION
The positional parameters shall be shifted. Positional parameter 1 shall be assigned the value of
parameter (1+n), parameter 2 shall be assigned the value of parameter (2+n), and so on. The
parameters represented by the numbers "$#" down to "$# -n+1" shall be unset, and the
parameter '# is updated to reflect the new number of positional parameters.
The value n shall be an unsigned decimal integer less than or equal to the value of the special
parameter '# . If n is not given, it shall be assumed to be 1. If n is 0, the positional and special
parameters are not changed.
OPTIONS
None.
OPERANDS
None.
STDIN
None.
INPUT FILES
None.
ENVIRONMENT VARIABLES
None.
ASYNCHRONOUS EVENTS
None.
STDOUT
None.
STDERR
None.
OUTPUT FILES
None.
EXTENDED DESCRIPTION
None.
EXIT STATUS

The exit status is >0 if n>$#; otherwise, it is zero.

CONSEQUENCES OF ERRORS
None.

Shell and Utilities, Issue 6 2303

3445
3446

3447
3448
3449
3450
3451

3452
3453

3454
3455

3456
3457

3458
3459

shift

APPLICATION USAGE

None.

EXAMPLES

$setabcde
$ shift 2

$ echo $*
cde

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.15 (on page 2276)

CHANGE HISTORY

2304

None.

Shell Command Language

Technical Standard (2000) (Draft July 31, 2000)

3460
3461

3462
3463

3464
3465
3466

3467
3468
3469
3470
3471

3472
3473
3474

3475
3476

3477
3478

3479
3480

3481
3482

3483
3484

3485
3486

3487
3488

3489
3490

3491
3492

3493
3494

3495
3496

3497
3498

Shell Command Language

NAME
times — write process times
SYNOPSIS
times
DESCRIPTION
Write the accumulated user and system times for the shell and for all of its child processes, in the
following POSIX locale format:

"%dm%fs %dm%fs\n%dm%fs %dm%fs\n", <shell user minutes
<shell user seconds >, < shell system minutes >,
<shell system seconds >, < children user minutes
<children user seconds >, < children system minutes
<children system seconds >

The four pairs of times correspond to the members of the <sys/times.h> tms structure (defined
in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers) as returned by
times(): tms_utime, tms_stime, tms_cutime, and tms_cstime, respectively.
OPTIONS
None.
OPERANDS
None.
STDIN
None.
INPUT FILES
None.
ENVIRONMENT VARIABLES
None.
ASYNCHRONOUS EVENTS
None.
STDOUT
None.
STDERR
None.
OUTPUT FILES
None.
EXTENDED DESCRIPTION
None.
EXIT STATUS
Zero.
CONSEQUENCES OF ERRORS
None.

Shell and Utilities, Issue 6

times

2305

3499
3500

3501
3502
3503
3504

3505
3506
3507

3508
3509

3510
3511

3512
3513

times

APPLICATION USAGE

None.

EXAMPLES

$ times
0mO0.43s Om1l.11s
8m44.18s 1m43.23s

RATIONALE
The times special built-in from the Single UNIX Specification is now required for all conforming

shells.

FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.15 (on page 2276)

CHANGE HISTORY

2306

None.

Shell Command Language

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language trap

3514 NAME

3515 trap — trap signals

3516 SYNOPSIS

3517 trap [action condition v]

3518 DESCRIPTION

3519 If action is ' =", the shell shall reset each condition to the default value. If action is null (""), the
3520 shell shall ignore each specified condition if it arises. Otherwise, the argument action shall be read
3521 and executed by the shell when one of the corresponding conditions arises. The action of trap
3522 shall override a previous action (either default action or one explicitly set). The value of "$?"
3523 after the trap action completes shall be the value it had before trap was invoked.

3524 The condition can be EXIT, 0 (equivalent to EXIT), or a signal specified using a symbolic name,
3525 without the SIG prefix, as listed in the tables of signal names in the <signal.h> header defined in
3526 the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers; for example, HUP,
3527 INT, QUIT, TERM. Implementations may permit lowercase signal names or names with the SIG
3528 prefix as an extension. Setting a trap for SIGKILL or SIGSTOP produces undefined results.

3529 The environment in which the shell executes a trap on EXIT shall be identical to the environment
3530 immediately after the last command executed before the trap on EXIT was taken.

3531 Each time trap is invoked, the action argument shall be processed in a manner equivalent to:

3532 eval "$action"

3533 Signals that were ignored on entry to a non-interactive shell cannot be trapped or reset, although
3534 no error need be reported when attempting to do so. An interactive shell may reset or catch
3535 signals ignored on entry. Traps shall remain in place for a given shell until explicitly changed
3536 with another trap command.

3537 When a subshell is entered, traps that are not being ignored are set to the default actions. This
3538 does not imply that the trap command cannot be used within the subshell to set new traps.

3539 The trap command with no arguments shall write to standard output a list of commands
3540 associated with each condition. The format shall be:

3541 "frap — %s %s ..\n", < action >, < condition > ..

3542 The shell shall format the output, including the proper use of quoting, so that it is suitable for
3543 reinput to the shell as commands that achieve the same trapping results. For example:

3544 save_traps=%$(trap)

3545

3546 eval "$save_traps"

3547 Xl XSl-conformant systems also allow numeric signal numbers for the conditions corresponding to
3548 the following signal names:

Shell and Utilities, Issue 6 2307

3549
3550

3551
3552
3553
3554
3555
3556
3557

3558
3559

3560
3561

3562
3563

3564
3565

3566
3567

3568
3569

3570
3571

3572
3573

3574
3575

3576
3577

3578
3579

3580
3581
3582
3583

3584
3585

3586
3587

3588
3589

3590

3591
3592

trap Shell Command Language

Signal Number Signal Name

XSl 1 SIGHUP
XSl 2 SIGINT
XSl 3 SIGQUIT
XSl 6 SIGABRT
XSl 9 SIGKILL
XSl 14 SIGALRM
XSl 15 SIGTERM

The trap special built-in shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 12.2, Utility Syntax Guidelines.

OPTIONS
None.

OPERANDS
None.

STDIN
None.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
None.

STDOUT
None.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

Xsl If the trap name or number is invalid, a non-zero exit status shall be returned; otherwise, zero

Xsl shall be returned. For both interactive and non-interactive shells, invalid signal names or
numbersshall not be considered a syntax error and do not cause the shell to abort.

CONSEQUENCES OF ERRORS
None.

APPLICATION USAGE
None.

EXAMPLES
Write out a list of all traps and actions:

trap

Set a trap so the logout utility in the directory referred to by the HOME environment variable
executes when the shell terminates:

2308 Technical Standard (2000) (Draft July 31, 2000)

3593

3594

3595

3596

3597

3598
3599
3600
3601
3602
3603

3604
3605

3606
3607
3608
3609

3610
3611

3612
3613
3614
3615

3616

3617
3618

3619
3620

3621

3622
3623
3624
3625

Shell Command Language trap

trap '$HOME/logout’ EXIT

or:
trap '$HOME/logout’ 0

Unset traps on INT, QUIT, TERM, and EXIT:
trap - INT QUIT TERM EXIT

RATIONALE

Implementations may permit lowercase signal names as an extension. Implementations may
also accept the names with the SIG prefix; no known historical shell does so. The trap and kill
utilities in this volume of IEEE Std. 1003.1-200x are now consistent in their omission of the SIG
prefix for signal names. Some kill implementations do not allow the prefix, and kill —I lists the
signals without prefixes.

Trapping SIGKILL or SIGSTOP is syntactically accepted by some historical implementations, but
it has no effect. Portable POSIX applications cannot attempt to trap these signals.

The output format is not historical practice. Since the output of historical trap commands is not
portable (because numeric signal values are not portable) and had to change to become so, an
opportunity was taken to format the output in a way that a shell script could use to save and
then later reuse a trap if it wanted.

The KornShell uses an ERR trap that is triggered whenever set —e would cause an exit. This is
allowable as an extension, but was not mandated, as other shells have not used it.

The text about the environment for the EXIT trap invalidates the behavior of some historical
versions of interactive shells which, for example, close the standard input before executing a
trap on 0. For example, in some historical interactive shell sessions the following trap on 0 would
always print" —":

trap 'read foo; echo " -$foo - 0

FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.15 (on page 2276)

CHANGE HISTORY

Issue 6

XSl-conforming implementations provide the mapping of signal names to numbers given above
(previously this had been marked obsolescent). Other implementations need not provide this
optional mapping.

Shell and Utilities, Issue 6 2309

3626
3627

3628
3629

3630
3631

3632
3633

3634

3635
3636

3637
3638

3639
3640

3641

3642

3643
3644
3645

3646
3647

3648
3649

3650
3651

3652
3653

3654
3655

3656
3657

3658
3659

3660
3661

3662
3663

3664
3665

unset

NAME

Shell Command Language

unset — unset values and attributes of variables and functions

SYNOPSIS

unset [—-fv] name ...

DESCRIPTION

Each variable or function specified by name shall be unset.

If —v is specified, name refers to a variable name and the shell shall unset it and remove it from
the environment. Read-only variables cannot be unset.

If —f is specified, name refers to a function and the shell shall unset the function definition.

If neither —f nor —v is specified, name refers to a variable; if a variable by that name does not
exist, it is unspecified whether a function by that name, if any, shall be unset.

Unsetting a variable or function that was not previously set shall not be considered an error and
does not cause the shell to abort.

The unset special built-in shall support the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 12.2, Utility Syntax Guidelines.

Note that:
VARIABLE=

is not equivalent to an unset of VARIABLE; in the example, VARIABLE is set to "" . Also, the
variables that can be unset should not be misinterpreted to include the special parameters (see
Section 2.5.2 (on page 2241)).

OPTIONS

None.

OPERANDS

STDIN

None.

None.

INPUT FILES

None.

ENVIRONMENT VARIABLES

None.

ASYNCHRONOUS EVENTS

None.

STDOUT

None.

STDERR

None.

OUTPUT FILES

None.

EXTENDED DESCRIPTION

2310

None.

Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language unset

3666 EXIT STATUS

3667 0 All name operands were successfully unset.

3668 >0 At least one name could not be unset.

3669 CONSEQUENCES OF ERRORS

3670 None.

3671 APPLICATION USAGE

3672 None.

3673 EXAMPLES

3674 Unset VISUAL variable:

3675 unset -v VISUAL

3676 Unset the functions foo and bar:

3677 unset —f foo bar

3678 RATIONALE

3679 Consideration was given to omitting the —f option in favor of an unfunction utility, but the
3680 standard developers decided to retain historical practice.

3681 The -v option was introduced because System V historically used one name space for both
3682 variables and functions. When unset is used without options, System V historically unset either a
3683 function or a variable, and there was no confusion about which one was intended. A portable
3684 POSIX application can use unset without an option to unset a variable, but not a function; the —f
3685 option must be used.

3686 FUTURE DIRECTIONS

3687 None.

3688 SEE ALSO

3689 Section 2.15 (on page 2276)

3690 CHANGE HISTORY

3691 None.

Shell and Utilities, Issue 6 2311

Shell Command Language

3692

2312 Technical Standard (2000) (Draft July 31, 2000)

3693

3694
3695
3696

3697

3698

3699
3700
3701

3702
3703

3704
3705
3706
3707
3708

BE

3.1

3.11

Chapter 3

Batch Environment Services

This chapter describes the services and utilities that shall be implemented on all systems that
claim conformance to the Batch Environment option. This functionality is dependent on support
of this option (and the rest of this section is not further shaded for this option).

General Concepts

Batch Client-Server Interaction

Batch jobs are created and managed by batch servers. A batch client interacts with a batch server
to access batch services on behalf of the user. In order to use batch services, a user must have
access to a batch client.

A batch server is a computational entity, such as a daemon process, that provides batch services.
Batch servers route, queue, modify, and execute batch jobs on behalf of batch clients.

The batch utilities described in this volume of IEEE Std. 1003.1-200x (and listed in Table 3-1 (on
page 2314)) are clients of batch services; they allow users to perform actions on the job such as
creating, modifying, and deleting batch jobs from a shell command line. Although these batch
utilities may be said to accomplish certain services, they actually obtain services on behalf of a
user by means of requests to batch servers.

Shell and Utilities, Issue 6 2313

3709

3710
3711
3712

3713
3714
3715
3716
3717

3718

3719
3720
3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731
3732
3733

3734

3735
3736
3737
3738

3739
3740
3741
3742

General Concepts Batch Environment Services

3.1.2

3.13

2314

Table 3-1 Batch Utilities

qalter gmove qrls gstat
qdel aqmsg gselect gsub
ghold grerun gsig

Client-server interaction takes place by means of the batch requests defined in this chapter.
Because direct access to batch jobs and queues is limited to batch servers, clients and servers of
different implementations can interoperate, since dependencies on private structures for batch
jobs and queues are limited to batch servers. Also, batch servers may be clients of other batch
servers.

Batch Queues

Two types of batch queue are described: routing queues and execution queues. When a batch job is
placed in a routing queue, it is a candidate for routing. A batch job is removed from routing
queues under the following conditions:

« The batch job has been routed to another queue.

- The batch job has been deleted from the batch queue.

« The batch job has been aborted.
When a batch job is placed in an execution queue, it is a candidate for execution.
A batch job is removed from an execution queue under the following conditions:

- The batch job has been executed and exited.

« The batch job has been aborted.

- The batch job has been deleted from the batch queue.

« The batch job has been moved to another queue.

Access to a batch queue is limited to the batch server that manages the batch queue. Clients
never access a batch queue or a batch job directly, either to read or write information; all client
access to batch queues or jobs takes place through batch servers.

Batch Job Creation

When a batch server creates a batch job on behalf of a client, it assigns a batch job identifier to
the job. A batch job identifier consists of both a sequence number that is unique among the
sequence numbers issued by that server and the name of the server. Since the batch server name
is unique within a name space, the job identifier is likewise unique within the name space.

The batch server that creates a batch job returns the batch server-assigned job identifier to the
client that requested the job creation. If the batch server routes or moves the job to another
server, it sends the job identifier with the job. Once assigned, the job identifier of a batch job
never changes.

Technical Standard (2000) (Draft July 31, 2000)

3743

3744
3745
3746
3747
3748

3749

3750
3751

3752
3753

3754
3755
3756
3757

3758
3759
3760
3761

3762
3763
3764
3765
3766

3767
3768
3769

3770

3771
3772
3773
3774
3775
3776
3777

3778
3779
3780
3781
3782

3783
3784

3785
3786

Batch Environment Services General Concepts

3.14

3.15

3.1.6

Batch Job Tracking

Since a batch job may be moved after creation, the batch server name component of the job
identifier does not always indicate the location of the job. An implementation may provide a
batch job tracking mechanism, in which case the user generally does not need to know the
location of the job. However, an implementation is not required to provide a batch job tracking
mechanism, in which case the user must find routed jobs by probing the possible destinations.

Batch Job Routing

To route a batch job, a batch server either moves the job to some other queue that is managed by
the batch server, or requests that some other batch server accept the job.

Each routing queue has one or more queues to which it can route batch jobs. The batch server
administrator creates routing queues.

A batch server may route a batch job from a routing queue to another routing queue. Batch
servers shall prevent or otherwise handle cases of circular routing paths. As a deferred service, a
batch server routes jobs from the routing queues that it manages. The algorithm by which a
batch server selects a batch queue to which to route a batch job is implementation-defined.

A batch job need not be eligible for routing to all the batch queues fed by the routing queue from
which it is routed. A batch server that has been asked to accept the job may reject the request if
the job requires resources that are unavailable to that batch server, or if the client is not
authorized to access the batch server.

Batch servers may route high-priority jobs before low-priority jobs, but, on other than
overloaded systems, the effect may be imperceptible to the user. If all the batch servers fed by a
routing queue reject requests to accept the job for reasons that are permanent, the batch server
that manages the job aborts the job. If all or some rejections are temporary, the batch server
should try to route the job again at some later point.

The conformance document for an implementation shall list the reasons for rejecting the routing
of a batch job. The conformance document shall indicate the reasons for which the routing
should be retried later and the reasons for which the job should be aborted.

Batch Job Execution

To execute a batch job is to create a session leader (a process) that runs the shell program
indicated by the Shell Path attribute of the job. The script is passed to the program as its
standard input. An implementation of the batch server may pass the script to the program by
other means. The implementation shall document the alternate means in the conformance
document. At the time a batch job begins execution, it is defined to enter the RUNNING state.
The primary program that is executed by a batch job is typically, though not necessarily, a shell
program.

A batch server executes eligible jobs as a deferred service—no client request is necessary once
the batch job is created and eligible. However, the attributes of a batch job, such as the job hold
type, may render the job ineligible. A batch server scans the execution queues that it manages for
jobs that are eligible for execution. The algorithm by which the batch server selects eligible jobs
for execution is implementation-defined.

As part of creating the process for the batch job, the batch server opens the standard output and
standard error streams of the session.

The attributes of a batch job may indicate that the batch server that executes the job is to send
mail to a list of users at the time it begins execution of the job.

Shell and Utilities, Issue 6 2315

3787

3788
3789
3790
3791

3792
3793

3794

3795
3796
3797

3798

3799
3800
3801

3802
3803
3804

3805
3806

3807
3808
3809

3810
3811

3812
3813
3814
3815

3816

3817
3818
3819

3820
3821
3822
3823

General Concepts Batch Environment Services

3.1.7

3.1.8

3.1.9

3.1.10

2316

Batch Job Exit

When the session leader of an executing job terminates, the job exits. As part of exiting a batch
job, the batch server that manages the job shall remove the job from the batch queue in which it
resides. The server shall transfer output files of the job to a location described by the attributes of
the job.

The attributes of a batch job may indicate that the batch server that manages the job should send
mail to a list of users at the time the job exits.

Batch Job Abort

A batch server aborts jobs for which a required deferred service cannot be performed. The
attributes of a batch job may indicate that the batch server that aborts the job shall send mail to a
list of users at the time it aborts the job.

Batch Authorization

In order to access batch services, a user must have execute access to a batch client. For example,
to use the command language interface defined in this section, the user must be able to execute
the programs that embody those utilities.

Clients, such as the batch environment utilities (marked BE), access batch services by means of
requests to one or more batch servers. To acquire the services of any given batch server, the user
identifier under which the client runs must be authorized to use that batch server.

The user with an associated user name that creates a batch job owns the job and can perform
actions such as read, modify, delete, and move.

A user identifier of the same value at a different host need not be the same user. For example,
user name smith at host alpha may or may not represent the same person as user name smith at
host beta. Likewise, the same person may have access to different user names on different hosts.

An implementation may optionally provide an authorization mechanism that permits one user
name to access jobs under another user name.

A process on a client host may be authorized to run processes under multiple user names at a
batch server host. Where appropriate, the utilities defined in this volume of
IEEE Std. 1003.1-200x provide a means for a user to choose from among such user names when
creating or modifying a batch job.

Batch Administration

The processing of a batch job by a batch server is affected by the attributes of the job. The
processing of a batch job may also be affected by the attributes of the batch queue in which the
job resides and by the status of the batch server that manages the job.

A batch administrator is a user that is authorized to modify all the attributes of queues and jobs
and to change the status of a batch server. A batch operator is a user that is authorized to modify
some, but not all, of the attributes of jobs and queues, and may change the status of the batch
server.

Technical Standard (2000) (Draft July 31, 2000)

3824 3.1.11

3825
3826
3827

3828

3829
3830

3831

3832

3833
3834

3835
3836
3837
3838

3839

3840
3841

3842
3843

3844
3845

3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856

3857
3858

Batch Environment Services General Concepts

3.2

Batch Notification

Whereas batch servers are persistent entities, clients are often transient. For example, the gsub
utility creates a batch job and exits. For this reason, batch servers notify users of batch job events
by sending mail to the user that owns the job, or to other designated users.

Batch Services

The presence of Batch Environment option services is indicated by the configuration variable
POSIX2_PBS. A conforming batch server provides services as defined in this section.

A batch server provides batch services in two ways:
1. The batch server provides a service at the request of a client.

2. The batch server provides a deferred service as a result of a change in conditions
monitored by the batch server.

If a batch server cannot complete a request, it rejects the request. If a batch server cannot
complete a deferred service for a batch job, the batch server aborts the batch job. Table 3-2 is a
summary of environment variables that shall be supported by an implementation of the batch
server and utilities.

Table 3-2 Environment Variable Summary

Variable Description

PBS_DPREFIX Defines the directive prefix (see gsub)

PBS ENVIRONMENT | Batch Job is batch or interactive (see Section 3.2.2.1 (on page
2319))

PBS JOBID The job_identifier attribute of job (see Section 3.2.3.8 (on page
2331))

PBS JOBNAME The job_name attribute of job (see Section 3.2.3.8 (on page 2331))

PBS O_HOME Defines the HOME of the batch client (see gsub)

PBS O HOST Defines the host name of the batch client (see gsub)

PBS O _LANG Defines the LANG of the batch client (see qsub)

PBS O _LOGNAME Defines the LOGNAME of the batch client (see gsub)

PBS O_MAIL Defines the MAIL of the batch client (see gsub)

PBS O_PATH Defines the PATH of the batch client (see gsub)

PBS O _QUEUE Defines the submit queue of the batch client (see qsub)

PBS O SHELL Defines the SHELL of the batch client (see qsub)

PBS O Tz Defines the TZ of the batch client (see gsub)

PBS_O_WORKDIR Defines the working directory of the batch client (see qsub)

PBS QUEUE Defines the initial execution queue (see Section 3.2.2.1 (on page
2319))

Shell and Utilities, Issue 6 2317

Batch Services Batch Environment Services

3859 3.2.1

3860
3861
3862
3863
3864

3865
3866

3867
3868
3869
3870
3871

3872
3873

3874
3875

3876
3877

3878
3879
3880
3881
3882

3883
3884

3885
3886
3887

3888
3889
3890
3891

3892
3893
3894

3895
3896
3897

3898
3899

3900

3901

2318

Batch Job States

A batch job is always in one of several states; QUEUED, RUNNING, HELD, WAITING,
EXITING, or TRANSITING. The state of a batch job determines the types of requests that the
batch server that manages the batch job can accept for the batch job. A batch server changes the
state of a batch job either in response to service requests from clients or as a result of deferred
services, such as job execution or job routing.

A batch job that is in the QUEUED state resides in a queue but is still pending either execution or
routing, depending on the queue type.

A batch server that queues a batch job in a routing queue shall put the batch job in the QUEUED
state. A batch server that puts a batch job in an execution queue, but has not yet executed the
batch job, shall put the batch job in the QUEUED state. A batch job that resides in an execution
queue and is executing is defined to be in the RUNNING state. While a batch job is in the
RUNNING state, a session leader is associated with the batch job.

A batch job that resides in an execution queue, but is ineligible to run because of a hold attribute,
is defined to be in the HELD state.

A batch job that is not held, but must wait until a future date and time before executing, is
defined to be in the WAITING state.

When the session leader associated with a running job exits, the batch job shall be placed in the
EXITING state.

A batch job for which the session leader has terminated is defined to be in the EXITING state,
and the batch server that manages such a batch job cannot accept job modification requests that
affect the batch job. While a batch job is in the EXITING state, the batch server that manages the
batch job is staging output files and notifying clients of job completion. Once a batch job has
exited, it no longer exists as an object managed by a batch server.

A batch job that is being moved from a routing queue to another queue is defined to be in the
TRANSITING state.

When a batch job in a routing queue has been selected to be moved to a hew destination, then
the batch job is in either the QUEUED state or the TRANSITING state, depending on the batch
server implementation.

Batch jobs with either a Execution_Time attribute value set in the future or a Hold_Types attribute
of value not equal to NO_HOLD, or both, may be routed or held in the routing queue. An
implementation shall document the treatment of jobs with the Execution_Time or Hold Types
attributes in a routing queue.

When a batch job in a routing queue has not been selected to be moved to a new destination and
the batch job has a Hold_Types attribute value of other than NO_HOLD, then the job should be in
the HELD state.

Note: The effect of a hold upon a batch job in a routing queue is implementation-defined.
The implementation should use the state that matches whether the batch job can
route with a hold or not.

When a batch job in a routing queue has not been selected to be moved to a new destination and
the batch job has:

« A Hold_Types attribute value of NO_HOLD

« An Execution_Time attribute in the past

Technical Standard (2000) (Draft July 31, 2000)

3902

3903
3904

3905

3906

3907

3908
3909
3910

3911
3912
3913

3914

3915
3916

3917

3918
3919
3920
3921
3922

3923

3924
3925

3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940

Batch Environment Services Batch Services

3.2.2

3221

then the batch job shall be in the QUEUED state.

When a batch job in a routing queue has not been selected to be moved to a new destination and
the batch job has:

« A Hold_Types attribute value of NO_HOLD
« A Execution_Time attribute in the future
then the batch job may be in the WAITING state.

Note: The effect of a future execution time upon a batch job in a routing queue is
implementation-defined. The implementation should use the state that matches
whether the batch job can route with a hold or not.

Table 3-3 describes the next state of a batch job, given the current state of the batch job and the
type of request. Table 3-4 (on page 2321) describes the response of a batch server to a request,
given the current state of the batch job and the type of request.

Deferred Batch Services

This section describes the deferred services performed by batch servers: job execution, job
routing, job exit, job abort, and the rerunning of jobs after a restart.

Batch Job Execution

To execute a batch job is to create a session leader (a process) that runs the shell program
indicated by the Shell_Path_List attribute of the batch job. The script is passed to the program as
its standard input. An implementation of the batch server may pass the script to the program by
other means. The implementation shall document the alternate means in the conformance
document. At the time a batch job begins execution, it is defined to enter the RUNNING state.

Table 3-3 Next State Table

Current State

Request Type

Queue Batch Job Request
Modify Batch Job Request
Delete Batch Job Request
Batch Job Message Request
Rerun Batch Job Request
Signal Batch Job Request
Batch Job Status Request
Batch Queue Status Request
Server Status Request
Select Batch Jobs Request
Move Batch Job Request
Hold Batch Job Request
Release Batch Job Request
Server Shutdown Request
Locate Batch Job Request

D OVVOVDOUVODLOITMITD|D
Ad4d4 44 —do@® AXxX—do|H

R/H
Q/W/H

MM-—A@® ® MMMIM®o o MMao @M

EEPIZZZEZZPEXZ0|Z

IISIIIIIIIoIXIo|lI

D XODdDdDXXXDd®ddDd®dDdDdDdO|X
OQOTITOO0O0O0O0®odOXO |0

— -

Shell and Utilities, Issue 6 2319

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950
3951
3952
3953
3954

3955
3956
3957

3958
3959
3960

3961
3962
3963
3964
3965
3966

Batch Services Batch Environment Services

2320

Legend
Nonexistent
QUEUED
RUNNING
HELD
WAITING
EXITING
TRANSITING

= m :E T T O X

e Error

A batch server that has an execution queue containing jobs is said to own the queue and manage
the batch jobs in that queue. A batch server that has been started shall execute the batch jobs in
the execution queues owned by the batch server. The batch server shall schedule for execution
those jobs in the execution queues that are in the QUEUED state. The algorithm for scheduling
jobs is implementation-defined.

A batch server that executes a batch job shall create, in the environment of the session leader of
the batch job, an environment variable named PBS_ENVIRONMENT, the value of which is the
string PBS_BATCH encoded in the portable character set.

A batch server that executes a batch job shall create, in the environment of the session leader of
the batch job, an environment variable named PBS_QUEUE, the value of which is the name of
the execution queue of the batch job encoded in the portable character set.

To rerun a batch job is to requeue a batch job that is currently executing and then kill the session
leader of the executing job by sending a SIGKILL prior to completion; see Section 3.2.3.11 (on
page 2333). A batch server that reruns a batch job shall append the standard output and
standard error files of the batch job to the corresponding files of the previous execution, if they
exist, with appropriate annotation. If either file does not exist, that file shall be created as in
normal execution.

Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

3967 Table 3-4 Results/Output Table

3968 Current State

3969 Request Type XIT QI R|IH|W]|EI|T

3970 Queue Batch Job Request O | e e e e e e

3971 Modify Batch Job Request e | O|l e | O] O] e e

3972 Delete Batch Job Request e | O] O|O| 0| e | O

3973 Batch Job Message Request e e | O e e e e

3974 Rerun Batch Job Request e e | Ol e e e e

3975 Signal Batch Job Request e e | O e e e e

3976 Batch Job Status Request e OO O 0|00

3977 Batch Queue StatusRequest | O | O | O | O | O | O | O

3978 Server Status Request oOj]OoO|jO|O]O|0O]|O0O

3979 Select Batch Job Request e OOl OlO]O!O

3980 Move Batch Job Request e O OO O] e e

3981 Hold Batch Job Request e | O OO0 0| e e

3982 Release Batch Job Request e | O]l e | O] O] e e

3983 Server Shutdown Request O|O0O| e | O] O e e

3984 Locate Batch Job Request e O]J]O|O|O|O]|O

3985 Legend

3986 O OK

3987 e Error message

3988 The execution of a batch job by a batch server is controlled by job, queue, and server attributes,
3989 as defined in this section.

3990 Account_Name Attribute

3991 Batch accounting is an optional feature of batch servers. If a batch server implements
3992 accounting, the statements in this section apply and the configuration variable
3993 POSIX2_PBS_ACCOUNTING shall be set to 1.

3994 A batch server that executes a batch job shall charge the account named in the Account_Name
3995 attribute of the batch job for resources consumed by the batch job.

3996 If the Account_Name attribute of the batch job is absent from the batch job attribute list or is
3997 altered while the batch job is in execution, the batch server action is implementation-defined.
3998 Checkpoint Attribute

3999 Batch checkpointing is an optional feature of batch servers. If a batch server implements
4000 checkpointing, the statements in this section apply and the configuration variable
4001 POSIX2_PBS CHECKPOINT shall be set to 1.

4002 There are two attributes associated with the checkpointing feature: Checkpoint and
4003 Minimum_Cpu_Interval. Checkpoint is a batch job attribute, while Minimum_Cpu_lInterval is a
4004 gueue attribute. An implementation that does not support checkpointing shall support the
4005 Checkpoint job attribute to the extent that the batch server shall maintain and pass this attribute
4006 to other servers.

4007 The behavior of a batch server that executes a batch job for which the value of the Checkpoint
4008 attribute is CHECKPOINT_UNSPECIFIED is implementation-defined. The implementation shall
4009 document the behavior of the batch server. A batch server that executes a batch job for which the

Shell and Utilities, Issue 6 2321

4010

4011
4012
4013

4014
4015
4016
4017

4018
4019
4020
4021
4022
4023

4024

4025
4026
4027
4028

4029
4030

4031
4032
4033
4034

4035
4036

4037
4038

4039
4040
4041

4042
4043
4044

4045
4046
4047
4048

4049
4050

Batch Services Batch Environment Services

2322

value of the Checkpoint attribute is NO_CHECKPOINT shall not checkpoint the batch job.

A batch server that executes a batch job for which the value of the Checkpoint attribute is
CHECKPOINT_AT_SHUTDOWN shall checkpoint the batch job only when the batch server
accepts a request to shut down during the time when the batch job is in the RUNNING state.

A batch server that executes a batch job for which the value of the Checkpoint attribute is
CHECKPOINT_AT_MIN_CPU_INTERVAL shall checkpoint the batch job at the interval
specified by the Minimum_Cpu_Interval attribute of the queue for which the batch job has been
selected. The Minimum_Cpu_Interval attribute shall be specified in units of CPU minutes.

A batch server that executes a batch job for which the value of the Checkpoint attribute is an
unsigned integer shall checkpoint the batch job at an interval that is the value of either the
Checkpoint attribute, or the Minimum_Cpu_Interval attribute of the queue for which the batch job
has been selected, whichever is greater. Both intervals shall be in units of CPU minutes. When
the Minimum_Cpu_Interval attribute is greater than the Checkpoint attribute, the batch job shall
write a warning message to the standard error stream of the batch job.

Error_Path Attribute

The Error_Path attribute of a running job cannot be changed by a Modify Batch Job Request. When
the Join_Path attribute of the batch job is set to the value FALSE and the Keep_Files attribute of
the batch job does not contain the value KEEP_STD_ERROR, a batch server that executes a batch
job shall perform one of the following actions:

. Set the standard error stream of the session leader of the batch job to the path described by
the value of the Error_Path attribute of the batch job.

- Buffer the standard error of the session leader of the batch job until completion of the batch
job, and when the batch job exits return the contents to the destination described by the value
of the Error_Path attribute of the batch job. Where the batch server buffers standard error is
implementation-defined.

Applications shall not rely on having access to the standard error of a batch job prior to the
completion of the batch job.

When the Error_Path attribute does not specify a host name, then the batch server shall retain the
standard error of the batch job on the host of execution.

When the Error_Path attribute does specify a host name and the Keep_Files attribute does not
contain the value KEEP_STD_ERROR, then the final destination of the standard error of the
batch job shall be on the host whose host name is specified.

If the path indicated by the value of the Error_Path attribute of the batch job is a relative path, the
batch server shall expand the path relative to the home directory of the user on the host to which
the file is being returned.

When the batch server buffers the standard error of the batch job and the file cannot be opened
for write upon completion of the batch job, then the server shall place the standard error in an
implementation-defined location and notify the user of the location via mail. It shall be possible
for the user to process this mail using the mailx utility.

If a batch server that does not buffer the standard error cannot open the standard error path of
the batch job for write access, then the batch server shall abort the batch job.

Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4051 Execution_Time Attribute

4052 A batch server shall not execute a batch job before the time represented by the value of the
4053 Execution_Time attribute of the batch job. The Execution_Time attribute is defined in seconds since
4054 the Epoch.

4055 Hold_Types Attribute

4056 A batch server shall support the following hold types:

4057 s Can be set or released by a user with at least a privilege level of batch administrator
4058 (SYSTEM).

4059 0 Can be set or released by a user with at least a privilege level of batch operator
4060 (OPERATOR).

4061 u Can be set or released by the user with at least a privilege level of user, where the user is
4062 defined in the Job_Owner attribute (USER).

4063 n Indicates that none of the Hold_Types attributes are set (NO_HOLD).

4064 An implementation may define other hold types. The conformance document for an
4065 implementation shall describe any additional hold types, how they are specified, their internal
4066 representation, their behavior, and how they affect the behavior of other utilities.

4067 The value of the Hold_Types attribute shall be the union of the valid hold types (ss, oo, uu, and
4068 any implementation-defined hold types), or nn.

4069 A batch server shall not execute a batch job if the Hold Types attribute of the batch job has a
4070 value other than NO_HOLD. If the Hold_Types attribute of the batch job has a value other than
4071 NO_HOLD, the batch job shall be in the HELD state.

4072 Job_Owner Attribute

4073 The Job_Owner attribute consists of a pair of user name and host name values of the form:

4074 username@hostname

4075 A batch server that accepts a Queue Batch Job Request shall set the Job_Owner attribute to a string
4076 that is the username@hostname of the user who submitted the job.

4077 Join_Path Attribute

4078 A batch server that executes a batch job for which the value of the Join_Path attribute is TRUE
4079 shall ignore the value of the Error_Path attribute and merge the standard error of the batch job
4080 with the standard output of the batch job.

4081 Keep_Files Attribute

4082 A batch server that executes a batch job for which the value of the Keep_Files attribute includes
4083 the value KEEP_STD_OUTPUT shall retain the standard output of the batch job on the host
4084 where execution occurs. The standard output shall be retained in the home directory of the user
4085 under whose user ID the batch job is executed and the file name shall be the default file name for
4086 the standard output as defined under the —o option of the gsub utility. The Output_Path attribute
4087 is not modified.

4088 A batch server that executes a batch job for which the value of the Keep_Files attribute includes
4089 the value KEEP_STD_ERROR shall retain the standard error of the batch job on the host where
4090 execution occurs. The standard error shall be retained in the home directory of the user under
4001 whose user ID the batch job is executed and the file name shall be the default file name for

Shell and Utilities, Issue 6 2323

4092
4093

4094
4095
4096
4097
4098

4099

4100
4101
4102

4103
4104

4105

4106
4107
4108

4109
4110

4111

4112
4113
4114

4115
4116

4117
4118
4119

4120
4121
4122

4123
4124
4125

4126
4127
4128
4129

4130
4131

Batch Services Batch Environment Services

2324

standard error as defined under the —e option of the gsub utility. The Error_Path attribute is not
modified.

A batch server that executes a batch job for which the value of the Keep_Files attribute includes
values other than KEEP_STD_OUTPUT and KEEP_STD_ERROR shall retain these other files on
the host where execution occurs. These files shall be retained in the home directory of the user
under whose user identifier the batch job is executed and the file names shall be the default file
names for the files as defined in the conformance document for the implementation.

Mail_Points and Mail_Users Attributes

A batch server that executes a batch job for which one of the values of the Mail_Points attribute is
the value MAIL_AT _BEGINNING shall send a mail message to each user account listed in the
Mail_Users attribute of the batch job.

The mail message shall contain at least the batch job identifier, queue, and server at which the
batch job currently resides, and the Job_Owner attribute.

Output_Path Attribute

The Output_Path attribute of a running job cannot be changed by a Modify Batch Job Request.
When the Keep_Files attribute of the batch job does not contain the value KEEP_STD_OUTPUT, a
batch server that executes a batch job shall either:

- Set the standard output stream of the session leader of the batch job to the destination
described by the value of the Output_Path attribute of the batch job.

or:

. Buffer the standard output of the session leader of the batch job until completion of the batch
job, and when the batch job exits return the contents to the destination described by the value
of the Output_Path attribute of the batch job.

When the Output_Path attribute does not specify a host name, then the batch server shall retain
the standard output of the batch job on the host of execution.

When the Keep Files attribute does not contain the value KEEP_STD OUTPUT and the
Output_Path attribute does specify a host name, then the final destination of the standard output
of the batch job shall be on the host specified.

If the path specified in the Output_Path attribute of the batch job is a relative path, the batch
server shall expand the path relative to the home directory of the user on the host to which the
file is being returned.

Whether or not the batch server buffers the standard output of the batch job until completion of
the batch job is implementation-defined. Applications shall not rely on having access to the
standard output of a batch job prior to the completion of the batch job.

When the batch server does buffer the standard output of the batch job and the file cannot be
opened for write upon completion of the batch job, then the batch server shall place the standard
output in an implementation-defined location and notify the user of the location via mail. It shall
be possible for the user to process this mail using the mailx utility.

If a batch server that does not buffer the standard output cannot open the standard output path
of the batch job for write access, then the batch server shall abort the batch job.

Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4132 Priority Attribute

4133 A batch server implementation may choose to preferentially execute a batch job based on the |
4134 Priority attribute. The interpretation of the batch job Priority attribute by a batch server is |
4135 implementation-defined. If an implementation uses the Priority attribute, it shall interpret larger |
4136 values of the Priority attribute to mean the batch job shall be preferentially selected for execution.
4137 Rerunable Attribute

4138 A batch job that began execution but did not complete, because the batch server either shut
4139 down or terminated abnormally, shall be requeued if the Rerunable attribute of the batch job has
4140 the value TRUE.

4141 If a batch job, which was requeued after beginning execution but prior to completion, has a valid
4142 checkpoint file and the batch server supports checkpointing, then the batch job shall be restarted
4143 from the last valid checkpoint.

4144 If the batch job cannot be restarted from a checkpoint, then when a batch job has a Rerunable
4145 attribute value of TRUE and was requeued after beginning execution but prior to completion,
4146 the batch server shall place the batch job into execution at the beginning of the job.

4147 When a batch job has a Rerunable attribute value other than TRUE and was requeued after
4148 beginning execution but prior to completion, and the batch job cannot be restarted from a
4149 checkpoint, then the batch server shall abort the batch job.

4150 Resource_List Attribute

4151 A batch server that executes a batch job shall establish the resource limits of the session leader of
4152 the batch job according to the values of the Resource List attribute of the batch job. Resource
4153 limits shall be enforced by an implementation-defined method. |
4154 Shell_Path_List Attribute

4155 The Shell_Path_List job attribute consists of a list of pairs of path name and host name values.
4156 The host name component can be omitted, in which case the path name serves as the default
4157 path name when a batch server cannot find the name of the host on which it is running in the
4158 list.

4159 A batch server that executes a batch job shall select, from the value of the Shell _Path List
4160 attribute of the batch job, a path name where the shell to execute the batch job shall be found.
4161 The batch server shall select the path name, in order of preference, according to the following
4162 methods:

4163 » Select the path name that contains the name of the host on which the batch server is running.
4164 - Select the path name for which the host name has been omitted.

4165 « Select the path name for the login shell of the user under which the batch job is to execute.

4166 If the shell path value selected is an invalid path name, the batch server shall abort the batch job.
4167 If the value of the selected path name from the Shell Path List attribute of the batch job
4168 represents a partial path, the batch server shall expand the path relative to a path that is |
4169 implementation-defined. |
4170 The batch server that executes the batch job shall execute the program that was selected from the
4171 Shell_Path_List attribute of the batch job. The batch server shall pass the path to the script of the
4172 batch job as the first argument to the shell program.

Shell and Utilities, Issue 6 2325

4173

4174
4175
4176

4177
4178
4179

4180
4181

4182

4183

4184

4185
4186
4187
4188

4189

4190

4191
4192
4193
4194

4195
4196

4197
4198

4199
4200
4201
4202
4203
4204
4205

4206

4207
4208

4209
4210

4211
4212

4213
4214

Batch Services Batch Environment Services

3.222

3.22.3

2326

User_List Attribute

The User_List job attribute consists of a list of pairs of user name and host hame values. The host
name component can be omitted, in which case the user name serves as a default when a batch
server cannot find the name of the host on which it is running in the list.

A batch server that executes a batch job shall select, from the value of the User_List attribute of
the batch job, a user name under which to create the session leader. The server shall select the
user name, in order of preference, according to the following methods:

- Select the user name of a value that contains the name of the host on which the batch server
executes.

- Select the user name of a value for which the host name has been omitted.

- Select the user name from the Job_Owner attribute of the batch job.

Variable_List Attribute

A batch server that executes a batch job shall create, in the environment of the session leader of
the batch job, each environment variable listed in the Variable_List attribute of the batch job, and
set the value of each such environment variable to that of the corresponding variable in the
variable list.

Batch Job Routing
To route a batch job is to select a queue from a list and move the batch job to that queue.

A batch server that has routing queues, which have been started, shall route the jobs in the
routing queues owned by the batch server. A batch server is allowed to delay the routing of a
batch job. The algorithm for selecting a batch job and the queue to which it will be routed is
implementation-defined.

When a routing queue has multiple possible destinations specified, then the precedence of the
destination is implementation-defined.

A batch server that routes a batch job to a queue at another server shall move the batch job into
the target queue with a Queue Batch Job Request.

If the target server rejects the Queue Batch Job Request, the routing server shall retry routing the
batch job or abort the batch job. A batch server that retries failed routings shall provide a means
for the batch administrator to specify the number of retries and the minimum period of time
between retries. The means by which an administrator specifies the number of retries and the
delay between retries is implementation-defined. When the number of retries specified by the
batch administrator has been exhausted, the batch server shall abort the batch job and perform
the functions of Batch Job Exit; see Section 3.2.2.3.

Batch Job Exit

For each job in the EXITING state, the batch server that exited the batch job shall perform the
following deferred services in the order specified:

1. If buffering standard error, move that file into the location specified by the Error_Path
attribute of the batch job.

2. If buffering standard output, move that file into the location specified by the Output_Path
attribute of the batch job.

3. If the Mail_Points attribute of the batch job includes MAIL_AT_EXIT, send mail to the users
listed in the Mail_Users attribute of the batch job. The mail message shall contain at least

Technical Standard (2000) (Draft July 31, 2000)

4215
4216

4217

4218
4219
4220

4221

4222
4223

4224
4225

4226
4227
4228

4229

4230
4231

4232
4233

4234

4235

4236
4237

4238
4239
4240

4241

4242

4243

4244

4245

4246

4247
4248
4249
4250

4251
4252
4253

Batch Environment Services Batch Services

3.22.4

3.2.25

the batch job identifier, queue, and server at which the batch job currently resides, and the
Job_Owner attribute.

4. Remove the batch job from the queue.

If a batch server that buffers the standard error output cannot return the standard error file to
the standard error path at the time the batch job exits, the batch server shall do one of the
following:

- Mail the standard error file to the batch job owner.

- Save the standard error file and mail the location and name of the file where the standard
error is stored to the batch job owner.

- Save the standard error file and notify the user by other means, in which case the
conformance document for the implementation shall document the method of notification.

If a batch server that buffers the standard output cannot return the standard output file to the
standard output path at the time the batch job exits, the batch server shall do one of the
following:

- Mail the standard output file to the batch job owner.

- Save the standard output file and mail the location and name of the file where the standard
output is stored to the batch job owner.

- Save the standard output file and notify the user by other means, in which case the
conformance document for the implementation shall document the method of notification.

At the conclusion of job exit processing, the batch job is no longer managed by a batch server.

Batch Server Restart

A batch server that has been either shutdown or terminated abnormally, and has returned to
operation, is said to have restarted.

Upon restarting, a batch server shall requeue those jobs managed by the batch server that were
in the RUNNING state at the time the batch server shut down and for which the Rerunable
attribute of the batch job has the value TRUE.

Queues are defined to be non-volatile. A batch server shall store the content of queues that it
controls in such a way that server and system shutdowns do not erase the content of the queues.
Batch Job Abort
A batch server that cannot perform a deferred service for a batch job shall abort the batch job.
A batch server that aborts a batch job shall perform the following services:

« Delete the batch job from the queue in which it resides.

- If the Mail_Points attribute of the batch job includes the value MAIL_AT_ABORT, send mail
to the users listed in the value of the Mail_Users attribute of the job. The mail message shall
contain at least the batch job identifier, queue, and server at which the batch job currently
resides, the Job_Owner attribute, and the reason for the abort.

- If the batch job was in the RUNNING state, terminate the session leader of the executing job
by sending the session leader a SIGKILL, place the batch job in the EXITING state, and
perform the services of Batch Job Exit.

Shell and Utilities, Issue 6 2327

4254

4255
4256
4257

4258

4259

4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280

4281

4282

4283

4284
4285
4286

4287

4288

4289

4290

4291
4292
4293
4294

4295
4296

Batch Services Batch Environment Services

3.2.3

3.23.1

2328

Requested Batch Services

This section describes the services provided by batch servers in response to requests from
clients. Table 3-5 summarizes the current set of batch service requests and for each gives its type
(deferred or not) and whether it is an optional function.

Table 3-5 Batch Services Summary

Batch Service Deferred | Optional
Batch Job Execution Yes No
Batch Job Routing Yes No
Batch Job Exit Yes No
Batch Server Restart Yes No
Batch Job Abort Yes No
Delete Batch Job Request No No
Hold Batch Job Request No No
Batch Job Message Request No Yes
Batch Job Status Request No No
Locate Batch Job Request No Yes
Modify Batch Job Request No No
Move Batch Job Request No No
Queue Batch Job Request No No
Batch Queue Status Request No No
Release Batch Job Request No No
Rerun Batch Job Request No No
Select Batch Jobs Request No No
Server Shutdown Request No No
Server Status Request No No
Signal Batch Job Request No No
Track Batch Job Request No Yes

If a request is rejected because the batch client is not authorized to perform the action, the batch
server shall return the same status as when the batch job does not exist.
Delete Batch Job Request

A batch job is defined to have been deleted when it has been removed from the queue in which it
resides and not instantiated in another queue. A client requests that the server that manages a
batch job delete the batch job. Such a request is called a Delete Batch Job Request.

A batch server shall reject a Delete Batch Job Request if any of the following statements are true:
- The user of the batch client is not authorized to delete the designated job.
- The designated job is not managed by the batch server.
- The designated job is in a state inconsistent with the delete request.

A batch server may reject a Delete Batch Job Request for other reasons. The conformance document
for an implementation shall describe the reasons for which a Delete Batch Job Request may be
rejected. The conformance document for an implementation shall describe the method used to
determine whether the user of a client is authorized to perform the requested action.

A batch server requested to delete a batch job shall delete the batch job if the batch job exists and
is not in the EXITING state.

Technical Standard (2000) (Draft July 31, 2000)

4297
4298
4299
4300

4301
4302
4303
4304

4305
4306

4307

4308
4309

4310
4311

4312

4313

4314
4315
4316
4317

4318
4319
4320

4321
4322
4323
4324

4325
4326
4327

4328
4329

4330

4331

4332

4333

4334

4335
4336
4337

Batch Environment Services Batch Services

3.23.2

3.23.3

A batch server that deletes a batch job in the RUNNING state shall send a SIGKILL signal to the
session leader of the batch job. A batch server may send additional signals to the session leader
of the job prior to sending the SIGKILL signal. The conformance document for such a batch
server shall document the signals that are sent to the session leader.

A batch server that deletes a batch job in the RUNNING state shall place the batch job in the
EXITING state after it has killed the session leader of the batch job and shall perform the services
of batch job exit.

Hold Batch Job Request

A batch client can request that the batch server add one or more holds to a batch job. Such a
request is called a Hold Batch Job Request.

A batch server shall reject a Hold Batch Job Request if any of the following statements are true:

- The batch server does not support one or more of the requested holds to be added to the
batch job.

- The user of the batch client is not authorized to add one or more of the requested holds to the
batch job.

- The batch server does not manage the specified job.
« The designated job is in the EXITING state.

A batch server may reject a Hold Batch Job Request for other reasons. The conformance document
for an implementation shall document the reasons for which a Hold Batch Job Request may be
rejected. The conformance document for an implementation shall describe the method used to
determine whether the user of a client is authorized to perform the requested action.

A batch server that accepts a Hold Batch Job Request for a batch job in the RUNNING state shall
place a hold on the batch job. The conformance document shall describe what effect, if any, the
hold will have on a batch job in the RUNNING state.

A batch server that accepts a Hold Batch Job Request shall add each type of hold listed in the Hold
Batch Job Request, that is not already present, to the value of the Hold_Types attribute of the batch
job.

Batch Job Message Request

Batch Job Message Request is an optional feature of batch servers. If an implementation supports
Batch Job Message Request, the statements in this section apply and the configuration variable
POSIX2_PBS_MESSAGE shall be set to 1.

A batch client can request that a batch server write a message into certain output files of a batch
job. Such a request is called a Batch Job Message Request.

A batch server shall reject a Batch Job Message Request if any of the following statements are true:
- The batch server does not support sending messages to jobs.
- The user of the batch client is not authorized to post a message to the designated job.
- The designated job does not exist on the batch server.
- The designated job is not in the RUNNING state.

A batch server may reject a Batch Job Message Request for other reasons. The conformance
document for an implementation shall describe the reasons for which a Batch Job Message Request
may be rejected. The conformance document for an implementation shall describe the method

Shell and Utilities, Issue 6 2329

4338

4339

4340

4341

4342
4343

4344

4345

4346

4347
4348
4349
4350

4351
4352

4353

4354

4355
4356
4357

4358
4359

4360
4361

4362
4363

4364
4365

4366
4367
4368
4369

4370
4371

4372

4373
4374

4375

4376

Batch Services Batch Environment Services

3.234

3.2.35

3.2.3.6

2330

used to determine whether the user of a client is authorized to perform the requested action.

A batch server that accepts a Batch Job Message Request shall write the message sent by the batch
client into the files indicated by the batch client.

Batch Job Status Request

A batch client can request that a batch server respond with the status and attributes of a batch
job. Such a request is called a Batch Job Status Request.

A batch server shall reject a Batch Job Status Request if any of the following statements are true:
- The user of the batch client is not authorized to query the status of the designated job.
- The designated job is not managed by the batch server.

A batch server may reject a Batch Job Status Request for other reasons. The conformance
document for an implementation shall describe the reasons for which a Batch Job Status Request
may be rejected. The conformance document for an implementation shall describe the method
used to determine whether the user of a client is authorized to perform the requested action.

A batch server that accepts a Batch Job Status Request shall return a Batch Job Status Message to the
batch client.

A batch server may return other information in response to a Batch Job Status Request.

Locate Batch Job Request

Locate Batch Job Request is an optional feature of batch servers. If an implementation supports
Locate Batch Job Request, the statements in this section apply and the configuration variable
POSIX2_PBS_LOCATE shall be set to 1.

A batch client can ask a batch server to respond with the location of a batch job that was created
by the batch server. Such a request is called a Locate Batch Job Request.

A batch server that accepts a Locate Batch Job Request shall return a Batch Job Location Message to
the batch client.

A batch server may reject a Locate Batch Job Request for a batch job that was not created by that
server.

A batch server may reject a Locate Batch Job Request for a batch job that is no longer managed by
that server; that is, for a batch job that is not in a queue owned by that server.

A batch server may reject a Locate Batch Job Request for other reasons. The conformance
document for an implementation shall document the reasons for which a Locate Batch Job Request
may be rejected.

Modify Batch Job Request

Batch clients modify (alter) the attributes of a batch job by making a request to the server that
manages the batch job. Such a request is called a Modify Batch Job Request.

A batch server shall reject a Modify Batch Job Request if any of the following statements are true:

« The user of the batch client is not authorized to make the requested modification to the batch
job.

- The designated job is not managed by the batch server.

- The requested modification is inconsistent with the state of the batch job.

Technical Standard (2000) (Draft July 31, 2000)

4377

4378
4379
4380
4381

4382
4383
4384

4385

4386

4387

4388
4389

4390

4391
4392

4393

4394

4395

4396

4397
4398
4399
4400

4401

4402

4403

4404
4405
4406
4407

4408

4409

4410
4411
4412

4413
4414
4415
4416
4417

Batch Environment Services Batch Services

3.2.3.7

3.2.3.8

- An unrecognized resource is requested for a batch job in an execution queue.

A batch server may reject a Modify Batch Job Request for other reasons. The conformance
document for an implementation shall describe the reasons for which a Modify Batch Job Request
may be rejected. The conformance document for an implementation shall describe the method
used to determine whether the user of a client is authorized to perform the requested action.

A batch server that accepts a Modify Batch Job Request shall modify all the specified attributes of
the batch job. A batch server that rejects a Modify Batch Job Request shall modify none of the
attributes of the batch job.

If the servicing by a batch server of an otherwise valid request would result in no change, then
the batch server shall indicate successful completion of the request.
Move Batch Job Request

A batch client can request that a batch server move a batch job to another destination. Such a
request is called a Move Batch Job Request.

A batch server shall reject a Move Batch Job Request if any of the following statements are true:

« The user of the batch client is not authorized to remove the designated job from the queue in
which the batch job resides.

- The user of the batch client is not authorized to move the designated job to the destination.
- The designated job is not managed by the batch server.

« The designated job is in the EXITING state.

« The destination is inaccessible.

A batch server can reject a Move Batch Job Request for other reasons. The conformance document
for an implementation shall describe the reasons for which a Move Batch Job Request may be
rejected. The conformance document for an implementation shall describe the method used to
determine whether the user of a client is authorized to perform the requested action.

A batch server that accepts a Move Batch Job Request shall perform the following services:
« Queue the designated job at the destination.
- Remove the designated job from the queue in which the batch job resides.

If the destination resides on another batch server, the batch server shall queue the batch job at
the destination by sending a Queue Batch Job Request to the other server. If the Queue Batch Job
Request fails, the batch server shall reject the Move Batch Job Request. If the Queue Batch Job Request
succeeds, the batch server shall remove the batch job from its queue.

The batch server shall not modify any attributes of the batch job.

Queue Batch Job Request

A batch queue is controlled by one and only one batch server. A batch server is said to own the
queues that it controls. Batch clients make requests of batch servers to have jobs queued. Such a
request is called a Queue Batch Job Request.

A batch server requested to queue a batch job for which the queue is unspecified shall select a
queue for the batch job. Such a queue is called the default queue of the batch server. The
conformance document for the implementation shall document the means by which the batch
server determines the default queue. The implementation shall provide the means for a batch
administrator to specify the default queue. The queue, whether specified or defaulted, is called

Shell and Utilities, Issue 6 2331

4418

4419

4420

4421

4422
4423

4424

4425
4426

4427

4428
4429
4430

4431
4432
4433
4434
4435

4436
4437
4438

4439

4440
4441
4442
4443

4444
4445

4446

4447

4448

4449
4450
4451
4452

4453
4454

Batch Services Batch Environment Services

3.2.3.9

2332

the target queue.

A batch server shall reject a Queue Batch Job Request if any of the following statements are true:
- The client is not authorized to create a batch job in the target queue.
- The request specifies a queue that does not exist on the batch server.

- The target queue is an execution queue and the batch server cannot satisfy a resource
requirement of the batch job.

- The target queue is an execution queue and an unrecognized resource is requested.

- The target queue is an execution queue, the batch server does not support checkpointing, and
the value of the Checkpoint attribute of the batch job is not NO_CHECKPOINT.

- The job requires access to a user identifier that the batch client is not authorized to access.

A batch server may reject a Queue Batch Job Request for other reasons. The conformance
document for an implementation shall document the reasons for which a Queue Batch Job Request
may be rejected.

A batch server that accepts a Queue Batch Job Request for a batch job for which the
PBS_O_QUEUE value is missing from the value of the Variable_List attribute of the batch job
shall add that variable to the list and set the value to the name of the target queue. Once set, no
server shall change the value of PBS O_QUEUE, even if the batch job is moved to another
queue.

A batch server that accepts a Queue Batch Job Request for a batch job for which the PBS_JOBID
value is missing from the value of the Variable_List attribute shall add that variable to the list and
set the value to the batch job identifier assigned by the server in the format:

sequence_number.server

A batch server that accepts a Queue Batch Job Request for a batch job for which the
PBS_JOBNAME value is missing from the value of the Variable_List attribute of the batch job
shall add that variable to the list and set the value to the Job_Name attribute of the batch job.
Batch Queue Status Request

A batch client can request that a batch server respond with the status and attributes of a queue.
Such a request is called a Batch Queue Status Request.

A batch server shall reject a Batch Queue Status Request if any of the following statements are true:
« The user of the batch client is not authorized to query the status of the designated queue.
- The designated queue does not exist on the batch server.

A batch server may reject a Batch Queue Status Request for other reasons. The conformance
document for an implementation shall describe the reasons for which a Batch Queue Status
Request is rejected. The conformance document for an implementation shall describe the method
used to determine whether the user of a client is authorized to perform the requested action.

A batch server that accepts a Batch Queue Status Request shall return a Batch Queue Status Reply to
the batch client.

Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4455 3.2.3.10 Release Batch Job Request

4456
4457

4458

4459
4460

4461

4462
4463
4464
4465
4466

4467
4468
4469
4470

4471
4472
4473

4474

4475

4476

4477

4478

4479
4480
4481
4482

4483
4484

4485

4486

4487

4488
4489
4490

4491
4492
4493

4494
4495

3.23.11

A batch client can request that server remove one or more holds from a batch job. Such a request
is called a Release Batch Job Request.

A batch server shall reject a Release Batch Job Request if any of the following statements are true:

- The user of the batch client is not authorized to remove one or more of the requested holds
from the batch job.

« The batch server does not manage the specified job.

A batch server may reject a Release Batch Job Request for other reasons. The conformance
document for an implementation shall document the reasons for which a Release Batch Job
Request may be rejected. The conformance document for an implementation shall describe the
method used to determine whether the user of a client is authorized to perform the requested
action.

A batch server that accepts a Release Batch Job Request shall remove each type of hold listed in the
Release Batch Job Request, that is present, from the value of the Hold_Types attribute of the batch
job.

Rerun Batch Job Request

To rerun a batch job is to kill the session leader of the batch job and leave the batch job eligible
for re-execution. A batch client can request that a batch server rerun a batch job. Such a request is
called Rerun Batch Job Request.

A batch server shall reject a Rerun Batch Job Request if any of the following statements are true:
« The user of the batch client is not authorized to rerun the designated job.
- The Rerunable attribute of the designated job has the value FALSE.
- The designated job is not in the RUNNING state.
- The batch server does not manage the designated job.

A batch server may reject a Rerun Batch Job Request for other reasons. The conformance document
for an implementation shall describe the reasons for which a Rerun Batch Job Request may be
rejected. The conformance document for an implementation shall describe the method used to
determine whether the user of a client is authorized to perform the requested action.

A batch server that rejects a Rerun Batch Job Request shall in no way modify the execution of the
batch job.

A batch server that accepts a request to rerun a batch job shall perform the following services:
- Requeue the batch job in the execution queue in which it was executing.
- Send a SIGKILL signal to the process group of the session leader of the batch job.

An implementation may indicate to the batch job owner that the batch job has been rerun. The
conformance document for an implementation shall state whether the batch job owner is
notified that a batch job is rerun, and if so, shall describe the means used.

A batch server that reruns a batch job may send other signals to the session leader of the batch
job prior to sending the SIGKILL signal. The conformance document for an implementation
shall describe any other signals that may be sent.

A batch server may preferentially select a rerun job for execution. The conformance document
for an implementation shall state whether rerun jobs shall be selected for execution before other

Shell and Utilities, Issue 6 2333

4496

4497

4498
4499
4500

4501
4502

4503

4504

4505

4506
4507
4508

4509
4510
4511
4512

4513
4514
4515

4516

4517
4518

4519
4520

4521

4522

4523
4524

4525

4526

4527
4528
4529
4530

4531
4532

Batch Services Batch Environment Services

3.2.3.12

3.2.3.13

3.23.14

2334

jobs.

Select Batch Jobs Request

A batch client can request from a batch server a list of jobs managed by that server that match a
list of selection criteria. Such a request is called a Select Batch Jobs Request. All the batch jobs
managed by the batch server that receives the request are candidates for selection.

A batch server that accepts a Select Batch Jobs Request shall return a list of zero or more job
identifiers that correspond to jobs that meet the selection criteria.

If the batch client is not authorized to query the status of a batch job, the batch server shall not
select the batch job.
Server Shutdown Request

A batch server is defined to have shut down when it does not respond to requests from clients
and does not perform deferred services for jobs. A batch client can request that a batch server
shut down. Such a request is called a Server Shutdown Request.

A batch server shall reject a Server Shutdown Request from a client that is not authorized to shut
down the batch server. The conformance document for an implementation shall describe the
method used to determine whether the user of a client is authorized to perform the requested
action.

A batch server may reject a Server Shutdown Request for other reasons. The conformance
document for an implementation shall document the reasons for which a Server Shutdown
Request may be rejected.

At server shutdown, a batch server shall do, in order of preference, one of the following:

- If checkpointing is implemented and the batch job is checkpointable, then checkpoint the
batch job and requeue it.

- If the batch job is rerunable, then requeue the batch job to be rerun (restarted from the
beginning).

- Abort the batch job.

Server Status Request

A batch client can request that a batch server respond with the status and attributes of the batch
server. Such a request is called a Server Status Request.

A batch server shall reject a Server Status Request if the following statement is true:
« The user of the batch client is not authorized to query the status of the designated server.

A batch server may reject a Server Status Request for other reasons. The conformance document
for an implementation shall describe the reasons for which a Server Status Request may be
rejected. The conformance document for an implementation shall describe the method used to
determine whether the user of a client is authorized to perform the requested action.

A batch server that accepts a Server Status Request shall return a Server Status Reply to the batch
client.

Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4533 3.2.3.15 Signal Batch Job Request

4534
4535

4536

4537

4538

4539

4540

4541
4542
4543
4544

4545
4546

4547

4548
4549
4550

4551
4552
4553

4554
4555
4556
4557

4558
4559
4560

4561
4562
4563

3.2.3.16

A batch client can request that a batch server signal the session leader of a batch job. Such a
request is called a Signal Batch Job Request.

A batch server shall reject a Signal Batch Job Request if any of the following statements are true:
- The user of the batch client is not authorized to signal the batch job.
« The job is not in the RUNNING state.
- The batch server does not manage the designated job.
- The requested signal is not supported by the implementation.

A batch server may reject a Signal Batch Job Request for other reasons. The conformance
document for an implementation shall describe the reasons for which a Signal Batch Job Request
may be rejected. The conformance document for an implementation shall describe the method
used to determine whether the user of a client is authorized to perform the requested action.

A batch server that accepts a request to signal a batch job shall send the signal requested by the
batch client to the process group of the session leader of the batch job.

Track Batch Job Request

Track Batch Job Request is an optional feature of batch servers. If an implementation supports
Track Batch Job Request, the statements in this section apply and the configuration variable
POSIX2_PBS TRACK shall be set to 1.

Track Batch Job Request provides a method for tracking the current location of a batch job. Clients
may use the tracking information to determine the batch server that should receive a batch
server request.

If Track Batch Job Request is supported by a batch server, then when the batch server queues a
batch job as a result of a Queue Batch Job Request, and the batch server is not the batch server that
created the batch job, the batch server shall send a Track Batch Job Request to the batch server that
created the job.

If Track Batch Job Request is supported by a batch server, then the Track Batch Job Request may also
be sent to other servers as a backup to the primary server. The method by which backup servers
are specified is implementation-defined.

If Track Batch Job Request is supported by a batch server that receives a Track Batch Job Request,
then the batch server shall record the current location of the batch job as contained in the
request.

Shell and Utilities, Issue 6 2335

4564

4565

4566

4567

4568

4569
4570

4571

4572

4573
4574

4575

4576

4577

4578

4579
4580

4581

4582
4583

4584
4585
4586
4587

4588
4589
4590

4591
4592

4593

4594

4595

4596
4597
4598

Common Behavior for Batch Environment Utilities Batch Environment Services

3.3

331

2336

Common Behavior for Batch Environment Utilities

Batch Job Identifier

A utility shall recognize job_identifiers of the format:
[sequence_number][.server_name][@server]

where:

sequence_number An integer that, when combined with server_name, provides a batch job
identifier that is unique within the batch system.

server_name The name of the batch server to which the batch job was originally submitted.
server The name of the batch server that is currently managing the batch job.

If the application omits the batch server_name portion of a batch job identifier, a utility shall use
the name of a default batch server.

If the application omits the batch server portion of a batch job identifier, a utility shall use:
- The batch server indicated by server_name, if present.
+ The name of the default batch server.
- The name of the batch server that is currently managing the batch job.

If only @server is specified, then the status of all jobs owned by the user on the requested server
is listed.

The means by which a utility determines the default batch server is implementation-defined.

If the application presents the batch server portion of a batch job identifier to a utility, the utility
shall send the request to the specified server.

A strictly conforming application shall use the syntax described for the job identifier. Whenever
a batch job identifier is specified whose syntax is not recognized by an implementation, then a
message for each error that occurs shall be written to standard error and the utility shall exit
with an exit status greater than zero.

When a batch job identifier is supplied as an argument to a batch utility and the server_name
portion of the batch job identifier is omitted, then the utility shall use the name of the default
batch server.

When a batch job identifier is supplied as an argument to a batch utility and the batch server
portion of the batch job identifier is omitted, then the utility shall use either:

» The name of the default batch server
or:
- The name of the batch server that is currently managing the batch job

When a batch job identifier is supplied as an argument to a batch utility and the batch server
portion of the batch job identifier is specified, then the utility shall send the required Batch Server
Request to the specified server.

Technical Standard (2000) (Draft July 31, 2000)

4599

4600

4601

4602

4603
4604
4605
4606

4607
4608

4609

4610

4611

4612

4613

4614
4615

4616

4617
4618

4619
4620
4621

4622

4623
4624
4625

4626
4627
4628
4629
4630

4631

4632

4633

4634
4635
4636

4637
4638
4639

Batch Environment Services

3.3.2

3.3.3

Common Behavior for Batch Environment Utilities

Destination
The utility shall recognize a destination of the format:
[queue][@server]

where:

queue The name of a valid execution or routing queue at the batch server denoted by
@server, defined as a string of up to 15 alphanumeric characters in the portable
character set (see the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 6.1, Portable Character Set) where the first character is alphabetic.

server The name of a batch server, defined as a string of alphanumeric characters in
the portable character set.

If the application omits the batch server portion of a destination, then the utility shall use either:

- The name of the default batch server

or:

- The name of the batch server that is currently managing the batch job

The means by which a utility determines the default batch server is implementation-defined.

If the

application omits the queue portion of a destination, then the utility shall use the name of

the default queue at the batch server chosen.

The means by which a batch server determines its default queue is implementation-defined.

If a destination is specified in the queue@server form, then the utility shall use the specified queue

at the
A stri

specified server.

ctly conforming application shall use the syntax described for a destination. Whenever a

destination is specified whose syntax is not recognized by an implementation, then a message
shall be written to standard error and the utility shall exit with an exit status greater than zero.

Multiple Keyword-Value Pairs

For each option that can have multiple keyword-value pair arguments, the following rules shall
apply. Examples of options that can have list-oriented option-arguments are —u value @keyword

and —
1.

| keyword=value.

If a batch utility is presented with a list-oriented option-argument for which a keyword has
a corresponding value that begins with a single or double quote, then the utility shall stop
interpreting the input stream for delimiters until a second single or double quote,
respectively, is encountered. This feature allows some flexibility for a comma (;’) or
equals sign ('=") to be part of the value string for a particular keyword; for example:

keywdl1=vall,val2’ keywd2="val3,val4"
Note: This may require the user to escape the quotes as in the following command:
foo —xkeywdl=\'vall,val2\',keywd2=\"val3,val4\"

If a batch server is presented with a list-oriented attribute that has a keyword that was
encountered earlier in the list, then the later entry for that keyword shall replace the earlier
entry.

If a batch server is presented with a list-oriented attribute that has a keyword without any
corresponding value of the form keyword= or @keyword and the same keyword was
encountered earlier in the list, then the prior entry for that keyword shall be ignored by the

Shell and Utilities, Issue 6 2337

4640

4641
4642
4643
4644
4645

4646
4647
4648
4649
4650

4651
4652
4653
4654

4655
4656
4657
4658
4659
4660
4661

Common Behavior for Batch Environment Utilities

2338

Batch Environment Services

batch server.

If a batch utility is expecting a list-oriented option-argument entry of the form
keyword=value, but is presented with an entry of the form keyword without any
corresponding value, then the entry shall be treated as though a default value of NULL was
assigned (that is, keyword=NULL) for entry parsing purposes. The utility shall include only
the keyword, not the NULL value, in the associated job attribute.

If a batch utility is expecting a list-oriented option-argument entry of the form
value @keyword, but is presented with an entry of the form value without any corresponding
keyword, then the entry shall be treated as though a keyword of NULL was assigned (that
is, value@NULL) for entry parsing purposes. The utility shall include only the value, not
the NULL keyword, in the associated job attribute.

A batch server shall accept a list-oriented attribute that has multiple occurrences of the
same keyword, interpreting the keywords, in order, with the last value encountered taking
precedence over prior instances of the same keyword. This rule allows, but does not
require, a batch utility to preprocess the attribute to remove duplicate keywords.

If a batch utility is presented with multiple list-oriented option-arguments on the
command line or in script directives, or both, for a single option, then the utility shall
concatenate, in order, any command line keyword and value pairs to the end of any
directive keyword and value pairs separated by a single comma to produce a single string
that is an equivalent, valid option-argument. The resulting string shall be assigned to the
associated attribute of the batch job (after optionally removing duplicate entries as
described in item 6.

Technical Standard (2000) (Draft July 31, 2000)

4662

4663

4664

4665
4666
4667

Chapter 4

Utilities

This chapter contains the definitions of the utilities, as follows:

- Mandatory utilities that are present on every conformant system

- Optional utilities that are present only on systems supporting the associated option; see

Section 1.8.1 (on page 2212) for information on the options
IEEE Std. 1003.1-200x

Shell and Utilities, Issue 6

in this volume of

2339

4668
4669

4670
4671
4672

4673
4674

4675

4676

4677
4678

4679
4680
4681
4682
4683
4684

4685
4686
4687
4688
4689
4690
4691

4692
4693

4694
4695
4696
4697
4698

4699
4700

4701
4702
4703
4704
4705
4706

4707
4708
4709

4710
4711

admin Utilities

NAME

admin — create and administer SCCS files (DEVELOPMENT)

SYNOPSIS

XSl

admin -i [namé[-n][-a login][-d flag 1[-f flag 1 -m mrlist][-r rel]
[t[nam€d| -y[comment]] newfile

admin -n[-a login [-d flag [-f flag 1| —-m mrlist][—t[namd][-y[comment]]
newfile

admin [-a login][—d flag][-m mrlist][-r rel]| —t[nam€] file
admin -h file

admin -z file

DESCRIPTION

The admin utility shall create new SCCS files or change parameters of existing ones. If a named
file does not exist, it shall be created, and its parameters shall be initialized according to the
specified options. Parameters not initialized by an option shall be assigned a default value. If a
named file does exist, parameters corresponding to specified options shall be changed, and other
parameters shall be left as is.

All SCCS file names supplied by the application shall be of the form s.filename. New SCCS files
shall be given read-only permission mode. Write permission in the parent directory is required
to create a file. All writing done by admin shall be to a temporary x-file, named x.filename (see get)
created with read-only mode if admin is creating a new SCCS file, or created with the same mode
as that of the SCCS file if the file already exists. After successful execution of admin, the SCCS file
shall be removed (if it exists), and the x-file shall be renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors occur.

The admin utility shall also use a transient lock file (named z.filename), which is used to prevent
simultaneous updates to the SCCS file; see get (on page 2685).

OPTIONS

2340

The admin utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section
12.2, Utility Syntax Guidelines, except that the —i, —t, and -y options have optional option-
arguments. These optional option-arguments shall not be presented as separate arguments. The
following options are supported:

-n Create a new SCCS file. When —n is used without —i, the SCCS file shall be created
with control information but without any file data.

—i[name] Specify the name of a file from which the text for a new SCCS file shall be taken.
The text constitutes the first delta of the file (see the —r option for delta numbering
scheme). If the —i option is used, but the name option-argument is omitted, the text
shall be obtained by reading the standard input. If this option is omitted, the SCCS
file shall be created with control information but without any file data. The —i
option implies the —n option.

—r rel Specify the release into which the initial delta is inserted. If the —r option is not
used, the initial delta shall be inserted into release 1. The level of the initial delta
shall always be 1 (by default, initial deltas are named 1.1).

—t[name] Specify the name of a file from which descriptive text for the SCCS file shall be
taken. In the case of existing SCCS files (neither —i nor —n is specified):

Technical Standard (2000) (Draft July 31, 2000)

4712
4713

4714
4715

4716
4717
4718

4719

4720
4721
4722

4723
4724
4725

4726

4727
4728
4729
4730
4731
4732
4733

4734
4735
4736

4737
4738
4739

4740
4741

4742
4743

4744
4745
4746
4747
4748
4749
4750

4751
4752

4753
4754
4755
4756

Utilities

admin

« A -t option without a name option-argument shall cause the removal of
descriptive text (if any) currently in the SCCS file.

- A -t option with a name option-argument shall cause the text (if any) in the
named file to replace the descriptive text (if any) currently in the SCCS file.

—f flag Specify a flag, and, possibly, a value for the flag, to be placed in the SCCS file.
Several —f options may be supplied on a single admin command line. The allowable
flags and their values are:

b

cceil

ffloor

dsiD

istr

llist

gtext

mmod

Shell and Utilities, Issue 6

Allow use of the —b option on a get command to create branch deltas.

Specify the highest release (that is, ceiling), a number less than or equal to
9999, which may be retrieved by a get command for editing. The default
value for an unspecified ¢ flag shall be 9999.

Specify the lowest release (that is, floor), a number greater than 0 but less
than 9999, which may be retrieved by a get command for editing. The
default value for an unspecified f flag shall be 1.

Specify the default delta number (SID) to be used by a get command.

Treat the “No ID keywords’” message issued by get or delta as a fatal
error. In the absence of this flag, the message is only a warning. The
message is issued if no SCCS identification keywords (see get (on page
2685)) are found in the text retrieved or stored in the SCCS file. If a value
is supplied, the application shall ensure that the keywords exactly match
the given string; however, the string shall contain a keyword, and no
embedded <newline>s.

Allow concurrent get commands for editing on the same SID of an SCCS
file. This allows multiple concurrent updates to the same version of the
SCCS file.

Specify a list of releases to which deltas can no longer be made (that is, get
—e against one of these locked releases fails). The list has the following
syntax:

<range-list>

<list> :: = a |
= <range> | <range-list>, <range>

<range-list> ::

The character a in the list shall be equivalent to specifying all releases for
the named SCCS file.

Cause delta to create a null delta in each of those releases (if any) being
skipped when a delta is made in a new release (for example, in making
delta 5.1 after delta 2.7, releases 3 and 4 are skipped). These null deltas
serve as anchor points so that branch deltas may later be created from
them. The absence of this flag shall cause skipped releases to be
nonexistent in the SCCS file, preventing branch deltas from being created
from them in the future.

Substitute user-definable text for all occurrences of the %Q% keyword in
the SCCS file text retrieved by get.

Specify the module name of the SCCS file substituted for all occurrences
of the %M% keyword in the SCCS file text retrieved by get. If the m flag
is not specified, the value assigned shall be the name of the SCCS file with
the leading’.’ removed.

2341

4757
4758

4759
4760
4761
4762
4763

4764
4765
4766
4767

4768
4769
4770
4771
4772
4773
4774

4775
4776
4777
4778

4779
4780
4781

4782

4783
4784

4785
4786
4787
4788
4789

4790
4791
4792
4793

4794
4795
4796

4797
4798

4799
4800
4801
4802

admin

—d flag

—a login

—e login

—-y[comment]

-m mrlist

—Z

OPERANDS
The following operands shall be supported:

2342

file

Utilities

ttype Specify the type of module in the SCCS file substituted for all occurrences
of the %Y% keyword in the SCCS file text retrieved by get.

vpgm Cause delta to prompt for modification request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an
MR number validation program. (If this flag is set when creating an SCCS
file, the application shall ensure that the m option is also used even if its
value is null.)

Remove (delete) the specified flag from an SCCS file. Several —d options may be
supplied on a single admin command. See the —f option for allowable flag names.
(The llist flag gives a list of releases to be unlocked. See the —f option for further
description of the | flag and the syntax of a list.)

Specify a login name, or numerical group ID, to be added to the list of users who
may make deltas (changes) to the SCCS file. A group ID is equivalent to specifying
all login names common to that group ID. Several —a options may be used on a
single admin command line. As many logins, or numerical group IDs, as desired
may be on the list simultaneously. If the list of users is empty, then anyone may
add deltas. If login or group ID is preceded by a " , the users so specified are
denied permission to make deltas.

Specify a login name, or numerical group ID, to be erased from the list of users
allowed to make deltas (changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to that group ID. Several —e
options may be used on a single admin command line.

Insert the comment text into the SCCS file as a comment for the initial delta in a
manner identical to that of delta. In the POSIX locale, omission of the -y option
results in a default comment line being inserted in the form:

"date and time created %s %s by %s", < date >, < time >, < login >

where <date> is expressed in the date utility’s %y/%m/%d format, <time> in the
date utility’s %T format, and <login> is the login hame of the user creating the file.

Insert the list of modification request (MR) numbers into the SCCS file as the
reason for creating the initial delta in a manner identical to delta. The application
shall ensure that the v flag is set and the MR numbers are validated if the v flag has
a value (the name of an MR number validation program). Diagnostics occur if the
v flag is not set or MR validation fails.

Check the structure of the SCCS file and compare the newly computed checksum
(the sum of all the characters in the SCCS file except those in the first line) with the
checksum that is stored in the first line of the SCCS file. Appropriate error
diagnostics are produced.

Recompute the SCCS file checksum and store it in the first line of the SCCS file (see
the —h option above). Note that use of this option on a truly corrupted file may
prevent future detection of the corruption.

A path name of an existing SCCS file or a directory. If file is a directory, the admin
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the path name does not begin
with s.) and unreadable files shall be silently ignored.

Technical Standard (2000) (Draft July 31, 2000)

4803

4804
4805
4806

4807
4808
4809
4810

4811
4812
4813
4814

4815
4816

4817
4818
4819
4820
4821

4822
4823

4824
4825
4826

4827
4828
4829
4830

4831

4832
4833

4834
4835

4836
4837

4838
4839
4840

4841
4842

4843
4844

4845

Utilities

newfile

admin

A path name of an SCCS file to be created.

If a single instance of file or newfile is specified as ' -’ , the standard input shall be read; each line
of the standard input shall be taken to be the name of an SCCS file to be processed. Non-SCCS
files and unreadable files shall be silently ignored.

STDIN

The standard input shall be a text file used only if the —i is specified without an option-argument
or if a file or newfile operand is specified as’ - . If the first character of any standard input line is
SOH (binary 001), the results are unspecified.

INPUT FILES

The existing SCCS files are text files of an unspecified format. The file named by the —i option’s
name option-argument is a text file; if the first character of any line in this file is SOH (binary
001), the results are unspecified.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of admin:

LANG

LC_ALL

LC_CTYPE

Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

If set to a non-empty string value, override the values of all the other
internationalization variables.

Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES

NLSPATH

Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and the contents of the default -y
comment.

Determine the location of message catalogs for the processing of LC_ MESSAGES.

ASYNCHRONOUS EVENTS

Default.

STDOUT
Not used.

STDERR

Used only for diagnostic messages.

OUTPUT FILES

Any SCCS files created shall be text files of an unspecified format. During processing of a file, a
locking z-file, as described in get (on page 2685), may be created and deleted.

EXTENDED DESCRIPTION

None.
EXIT STATUS

The following exit values shall be returned:

0 Successful completion.

Shell and Utilities, Issue 6 2343

4846

4847
4848

4849
4850
4851
4852
4853

4854
4855

4856
4857

4858
4859

4860
4861

4862
4863

4864
4865

4866

4867

4868
4869

4870

4871

admin Utilities

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
It is recommended that directories containing SCCS files be writable by the owner only, and that
SCCS files themselves be read-only. The mode of the directories should allow only the owner to
modify SCCS files contained in the directories. The mode of the SCCS files prevents any
modification at all except by SCCS commands.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None. |

SEE ALSO
delta, get, prs, what

CHANGE HISTORY
First released in Issue 2.

Issue 4
Format reorganized.

Conformance to Utility Syntax Guidelines mandated, with exceptions as noted.
Internationalized environment variable support mandated.

Issue 6
The normative text is reworded to avoid use of the term “must” for application requirements. |

The normative text is reworded to emphasise the term “‘shall”” for implementation requirements. |

The grammar is updated. |

2344 Technical Standard (2000) (Draft July 31, 2000)

4872
4873

4874
4875
4876

4877
4878
4879
4880

4881
4882
4883
4884

4885
4886

4887
4888

4889

4890
4891

4892

4893
4894

4895
4896

4897
4898

4899
4900
4901
4902
4903

4904
4905

4906
4907
4908

4909
4910
4911

4912

Utilities alias
NAME
alias — define or display aliases
SYNOPSIS
upP alias [alias-name |[=string | ... |
DESCRIPTION

The alias utility shall create or redefine alias definitions or write the values of existing alias
definitions to standard output. An alias definition provides a string value that shall replace a
command name when it is encountered; see Section 2.3.1 (on page 2239).

An alias definition shall affect the current shell execution environment and the execution
environments of the subshells of the current shell. When used as specified by this volume of
IEEE Std. 1003.1-200x, the alias definition shall not affect the parent process of the current shell
nor any utility environment invoked by the shell; see Section 2.13 (on page 2273).

OPTIONS

None.

OPERANDS

STDIN

The following operands shall be supported:
alias-name Write the alias definition to standard output.

alias-name=string
Assign the value of string to the alias alias-name.

If no operands are given, all alias definitions shall be written to standard output.

Not used.

INPUT FILES

None.

ENVIRONMENT VARIABLES

XSl

Shell and

The following environment variables shall affect the execution of alias:

LANG Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_ MESSAGES.

Utilities, Issue 6 2345

4913
4914

4915
4916
4917

4918

4919
4920

4921
4922

4923
4924

4925
4926

4927
4928

4929

4930

4931
4932

4933
4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944
4945
4946
4947

4948
4949

4950
4951
4952
4953

alias Utilities

ASYNCHRONOUS EVENTS
Default.

STDOUT
The format for displaying aliases (when no operands or only name operands are specified) shall
be:

"%s=%s\n", name, value

The value string shall be written with appropriate quoting so that it is suitable for reinput to the
shell. See the description of shell quoting in Section 2.2 (on page 2236).

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.
>0 One of the name operands specified did not have an alias definition, or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
1. Change Is to give a columnated, more annotated output:
alias Is="Is -CF"
2. Create asimple ““redo” command to repeat previous entries in the command history file;
alias r="fc -s’
3. Use 1K units for du:
alias du=du\ -k
4. Set up nohup so that it can deal with an argument that is itself an alias name:
alias nohup="nohup "

RATIONALE
The alias description is based on historical KornShell implementations. Known differences exist
between that and the C shell. The KornShell version was adopted to be consistent with all the
other KornShell features in this volume of IEEE Std. 1003.1-200x, such as command line editing.

Since alias affects the current shell execution environment, it is generally provided as a shell
regular built-in.

Historical versions of the KornShell have allowed aliases to be exported to scripts that are
invoked by the same shell. This is triggered by the alias —x flag; it is allowed by this volume of
IEEE Std. 1003.1-200x only when an explicit extension such as —x is used. The standard
developers considered that aliases were of use primarily to interactive users and that they

2346 Technical Standard (2000) (Draft July 31, 2000)

Utilities alias

4954 should normally not affect shell scripts called by those users; functions are available to such
4955 scripts.

4956 Historical versions of the KornShell had not written aliases in a quoted manner suitable for
4957 reentry to the shell, but this volume of IEEE Std. 1003.1-200x has made this a requirement for all
4958 similar output. Therefore, consistency with this volume of IEEE Std. 1003.1-200x was chosen
4959 over this detail of historical practice.

4960 FUTURE DIRECTIONS

4961 None.

4962 SEE ALSO

4963 Section 2.9.5 (on page 2263)

4964 CHANGE HISTORY

4965 First released in Issue 4.

4966 Issue 6

4967 This utility is now marked as part of the User Portability Utilities option.

4968 The APPLICATION USAGE section is added.

Shell and Utilities, Issue 6 2347

4969
4970

4971
4972
4973

4974
4975

4976

4977
4978

4979

4980

4981

4982
4983
4984
4985
4986
4987
4988

4989
4990
4991
4992
4993
4994

4995
4996
4997
4998

4999
5000
5001

5002
5003
5004

5005

5006

5007

5008
5009

5010
5011
5012

ar Utilities
NAME
ar — create and maintain library archives

SYNOPSIS

sD ar —d[-v] archive file

Xsl ar -ni —abiv][posname] archive file

Xsl ar —p[V][-s] archive [file ...]

Xsl ar —q[—cv] archive file

Xsl ar —r[—cuv][—abi][posname] archive file

Xsl ar —t[-v][-s] archive [file ...]

Xsl ar —x[-v][-sCT] archive [file ..]

DESCRIPTION

The ar utility can be used to create and maintain groups of files combined into an archive. Once
an archive has been created, new files can be added, and existing files can be extracted, deleted,
or replaced. When an archive consists entirely of valid object files, the implementation shall
format the archive so that it is usable as a library for link editing (see ¢99, cc, and fort77). When
some of the archived files are not valid object files, the suitability of the archive for library use is

XSl undefined. If an archive file consists entirely of printable files, the entire archive file is printable

When ar creates an archive file, it creates administrative information indicating whether a
symbol table is present in the archive. When there is at least one object file that ar recognizes as
such in the archive, an archive symbol table is created in the archive file and maintained by ar; it
is used by the link editor to search the archive file. Whenever the ar utility is used to create or
update the contents of such an archive, the symbol table is rebuilt. The —s option forces the
symbol table to be rebuilt.

All file operands can be path names. However, files within archives shall be named by a file
name, which is the last component of the path name used when the file was entered into the
archive. The comparison of file operands to the names of files in archives shall be performed by
comparing the last component of the operand to the name of the archive file.

It is unspecified whether multiple files in the archive may be identically named. In the case of

XSl such files, however, each file and posnameoperand shall match only the first archive file having a

name that is the same as the last component of the operand.

OPTIONS

The ar utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2,
Utility Syntax Guidelines.
The following options shall be supported:

Xsl -a Position new files in the archive after the file named by the posname operand.

Xsl -b Position new files in the archive before the file named by the posname operand.

—C Suppress the diagnostic message that is written to standard error by default when
the archive file archive is created.

Xsl —-C Prevent extracted files from replacing like-named files in the file system. This
option is useful when -T is also used, to prevent truncated file names from
replacing files with the same prefix.

2348 Technical Standard (2000) (Draft July 31, 2000)

5013

5014
5015

5016
5017

5018
5019
5020

5021
5022
5023

5024
5025
5026
5027
5028
5029

5030
5031
5032

5033
5034
5035

5036
5037
5038

5039
5040
5041

5042
5043
5044

5045
5046

5047
5048

5049
5050
5051
5052

5053
5054

5055

Utilities

-d
XSl -i
XSl -m
mY
XSl -q
-r
XSl
XSl -S
-t
XSl =T
-u
-V
-X
OPERANDS

ar

Delete one or more files from archive.

Position new files in the archive before the file named by the posname operand
(equivalent to —b).

Move the named files. The —a, —b, or —i options with the posname operand indicate
the position; otherwise, move the files to the end of the archive.

Write the contents of the files from archive to the standard output. If no files are
specified, the contents of all files in the archive shall be written in the order of the
archive.

Quickly append the named files to the end of the archive file. In this case ar does
not check whether the added members are already in the archive. This is useful to
bypass the searching otherwise done when creating a large archive piece by piece.

Replace or add files to archive. If the archive named by archive does not exist, a
new archive file shall be created and a diagnostic message shall be written to
standard error (unless the —c option is specified). If no files are specified and the
archive exists, the results are undefined. Files that replace existing files shall not
change the order of the archive. Files that do not replace existing files shall be
appended to the archive unless a —a, —b, or —i option specifies another position.

Force the regeneration of the archive symbol table even if ar is not invoked with an
option that modifies the archive file contents. This option is useful to restore the
archive symbol table after it has been stripped; see strip.

Write a table of contents of archive to the standard output. The files specified by the
file operands shall be included in the written list. If no file operands are specified,
all files in archive shall be included in the order of the archive.

Allow file name truncation of extracted files whose archive names are longer than
the file system can support. By default, extracting a file with a name that is too
long is an error; a diagnostic message is written and the file is not extracted.

Update older files. When used with the —r option, files within the archive are
replaced only if the corresponding file has a modification time that is at least as
new as the modification time of the file within the archive.

Give verbose output. When used with the option characters —d, —-r, or —x, write a
detailed file-by-file description of the archive creation and maintenance activity, as
described in the STDOUT section.

When used with —p, write the name of the file to the standard output before
writing the file itself to the standard output, as described in the STDOUT section.

When used with —t, include a long listing of information about the files within the
archive, as described in the STDOUT section.

Extract the files named by the file operands from archive. The contents of the
archive file shall not be changed. If no file operands are given, all files in the
archive shall be extracted. The modification time of each file extracted shall be set
to the time the file is extracted from the archive.

The following operands shall be supported:

archive

A path name of the archive file.

Shell and Utilities, Issue 6 2349

5056
5057
5058
5059
5060

5061
5062

5063
5064

5065
5066

5067
5068

5069
5070
5071
5072
5073

5074
5075

5076
5077
5078

5079
5080
5081

5082

5083

5084
5085

5086
5087

5088
5089

5090

5091

5092

5093

5094
5095

5096

ar

XSl

STDIN

file

posname

Not used.

INPUT FILES
The input file named by archive shall be a file in the format created by ar -.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ar:

XSl

LANG

LC_ALL

LC_CTYPE

Utilities

A path name. Only the last component shall be used when comparing against the
names of files in the archive. If two or more file operands have the same last path
name component (basename), the results are unspecified. The implementation’s
archive format shall not truncate valid file names of files added to or replaced in
the archive.

The name of a file in the archive file, used for relative positioning; see options —-m
and -r.

Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

If set to a non-empty string value, override the values of all the other
internationalization variables.

Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES

LC_TIME
NLSPATH
TMPDIR

Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Determine the format and content for date and time strings written by ar —tv.
Determine the location of message catalogs for the processing of LC_ MESSAGES.

Determine the path name that overrides the default directory for temporary files, if
any.

ASYNCHRONOUS EVENTS

Default.

STDOUT
If the —d option is used with the —v option, the standard output format shall be:

"d - %s\n", < file >

2350

where file is the operand specified on the command line.

If the —p option is used with the —v option, ar shall precede the contents of each file with:

"\n<%s>\n\n", < file >

where file is the operand specified on the command line, if file operands were specified, and the
name of the file in the archive if they were not.

If the —r option is used with the —v option:

Technical Standard (2000) (Draft July 31, 2000)

5097

5098

5099

5100

5101

5102

5103
5104

5105
5106
5107
5108
5109

5110

5111

5112
5113

5114

5115
5116
5117
5118

5119

5120
5121

5122
5123
5124
5125
5126

5127
5128

5129
5130

5131
5132

5133

5134

5135

Utilities

ar

. Iffile is already in the archive, the standard output format shall be:
“r = %s\n", < file >
where <file> is the operand specified on the command line.

- Iffile is not already in the archive, the standard output format shall be:
"a — %s\n", < file >

where <file> is the operand specified on the command line.

Notes to Reviewers

This section with side shading will not appear in the final copy. - Ed.

D3, XCU, ERN 48 suggests changing the above to "where <file> is the member name found to be
in conflict". If the command line contains a path name which is not a simple file name (that is,
contains a slash), does it print the member name (which seems what’s intended) or the actual
text from the command line (which is what’s said)? This will eventually need to be an
interpretation against .2b.

If the —t option is used, ar shall write the names of the files to the standard output in the format:
"%s\n", < file >

where file is the operand specified on the command line, if file operands were specified, or the
name of the file in the archive if they were not.

If the —t option is used with the —v option, the standard output format shall be:

"%s %u/%u %u %s %d %d:%d %d %s\n", smember mode>, < user ID >,
<group ID >, < number of bytes in member >,
<abbreviated month >, < day-of-month >, < hour >,
<minute >, < year >, < file >

where:

<file> Shall be the operand specified on the command line, if file operands were specified,
or the name of the file in the archive if they were not.

<member

Shall be formatted the same as the <file mode> string defined in the STDOUT section of
Is, except that the first character, the <entry type>, is not used; the string represents
the file mode of the archive member at the time it was added to or replaced in the
archive.

The following represent the last-modification time of a file when it was most recently added to
or replaced in the archive:

<abbreviated month>
Equivalent to the %b format in date.

<day-of-month>
Equivalent to the %e format in date.

<hour> Equivalent to the %H format in date.
<minute> Equivalent to the %M format in date.

<year> Equivalent to the %Y format in date.

Shell and Utilities, Issue 6 2351

5136
5137

5138

5139

5140
5141

5142
5143
5144

5145
5146

5147
5148

5149
5150

5151

5152

5153
5154

5155
5156

5157
5158

5159
5160
5161
5162
5163
5164

5165
5166
5167

5168
5169
5170
5171
5172

5173
5174
5175
5176

5177
5178
5179

ar

Utilities

When LC_TIME does not specify the POSIX locale, a different format and order of presentation
of these fields relative to each other may be used in a format appropriate in the specified locale.
If the —x option is used with the —v option, the standard output format shall be:

X — %s\n", < file >

where file is the operand specified on the command line, if file operands were specified, or the
name of the file in the archive if they were not.

STDERR

Used only for diagnostic messages. The diagnostic message about creating a new archive when
—c is not specified shall not modify the exit status.

OUTPUT FILES

Archives are files with unspecified formats.

EXTENDED DESCRIPTION

None.

EXIT STATUS

The following exit values shall be returned:
0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS

Default.

APPLICATION USAGE

None.

EXAMPLES

None.

RATIONALE

2352

The archive format is not described. It is recognized that there are several known ar formats,
which are not compatible. The ar utility is included, however, to allow creation of archives that
are intended for use only on one machine. The archive file is specified as a file, and it can be
moved as a file. This does allow an archive to be moved from one machine to another machine
that uses the same implementation of ar.

Utilities such as pax (and its forebears tar and cpio) also provide portable “‘archives’. This is a not
a duplication; the ar utility is included to provide an interface primarily for make and the
compilers, based on a historical model.

In historical implementations, the —q option (available on XSI-conforming systems) is known to
execute quickly because ar does not check on whether the added members are already in the
archive. This is useful to bypass the searching otherwise done when creating a large archive
piece-by-piece. These remarks may but need not remain true for a brand new implementation of
this utility; hence, these remarks have been moved into the RATIONALE.

BSD implementations historically required applications to provide the —s option whenever the
archive was supposed to contain a symbol table. As in this volume of IEEE Std. 1003.1-200x,
System V historically creates or updates an archive symbol table whenever an object file is
removed from, added to, or updated in the archive.

The OPERANDS section requires what might seem to be true without specifying it: the archive
cannot truncate the file names below {NAME_MAX}. Some historical implementations do so,
however, causing unexpected results for the application. Therefore, this volume of

Technical Standard (2000) (Draft July 31, 2000)

Utilities ar

5180 IEEE Std. 1003.1-200x makes the requirement explicit to avoid misunderstandings.

5181 According to the System V documentation, the options —dmpqrtx are not required to begin with
5182 a hyphen (" ='). This volume of IEEE Std. 1003.1-200x requires that a conforming application
5183 use the leading hyphen.

5184 The archive format used by the 4.4 BSD implementation is documented in this RATIONALE as
5185 an example:

5186 A file created by ar begins with the ““magic’’ string "l<arch>\n" . The rest of the archive is
5187 made up of objects, each of which is composed of a header for a file, a possible file name, and
5188 the file contents. The header is portable between machine architectures, and, if the file
5189 contents are printable, the archive is itself printable.

5190 The header is made up of six ASCII fields, followed by a two-character trailer. The fields are
5191 the object name (16 characters), the file last modification time (12 characters), the user and
5192 group IDs (each 6 characters), the file mode (8 characters), and the file size (10 characters). All
5193 numeric fields are in decimal, except for the file mode, which is in octal.

5194 The modification time is the file st_mtime field. The user and group IDs are the file st_uid and
5195 st_gid fields. The file mode is the file st_mode field. The file size is the file st_size field. The
5196 two-byte trailer is the string "<newline>"

5197 Only the name field has any provision for overflow. If any file name is more than 16
5198 characters in length or contains an embedded space, the string "#1/* followed by the ASCII
5199 length of the name is written in the name field. The file size (stored in the archive header) is
5200 incremented by the length of the name. The name is then written immediately following the
5201 archive header.

5202 Any unused characters in any of these fields are written as <space> characters. If any fields
5203 are their particular maximum number of characters in length, there is no separation between
5204 the fields.

5205 Obijects in the archive are always an even number of bytes long; files that are an odd number
5206 of bytes long are padded with a <newline> character, although the size in the header does
5207 not reflect this.

5208 The ar utility description requires that (when all its members are valid object files) ar produce an
5209 object code library, which the linkage editor can use to extract object modules. If the linkage
5210 editor needs a symbol table to permit random access to the archive, ar must provide it; however,
5211 ar does not require a symbol table.

5212 The BSD -o option was omitted. It is a rare portable application that uses ar to extract object
5213 code from a library with concern for its modification time, since this can only be of importance
5214 to make. Hence, since this functionality is not deemed important for applications portability, the
5215 modification time of the extracted files is set to the current time.

5216 There is at least one known implementation (for a small computer) that can accommodate only
5217 object files for that system, disallowing mixed object and other files. The ability to handle any
5218 type of file is not only historical practice for most implementations, but is also a reasonable
5219 expectation.

5220 Consideration was given to changing the output format of ar —tv to the same format as the
5221 output of Is -I. This would have made parsing the output of ar the same as that of Is. This was
5222 rejected in part because the current ar format is commonly used and changes would break
5223 historical usage. Second, ar gives the user ID and group ID in numeric format separated by a
5224 slash. Changing this to be the user name and group name would not be correct if the archive
5225 were moved to a machine that contained a different user database. Since ar cannot know

Shell and Utilities, Issue 6 2353

ar Utilities

5226 whether the archive file was generated on the same machine, it cannot tell what to report.

5227 The text on the —ur option combination is historical practice—since one file name can easily
5228 represent two different files (for example, /a/foo and /b/foo), it is reasonable to replace the
5229 member in the archive even when the modification time in the archive is identical to that in the
5230 file system.

5231 FUTURE DIRECTIONS

5232 None.

5233 SEE ALSO

5234 €99, pax, strip the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers,
5235 <unistd.h> description of {POSIX_NO_TRUNC}

5236 CHANGE HISTORY

5237 First released in Issue 2.

5238 Issue 4

5239 Aligned with the ISO/IEC 9945-2: 1993 standard.

5240 The —C and —T options are added.

5241 Issue 5

5242 FUTURE DIRECTIONS section added.

5243 Issue 6

5244 This utility is now marked as part of the Software Development Utilities option.

5245 The STDOUT description is changed for the —v option to align with the IEEE P1003.2b draft
5246 standard.

5247 The normative text is reworded to avoid use of the term “must” for application requirements.

2354 Technical Standard (2000) (Draft July 31, 2000)

5248
5249

5250
5251
5252

5253
5254
5255

5256
5257

5258

5259

5260

5261
5262

5263
5264
5265
5266

5267
5268

5269
5270

5271

5272
5273

5274
5275

5276
5277

5278
5279

5280
5281
5282
5283
5284

5285
5286

5287
5288
5289

Utilities asa

NAME
asa — interpret carriage-control characters
SYNOPSIS
FR asa [file ..]
DESCRIPTION

The asa utility shall write its input files to standard output, mapping carriage-control characters

from the text files to line-printer control sequences in an implementation-defined manner.

The first character of every line shall be removed from the input, and the following actions are

performed:

If the character removed is:

<space> The rest of the line is output without change.

0 A <newline> character is output, then the rest of the input line.

1 One or more implementation-defined characters that causes an advance to the next
page shall be output, followed by the rest of the input line.

+ The <newline> character of the previous line shall be replaced with one or more
implementation-defined characters that causes printing to return to column position 1,
followed by the rest of the input line. If the '+' is the first character in the input, it shall
have the same effect as the <space> character.

The action of the asa utility is unspecified upon encountering any character other than those

listed above as the first character in a line.

OPTIONS
None.
OPERANDS
file A path name of a text file used for input. If no file operands are specified, the
standard input shall be used.
STDIN

The standard input is used only if no file operands are specified; see the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of asa:

LANG Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

Shell and Utilities, Issue 6 2355

5290
5291
5292

5293

5294
5295

5296
5297
5298

5299
5300

5301
5302

5303
5304

5305
5306

5307

5308

5309
5310

5311
5312

5313

5314

5315

5316
5317

5318

5319

5320

5321
5322
5323

5324
5325
5326
5327

5328
5329
5330
5331

asa Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Xsl NLSPATH Determine the location of message catalogs for the processing of LC_ MESSAGES.
ASYNCHRONOUS EVENTS

Default.
STDOUT

The standard output shall be the text from the input file modified as described in the
DESCRIPTION section.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Allinput files were output successfully.
>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
1. The following command:
asa file

permits the viewing of file (created by a program using FORTRAN-style carriage control
characters) on a terminal.

2. The following command:
a.out | asa | Ip
formats the FORTRAN output of a.out and directs it to the printer.

RATIONALE
The asa utility is needed to map ‘“‘standard” FORTRAN 77 output into a form acceptable to
contemporary printers. Usually, asa is used to pipe data to the Ip utility; see Ip.

This utility is generally used only by FORTRAN programs. The standard developers decided to
retain asa to avoid breaking the historical large base of FORTRAN applications that put
carriage-control characters in their output files. There is no requirement that a system have a
FORTRAN compiler in order to run applications that need asa.

Historical implementations have used an ASCII <form-feed> character in response to a 1 and an
ASCII <carriage-return> in response to a '+ . It is suggested that implementations treat
characters other than 0, 1, and '+ as <space> in the absence of any compelling reason to do
otherwise. However, the action is listed here as ‘‘unspecified’”, permitting an implementation to

2356 Technical Standard (2000) (Draft July 31, 2000)

5332
5333

5334
5335

5336
5337

5338
5339

5340
5341

5342

Utilities

asa

provide extensions to access fast multiple-line slewing and channel seeking in a non-portable

manner.

FUTURE DIRECTIONS
None.

SEE ALSO
fort77, Ip

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is now marked as part of the FORTRAN Runtime Utilities option.

The normative text is reworded to avoid use of the term “must” for application requirements.

Shell and Utilities, Issue 6

2357

5343
5344

5345
5346

5347

5348

5349

5350
5351

5352
5353
5354

5355
5356
5357
5358

5359
5360
5361
5362

5363
5364

5365
5366
5367
5368
5369

5370
5371
5372

5373

5374
5375

5376
5377
5378

5379
5380
5381
5382

5383
5384
5385
5386

at

NAME

Utilities

at — execute commands at a later time

SYNOPSIS

UP

at [-m[—f file][—q queuename] -t time_arg
at [-m[—f file][—q queuename] timespec
at -r at job id

at -1 —-q queuename

at -l [at job id e

DESCRIPTION

XSl

The at utility shall read commands from standard input and group them together as an at-job, to
be executed at a later time.

The at-job shall be executed in a separate invocation of the shell, running in a separate process
group with no controlling terminal, except that the environment variables, current working
directory, file creation mask, and other implementation-defined execution-time attributes in
effect when the at utility is executed shall be retained and used when the at-job is executed.

When the at-job is submitted, the at_job_id and scheduled time shall be written to standard error.
The at_job_id is an identifier that shall be a string consisting solely of alphanumeric characters
and the period character. The at_job_id shall be assigned by the system when the job is scheduled
such that it uniquely identifies a particular job.

User notification and the processing of the job’s standard output and standard error are
described under the —-m option.

Users are permitted to use at if their name appears in the file /usr/lib/cron/at.allow. If that file
does not exist, the file /usr/lib/cron/at.deny is checked to determine whether the user should be
denied access to at. If neither file exists, only a process with the appropriate privileges is
allowed to submit a job. If only at.deny exists and is empty, global usage is permitted. The
at.allow and at.deny files consist of one user name per line.

OPTIONS

2358

The at utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2,
Utility Syntax Guidelines.

The following options shall be supported:

—f file Specify the path name of a file to be used as the source of the at-job, instead of
standard input.

-1 (The letter ell.) Report all jobs scheduled for the invoking user if no at_job id
operands are specified. If at_job_ids are specified, report only information for these
jobs. The output shall be written to standard output.

-m Send mail to the invoking user after the at-job has run, announcing its completion.
Standard output and standard error produced by the at-job shall be mailed to the
user as well, unless redirected elsewhere. Mail shall be sent even if the job
produces no output.

If -m is not used, the job’s standard output and standard error shall be provided to
the user by means of mail, unless they are redirected elsewhere; if there is no such
output to provide, the implementation need not notify the user of the job’s
completion.

Technical Standard (2000) (Draft July 31, 2000)

5387
5388
5389
5390
5391
5392
5393

5394
5395

5396
5397

5398
5399

5400
5401

5402
5403
5404
5405
5406

5407
5408
5409

5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421

5422

5423

5424
5425
5426
5427

5428
5429
5430
5431
5432
5433

Utilities

—(gueuename

—t time_arg

OPERANDS

at

Specify in which queue to schedule a job for submission. When used with the -I
option, limit the search to that particular queue. By default, at-jobs shall be
scheduled in queue a. In contrast, queue b shall be reserved for batch jobs; see
batch. The meanings of all other queuenames are implementation-defined. If —q is
specified along with either of the —t time_arg or timespec arguments, the results are
unspecified.

Remove the jobs with the specified at_job_id operands that were previously
scheduled by the at utility.

Submit the job to be run at the time specified by the time option-argument, which
the application shall ensure has the format as specified by the touch -t time utility.

The following operands shall be supported:

at_job_id

timespec

The name reported by a previous invocation of the at utility at the time the job was
scheduled.

Submit the job to be run at the date and time specified. All of the timespec operands
are interpreted as if they were separated by <space> characters and concatenated,
and shall be parsed as described in the grammar at the end of this section. The date
and time shall be interpreted as being in the timezone of the user (as determined
by the TZ variable), unless a timezone name appears as part of time, below.

In the POSIX locale, the following describes the three parts of the time
specification string. All of the values from the LC_TIME categories in the POSIX
locale shall be recognized in a case-insensitive manner.

time The time can be specified as one, two, or four digits. One-digit and
two-digit numbers shall be taken to be hours; four-digit numbers to
be hours and minutes. The time can alternatively be specified as two
numbers separated by a colon, meaning hour:minute. An AM/PM
indication (one of the values from the am_pm keywords in the
LC_TIME locale category) can follow the time; otherwise, a 24-hour
clock time shall be understood. A timezone name can also follow to
further qualify the time. The acceptable timezone names are
implementation-defined, except that they shall be case-insensitive
and the string utc is supported to indicate the time is in Coordinated
Universal Time. In the POSIX locale, the time field can also be one of
the following tokens:

midnight Indicates the time 12:00 am (00:00).
noon Indicates the time 12:00 pm.

now Indicates the current day and time. Invoking at <now>
shall submit an at-job for potentially immediate
execution (that is, subject only to unspecified
scheduling delays).

date An optional date can be specified as either a month name (one of the
values from the mon or abmon keywords in the LC_TIME locale
category) followed by a day number (and possibly year number
preceded by a comma), or a day of the week (one of the values from
the day or abday keywords in the LC_TIME locale category). In the
POSIX locale, two special days shall be recognized:

Shell and Utilities, Issue 6 2359

5434

5435

5436
5437
5438
5439

5440
5441
5442
5443
5444

5445
5446

5447
5448
5449
5450
5451

5452
5453
5454
5455
5456
5457
5458
5459
5460
5461

5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472

5473
5474
5475
5476
5477

5478
5479
5480
5481

at

2360

increment

Utilities

today Indicates the current day.
tomorrow Indicates the day following the current day.

If no date is given, today shall be assumed if the given time is greater
than the current time, and tomorrow shall be assumed if it is less. If
the given month is less than the current month (and no year is given),
next year shall be assumed.

The optional increment shall be a number preceded by a plus sign
('+') and suffixed by one of the following: minutes, hours, days,
weeks, months, or years. (The singular forms shall be also
accepted.) The keyword next shall be equivalent to an increment
number of +1. For example, the following are equivalent commands:

at 2pm + 1 week
at 2pm next week

The following grammar describes the precise format of timespec in the POSIX locale. The general
conventions for this style of grammar are described in Section 1.10 (on page 2223). This formal
syntax shall take precedence over the preceding text syntax description. The longest possible
token or delimiter shall be recognized at a given point. When used in a timespec, white space

shall also delimit tokens.

%token hr24clock_hr_min

%token hr24clock_hour

/*
A hr24clock_hr_min is a one, two, or four-digit number. A one-digit
or two-digit number constitutes a hr24clock_hour. A hr24clock _hour
may be any of the single digits 0-9, or may be double digits, ranging
from 00-23. If a hr24clock_hr_min is a four digit number, the
first two digits shall be a valid hr24clock_hour, while the last two
represent the number of minutes, from 00-59.

*

%token wallclock _hr_min

%token wallclock _hour

/*
A wallclock_hr_min is a one, two-digit, or four-digit number.
A one-digit or two-digit number constitutes a wallclock_hour.
A wallclock_hour may be any of the single digits 1-9, or may
be double digits, ranging from 01-12. If a wallclock_hr_min
is a four-digit number, the first two digits shall be a valid
wallclock _hour, while the last two represent the number of
minutes, from 00-59.

*

%token minute
/*
A minute is a one or two-digit humber whose values can be 0-9
or 00-59.
*
%token day_ number
/*
A day _number is a number in the range appropriate for the particular
month and year specified by month_name and year number, respectively.

Technical Standard (2000) (Draft July 31, 2000)

5482
5483
5484
5485
5486

5487
5488
5489
5490
5491

5492
5493
5494
5495
5496

5497
5498
5499
5500
5501

5502
5503
5504
5505
5506

5507
5508
5509
5510
5511

5512
5513
5514
5515
5516

5517
5518
5519
5520
5521
5522
5523
5524

5525
5526
5527

5528
5529

Utilities

If no year_number is given, the current year is assumed if the given
date and time are later this year. If no year_number is given and
the date and time have already occurred this year and the month is
not the current month, next year is the assumed year.

*

%token year_number

/*
A year_number is a four-digit number representing the year A.D., in
which the at job is to be run.

*

%token inc_number

/*
The inc_number is the number of times the succeeding increment
period is to be added to the specified date and time.

*

%token timezone_ name

/*
The name of an optional timezone suffix to the time field, in an
implementation-defined format.

*

%token month_name

/*
One of the values from the mon or abmon keywords in the LC_TIME
locale category.

*

%token day_of week

/*
One of the values from the day or abday keywords in the LC_TIME
locale category.

*

%token am_pm

/*
One of the values from the am_pm keyword in the LC_TIME locale
category.

*

%start timespec
%%
timespec . time
| time date
| time increment
| time date increment

| nowspec
nowspec © "now"

| "now" increment
time . hr24clock_hr_min

| hr24clock _hr_min timezone_name

Shell and Utilities, Issue 6

at

2361

5530
5531
5532
5533
5534
5535
5536
5537
5538

5539
5540
5541
5542
5543
5544

5545
5546
5547

5548
5549
5550
5551
5552
5553
5554

5555
5556
5557
5558

5559
5560

5561
5562

5563
5564

5565
5566
5567
5568
5569

5570
5571

5572
5573
5574

5575
5576

at Utilities

hr24clock _hour ":" minute

hr24clock_hour ":" minute timezone_name
wallclock_hr_min am_pm

wallclock_hr_min am_pm timezone_name
wallclock_hour ™" minute am_pm

wallclock_hour ™" minute am_pm timezone name
"noon"

"midnight"

date : month_name day_number
| month_name day number "," year _number
| day_of week

| "today"

| "tomorrow"

increment : "+" inc_number inc_period
| "next" inc_period

inc_period : "minute" | "minutes"
"hour" | "hours"
Ildayll | IIdaySII

I
I
| "week" | "weeks"
| "month" | "months"
| "year" | "years"
STDIN
The standard input shall be a text file consisting of commands acceptable to the shell command
language described in Chapter 2 (on page 2235). The standard input shall only be used if no —f
file option is specified.

INPUT FILES
See the STDIN section.

Xsl The text files /usr/lib/cron/at.allow and /usr/lib/cron/at.deny contain user names, one per line, of
users who are, respectively, authorized or denied access to the at and batch utilities.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of at:

LANG Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of

2362 Technical Standard (2000) (Draft July 31, 2000)

5577
5578

5579

5580
5581

5582
5583
5584
5585
5586

5587
5588
5589
5590
5591

5592
5593

5594
5595
5596

5597
5598

5599

5600

5601

5602
5603

5604
5605
5606

5607

5608
5609
5610

5611

5612
5613

5614
5615

5616
5617

5618

Utilities

XSl

at

diagnostic messages written to standard error and informative messages written to
standard output.

NLSPATH Determine the location of message catalogs for the processing of LC_ MESSAGES.

LC_TIME Determine the format and contents for date and time strings written and accepted
by at.

SHELL Determine a name of a command interpreter to be used to invoke the at-job. If the
variable is unset or null, sh shall be used. If it is set to a value other than a name for
sh, the implementation shall do one of the following: use that shell; use sh; use the
login shell from the user database; or any of the preceding accompanied by a
warning diagnostic about which was chosen.

TZ Determine the timezone. The job shall be submitted for execution at the time
specified by timespec or -t time relative to the timezone specified by the TZ
variable. If timespec specifies a timezone, it shall override TZ. If timespec does not
specify a timezone and TZ is unset or null, an unspecified default timezone shall

be used.
ASYNCHRONOUS EVENTS
Default.
STDOUT

When standard input is a terminal, prompts of unspecified format for each line of the user input
described in the STDIN section may be written to standard output.

In the POSIX locale, the following shall be written to the standard output for each job when jobs
are listed in response to the -l option:

"%s\t%s\n", at job_id , < date >
where date shall be equivalent in format to the output of:
date +"%a %b %e %T %Y"

The date and time written shall be adjusted so that they appear in the timezone of the user (as
determined by the TZ variable).

STDERR

In the POSIX locale, the following shall be written to standard error when a job has been
successfully submitted:

"job %s at %s\n", at job_id , < date >

where date has the same format as is described in the STDOUT section. Neither this, nor warning
messages concerning the selection of the command interpreter, shall be considered a diagnostic
that changes the exit status.

Diagnostic messages, if any, shall be written to standard error.

OUTPUT FILES

None.

EXTENDED DESCRIPTION

None.

EXIT STATUS

Shell and

The following exit values shall be returned:

0 The at utility successfully submitted, removed, or listed a job or jobs.

Utilities, Issue 6 2363

5619

5620
5621

5622
5623
5624
5625

5626
5627
5628

5629
5630
5631

5632
5633
5634
5635

5636

5637

5638
5639
5640

5641
5642

5643
5644
5645

5646
5647
5648

5649
5650
5651

5652
5653

5654
5655
5656
5657
5658
5659
5660

at

Utilities

>0 An error occurred.

CONSEQUENCES OF ERRORS

The job shall not be scheduled, removed, or listed.

APPLICATION USAGE

The format of the at command line shown here is guaranteed only for the POSIX locale. Other
cultures may be supported with substantially different interfaces, although implementations are
encouraged to provide comparable levels of functionality.

Since the commands run in a separate shell invocation, running in a separate process group with
no controlling terminal, open file descriptors, traps, and priority inherited from the invoking
environment are lost.

Some implementations do not allow substitution of different shells using SHELL. System V
systems, for example, have used the login shell value for the user in /etc/passwd. To select
reliably another command interpreter, the user must include it as part of the script, such as:

$ at 1800
myshell myscript
job ... at ...

$

EXAMPLES

2364

1. This sequence can be used at a terminal:

at —-m 0730 tomorrow
sort < file >outfile
EOT

2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

at now + 1 hour <<!

diff filel file2 2>&1 >outfile | mailx mygroup
!

3. To have a job reschedule itself, at can be invoked from within the at-job. For example, this
daily processing script named my.daily runs every day (although crontab is a more
appropriate vehicle for such work):

my.daily runs every day
daily processing
at now tomorrow < my.daily

4. The spacing of the three portions of the POSIX locale timespec is quite flexible as long as
there are no ambiguities. Examples of various times and operand presentation include:

at 0815am Jan 24
at 8 :15amjan24
at now "+ lday"
at 5 pm FRIlday
at '17
utc+
30minutes’

Technical Standard (2000) (Draft July 31, 2000)

Utilities at

5661 RATIONALE

5662 The at utility reads from standard input the commands to be executed at a later time. It may be
5663 useful to redirect standard output and standard error within the specified commands.

5664 The -t time option was added as a new capability to support an internationalized way of
5665 specifying a time for execution of the submitted job.

5666 Early proposals added a ‘‘jobname’ concept as a way of giving submitted jobs names that are
5667 meaningful to the user submitting them. The historical, system-specified at_job_id gives no
5668 indication of what the job is. Upon further reflection, it was decided that the benefit of this was
5669 not worth the change in historical interface. It is anticipated that considerably more
5670 sophisticated ways of controlling background or batch work will be the subject of a future
5671 version of this volume of IEEE Std. 1003.1-200x.

5672 The —q option historically has been an undocumented option, used mainly by the batch utility.
5673 The System V —m option was added to provide a method for informing users that an at-job had
5674 completed. Otherwise, users are only informed when output to standard error or standard
5675 output are not redirected.

5676 The behavior of at <now> was changed in an early proposal from being unspecified to
5677 submitting a job for potentially immediate execution. Historical BSD at implementations
5678 support this. Historical System V implementations give an error in that case, but a change to the
5679 System V versions should have no backwards compatibility ramifications.

5680 On BSD-based systems, a —u user option has allowed those with appropriate privileges to access
5681 the work of other users. Since this is primarily a system administration feature and is not
5682 universally implemented, it has been omitted. Similarly, a specification for the output format for
5683 user with appropriate privileges viewing the queues of other users has been omitted.

5684 The —f file option from System V is used instead of the BSD method of using the last operand as
5685 the path name. The BSD method is ambiguous—does:

5686 at 1200 friday

5687 mean the same thing if there is a file named friday in the current directory?

5688 The at_job_id is composed of a limited character set in historical practice, and it is mandated here
5689 to invalidate systems that might try using characters that require shell quoting or that could not
5690 be easily parsed by shell scripts.

5691 The at utility varies between System V and BSD systems in the way timezones are used. On
5692 System V systems, the TZ variable affects the at-job submission times and the times displayed
5693 for the user. On BSD systems, TZ is not taken into account. The BSD behavior is easily achieved
5694 with the current specification. If the user wishes to have the timezone default to that of the
5695 system, they merely need to issue the at command immediately following an unsetting or null
5696 assignment to TZ. For example:

5697 TZ= at noon ...

5698 gives the desired BSD result.

5699 While the yacc-like grammar specified in the OPERANDS section is lexically unambiguous with
5700 respect to the digit strings, a lexical analyzer would probably be written to look for and return
5701 digit strings in those cases. The parser could then check whether the digit string returned is a
5702 valid day_number, year_number, and so on, based on the context.

Shell and Utilities, Issue 6 2365

5703
5704

5705
5706

5707
5708

5709
5710

5711
5712

5713
5714

5715
5716

5717
5718

5719

at Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
batch, crontab

CHANGE HISTORY
First released in Issue 2.

Issue 4
Aligned with the ISO/IEC 9945-2: 1993 standard.

Issue 6
This utility is now marked as part of the User Portability Utilities option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

- If -m is not used, the job’s standard output and standard error are provided to the user by
mail.

The effects of using the —q and -t options as defined in the IEEE P1003.2b draft standard are
specified.

The normative text is reworded to avoid use of the term “must” for application requirements.

2366 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

5720 NAME

5721 awk — pattern scanning and processing language

5722 SYNOPSIS

5723 awk [-F ERB[—v assignment | .. program [argument ...]

5724 awk [-F ERB -f progfile .. [~v assignment |1 .. [argument ...]

5725 DESCRIPTION

5726 The awk utility shall execute programs written in the awk programming language, which is
5727 specialized for textual data manipulation. An awk program is a sequence of patterns and
5728 corresponding actions. When input is read that matches a pattern, the action associated with
5729 that pattern is carried out.

5730 Input shall be interpreted as a sequence of records. By default, a record is a line, but this can be
5731 changed by using the RS built-in variable. Each record of input shall be matched in turn against
5732 each pattern in the program. For each pattern matched, the associated action shall be executed.
5733 The awk utility shall interpret each input record as a sequence of fields where, by default, a field
5734 is a string of non-<blank> characters. This default white-space field delimiter can be changed by
5735 using the FS built-in variable or the —=F ERE. The awk utility shall denote the first field in a
5736 record $1, the second $2, and so on. The symbol $0 shall refer to the entire record; setting any
5737 other field causes the re-evaluation of $0. Assigning to $0 shall reset the values of all other fields
5738 and the NF built-in variable.

5739 OPTIONS

5740 The awk utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section
5741 12.2, Utility Syntax Guidelines.

5742 The following options shall be supported:

5743 -F ERE Define the input field separator to be the extended regular expression ERE, before
5744 any input is read; see Regular Expressions (on page 2375).

5745 —fprogfile Specify the path name of the file progfile containing an awk program. If multiple
5746 instances of this option are specified, the concatenation of the files specified as
5747 progfile in the order specified shall be the awk program. The awk program can
5748 alternatively be specified in the command line as a single argument.

5749 -V assignment

5750 The application shall ensure that the assignment argument is in the same form as an
5751 assignment operand. The specified variable assignment shall occur prior to
5752 executing the awk program, including the actions associated with BEGIN patterns
5753 (if any). Multiple occurrences of this option can be specified.

5754 OPERANDS

5755 The following operands shall be supported:

5756 program If no —f option is specified, the first operand to awk shall be the text of the awk
5757 program. The application shall supply the program operand as a single argument to
5758 awk. If the text does not end in a <newline> character, awk shall interpret the text
5759 asifitdid.

5760 argument Either of the following two types of argument can be intermixed:

5761 file A path name of a file that contains the input to be read, which is
5762 matched against the set of patterns in the program. If no file operands
5763 are specified, or if a file operand is ' -’ , the standard input shall be
5764 used.

Shell and Utilities, Issue 6 2367

5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787

5788
5789
5790
5791
5792

5793
5794

5795
5796

5797

5798

5799
5800
5801

5802
5803

5804
5805

5806
5807
5808
5809
5810

awk

STDIN

2368

assignment

Utilities

An operand that begins with an underscore or alphabetic character
from the portable character set (see the table in the Base Definitions
volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set),
followed by a sequence of underscores, digits, and alphabetics from
the portable character set, followed by the '=" character, shall
specify a variable assignment rather than a path name. The
characters before the '=" represent the name of an awk variable; if
that name is an awk reserved word (see Grammar (on page 2384)) the
behavior is undefined. The characters following the equal sign shall
be interpreted as if they appeared in the awk program preceded and
followed by a double-quote (") character, as a STRING token (see
Grammar (on page 2384)), except that if the last character is an
unescaped backslash, it shall be interpreted as a literal backslash
rather than as the first character of the sequence "\"" . The variable
shall be assigned the value of that STRING token and, if
appropriate, shall be considered a numeric string (see Expressions in
awk (on page 2370)), the variable shall also be assigned its numeric
value. Each such variable assignment shall occur just prior to the
processing of the following file, if any. Thus, an assignment before
the first file argument shall be executed after the BEGIN actions (if
any), while an assignment after the last file argument shall occur
before the END actions (if any). If there are no file arguments,
assignments shall be executed before processing the standard input.

The standard input shall be used only if no file operands are specified, or if a file operand is* ' ;
see the INPUT FILES section. If the awk program contains no actions and no patterns, but is
otherwise a valid awk program, standard input and any file operands shall not be read and awk
shall exit with a return status of zero.

INPUT FILES
Input files to the awk program from any of the following sources shall be text files:

- Any file operands or their equivalents, achieved by modifying the awk variables ARGV and

ARGC

- Standard input in the absence of any file operands

- Arguments to the getline function

Whether the variable RS is set to a value other than a <newline> character or not, for these files,
implementations shall support records terminated with the specified separator up to
{LINE_MAX} bytes and may support longer records.

If —f progfile is specified, the application shall ensure that the files named by each of the progfile
option-arguments are text files containing an awk program.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of awk:

LANG

Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had

been defined.

Technical Standard (2000) (Draft July 31, 2000)

5811
5812

5813
5814
5815
5816

5817
5818
5819
5820
5821

5822
5823
5824

5825
5826
5827
5828
5829
5830

5831

5832
5833
5834

5835

5836
5837

5838
5839

5840
5841

5842
5843

5844

5845

5846

5847

5848

5849

5850

5851
5852

Utilities awk

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions and in comparisons of
string values.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as

characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes within regular
expressions, the identification of characters as letters, and the mapping of
uppercase and lowercase characters for the toupper and tolower functions.

LC_MESSAGES

Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC

XSl NLSPATH
PATH

Determine the radix character used when interpreting numeric input, performing
conversions between numeric and string values, and formatting numeric output.
Regardless of locale, the period character (the decimal-point character of the
POSIX locale) is the decimal-point character recognized in processing awk
programs (including assignments in command line arguments).

Determine the location of message catalogs for the processing of LC_ MESSAGES.

Determine the search path when looking for commands executed by system(expr),
or input and output pipes; see the Base Definitions wvolume of
IEEE Std. 1003.1-200x, Chapter 8, Environment Variables.

In addition, all environment variables shall be visible via the awk variable ENVIRON.
ASYNCHRONOUS EVENTS

Default.
STDOUT

The nature of the output files depends on the awk program.

STDERR

Used only for diagnostic messages.

OUTPUT FILES

The nature of the output files depends on the awk program.
EXTENDED DESCRIPTION

Overall Program Structure

An awk program is composed of pairs of the form:

pattern { action '}

Either the pattern or the action (including the enclosing brace characters) can be omitted.

A missing pattern shall match any record of input, and a missing action shall be equivalent to:

{ print }

Execution of the awk program shall start by first executing the actions associated with all BEGIN
patterns in the order they occur in the program. Then each file operand (or standard input if no

Shell and Utilities, Issue 6 2369

5853
5854
5855
5856
5857
5858
5859
5860

5861

5862
5863
5864
5865
5866
5867
5868
5869

5870

5871
5872

5873
5874

5875
5876
5877
5878

5879

5880
5881
5882

5883
5884
5885

5886
5887

5888

5889
5890
5891
5892
5893
5894

5895
5896

awk

2370

Utilities

files were specified) shall be processed in turn by reading data from the file until a record
separator is seen (<newline> by default). Before the first reference to a field in the record is
evaluated, the record shall be split into fields, according to the rules in Regular Expressions (on
page 2375), using the value of FS that was current at the time the record was read. Each pattern
in the program then shall be evaluated in the order of occurrence, and the action associated with
each pattern that matches the current record executed. The action for a matching pattern shall be
executed before evaluating subsequent patterns. Finally, the actions associated with all END
patterns shall be executed in the order they occur in the program.

Expressions in awk

Expressions describe computations used in patterns and actions. In the following table, valid
expression operations are given in groups from highest precedence first to lowest precedence
last, with equal-precedence operators grouped between horizontal lines. In expression
evaluation, where the grammar is formally ambiguous, higher precedence operators shall be
evaluated before lower precedence operators. In this table expr, exprl, expr2, and expr3 represent
any expression, while Ivalue represents any entity that can be assigned to (that is, on the left side
of an assignment operator). The precise syntax of expressions is given in Grammar (on page
2384).

Table 4-1 Expressions in Decreasing Precedence in awk

Syntax Name Type of Result | Associativity
(expr) Grouping Type of expr N/A
$expr Field reference String N/A
++ lvalue Pre-increment Numeric N/A
—— lvalue Pre-decrement Numeric N/A
lvalue ++ Post-increment Numeric N/A
lvalue — Post-decrement Numeric N/A
expr "~ expr Exponentiation Numeric Right
I expr Logical not Numeric N/A
+ expr Unary plus Numeric N/A
- expr Unary minus Numeric N/A
expr * expr Multiplication Numeric Left
expr | expr Division Numeric Left
expr % expr Modulus Numeric Left
expr + expr Addition Numeric Left
expr — expr Subtraction Numeric Left
expr expr String concatenation String Left
expr < expr Less than Numeric None
expr <= expr Less than or equal to Numeric None
expr = expr Not equal to Numeric None
expr == expr Equal to Numeric None
expr > expr Greater than Numeric None
expr >= expr Greater than or equal to Numeric None
expr ~ expr ERE match Numeric None
expr " expr ERE non-match Numeric None

Technical Standard (2000) (Draft July 31, 2000)

5897
5898

5899
5900
5901

5902
5903

5904
5905

5906
5907
5908
5909
5910
5911
5912

5913
5914
5915
5916

5917
5918

5919
5920
5921
5922
5923
5924
5925
5926
5927
5928

5929

5930

5931

5932

5933

5934

5935

5936

5937

5938
5939
5940

Utilities

awk

Syntax Name Type of Result | Associativity
expr in array Array membership Numeric Left
(index) in array Multi-dimension array Numeric Left

membership
expr && expr Logical AND Numeric Left
expr || expr Logical OR Numeric Left
exprl ? expr2 : expr3 |Conditional expression Type of selected |Right
expr2 or expr3
lvalue "= expr Exponentiation assignment | Numeric Right
Ivalue %= expr Modulus assignment Numeric Right
lvalue *= expr Multiplication assignment | Numeric Right
Ivalue |= expr Division assignment Numeric Right
lvalue += expr Addition assignment Numeric Right
lvalue —= expr Subtraction assignment Numeric Right
lvalue = expr Assignment Type of expr Right

Each expression shall have either a string value, a numeric value, or both. Except as stated for
specific contexts, the value of an expression shall be implicitly converted to the type needed for
the context in which it is used. A string value shall be converted to a numeric value by the
equivalent of the following calls to functions defined by the ISO C standard:

setlocale(LC_NUMERIC, ™),
numeric_value = atof(string_value);

A numeric value that is exactly equal to the value of an integer shall be converted to a string by
the equivalent of a call to the sprintf function (see String Functions (on page 2381)) with the
string "%d" as the fmt argument and the numeric value being converted as the first and only expr
argument. Any other numeric value shall be converted to a string by the equivalent of a call to
the sprintf function with the value of the variable CONVFMT as the fmt argument and the
numeric value being converted as the first and only expr argument. The result of the conversion
is unspecified if the value of CONVFMT is not a floating-point format specification. This
volume of IEEE Std. 1003.1-200x specifies no explicit conversions between numbers and strings.
An application can force an expression to be treated as a number by adding zero to it, or can
force it to be treated as a string by concatenating the null string ("") to it.

A string value shall be considered a numeric string if it comes from one of the following:
1. Field variables
Input from the getline() function
FILENAME

2

3

4. ARGV array elements
5. ENVIRON array elements

6. Array elements created by the split() function

7. A command line variable assignment

8. Variable assignment from another numeric string variable

and after all the following conversions have been applied, the resulting string would lexically be
recognized as a NUMBER token as described by the lexical conventions in Grammar (on page
2384):

Shell and Utilities, Issue 6 2371

5941

5942

5943

5944
5945
5946
5947
5948

5949
5950
5951
5952

5953

5954

5955

5956

5957

5958

5959
5960

5961

5962

5963

5964

5965

5966

5967

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

awk

2372

Utilities

« All leading and trailing <blank>s are discarded
« If the first non-<blank> character is’'+' or’-" ,itis discarded
- Changing each occurrence of the decimal point character from the current locale to a period

Ifa’ - character is ignored in the preceding description, the numeric value of the numeric string
shall be the negation of the numeric value of the recognized NUMBER token. Otherwise, the
numeric value of the numeric string shall be the numeric value of the recognized NUMBER
token. Whether or not a string is a numeric string shall be relevant only in contexts where that
term is used in this section.

When an expression is used in a Boolean context, if it has a numeric value, a value of zero shall
be treated as false and any other value shall be treated as true. Otherwise, a string value of the
null string shall be treated as false and any other value shall be treated as true. A Boolean
context shall be one of the following:

« The first subexpression of a conditional expression

- An expression operated on by logical NOT, logical AND, or logical OR

« The second expression of a for statement

« The expression of an if statement

« The expression of the while clause in either a while or do. . .while statement
- An expression used as a pattern (as in Overall Program Structure)

All arithmetic shall follow the semantics of floating-point arithmetic as specified by the ISO C
standard.

The value of the expression:

exprl expr2

shall be equivalent to the value returned by the ISO C standard function call:
pow(exprl , expr2)

The expression:

lvalue "= expr

shall be equivalent to the ISO C standard expression:

Ivalue = pow(lvalue , expr)

except that Ivalue shall be evaluated only once. The value of the expression:
exprl % expr2

shall be equivalent to the value returned by the ISO C standard function call:
fmod(exprl , expr2)

The expression:

Ivalue %= expr

shall be equivalent to the ISO C standard expression:

Ivalue = fmod(Ivalue , expr)

except that Ivalue shall be evaluated only once.

Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

5978 Variables and fields shall be set by the assignment statement:

5979 Ivalue = expression

5980 and the type of expression shall determine the resulting variable type. The assignment includes
5981 the arithmetic assignments ("+=" , " —=", "=" | "/=" | "0p=" 6 "=" | "++" "—") all of which
5982 shall produce a numeric result. The left-hand side of an assignment and the target of increment
5983 and decrement operators can be one of a variable, an array with index, or a field selector.

5984 The awk language supplies arrays that are used for storing numbers or strings. Arrays need not
5985 be declared. They shall initially be empty, and their sizes shall change dynamically. The
5986 subscripts, or element identifiers, are strings, providing a type of associative array capability. An
5987 array name followed by a subscript within square brackets can be used as an Ivalue and thus as
5988 an expression, as described in the grammar; see Grammar (on page 2384). Unsubscripted array
5989 names can be used in only the following contexts:

5990 » A parameter in a function definition or function call

5991 . The NAME token following any use of the keyword in as specified in the grammar (see
5992 Grammar (on page 2384)); if the name used in this context is not an array name, the behavior
5993 is undefined

5994 A valid array index shall consist of one or more comma-separated expressions, similar to the way
5995 in which multi-dimensional arrays are indexed in some programming languages. Because awk
5996 arrays are really one-dimensional, such a comma-separated list shall be converted to a single
5997 string by concatenating the string values of the separate expressions, each separated from the
5998 other by the value of the SUBSEP variable. Thus, the following two index operations shall be
5999 equivalent:

6000 var [exprl , expr2 , ... exprn |

6001 var [exprl SUBSEPexpr2 SUBSEP ... SUBSEP exprn |

6002 The application shall ensure that a multi-dimensioned index used with the in operator is
6003 parenthesized. The in operator, which tests for the existence of a particular array element, shall
6004 not cause that element to exist. Any other reference to a nonexistent array element shall
6005 automatically create it.

6006 Comparisons (with the '<’ | "<=" "I=" | "==" '>" | and ">=" operators) shall be made
6007 numerically if both operands are numeric, if one is numeric and the other has a string value that
6008 is a numeric string, or if one is numeric and the other has the uninitialized value. Otherwise,
6009 operands shall be converted to strings as required and a string comparison shall be made using
6010 the locale-specific collation sequence. The value of the comparison expression shall be 1 if the
6011 relation is true, or 0 if the relation is false.

6012 Variables and Special Variables

6013 Variables can be used in an awk program by referencing them. With the exception of function
6014 parameters (see User-Defined Functions (on page 2383)), they are not explicitly declared.
6015 Function parameter names shall be local to the function; all other variable names shall be global.
6016 The same name shall not be used as both a function parameter name and as the name of a
6017 function or a special awk variable. The same name shall not be used both as a variable name with
6018 global scope and as the name of a function. The same name shall not be used within the same
6019 scope both as a scalar variable and as an array. Uninitialized variables, including scalar
6020 variables, array elements, and field variables, shall have an uninitialized value. An uninitialized
6021 value shall have both a numeric value of zero and a string value of the empty string. Evaluation
6022 of variables with an uninitialized value, to either string or numeric, shall be determined by the
6023 context in which they are used.

Shell and Utilities, Issue 6 2373

6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035

6036

6037

6038
6039

6040
6041
6042
6043
6044
6045
6046

6047
6048

6049
6050
6051
6052
6053
6054
6055

6056
6057
6058
6059
6060
6061

6062
6063
6064

6065
6066
6067

6068

6069
6070

awk

2374

Utilities

Field variables shall be designated by a’$’ followed by a number or numerical expression. The
effect of the field number expression evaluating to anything other than a non-negative integer is
unspecified; uninitialized variables or string values need not be converted to numeric values in
this context. New field variables can be created by assigning a value to them. References to
nonexistent fields (that is, fields after $NF), shall evaluate to the uninitialized value. Such
references shall not create new fields. However, assigning to a nonexistent field (for example,
$(NF+2)=5) shall increase the value of NF; create any intervening fields with the uninitialized
value; and cause the value of $0 to be recomputed, with the fields being separated by the value
of OFS. Each field variable shall have a string value or an uninitialized value when created.
Field variables shall have the uninitialized value when created from $0 using FS and the variable
does not contain any characters. If appropriate, the field variable shall be considered a humeric
string (see Expressions in awk (on page 2370)).

Implementations shall support the following other special variables that are set by awk:
ARGC The number of elements in the ARGV array.

ARGV An array of command line arguments, excluding options and the program
argument, numbered from zero to ARGC-1.

The arguments in ARGV can be modified or added to; ARGC can be altered. As
each input file ends, awk shall treat the next non-null element of ARGV, up to the
current value of ARGC-1, inclusive, as the name of the next input file. Thus,
setting an element of ARGV to null means that it shall not be treated as an input
file. The name ' - indicates the standard input. If an argument matches the
format of an assignment operand, this argument shall be treated as an assignment

rather than a file argument.

CONVFMT The printf format for converting numbers to strings (except for output statements,
where OFMT is used); "%.6g" by default.

ENVIRON The variable ENVIRON is an array representing the value of the environment, as
described in the exec functions defined in the System Interfaces volume of
IEEE Std. 1003.1-200x. The indices of the array shall be strings consisting of the
names of the environment variables, and the value of each array element is a string
consisting of the value of that variable. If appropriate, the environment variable
shall be considered a numeric string (see Expressions in awk (on page 2370)), the
array element shall also have its numeric value.

In all cases where the behavior of awk is affected by environment variables
(including the environment of any commands that awk executes via the system
function or via pipeline redirections with the print statement, the printf statement,
or the getline function), the environment used shall be the environment at the time
awk began executing; it is implementation-defined whether any modification of
ENVIRON affects this environment.

FILENAME A path name of the current input file. Inside a BEGIN action the value is
undefined. Inside an END action the value is the name of the last input file
processed.

FNR The ordinal number of the current record in the current file. Inside a BEGIN action
the value is zero. Inside an END action the value is the number of the last record
processed in the last file processed.

FS Input field separator regular expression; a <space> character by default.

NF The number of fields in the current record. Inside a BEGIN action, the use of NF is
undefined unless a getline function without a var argument is executed

Technical Standard (2000) (Draft July 31, 2000)

6071
6072
6073

6074
6075
6076

6077
6078
6079
6080

6081

6082

6083

6084
6085
6086
6087
6088
6089

6090
6091

6092
6093

6094

6095
6096
6097
6098
6099
6100
6101
6102
6103

Utilities

awk

previously. Inside an END action, NF retains the value it had for the last record
read, unless a subsequent redirected, getline function without a var argument is
performed prior to entering the END action.

NR The ordinal number of the current record from the start of input. Inside a BEGIN
action the value is zero. Inside an END action the value is the number of the last
record processed.

OFMT The printf format for converting numbers to strings in output statements (see
Output Statements (on page 2379)); "%.6g" by default. The result of the
conversion is unspecified if the value of OFMT is not a floating-point format
specification.

OFS The print statement output field separation; <space> by default.
ORS The print statement output record separator; a <newline> character by default.
RLENGTH The length of the string matched by the match function.

RS The first character of the string value of RS is the input record separator; a
<newline> character by default. If RS contains more than one character, the results
are unspecified. If RS is null, then records are separated by sequences of one or
more blank lines, leading or trailing blank lines do not result in empty records at
the beginning or end of the input, and a <newline> character is always a field
separator, no matter what the value of FS is.

RSTART The starting position of the string matched by the match function, numbering from
1. This is always equivalent to the return value of the match function.

SUBSEP The subscript separator string for multi-dimensional arrays; the default value is
implementation-defined.

Regular Expressions

The awk utility shall make use of the extended regular expression notation (see the Base
Definitions volume of IEEE Std. 1003.1-200x, Section 9.4, Extended Regular Expressions) except
that it shall allow the use of C-language conventions for escaping special characters within the
EREs, as specified in the table in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5,
File Format Notation (\\' ,\a’ ,\b® ,\F "\ ,\r |\t ,’'W) and the following
table; these escape sequences shall be recognized both inside and outside bracket expressions.
Note that records need not be separated by <newline> characters and string constants can
contain <newline> characters, so even the "\n" sequence is valid in awk EREs. Using a slash
character within an ERE requires the escaping shown in the following table.

Shell and Utilities, Issue 6 2375

6104

6105
6106

6107
6108

6109
6110
6111
6112
6113
6114
6115
6116
6117
6118

6119
6120
6121
6122
6123
6124
6125

6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140

6141
6142
6143

6144

6145
6146
6147
6148

6149
6150
6151

awk

2376

Utilities

Table 4-2 Escape Sequences in awk

Escape
Sequence Description Meaning
\" Backslash quotation-mark Quotation-mark character
V Backslash slash Slash character
\ddd A backslash character followed by the The character whose encoding is
longest sequence of one, two, or three represented by the one, two, or three-
octal-digit characters (01234567). If all digit octal integer. If the size of a byte
of the digits are 0 (that is, on the system is greater than nine bits,
representation of the NUL character), the valid escape sequence used to
the behavior is undefined. represent a byte is implementation-
defined. Multi-byte characters require
multiple, concatenated escape
sequences of this type, including the
leading’\' for each byte.
\c A backslash character followed by any | Undefined
character not described in this table or
in the table in the Base Definitions
volume of IEEE Std. 1003.1-200x,
Chapter 5, File Format Notation
W oJ\a o\ W '\t
oo\ W)

A regular expression can be matched against a specific field or string by using one of the two
regular expression matching operators, ™ and "! . These operators shall interpret their
right-hand operand as a regular expression and their left-hand operand as a string. If the regular
expression matches the string, the ™ expression shall evaluate to a value of 1, and the "!
expression shall evaluate to a value of 0. (The regular expression matching operation is as
defined by the term matched in the Base Definitions volume of IEEE Std. 1003.1-200x, Section
9.1, Regular Expression Definitions, where a match occurs on any part of the string unless the
regular expression is limited with the circumflex or dollar sign special characters.) If the regular
expression does not match the string, the ™ expression shall evaluate to a value of 0, and the
"™ expression shall evaluate to a value of 1. If the right-hand operand is any expression other
than the lexical token ERE, the string value of the expression shall be interpreted as an extended
regular expression, including the escape conventions described above. Note that these same
escape conventions shall also be applied in determining the value of a string literal (the lexical
token STRING), and thus shall be applied a second time when a string literal is used in this
context.

When an ERE token appears as an expression in any context other than as the right-hand of the
™ or"I™ operator or as one of the built-in function arguments described below, the value of
the resulting expression shall be the equivalent of;

$0 "/ erel

The ere argument to the gsub, match, sub functions, and the fs argument to the split function
(see String Functions (on page 2381)) shall be interpreted as extended regular expressions. These
can be either ERE tokens or arbitrary expressions, and shall be interpreted in the same manner as
the right-hand side of the ™ or"I™ operator.

An extended regular expression can be used to separate fields by using the —F ERE option or by
assigning a string containing the expression to the built-in variable FS. The default value of the
FS variable shall be a single <space> character. The following describes FS behavior:

Technical Standard (2000) (Draft July 31, 2000)

6152

6153

6154
6155

6156
6157

6158
6159
6160

6161
6162
6163
6164
6165
6166
6167
6168
6169
6170

6171

6172
6173

6174

6175
6176
6177
6178
6179
6180

6181
6182
6183
6184

6185
6186
6187
6188
6189

Utilities

awk

1. If FSisanull string, the behavior is unspecified.

2. If FSisasingle character:

a. If FS is the <space> character, skip leading and trailing <blank> characters; fields
shall be delimited by sets of one or more <blank> characters.

b. Otherwise, if FS is any other character c, fields shall be delimited by each single
occurrence of c.

3. Otherwise, the string value of FS shall be considered to be an extended regular expression.
Each occurrence of a sequence matching the extended regular expression shall delimit
fields.

Except forthe ™ and"I'™ operators, and in the gsub, match, split, and sub built-in functions,

ERE matching shall be based on input records; that is, record separator characters (the first
character of the value of the variable RS, <newline> by default) cannot be embedded in the
expression, and no expression shall match the record separator character. If the record separator
is not <newline>, <newline> characters embedded in the expression can be matched. For the
™ —and "™ operators, and in those four built-in functions, ERE matching shall be based on
text strings; that is, any character (including <newline> and the record separator) can be
embedded in the pattern, and an appropriate pattern shall match any character. However, in all
awk ERE matching, the use of one or more NUL characters in the pattern, input record, or text
string produces undefined results.

Patterns

A pattern is any valid expression, a range specified by two expressions separated by comma, or
one of the two special patterns BEGIN or END.

Special Patterns

The awk utility shall recognize two special patterns, BEGIN and END. Each BEGIN pattern
shall be matched once and its associated action executed before the first record of input is read
(except possibly by use of the getline function—see Input/Output and General Functions (on
page 2382)—in a prior BEGIN action) and before command line assignment is done. Each END
pattern shall be matched once and its associated action executed after the last record of input has
been read. These two patterns shall have associated actions.

BEGIN and END shall not combine with other patterns. Multiple BEGIN and END patterns
shall be allowed. The actions associated with the BEGIN patterns shall be executed in the order
specified in the program, as are the END actions. An END pattern can precede a BEGIN pattern
in a program.

If an awk program consists of only actions with the pattern BEGIN, and the BEGIN action
contains no getline function, awk shall exit without reading its input when the last statement in
the last BEGIN action is executed. If an awk program consists of only actions with the pattern
END or only actions with the patterns BEGIN and END, the input shall be read before the
statements in the END actions are executed.

Shell and Utilities, Issue 6 2377

6190

6191
6192
6193

6194

6195
6196
6197
6198

6199

6200
6201
6202
6203

6204
6205
6206

6207
6208
6209

6210

6211
6212
6213

6214
6215

6216
6217

6218
6219
6220

6221
6222
6223
6224
6225
6226

awk

2378

Utilities

Expression Patterns

An expression pattern shall be evaluated as if it were an expression in a Boolean context. If the
result is true, the pattern shall be considered to match, and the associated action (if any) shall be
executed. If the result is false, the action shall not be executed.

Pattern Ranges

A pattern range consists of two expressions separated by a comma; in this case, the action shall
be performed for all records between a match of the first expression and the following match of
the second expression, inclusive. At this point, the pattern range can be repeated starting at
input records subsequent to the end of the matched range.

Actions

An action is a sequence of statements as shown in the grammar in Grammar (on page 2384).
Any single statement can be replaced by a statement list enclosed in braces. The application shall
ensure that statements in a statement list are separated by <newline> characters or semicolons,
and are executed sequentially in the order that they appear.

The expression acting as the conditional in an if statement shall be evaluated and if it is non-zero
or non-null, the following statement shall be executed; otherwise, if else is present, the statement
following the else shall be executed.

The if, while, do. . .while, for, break, and continue statements are based on the ISO C standard,
except that the Boolean expressions shall be treated as described in Expressions in awk (on page
2370), and except in the case of;

for (variable in array)

which shall iterate, assigning each index of array to variable in an unspecified order. The results of
adding new elements to array within such a for loop are undefined. If a break or continue
statement occurs outside of a loop, the behavior is undefined.

The delete statement shall remove an individual array element. Thus, the following code deletes
an entire array:

for (index in array)
delete array[index]

The next statement shall cause all further processing of the current input record to be
abandoned. The behavior is undefined if a next statement appears or is invoked in a BEGIN or
END action.

The exit statement shall invoke all END actions in the order in which they occur in the program
source and then terminate the program without reading further input. An exit statement inside
an END action shall terminate the program without further execution of END actions. If an
expression is specified in an exit statement, its numeric value shall be the exit status of awk,
unless subsequent errors are encountered or a subsequent exit statement with an expression is
executed.

Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6227 Output Statements

6228 Both print and printf statements shall write to standard output by default. The output shall be
6229 written to the location specified by output_redirection if one is supplied, as follows:

6230 > expression

6231 >> expression

6232 | expression

6233 In all cases, the expression shall be evaluated to produce a string that is used as a path name into
6234 which to write (for '>' or ">>") or as a command to be executed (for’|"). Using the first two
6235 forms, if the file of that name is not currently open, it shall be opened, creating it if necessary and
6236 using the first form, truncating the file. The output then shall be appended to the file. As long as
6237 the file remains open, subsequent calls in which expression evaluates to the same string value
6238 shall simply append output to the file. The file remains open until the close function (see
6239 Input/Output and General Functions (on page 2382)) is called with an expression that evaluates
6240 to the same string value.

6241 The third form shall write output onto a stream piped to the input of a command. The stream
6242 shall be created if no stream is currently open with the value of expression as its command name.
6243 The stream created shall be equivalent to one created by a call to the popen() function defined in
6244 the System Interfaces volume of IEEE Std. 1003.1-200x with the value of expression as the
6245 command argument and a value of w as the mode argument. As long as the stream remains open,
6246 subsequent calls in which expression evaluates to the same string value shall write output to the
6247 existing stream. The stream shall remain open until the close function (see Input/Output and
6248 General Functions (on page 2382)) is called with an expression that evaluates to the same string
6249 value. At that time, the stream shall be closed as if by a call to the pclose() function defined in
6250 the System Interfaces volume of IEEE Std. 1003.1-200x.

6251 As described in detail by the grammar in Grammar (on page 2384), these output statements shall
6252 take a comma-separated list of expressions referred to in the grammar by the non-terminal
6253 symbols expr_list, print_expr_list, or print_expr_list_opt. This list is referred to here as the
6254 expression list, and each member is referred to as an expression argument.

6255 The print statement shall write the value of each expression argument onto the indicated output
6256 stream separated by the current output field separator (see variable OFS above), and terminated
6257 by the output record separator (see variable ORS above). All expression arguments shall be
6258 taken as strings, being converted if necessary; this conversion shall be as described in
6259 Expressions in awk (on page 2370), with the exception that the printf format in OFMT shall be
6260 used instead of the value in CONVFMT. An empty expression list shall stand for the whole
6261 input record ($0).

6262 The printf statement shall produce output based on a notation similar to the File Format
6263 Notation used to describe file formats in this volume of IEEE Std. 1003.1-200x (see the Base |
6264 Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, File Format Notation). Output shall be |
6265 produced as specified with the first expression argument as the string format and subsequent |
6266 expression arguments as the strings argl to argn, inclusive, with the following exceptions:

6267 1. The format shall be an actual character string rather than a graphical representation.
6268 Therefore, it cannot contain empty character positions. The <space> character in the format
6269 string, in any context other than a flag of a conversion specification, shall be treated as an
6270 ordinary character that is copied to the output.

6271 2. If the character set contains a’ A’ character and that character appears in the format string,
6272 it shall be treated as an ordinary character that is copied to the output.

Shell and Utilities, Issue 6 2379

6273
6274
6275
6276

6277
6278
6279

6280
6281

6282
6283

6284
6285
6286
6287
6288

6289
6290
6291
6292

6293
6294

6295
6296

6297

6298

6299

6300

6301

6302
6303
6304
6305
6306
6307

6308

6309

6310

6311

6312

6313

awk

2380

Utilities

3. The escape sequences beginning with a backslash character shall be treated as sequences of
ordinary characters that are copied to the output. Note that these same sequences shall be
interpreted lexically by awk when they appear in literal strings, but they shall not be
treated specially by the printf statement.

4. A field width or precision can be specified as the ™ character instead of a digit string. In
this case the next argument from the expression list shall be fetched and its numeric value
taken as the field width or precision.

5. The implementation shall not precede or follow output from the d or u conversion
specifications with <blank> characters not specified by the format string.

6. The implementation shall not precede output from the o conversion specification with
leading zeros not specified by the format string.

7. For the ¢ conversion specification: if the argument has a numeric value, the character
whose encoding is that value shall be output. If the value is zero or is not the encoding of
any character in the character set, the behavior is undefined. If the argument does not have
a numeric value, the first character of the string value shall be output; if the string does not
contain any characters, the behavior is undefined.

8. For each conversion specification that consumes an argument, the next expression
argument shall be evaluated. With the exception of the ¢ conversion, the value shall be
converted (according to the rules specified in Expressions in awk (on page 2370)) to the
appropriate type for the conversion specification.

9. If there are insufficient expression arguments to satisfy all the conversion specifications in
the format string, the behavior is undefined.

10. If any character sequence in the format string begins with a '%’ character, but does not
form a valid conversion specification, the behavior is unspecified.

Both print and printf can output at least {LINE_MAX} bytes.

Functions

The awk language has a variety of built-in functions: arithmetic, string, input/output, and
general.

Arithmetic Functions

The arithmetic functions, except for int, shall be based on the ISO C standard. The behavior is
undefined in cases where the 1ISO C standard specifies that an error be returned or that the
behavior is undefined. Although the grammar (see Grammar (on page 2384)) permits built-in
functions to appear with no arguments or parentheses, unless the argument or parentheses are
indicated as optional in the following list (by displaying them within the "[]" brackets), such
use is undefined.

atan2(y,x) Return arctangent of y/x in radians in the range —{m} to {.

cos(x) Return cosine of x, where x is in radians.
sin(x) Return sine of x, where x is in radians.
exp(x) Return the exponential function of x.
log(x) Return the natural logarithm of x.
sqrt(x) Return the square root of x.

Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6314 int(x) Truncate its argument to an integer. It shall be truncated toward 0 when x>0.

6315 rand() Return a random number n, such that 0sn<1.

6316 srand([expr]) Set the seed value for rand to expr or use the time of day if expr is omitted. The
6317 previous seed value shall be returned.

6318 String Functions

6319 The string functions in the following list shall be supported. Although the grammar (see
6320 Grammar (on page 2384)) permits built-in functions to appear with no arguments or
6321 parentheses, unless the argument or parentheses are indicated as optional in the following list
6322 (by displaying them within the "[]* brackets), such use is undefined.

6323 gsub(ere, repl[, in])

6324 Behave like sub (see below), except that it shall replace all occurrences of the
6325 regular expression (like the ed utility global substitute) in $0 or in the in argument,
6326 when specified.

6327 index(s,t) Return the position, in characters, numbering from 1, in string s where string t first
6328 occurs, or zero if it does not occur at all.

6329 length[([s])] Return the length, in characters, of its argument taken as a string, or of the whole
6330 record, $0, if there is no argument.

6331 match(s, ere) Return the position, in characters, numbering from 1, in string s where the
6332 extended regular expression ere occurs, or zero if it does not occur at all. RSTART
6333 shall be set to the starting position (which is the same as the returned value), zero
6334 if no match is found; RLENGTH shall be set to the length of the matched string, -1
6335 if no match is found.

6336 split(s, a[, fs 1)

6337 Split the string s into array elements a[1], a[2], ..., a[n], and return n. All elements
6338 of the array shall be deleted before the split is performed. The separation shall be
6339 done with the ERE fs or with the field separator FS if fs is not given. Each array
6340 element shall have a string value when created and, if appropriate, the array
6341 element shall be considered a numeric string (see Expressions in awk (on page
6342 2370)). The effect of a null string as the value of fs is unspecified.

6343 sprintf(fmt, expr, expr, ...)

6344 Format the expressions according to the printf format given by fmt and return the
6345 resulting string.

6346 sub(ere, repl[, in])

6347 Substitute the string repl in place of the first instance of the extended regular
6348 expression ERE in string in and return the number of substitutions. An ampersand
6349 (‘&) appearing in the string repl shall be replaced by the string from in that
6350 matches the ERE. An ampersand preceded with a backslash (\') shall be
6351 interpreted as the literal ampersand character. Any other occurrence of a backslash
6352 (for example, preceding any other character) shall be treated as a literal backslash
6353 character. Note that if repl is a string literal (the lexical token STRING; see
6354 Grammar (on page 2384)), the handling of the ampersand character occurs after
6355 any lexical processing, including any lexical backslash escape sequence processing.
6356 If in is specified and it is not an Ivalue (see Expressions in awk (on page 2370)), the
6357 behavior is undefined. If in is omitted, awk shall use the current record ($0) in its
6358 place.

Shell and Utilities, Issue 6 2381

6359
6360
6361
6362

6363
6364
6365
6366

6367
6368
6369
6370

6371
6372

6373

6374

6375
6376
6377
6378
6379

6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391

6392
6393
6394
6395
6396
6397

6398
6399

6400
6401
6402

6403
6404

awk

2382

Utilities

substr(s,m[,n])
Return the at most n-character substring of s that begins at position m, numbering
from 1. If n is missing, or if n specifies more characters than are left in the string,
the length of the substring shall be limited by the length of the string s.

tolower(s) Return astring based on the string s. Each character in s that is an uppercase letter
specified to have a tolower mapping by the LC_CTYPE category of the current
locale shall be replaced in the returned string by the lowercase letter specified by
the mapping. Other characters in s shall be unchanged in the returned string.

toupper(s) Return a string based on the string s. Each character in s that is a lowercase letter
specified to have a toupper mapping by the LC_CTYPE category of the current
locale is replaced in the returned string by the uppercase letter specified by the
mapping. Other characters in s are unchanged in the returned string.

All of the preceding functions that take ERE as a parameter expect a pattern or a string valued
expression that is a regular expression as defined in Regular Expressions (on page 2375).

Input/Output and General Functions
The input/output and general functions are;

close(expression)
Close the file or pipe opened by a print or printf statement or a call to getline with
the same string-valued expression. The limit on the number of open expression
arguments is implementation-defined. If the close was successful, the function
shall return zero; otherwise, it shall return non-zero.

expression | getline [var]

Read a record of input from a stream piped from the output of a command. The
stream shall be created if no stream is currently open with the value of expression as
its command name. The stream created shall be equivalent to one created by a call
to the popen() function with the value of expression as the command argument and a
value of r as the mode argument. As long as the stream remains open, subsequent
calls in which expression evaluates to the same string value shall read subsequent
records from the stream. The stream shall remain open until the close function is
called with an expression that evaluates to the same string value. At that time, the
stream shall be closed as if by a call to the pclose () function. If var is missing, $0 and
NF shall be set; otherwise, var shall be set and, if appropriate, it shall be considered
a numeric string (see Expressions in awk (on page 2370)).

The getline operator can form ambiguous constructs when there are
unparenthesized operators (including concatenate) to the left of the ’|' (to the
beginning of the expression containing getline). In the context of the '$
operator,’|' shall behave as if it had a lower precedence than'$’ . The result of
evaluating other operators is unspecified, and portable applications shall
parenthesize properly all such usages.

getline Set $0 to the next input record from the current input file. This form of getline shall
set the NF, NR, and FNR variables.

getlinevar Set variable var to the next input record from the current input file and, if
appropriate, var shall be considered a numeric string (see Expressions in awk (on
page 2370)). This form of getline shall set the FNR and NR variables.

getline [var] < expression
Read the next record of input from a named file. The expression shall be evaluated

Technical Standard (2000) (Draft July 31, 2000)

6405
6406
6407
6408
6409
6410
6411

6412
6413
6414
6415
6416

6417
6418
6419
6420

6421

6422
6423
6424

6425

6426

6427

6428
6429

6430
6431
6432
6433

6434
6435
6436
6437
6438
6439
6440

6441
6442
6443
6444
6445
6446

6447
6448
6449

Utilities

awk

to produce a string that is used as a path name. If the file of that name is not
currently open, it shall be opened. As long as the stream remains open, subsequent
calls in which expression evaluates to the same string value shall read subsequent
records from the file. The file shall remain open until the close function is called
with an expression that evaluates to the same string value. If var is missing, $0 and
NF shall be set; otherwise, var shall be set and, if appropriate, it shall be considered
a numeric string (see Expressions in awk (on page 2370)).

The getline operator can form ambiguous constructs when there are
unparenthesized binary operators (including concatenate) to the right of the '<’
(up to the end of the expression containing the getline). The result of evaluating
such a construct is unspecified, and portable applications shall parenthesize
properly all such usages.

system(expression)
Execute the command given by expression in a manner equivalent to the system()
function defined in the System Interfaces volume of IEEE Std. 1003.1-200x and
return the exit status of the command.

All forms of getline shall return 1 for successful input, zero for end-of-file, and -1 for an error.

Where strings are used as the name of a file or pipeline, the application shall ensure that the
strings are textually identical. The terminology ‘““same string value’” implies that ‘‘equivalent
strings’’, even those that differ only by <space> characters, represent different files.

User-Defined Functions
The awk language also provides user-defined functions. Such functions can be defined as:
function name [parameter , ...]) { statements }

A function can be referred to anywhere in an awk program; in particular, its use can precede its
definition. The scope of a function is global.

Function parameters, if present, can be either scalars or arrays; the behavior is undefined if an
array name is passed as a parameter that the function uses as a scalar, or if a scalar expression is
passed as a parameter that the function uses as an array. Function parameters shall be passed by
value if scalar and by reference if array name.

The number of parameters in the function definition need not match the number of parameters
in the function call. Excess formal parameters can be used as local variables. If fewer arguments
are supplied in a function call than are in the function definition, the extra parameters that are
used in the function body as scalars shall evaluate to the uninitialized value until they are
otherwise initialized, and the extra parameters that are used in the function body as arrays shall
be treated as uninitialized arrays where each element evaluates to the uninitialized value until
otherwise initialized.

When invoking a function, no white space can be placed between the function name and the
opening parenthesis. Function calls can be nested and recursive calls can be made upon
functions. Upon return from any nested or recursive function call, the values of all of the calling
function’s parameters shall be unchanged, except for array parameters passed by reference. The
return statement can be used to return a value. If a return statement appears outside of a
function definition, the behavior is undefined.

In the function definition, <newline> characters shall be optional before the opening brace and
after the closing brace. Function definitions can appear anywhere in the program where a
pattern-action pair is allowed.

Shell and Utilities, Issue 6 2383

6450

6451
6452
6453
6454
6455

6456
6457

6458
6459
6460

6461
6462

6463
6464

6465
6466

6467
6468
6469
6470
6471
6472
6473
6474
6475

6476
6477
6478

6479
6480

6481
6482
6483

6484
6485

6486
6487
6488

6489
6490
6491
6492
6493

awk

2384

Utilities

Grammar

The grammar in this section and the lexical conventions in the following section shall together
describe the syntax for awk programs. The general conventions for this style of grammar are
described in Section 1.10 (on page 2223). A valid program can be represented as the non-
terminal symbol program in the grammar. This formal syntax shall take precedence over the
preceding text syntax description.

%token NAME NUMBER STRING ERE
%token FUNC_NAME /* Name followed by ’(" without white space. */

[* Keywords */

%token Begin End

[* 'BEGIN’ 'END’ */
%token Break Continue Delete Do Else

[* ‘break’ 'continue’ 'delete’ 'do’ ’'else’ */

%token Exit For Function If In

[* ‘exit’ for’ 'function’ ’if’ ’in’ */

%token Next Print Printf Return While

I* 'next’ 'print’ ‘printf’ 'return’ ‘while’ */

/* Reserved function names */

%token BUILTIN_FUNC_NAME
/* One token for the following:
* atan2 cos sin exp log sqrt int rand srand
* gsub index length match split sprintf sub
* substr tolower toupper close system
*

%token GETLINE
[* Syntactically different from other built-ins. */

/* Two-character tokens. */
%token ADD_ASSIGN SUB_ASSIGN MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN POW_ASSIGN

[* 4=’ ! —=’ *=’ = '0p=" = ok
%token OR AND NO_MATCH EQ LE GE NE INCR DECR APPEND
I &&= k=t > N e - > ¥

/* One-character tokens. */
%token " Y 'C Y T T ') 7 NEWLINE
%token '+ ' = F g T P > o P T g

%start program

%%
program . item_list
| actionless_item_list
item_list . newline_opt
| actionless_item_list item terminator
| item_list item terminator

| item_list action terminator

Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6494 actionless_item_list : item_list pattern terminator

6495 | actionless_item_list pattern terminator

6496 ;

6497 item . pattern action

6498 | Function NAME (" param_list_opt)’
6499 newline_opt action

6500 | Function FUNC_NAME ’'(" param_list_opt)’
6501 newline_opt action

6502 ;

6503 param_list_opt . [* empty */

6504 | param_list

6505 ;

6506 param_list : NAME

6507 | param_list ', NAME

6508 ;

6509 pattern . Begin

6510 | End

6511 | expr

6512 | expr ', newline_opt expr

6513 ;

6514 action : '{" newline_opt Y
6515 | { newline_opt terminated_statement_list '}
6516 | { newline_opt unterminated_statement_list '}’
6517 ;

6518 terminator . terminator '’}

6519 | terminator NEWLINE

6520 | Y

6521 [NEWLINE

6522 ;

6523 terminated_statement_list : terminated_statement

6524 | terminated_statement_list terminated_statement
6525 ;

6526 unterminated_statement_list : unterminated_statement

6527 | terminated_statement_list unterminated_statement
6528 ;

6529 terminated_statement : action newline_opt

6530 | If 'C expr ')’ newline_opt terminated_statement
6531 | If 'C expr ')’ newline_opt terminated_statement
6532 Else newline_opt terminated_statement
6533 | While ' expr ')’ newline_opt terminated_statement
6534 | For '(simple_statement_opt '}’

6535 expr_opt ’; simple_statement_opt ')’ newline_opt
6536 terminated_statement

6537 | For ' NAME In NAME ') newline_opt

6538 terminated_statement

6539 | v newline_opt

6540 | terminatable_statement NEWLINE newline_opt
6541 | terminatable_statement ’;’ newline_opt

Shell and Utilities, Issue 6 2385

6542

6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553

6554
6555
6556
6557
6558
6559
6560
6561

6562
6563
6564

6565
6566
6567
6568

6569
6570
6571

6572
6573
6574
6575
6576

6577
6578
6579
6580

6581
6582
6583

6584
6585
6586

6587
6588

awk

2386

unterminated_statement :

terminatable_statement :

Utilities

terminatable_statement

| If 'C expr ')’ newline_opt unterminated_statement

| If 'C expr ')’ newline_opt terminated_statement
Else newline_opt unterminated_statement

| While ' expr ")’ newline_opt unterminated_statement

| For '(simple_statement_opt '}

expr_opt ’; simple_statement_opt ')’ newline_opt
unterminated_statement

| For ' NAME In NAME ') newline_opt
unterminated_statement

Break
Continue
Next

Return expr_opt

simple_statement

Do newline_opt terminated_statement While (" expr)’

I
I
I
| Exit expr_opt
I
I

simple_statement_opt : /* empty */

simple_statement :

print_statement

| simple_statement

| expr
| print_statement

: simple_print_statement

Delete NAME [expr_list T

| simple_print_statement output_redirection

simple_print_statement : Print print_expr_list_opt
| Print (" multiple_expr_list)’

output_redirection

expr_list_opt

expr_list

multiple_expr_list :

| Printf print_expr_list

| Printf '’ multiple_expr_list ')’

2 expr
| APPEND expr
|) expr

: [* empty */
| expr_list
. expr
| multiple_expr_list

| multiple_expr_list

expr ',’ newline_opt expr

newline_opt expr

Technical Standard (2000) (Draft July 31, 2000)

6589

6590
6591
6592

6593
6594
6595

6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618

6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638

Utilities

expr_opt
expr
unary_expr

non_unary_expr

Shell and Utilities, Issue 6

: * empty */

(
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

expr

unary_expr
non_unary_expr

D+ expr

- expr
unary_expr
unary_expr '*
unary_expr '/’
unary_expr '%’
unary_expr '+’
unary_expr
unary_expr
unary_expr '<’
unary_expr LE
unary_expr NE
unary_expr EQ
unary_expr >’
unary_expr GE
unary_expr

]

expr
expr
expr
expr
expr

expr

non_unary_expr

expr

expr
expr
expr

expr

expr

expr

unary_expr NO_MATCH expr
unary_expr In NAME
unary_expr AND newline_opt expr
newline_opt expr
unary_expr '?’° expr '’ expr

unary_input_function

unary_expr OR

expr ')

T expr

non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr
non_unary_expr

expr

> expr

T expr

%’ expr

+' expr

’ - expr
non_unary_expr

< expr

LE expr

NE expr

EQ expr

> expr

GE expr

~ expr

NO_MATCH expr

In NAME

(" multiple_expr_list ')’ In NAME
non_unary_expr AND newline_opt expr

awk

2387

6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661

6662
6663
6664

6665
6666
6667

6668
6669
6670

6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686

6687
6688

awk

NUMBER
STRING
Ivalue

ERE

Ivalue INCR
lvalue DECR
INCR Ivalue
DECR lIvalue

non_unary_expr OR
non_unary_expr '?’ expr

Utilities

newline_opt expr
expr

Ivalue POW_ASSIGN expr
Ivalue MOD_ASSIGN expr
Ivalue MUL_ASSIGN expr
Ivalue DIV_ASSIGN expr

Ivalue ADD_ASSIGN expr
Ivalue SUB_ASSIGN expr
Ivalue '=" expr

FUNC_NAME '(expr_list_opt)’

/* no white space allowed before (" */
BUILTIN_FUNC_NAME (" expr_list_opt)’
BUILTIN_FUNC_NAME
non_unary_input_function

print_expr_list opt : /* empty */
| print_expr_list

print_expr_list : print_expr
| print_expr_list ')

print_expr : unary_print_expr

newline_opt print_expr

| non_unary_print_expr

unary_print_expr : '+ print_expr

| * = print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr
| unary_print_expr

non_unary_print_expr : '(expr ')’
| 'V print_expr

2388

i print_expr

! print_expr

T print_expr

"%’ print_expr

"+’ print_expr

' = print_expr
non_unary_print_expr

™ print_expr

NO_MATCH print_expr

In NAME

AND newline_opt print_expr
OR newline_opt print_expr
'?' print_expr "' print_expr

Technical Standard (2000) (Draft July 31, 2000)

6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722

6723
6724
6725
6726

6727
6728
6729
6730

6731
6732

6733
6734
6735

6736
6737
6738

Utilities

Ivalue

non_unary_print_expr "’ print_expr
non_unary_print_expr ™ print_expr
non_unary_print_expr '/’ print_expr
non_unary_print_expr '%’ print_expr
non_unary_print_expr '+’ print_expr
non_unary_print_expr ’ = print_expr
non_unary_print_expr non_unary_print_expr
non_unary_print_expr ™ print_expr

non_unary_print_expr NO_MATCH print_expr
non_unary_print_expr In NAME
(" multiple_expr_list ')’ In NAME
non_unary_print_expr AND newline_opt print_expr
non_unary_print_expr OR newline_opt print_expr
non_unary_print_expr '?’ print_expr "' print_expr
NUMBER
STRING
Ivalue
ERE
Ivalue INCR
lvalue DECR
INCR Ivalue
DECR Ivalue
Ivalue POW_ASSIGN print_expr
Ivalue MOD_ASSIGN print_expr
Ivalue MUL_ASSIGN print_expr
Ivalue DIV_ASSIGN print_expr
Ivalue ADD_ASSIGN print_expr
Ivalue SUB_ASSIGN print_expr
Ivalue '=" print_expr
FUNC_NAME '(expr_list_opt)’
/* no white space allowed before (" */
| BUILTIN_FUNC_NAME °’(expr_list_opt ')
| BUILTIN_FUNC_NAME

- NAME

| NAME T expr_list T
| '$" expr

non_unary_input_function : simple_get

| simple_get '<’ expr
| non_unary_expr ’|' simple_get

unary_input_function : unary_expr ’|' simple_get

simple_get

newline_opt

Shell and Utilities, Issue 6

: GETLINE

| GETLINE Ivalue

: [* empty */

| newline_opt NEWLINE

awk

2389

awk Utilities

6739 This grammar has several ambiguities that shall be resolved as follows:

6740 » Operator precedence and associativity shall be as described in Table 4-1 (on page 2370).

6741 « In case of ambiguity, an else shall be associated with the most immediately preceding if that
6742 would satisfy the grammar.

6743 - In some contexts, a slash (/') that is used to surround an ERE could also be the division
6744 operator. This shall be resolved in such a way that wherever the division operator could
6745 appear, a slash is assumed to be the division operator. (There is no unary division operator.)

6746 One convention that might not be obvious from the formal grammar is where <newline>
6747 characters are acceptable. There are several obvious placements such as terminating a statement,
6748 and a backslash can be used to escape <newline> characters between any lexical tokens. In
6749 addition, <newline> characters without backslashes can follow a comma, an open brace, logical
6750 AND operator ("&&"), logical OR operator (“||"), the do keyword, the else keyword, and the
6751 closing parenthesis of an if, for, or while statement. For example:

6752 { print $1,

6753 $2 }

6754 Lexical Conventions

6755 The lexical conventions for awk programs, with respect to the preceding grammar, shall be as
6756 follows:

6757 1. Except as noted, awk shall recognize the longest possible token or delimiter beginning at a
6758 given point.

6759 2. A comment shall consist of any characters beginning with the number sign character and
6760 terminated by, but excluding the next occurrence of, a <newline> character. Comments
6761 shall have no effect, except to delimit lexical tokens.

6762 3. The <newline> character shall be recognized as the token NEWLINE.

6763 4. A backslash character immediately followed by a <newline> character shall have no effect.
6764 5. The token STRING shall represent a string constant. A string constant shall begin with the
6765 character ™ . Within a string constant, a backslash character shall be considered to begin
6766 an escape sequence as specified in the table in the Base Definitions volume of
6767 IEEE Std. 1003.1-200x, Chapter 5, File Format Notation (\\' ,"\a’" ,\b’" ,\f ,'\n" ,
6768 A\ W). Inaddition, the escape sequences in Table 4-2 (on page 2376) shall be
6769 recognized. A <newline> character shall not occur within a string constant. A string
6770 constant shall be terminated by the first unescaped occurrence of the character ™ after
6771 the one that begins the string constant. The value of the string shall be the sequence of all
6772 unescaped characters and values of escape sequences between, but not including, the two
6773 delimiting ™ characters.

6774 6. The token ERE represents an extended regular expression constant. An ERE constant shall
6775 begin with the slash character. Within an ERE constant, a backslash character shall be
6776 considered to begin an escape sequence as specified in the table in the Base Definitions
6777 volume of IEEE Std. 1003.1-200%, Chapter 5, File Format Notation. In addition, the escape
6778 sequences in Table 4-2 (on page 2376) shall be recognized. The application shall ensure that
6779 a <newline> character does not occur within an ERE constant. An ERE constant shall be
6780 terminated by the first unescaped occurrence of the slash character after the one that
6781 begins the ERE constant. The extended regular expression represented by the ERE constant
6782 shall be the sequence of all unescaped characters and values of escape sequences between,
6783 but not including, the two delimiting slash characters.

2390 Technical Standard (2000) (Draft July 31, 2000)

6784
6785

6786
6787
6788

6789
6790

6791
6792

6793

6794

6795

6796
6797
6798

6799
6800

6801
6802
6803

6804
6805

6806
6807
6808
6809

6810

6811
6812

6813
6814
6815

6816

6817

6818
6819
6820
6821
6822
6823
6824
6825

Utilities

7.

10.

11.

12.

13.

14.

awk

A <blank> character shall have no effect, except to delimit lexical tokens or within
STRING or ERE tokens.

The token NUMBER shall represent a numeric constant. Its form and numeric value shall
be equivalent to either of the tokens floating-constant or integer-constant as specified by
the ISO C standard, with the following exceptions:

a. Aninteger constant cannot begin with 0x or include the hexadecimal digits'a’ ,’b’
¢ ,d e f A B ,’C D’ LB L or'F

b. The value of an integer constant beginning with 0 shall be taken in decimal rather

than octal.
¢. Aninteger constant cannot include a suffix (u’ ,’U’ ,’I' ,or’L’).
d. Afloating constant cannot include a suffix (' ,’F ,’I' ,or’L’).

If the value is too large or too small to be representable, the behavior is undefined.

A sequence of underscores, digits, and alphabetics from the portable character set (see the
Base Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set),
beginning with an underscore or alphabetic, shall be considered a word.

The following words are keywords that shall be recognized as individual tokens; the name
of the token is the same as the keyword:

BEGIN delete END function in printf
break do exit getline next return
continue else for if print while

The following words are names of built-in functions and shall be recognized as the token
BUILTIN_FUNC_NAME:

atan2 gsub log split sub toupper
close index match sprintf substr

coS int rand sqrt system

exp length sin srand tolower

The above-listed keywords and names of built-in functions are considered reserved words.

The token NAME shall consist of a word that is not a keyword or a name of a built-in
function and is not followed immediately (without any delimiters) by the '(" character.

The token FUNC_NAME shall consist of a word that is not a keyword or a hame of a
built-in function, followed immediately (without any delimiters) by the ' character. The
(" character shall not be included as part of the token.

The following two-character sequences shall be recognized as the named tokens:

Token Name Sequence | Token Name Sequence
ADD_ASSIGN += NO_MATCH I
SUB_ASSIGN —= EQ ==
MUL_ASSIGN *= LE <=
DIV_ASSIGN /= GE >=
MOD_ASSIGN %= NE 1=
POW_ASSIGN n= INCR ++
OR Il DECR —
AND && APPEND >>

Shell and Utilities, Issue 6 2391

6826
6827

6828

6829
6830
6831
6832
6833

6834
6835

6836

6837

6838

6839
6840
6841

6842
6843

6844
6845
6846
6847

6848
6849
6850

6851
6852
6853
6854
6855
6856
6857

6858

6859

6860

6861

6862

6863

6864

6865

6866

awk

Utilities

15. The following single characters shall be recognized as tokens whose names are the
character:

<newline > {} () [],:+ —* % T l><|?:7$ =

There is a lexical ambiguity between the token ERE and the tokens '/ and DIV_ASSIGN.
When an input sequence begins with a slash character in any syntactic context where the token
I or DIV_ASSIGN could appear as the next token in a valid program, the longer of those two
tokens that can be recognized shall be recognized. In any other syntactic context where the token
ERE could appear as the next token in a valid program, the token ERE shall be recognized.

EXIT STATUS

The following exit values shall be returned:
0 Allinput files were processed successfully.
>0 An error occurred.

The exit status can be altered within the program by using an exit expression.

CONSEQUENCES OF ERRORS

If any file operand is specified and the named file cannot be accessed, awk shall write a
diagnostic message to standard error and terminate without any further action.

If the program specified by either the program operand or a progfile operand is not a valid awk
program (as specified in the EXTENDED DESCRIPTION section), the behavior is undefined.

APPLICATION USAGE

The index, length, match, and substr functions should not be confused with similar functions in
the 1SO C standard; the awk versions deal with characters, while the ISO C standard deals with
bytes.

Because the concatenation operation is represented by adjacent expressions rather than an
explicit operator, it is often necessary to use parentheses to enforce the proper evaluation
precedence.

EXAMPLES

2392

The awk program specified in the command line is most easily specified within single-quotes (for
example, ’program’) for applications using sh, because awk programs commonly contain
characters that are special to the shell, including double-quotes. In the cases where an awk
program contains single-quote characters, it is usually easiest to specify most of the program as
strings within single-quotes concatenated by the shell with quoted single-quote characters. For
example:

awk '/\"/ { print "quote:", $0 }
prints all lines from the standard input containing a single-quote character, prefixed with quote:.
The following are examples of simple awk programs:
1. Write to the standard output all input lines for which field 3 is greater than 5:
$3 > 5
2. Write every tenth line;
(NR % 10) == 0
3. Write any line with a substring matching the regular expression:
/(GID)(2[0 -9][[:alpha:]]*)/

Technical Standard (2000) (Draft July 31, 2000)

6867
6868
6869

6870

6871
6872

6873

6874

6875

6876
6877
6878

6879

6880

6881

6882
6883
6884

6885

6886

6887

6888

6889

6890

6891
6892

6893

6894
6895

6896

6897

6898

6899

6900

6901

6902

6903
6904
6905

Utilities

10.

11.

12.

13.

14.

15.

16.

17.

awk

Print any line with a substring containing a'G’ or 'D’ , followed by a sequence of digits
and characters. This example uses character classes digit and alpha to match language-
independent digit and alphabetic characters respectively:

[(G|D)([[:digit:][:alpha:]]*)/

Write any line in which the second field matches the regular expression and the fourth
field does not:

$2 7 Ixyzl && $4 7 Ixyz/
Write any line in which the second field contains a backslash:
$2 " N

Write any line in which the second field contains a backslash. Note that backslash escapes
are interpreted twice, once in lexical processing of the string and once in processing the
regular expression:

$2 7 "\
Write the second to the last and the last field in each line. Separate the fields by a colon:
{OFS=":";print $(NF -1), $NF}

Write the line number and number of fields in each line. The three strings representing the
line number, the colon, and the number of fields are concatenated and that string is written
to standard output:

{print NR ™" NF}

Write lines longer than 72 characters:

length($0) > 72

Write first two fields in opposite order separated by the OFS:

{ print $2, $1 }

Same, with input fields separated by comma or <space> and <tab> characters, or both:

BEGIN { FS = " \W*|[\]+" }
{ print $2, $1 }

Add up first column, print sum, and average:

{s += $1 }
END {print "sum is ", s,

average is", s/INR}

Write fields in reverse order, one per line (many lines out for each line in):
{ for (i = NF; i > 0; —=i) print $i }

Write all lines between occurrences of the strings start and stop:

[start/, /stop/

Write all lines whose first field is different from the previous one:

$1 != prev { print; prev = $1 }

Simulate echo:

BEGIN {
for (i = 1; i < ARGC; ++i)
printf("%s%s", ARGVI[i], i==ARGC —12"\n")

Shell and Utilities, Issue 6 2393

6906

6907

6908
6909
6910
6911
6912

6913

6914

6915

6916
6917

6918

6919

6920

6921
6922
6923

6924

6925

6926

6927

6928
6929

6930
6931

6932
6933

6934

6935

6936

6937

6938

6939

6940
6941
6942
6943
6944
6945

awk

RATIONALE

2394

18.

19.

Utilities

}
Write the path prefixes contained in the PATH environment variable, one per line:
BEGIN {
n = split (ENVIRON['"PATH"], path, ™")
for (i = 1; i <= n; ++i)
print path(i]
}

If there is a file named input containing page headers of the form:
Page #
and a file named program that contains:

/Page/ { $2 = n++; }
{ print }

then the command line;
awk —f program n=5 input

prints the file input, filling in page numbers starting at 5.

The ISO POSIX-2 standard description is based on the new awk, ‘‘nawk’’, (see the referenced The
AWK Programming Language), which introduced a number of new features to the historical awk:

1.

2
3
4.
5

New keywords: delete, do, functin, return

New built-in functions: atan2, close, cos, gsub, match, rand, sin, srand, sub, system
New predefined variables: FNR, ARGC, ARGV, RSTART, RLENGTH, SUBSEP
New expression operators: ?,:,,,~

The FS variable and the third argument to split, now treated as extended regular
expressions.

The operator precedence, changed to more closely match the C language. Two examples
of code that operate differently are:

whil e (n /=10 > 1) ..
if ("'wk" ~ /bwk/) ...

Several features have been added based on newer implementations of awk:

- Multiple instances of —f progfile are permitted

« The new option —-v assignment
« The new predefined variable ENVIRON

« New built-in functions toupper, and tolower

- More formatting capabilities are added to printf to match the ISO C standard

The overall awk syntax has always been based on the C language, with a few features from the
shell command language and other sources. Because of this, it is not completely compatible with
any other language, which has caused confusion for some users. It is not the intent of the
standard developers to address such issues. IEEE Std. 1003.1-200x has made a few relatively
minor changes toward making the language more compatible with the C language as specified
by the ISO C standard; most of these changes are based on similar changes in recent

Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6946 implementations, as described above. There remain several C-language conventions that are not
6947 in awk. One of the notable ones is the comma operator, which is commonly used to specify
6948 multiple expressions in the C language for statement. Also, there are various places where awk is
6949 more restrictive than the C language regarding the type of expression that can be used in a given
6950 context. These limitations are due to the different features that the awk language does provide.
6951 Regular expressions in awk have been extended somewhat from historical implementations to
6952 make them a pure superset of extended regular expressions, as defined by IEEE Std. 1003.1-200x
6953 (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 9.4, Extended Regular
6954 Expressions). The main extensions are internationalization features and interval expressions.
6955 Historical implementations of awk have long supported backslash escape sequences as an
6956 extension to extended regular expressions, and this extension has been retained despite
6957 inconsistency with other utilities. The number of escape sequences recognized in both extended
6958 regular expressions and strings has varied (generally increasing with time) among
6959 implementations. The set specified by IEEE Std. 1003.1-200x includes most sequences known to
6960 be supported by popular implementations and by the ISO C standard. One sequence that is not
6961 supported is hexadecimal value escapes beginning with "X’ . This would allow values
6962 expressed in more than 9 bits to be used within awk as in the ISO C standard. However, because
6963 this syntax has a non-deterministic length, it does not permit the subsequent character to be a
6964 hexadecimal digit. This limitation can be dealt with in the C language by the use of lexical string
6965 concatenation. In the awk language, concatenation could also be a solution for strings, but not for
6966 extended regular expressions (either lexical ERE tokens or strings used dynamically as regular
6967 expressions). Because of this limitation, the feature has not been added to IEEE Std. 1003.1-200x.
6968 When a string variable is used in a context where an extended regular expression normally
6969 appears (where the lexical token ERE is used in the grammar) the string does not contain the
6970 literal slashes.

6971 Some versions of awk allow the form:

6972 func name(args, .. .) { statements }

6973 This has been deprecated by the authors of the language, who asked that it not be included in
6974 IEEE Std. 1003.1-200x.

6975 Historical implementations of awk produce an error if a next statement is executed in a BEGIN
6976 action, and cause awk to terminate if a next statement is executed in an END action. This
6977 behavior has not been documented, and it was not believed that it was necessary to standardize
6978 it.

6979 The specification of conversions between string and numeric values is much more detailed than
6980 in the documentation of historical implementations or in the referenced The AWK Programming
6981 Language. Although most of the behavior is designed to be intuitive, the details are necessary to
6982 ensure compatible behavior from different implementations. This is especially important in
6983 relational expressions since the types of the operands determine whether a string or numeric
6984 comparison is performed. From the perspective of an application writer, it is usually sufficient to
6985 expect intuitive behavior and to force conversions (by adding zero or concatenating a null
6986 string) when the type of an expression does not obviously match what is needed. The intent has
6987 been to specify historical practice in almost all cases. The one exception is that, in historical
6988 implementations, variables and constants maintain both string and numeric values after their
6989 original value is converted by any use. This means that referencing a variable or constant can
6990 have unexpected side effects. For example, with historical implementations the following
6991 program:

6992 {

6993 a = "+2"

Shell and Utilities, Issue 6 2395

6994
6995
6996
6997
6998
6999
7000
7001

7002
7003
7004
7005

7006
7007
7008
7009
7010
7011

7012
7013
7014
7015

7016
7017

7018
7019
7020
7021
7022

7023
7024
7025
7026
7027

7028
7029
7030
7031
7032
7033
7034
7035

7036
7037

7038
7039
7040
7041

awk

2396

Utilities

b=2
if (NR % 2)
c=a+hb
if (@ == b)
print "numeric comparison"
else
print "string comparison"

}

would perform a numeric comparison (and output numeric comparison) for each odd-
numbered line, but perform a string comparison (and output string comparison) for each even-
numbered line. IEEE Std. 1003.1-200x ensures that comparisons will be numeric if necessary.
With historical implementations, the following program:

BEGIN {
OFMT = "%e"
print 3.14
OFMT = "%f"
print 3.14

}

would output "3.140000e+00" twice, because in the second print statement the constant
"3.14" would have a string value from the previous conversion. IEEE Std. 1003.1-200x requires
that the output of the second print statement be "3.140000" . The behavior of historical
implementations was seen as too unintuitive and unpredictable.

It was pointed out that with the rules contained in early drafts, the following script would print
nothing:

BEGIN {
y[1.5] = 1
OFMT = "%e"
print y[1.5]

}

Therefore, a new variable, CONVFMT, was introduced. The OFMT variable is now restricted to
affecting output conversions of numbers to strings and CONVFMT is used for internal
conversions, such as comparisons or array indexing. The default value is the same as that for
OFMT, so unless a program changes CONVFMT (which no historical program would do), it
will receive the historical behavior associated with internal string conversions.

The POSIX awk lexical and syntactic conventions are specified more formally than in other
sources. Again the intent has been to specify historical practice. One convention that may not be
obvious from the formal grammar as in other verbal descriptions is where <newline> characters
are acceptable. There are several obvious placements such as terminating a statement, and a
backslash can be used to escape <newline> characters between any lexical tokens. In addition,
<newline> characters without backslashes can follow a comma, an open brace, a logical AND
operator ("&&"), a logical OR operator ("||"), the do keyword, the else keyword, and the
closing parenthesis of an if, for, or while statement. For example:

{ print $1,
$2 }

The requirement that awk add a trailing <newline> character to the program argument text is to
simplify the grammar, making it match a text file in form. There is no way for an application or
test suite to determine whether a literal <newline> is added or whether awk simply acts as if it
did.

Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

7042 IEEE Std. 1003.1-200x requires several changes from historical implementations in order to
7043 support internationalization. Probably the most subtle of these is the use of the decimal-point
7044 character, defined by the LC_NUMERIC category of the locale, in representations of floating-
7045 point numbers. This locale-specific character is used in recognizing numeric input, in converting
7046 between strings and numeric values, and in formatting output. However, regardless of locale,
7047 the period character (the decimal-point character of the POSIX locale) is the decimal-point
7048 character recognized in processing awk programs (including assignments in command line
7049 arguments). This is essentially the same convention as the one used in the ISO C standard. The
7050 difference is that the C language includes the setlocale() function, which permits an application
7051 to modify its locale. Because of this capability, a C application begins executing with its locale
7052 set to the C locale, and only executes in the environment-specified locale after an explicit call to
7053 setlocale(). However, adding such an elaborate new feature to the awk language was seen as
7054 inappropriate for IEEE Std. 1003.1-200x. It is possible to execute an awk program explicitly in any
7055 desired locale by setting the environment in the shell.

7056 The undefined behavior resulting from NULs in extended regular expressions allows future
7057 extensions for the GNU gawk program to process binary data.

7058 The behavior in the case of invalid awk programs (including lexical, syntactic, and semantic
7059 errors) is undefined because it was considered overly limiting on implementations to specify. In
7060 most cases such errors can be expected to produce a diagnostic and a non-zero exit status.
7061 However, some implementations may choose to extend the language in ways that make use of
7062 certain invalid constructs. Other invalid constructs might be deemed worthy of a warning, but
7063 otherwise cause some reasonable behavior. Still other constructs may be very difficult to detect
7064 in some implementations. Also, different implementations might detect a given error during an
7065 initial parsing of the program (before reading any input files) while others might detect it when
7066 executing the program after reading some input. Implementors should be aware that diagnosing
7067 errors as early as possible and producing useful diagnostics can ease debugging of applications,
7068 and thus make an implementation more usable.

7069 The unspecified behavior from using multi-character RS values is to allow possible future
7070 extensions based on extended regular expressions used for record separators. Historical
7071 implementations take the first character of the string and ignore the others.

7072 Unspecified behavior when split(string,array,<null>) is used is to allow a proposed future
7073 extension that would split up a string into an array of individual characters.

7074 In the context of the getline function, equally good arguments for different precedences of the | |
7075 and < operators can be made. Historical practice has been that:

7076 getline < "a" "b"

7077 is parsed as:

7078 (getline < "a") "b"

7079 although many would argue that the intent was that the file ab should be read. However:

7080 getline < "x" + 1

7081 parses as:

7082 getin e < (X" + 1)

7083 Similar problems occur with the | version of getline, particularly in combination with $. For
7084 example:

7085 $"echo hi" | getline

Shell and Utilities, Issue 6 2397

7086
7087

7088
7089
7090
7091
7092

7093
7094
7095

7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109

7110
7111
7112
7113

7114
7115
7116

7117
7118
7119
7120
7121

7122
7123
7124
7125
7126

7127
7128
7129
7130

7131
7132
7133

awk

2398

Utilities

(This situation is particularly problematic when used in a print statement, where the |getline
part might be a redirection of the print.)

Since in most cases such constructs are not (or at least should not) be used (because they have a
natural ambiguity for which there is no conventional parsing), the meaning of these constructs
has been made explicitly unspecified. (The effect is that a portable application that runs into the
problem must parenthesize to resolve the ambiguity.) There appeared to be few if any actual
uses of such constructs.

Grammars can be written that would cause an error under these circumstances. Where
backwards compatibility is not a large consideration, implementors may wish to use such
grammars.

Some historical implementations have allowed some built-in functions to be called without an
argument list, the result being a default argument list chosen in some ‘“‘reasonable’” way. Use of
length as a synonym for length($0) is the only one of these forms that is thought to be widely
known or widely used; this particular form is documented in various places (for example, most
historical awk reference pages, although not in the referenced The AWK Programming Language)
as legitimate practice. With this exception, default argument lists have always been
undocumented and vaguely defined, and it is not at all clear how (or if) they should be
generalized to user-defined functions. They add no useful functionality and preclude possible
future extensions that might need to name functions without calling them. Not standardizing
them seems the simplest course. The standard developers considered that length merited special
treatment, however, since it has been documented in the past and sees possibly substantial use
in historical programs. Accordingly, this usage has been made legitimate, but Issue 5 removed
the obsolescent marking for XSl-conforming implementations and many otherwise conforming
applications depend on this feature.

In sub and gsub, if repl is a string literal (the lexical token STRING), then two consecutive
backslash characters should be used in the string to ensure a single backslash will precede the
ampersand when the resultant string is passed to the function. (For example, to specify one
literal ampersand in the replacement string, use gsub(ERE, "\&").)

Historically the only special character in the repl argument of sub and gsub string functions was
the ampersand (‘&) character and preceding it with the backslash character was used to turn
off its special meaning.

The description in the ISO POSIX-2:1993 standard introduced behavior such that the backslash
character was another special character and it was unspecified whether there were any other
special characters. This description introduced several portability problems, some of which are
described below, and so it has been replaced with the more historical description. Some of the
problems include:

- Historically, to create the replacement string, a script could use gsub(ERE, "\&"), but with
the 1SO POSIX-2:1993 standard wording, it was necessary to use gsub(ERE, "\W&").
Backslash characters are doubled here because all string literals are subject to lexical analysis,
which would reduce each pair of backslash characters to a single backslash before being
passed to gsub.

- Since it was unspecified what the special characters were, for portable scripts to guarantee
that characters are printed literally, each character had to be preceded with a backslash. (For
example, a portable script had to use gsub(ERE, "\\h\\i") to produce a replacement string
of "hi")

The description for comparisons in the 1SO POSIX-2:1993 standard did not properly describe
historical practice because of the way numeric strings are compared as numbers. The current
rules cause the following code:

Technical Standard (2000) (Draft July 31, 2000)

7134
7135
7136
7137

7138
7139

7140
7141
7142

7143
7144
7145
7146

7147
7148
7149
7150
7151
7152
7153

7154
7155
7156
7157
7158

7159
7160
7161
7162
7163
7164
7165
7166

7167
7168

7169
7170

7171
7172

7173
7174

7175
7176

7177

7178

Utilities awk

if (0 == "000")

print "strange, but true"
else

print "not true"

to do a numeric comparison, causing the if to succeed. It should be intuitively obvious that this
is incorrect behavior, and indeed, no historical implementation of awk actually behaves this way.

To fix this problem, the definition of numeric string was enhanced to include only those values
obtained from specific circumstances (mostly external sources) where it is not possible to
determine unambiguously whether the value is intended to be a string or a numeric.

Variables that are assigned to a numeric string shall also be treated as a numeric string. (For
example, the notion of a numeric string can be propagated across assignments.) In comparisons,
all variables having the uninitialized value are to be treated as a numeric operand evaluating to
the numeric value zero.

Uninitialized variables include all types of variables including scalars, array elements, and fields.
The definition of an uninitialized value in Variables and Special Variables (on page 2373) is
necessary to describe the value placed on uninitialized variables and on fields that are valid (for
example, < $NF) but have no characters in them and to describe how these variables are to be
used in comparisons. A valid field, such as $1, that has no characters in it can be obtained by
from an input line of "\t\t" when FS=\t' . Historically, the comparison ($1<10) was done
numerically after evaluating $1 to the value zero.

The phrase “... also shall have the numeric value of the numeric string”” was removed from
several sections of the ISO POSIX-2:1993 standard because is specifies an unnecessary
implementation detail. It is not necessary for IEEE Std. 1003.1-200x to specify that these objects
be assigned two different values. It is only necessary to specify that these objects may evaluate
to two different values depending on context.

The description of numeric string processing is based on the behavior of the atof() function in
the ISO C standard. While it is not a requirement for an implementation to use this function,
many historical implementations of awk do. In the ISO C standard, floating-point constants use a
period as a decimal point character for the language itself, independent of the current locale, but
the atof() function and the associated strtod() function use the decimal point character of the
current locale when converting strings to numeric values. Similarly in awk, floating point
constants in an awk script use a period independent of the locale, but input strings use the
decimal point character of the locale.

FUTURE DIRECTIONS
None.

SEE ALSO
grep, lex, sed, the System Interfaces volume of IEEE Std. 1003.1-200x, atof (), setlocale (), strtod()

CHANGE HISTORY
First released in Issue 2.

Issue 4
Aligned with the ISO/IEC 9945-2: 1993 standard.

Issue 4, Version 2
The EXAMPLES section is corrected as follows:

- In Example 10, the braces are removed.

« In Example 17, the invocation of printf is corrected.

Shell and Utilities, Issue 6 2399

7179
7180

7181
7182

7183

awk

Issue 5

Issue 6

2400

Utilities

FUTURE DIRECTIONS section added.

The awk utility is aligned with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term “must” for application requirements.

Technical Standard (2000) (Draft July 31, 2000)

7184
7185

7186
7187

7189
7190
7191
7192
7193

7194
7195

7196
7197

7198
7199

7200

7201
7202

7203
7204
7205
7206

7207

7208
7209

7210
7211

7212

7213

7214
7215

7216
7217

7218
7219

7220
7221
7222
7223
7224

7225
7226

Utilities

NAME

basename

basename — return non-directory portion of a path name

SYNOPSIS

basename string [suffix |

7188 DESCRIPTION
The string operand shall be treated as a path name, as defined in the Base Definitions volume of
IEEE Std. 1003.1-200x, Section 3.268, Path Name. The string string shall be converted to the file

name

corresponding to the last path name component in string and then the suffix string suffix, if

present, shall be removed. This shall be done by performing actions equivalent to the following

steps
1.

in order:

If string is a null string, it is unspecified whether the resulting string is’.” or a null string.
In either case, skip steps 2 through 6.

If string is "//" , it is implementation-defined whether steps 3 to 6 are skipped or
processed.

If string consists entirely of slash characters, string shall be set to a single slash character. In
this case, skip steps 4 to 6.

If there are any trailing slash characters in string, they shall be removed.

If there are any slash characters remaining in string, the prefix of string up to and including
the last slash character in string shall be removed.

If the suffix operand is present, is not identical to the characters remaining in string, and is
identical to a suffix of the characters remaining in string, the suffix suffix shall be removed
from string. Otherwise, string is modified by this step. It shall not be considered an error if
suffix is not found in string.

The resulting string shall be written to standard output.

OPTIONS
None

OPERANDS

The following operands shall be supported:

string
suffix
STDIN

A string.
A string.

Not used.

INPUT FILES
None

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of basename:

LANG Provide a default value for the internationalization variables that are unset or null.

If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

LC_ALL If set to a non-empty string value, override the values of all the other

internationalization variables.

Shell and Utilities, Issue 6 2401

7227
7228
7229

7230
7231
7232

7233

7234
7235

7236
7237

7238

7239
7240

7241
7242

7243
7244

7245
7246

7247

7248

7249
7250

7251
7252
7253
7254
7255

7256
7257

7258

7259
7260

7261

7262
7263
7264

7265
7266
7267

basename Utilities

XSl

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_ MESSAGES.

ASYNCHRONOUS EVENTS

Default.

STDOUT
The basename utility shall write a line to the standard output in the following format:
"%s\n", < resulting string >

STDERR

Used only for diagnostic messages.

OUTPUT FILES

None.

EXTENDED DESCRIPTION

None.

EXIT STATUS

The following exit values shall be returned:
0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS

Default.

APPLICATION USAGE

The definition of pathname specifies implementation-defined behavior for path names starting
with two slash characters. Therefore, applications shall not arbitrarily add slashes to the
beginning of a path name unless they can ensure that there are more or less than two or are
prepared to deal with the implementation-defined consequences.

EXAMPLES

2402

If the string string is a valid path name:

$(basename " string ")

produces a file name that could be used to open the file named by string in the directory
returned by:

$(dirname string ")

If the string string is not a valid path name, the same algorithm is used, but the result need not be
a valid file name. The basename utility is not expected to make any judgements about the validity
of string as a path name; it just follows the specified algorithm to produce a result string.

The following shell script compiles /usr/src/cmd/cat.c and moves the output to a file named cat
in the current directory when invoked with the argument /usr/src/cmd/cat or with the argument
lusr/src/cmd/cat.c:

Technical Standard (2000) (Draft July 31, 2000)

7268
7269

7270
7271
7272

7273

7274

7275

7276
7277

7278
7279
7280

7281
7282

7283
7284

7285
7286

7287
7288

7289
7290

7291

Utilities basename

€99 $(dirname "$1")/$(basename "$1" .c).c
mv a.out $(basename "$1" .c)

RATIONALE
The behaviors of basename and dirname have been coordinated so that when string is a valid path
name:
$(basename " string ")

would be a valid file name for the file in the directory:

$(dirname string ")

This would not work for the early proposal versions of these utilities due to the way it specified
handling of trailing slashes.

Since the definition of pathname specifies implementation-defined behavior for path names
starting with two slash characters, this volume of IEEE Std.1003.1-200x specifies similar
implementation-defined behavior for the basename and dirname utilities.

FUTURE DIRECTIONS
None.

SEE ALSO
dirname, Section 2.5 (on page 2241)

CHANGE HISTORY
First released in Issue 2.

Issue 4
Aligned with the ISO/IEC 9945-2: 1993 standard.

Issue 6
IEEE PASC Interpretation 1003.2 #164 has been applied.

The normative text is reworded to avoid use of the term “must” for application requirements.

Shell and Utilities, Issue 6 2403

7292
7293

7294
7295
7296

7297
7298
7299

7300

7301
7302
7303

7304
7305
7306
7307
7308

7309
7310

7311
7312

7313
7314
7315

7316
7317
7318

7319
7320

7321
7322
7323
7324
7325

7326
7327

7328
7329
7330

7331
7332
7333
7334

7335

batch Utilities

NAME
batch — schedule commands to be executed in a batch queue

SYNOPSIS
upP batch

DESCRIPTION
The batch utility shall read commands from standard input and schedule them for execution in a
batch queue. It shall be the equivalent of the command:

at -q b -m now

where queue b is a special at queue, specifically for batch jobs. Batch jobs shall be submitted to
the batch queue with no time constraints and shall be run by the system using algorithms, based
on unspecified factors, that may vary with each invocation of batch.

Xsl Users are permitted to use batch if their name appears in the file /usr/lib/cron/at.allow. If that file
does not exist, the file /usr/lib/cron/at.deny is checked to determine whether the user should be
denied access to batch. If neither file exists, only a process with the appropriate privileges is
allowed to submit a job. If only at.deny exists and is empty, global usage is permitted. The
at.allow and at.deny files consist of one user name per line.

OPTIONS
None.

OPERANDS
None.

STDIN
The standard input shall be a text file consisting of commands acceptable to the shell command
language described in Chapter 2 (on page 2235).

INPUT FILES
Xsl The text files /usr/lib/cron/at.allow and /usr/lib/cron/at.deny contain user names, one per line, of
users who are, respectively, authorized or denied access to the at and batch utilities.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of batch:

LANG Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the format and contents for date and time strings written by batch.

2404 Technical Standard (2000) (Draft July 31, 2000)

Utilities batch

7336 XSl NLSPATH Determine the location of message catalogs for the processing of LC_ MESSAGES.
7337 SHELL Determine the name of a command interpreter to be used to invoke the at-job. If
7338 the variable is unset or null, sh shall be used. If it is set to a value other than a name
7339 for sh, the implementation shall do one of the following: use that shell; use sh; use
7340 the login shell from the user database; any of the preceding accompanied by a
7341 warning diagnostic about which was chosen.

7342 TZ Determine the timezone. The job shall be submitted for execution at the time
7343 specified by timespec or -t time relative to the timezone specified by the TZ
7344 variable. If timespec specifies a timezone, it overrides TZ. If timespec does not
7345 specify a timezone and TZ is unset or null, an unspecified default timezone shall
7346 be used.

7347 ASYNCHRONOUS EVENTS

7348 Default.

7349 STDOUT

7350 When standard input is a terminal, prompts of unspecified format for each line of the user input
7351 described in the STDIN section may be written to standard output.

7352 STDERR

7353 The following shall be written to standard error when a job has been successfully submitted:

7354 "job %s at %s\n", at job_id , < date >

7355 where date shall be equivalent in format to the output of:

7356 date +"%a %b %e %T %Y"

7357 The date and time written shall be adjusted so that they appear in the timezone of the user (as
7358 determined by the TZ variable).

7359 Neither this, nor warning messages concerning the selection of the command interpreter, are
7360 considered a diagnostic that changes the exit status.

7361 Diagnostic messages, if any, shall be written to standard error.

7362 OUTPUT FILES

7363 None.

7364 EXTENDED DESCRIPTION

7365 None.

7366 EXIT STATUS

7367 The following exit values shall be returned:

7368 0 Successful completion.

7369 >0 An error occurred.

7370 CONSEQUENCES OF ERRORS

7371 The job shall not be scheduled.

Shell and Utilities, Issue 6 2405

7372
7373

7374

7375

7376
7377
7378

7379
7380

7381

7382
7383
7384
7385
7386

7387
7388
7389
7390

7391
7392

7393
7394

7395
7396

7397
7398

7399

7400
7401

7402

7403

batch Utilities

APPLICATION USAGE
It may be useful to redirect standard output within the specified commands.

EXAMPLES

1. This sequence can be used at a terminal:
batch
sort < file >oultfile
EOT
2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):
batch <<! diff filel file2 2>&1 >outfile | mailx mygroup !
RATIONALE
Early proposals described batch in a manner totally separated from at, even though the historical
model treated it almost as a synonym for at —gqb. A number of features were added to list and
control batch work separately from those in at. Upon further reflection, it was decided that the
benefit of this did not merit the change to the historical interface.
The —m option was included on the equivalent at command because it is historical practice to
mail results to the submitter, even if all job-produced output is redirected. As explained in the
RATIONALE for at, the now keyword submits the job for immediate execution (after scheduling
delays), despite some historical systems where at now would have been considered an error.

FUTURE DIRECTIONS
None.

SEE ALSO
at

CHANGE HISTORY
First released in Issue 2.

Issue 4
Format reorganized and separated from the at description.

Aligned with the ISO/IEC 9945-2: 1993 standard.

Issue 6
This utility is now marked as part of the User Portability Utilities option.

The NAME is changed to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term “must” for application requirements.

2406 Technical Standard (2000) (Draft July 31, 2000)

7404
7405

7406
7407

7408
7409
7410
7411
7412

7413
7414
7415

7416

7417
7418

7419
7420

7421
7422

7423
7424

7425
7426
7427

7428
7429

7430
7431
7432
7433
7434

7435
7436

7437
7438
7439

7440
7441
7442

7443

7444
7445

Utilities bc

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

bc [-I]] file ..]
DESCRIPTION

The be utility shall implement an arbitrary precision calculator. It shall take input from any files
given, then read from the standard input. If the standard input and standard output to bc are
attached to a terminal, the invocation of bc shall be considered to be interactive, causing
behavioral constraints described in the following sections.

OPTIONS
The bc utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2,
Utility Syntax Guidelines.

The following option shall be supported:

-1 (The letter ell.) Define the math functions and initialize scale to 20, instead of the
default zero; see the EXTENDED DESCRIPTION section.

OPERANDS
The following operand shall be supported:

file A path name of a text file containing bc program statements. After all files have
been read, bc shall read the standard input.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files shall be text files containing a sequence of comments, statements, and function
definitions that shall be executed as they are read.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of bc:

LANG Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Xsl NLSPATH Determine the location of message catalogs for the processing of LC_ MESSAGES.
ASYNCHRONOUS EVENTS
Default.

Shell and Utilities, Issue 6 2407

7446
7447
7448
7449
7450

7451
7452

7453
7454

7455

7456

7457
7458
7459
7460
7461

7462

7463
7464

7465
7466

7467
7468

7469
7470

7471
7472

7473
7474

T475
7476

1477

7478

7479
7480
7481

7482
7483
7484

7485
7486
7487
7488

bc Utilities

STDOUT
The output of the bc utility shall be controlled by the program read, and consist of zero or more
lines containing the value of all executed expressions without assignments. The radix and
precision of the output shall be controlled by the values of the obase and scale variables; see the
EXTENDED DESCRIPTION section.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION

Grammar

The grammar in this section and the lexical conventions in the following section shall together
describe the syntax for bc programs. The general conventions for this style of grammar are
described in Section 1.10 (on page 2223). A valid program can be represented as the non-
terminal symbol program in the grammar. This formal syntax shall take precedence over the text
syntax description.

%token EOF NEWLINE STRING LETTER NUMBER
%token MUL_OP

I* *OOr % */
%token ASSIGN_OP

/* ’:" ’+:’, ! —:" ’*:’, ’/:’, ’%:” b4 */

%token REL_OP

/* ,=:'! '<:,! ,>:,1 ,!:,1 ,<'! ,>, */

%token INCR_DECR

/* 4 - */

%token Define Break Quit Length

I* 'define’, 'break’, 'quit’, 'length’ */
%token Return For If While Sqrt
I* return’, ‘for’, 'if’, 'while’, 'sqrt’ */
%token Scale Ibase Obase Auto

I* 'scale’, 'ibase’, 'obase’, 'auto’ */
Y%ostart program

%%

program . EOF

| input_item program

input_item : semicolon_list NEWLINE
| function
semicolon_list . [* empty */
| statement

| semicolon_list ';’ statement
| semicolon_list '}’

2408 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7489 ;

7490 statement_list : I* empty */

7491 | statement

7492 statement_list NEWLINE

7493 statement_list NEWLINE statement

I
I

7494 | statement_list '}’
I

7495 statement_list ’;’ statement

7496

7497 statement . expression

7498 | STRING

7499 | Break

7500 | Quit

7501 | Return

7502 | Return (" return_expression)’

7503 | For '(expression '

7504 relational_expression '’

7505 expression ')’ statement

7506 | If 'C relational_expression ')’ statement
7507 | While '(" relational_expression ')’ statement
7508 | { statement list '}

7509 ;

7510 function . Define LETTER ’'(' opt_parameter_list)’
7511 {" NEWLINE opt_auto_define_list
7512 statement_list '}

7513 ;

7514 opt_parameter_list : * empty */

7515 | parameter_list

7516 ;

7517 parameter_list . LETTER

7518 | define_list ') LETTER

7519 ;

7520 opt_auto_define_list : /* empty */

7521 | Auto define_list NEWLINE

7522 | Auto define list '}

7523 ;

7524 define_list . LETTER

7525 | LETTER T T

7526 | define_list ') LETTER

7527 | define_list ') LETTER T T

7528 ;

7529 opt_argument_list : * empty ¥/

7530 | argument_list

7531 ;

7532 argument_list . expression

7533 | LETTER T 7 ', argument_list"

7534 ;

Shell and Utilities, Issue 6 2409

7535
7536
7537

7538
7539
7540

7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556

7557
7558
7559
7560
7561
7562

7563

7564
7565

7566
7567

7568
7569
7570

7571

7572
7573
7574
7575
7576
7577
7578

7579
7580

bc

2410

Utilities

relational_expression : expression

| expression REL_OP expression

return_expression : [* empty */
| expression
expression : named_expression
NUMBER

(" expression)’

LETTER (" opt_argument_list)’
' =" expression

expression '+ expression
expression ’ —' expression
expression MUL_OP expression
expression ™ expression
INCR_DECR named_expression
named_expression INCR_DECR
named_expression ASSIGN_OP expression
Length '(" expression)

Sqart (' expression)

Scale (" expression)’

named_expression . LETTER

| LETTER [expression T
| Scale

| Ibase

| Obase

Lexical Conventions in bc

The lexical conventions for bc programs, with respect to the preceding grammar, shall be as
follows:

1.

Except as noted, bc shall recognize the longest possible token or delimiter beginning at a
given point.

A comment shall consist of any characters beginning with the two adjacent characters
"< and terminated by the next occurrence of the two adjacent characters "*/"
Comments shall have no effect except to delimit lexical tokens.

The <newline> character shall be recognized as the token NEWLINE.

The token STRING shall represent a string constant; it shall consist of any characters
beginning with the double-quote character (") and terminated by another occurrence of
the double-quote character. The value of the string is the sequence of all characters
between, but not including, the two double-quote characters. All characters shall be taken
literally from the input, and there is no way to specify a string containing a double-quote
character. The length of the value of each string shall be limited to {BC_STRING_MAX}
bytes.

A <blank> character shall have no effect except as an ordinary character if it appears
within a STRING token, or to delimit a lexical token other than STRING.

Technical Standard (2000) (Draft July 31, 2000)

7581
7582

7583

7584

7585
7586

7587
7588
7589
7590
7591

7592
7593
7594

7595
7596
7597

7598
7599
7600
7601
7602
7603

7604

7605
7606
7607

7608
7609

7610

7611
7612

7613

7614
7615

7616

7617

7618
7619

7620

7621

Utilities

10.

11.

12.

13.

14.

15.

bc

The combination of a backslash character immediately followed by a <newline> character
shall have no effect other than to delimit lexical tokens with the following exceptions:

- It shall be interpreted as the character sequence "\<newline>" in STRING tokens.
- It shall be ignored as part of a multi-line NUMBER token.

The token NUMBER shall represent a numeric constant. It shall be recognized by the
following grammar:

NUMBER : integer

| . integer
| integer '’
| integer . integer
integer : digit
| integer digit
digit : | 31415617

0]1]2

|89 |A|B|JC|D|EIF

The value of a NUMBER token shall be interpreted as a numeral in the base specified by
the value of the internal register ibase (described below). Each of the digit characters shall
have the value from 0 to 15 in the order listed here, and the period character shall represent
the radix point. The behavior is undefined if digits greater than or equal to the value of
ibase appear in the token. However, note the exception for single-digit values being
assigned to ibase and obase themselves, in Operations in bc (on page 2412).

The following keywords shall be recognized as tokens:

auto ibase length return while
break if obase scale
define for quit sqrt

Any of the following characters occurring anywhere except within a keyword shall be
recognized as the token LETTER:

abcdefghijklmnopgrstuvwxyz

The following single-character and two-character sequences shall be recognized as the
token ASSIGN_OP:

= 4= —= *= /= 0= N=

If an '=" character, as the beginning of a token, is followed by a ' —' character with no

intervening delimiter, the behavior is undefined.
The following single-characters shall be recognized as the token MUL_OP:
* %

The following single-character and two-character sequences shall be recognized as the
token REL_OP:

== <= >= = < >

The following two-character sequences shall be recognized as the token INCR_DECR:

Shell and Utilities, Issue 6 2411

7622

7623
7624

7625

7626

7627

7628
7629
7630
7631
7632
7633
7634

7635
7636
7637

7638

7639

7640
7641
7642
7643
7644
7645
7646

7647
7648

7649
7650
7651
7652

7653
7654
7655
7656
7657
7658
7659

7660

7661

7662

7663
7664

bc

2412

Utilities

++ -

16. The following single characters shall be recognized as tokens whose names are the
character:

<newline > () , + - ; [1 =~ {}

17. The token EOF is returned when the end of input is reached.

Operations in bc

There are three kinds of identifiers: ordinary identifiers, array identifiers, and function
identifiers. All three types consist of single lowercase letters. Array identifiers shall be followed
by square brackets ("[]'). An array subscript is required except in an argument or auto list.
Arrays are singly dimensioned and can contain up to {BC_DIM_MAX} elements. Indexing shall
begin at zero so an array is indexed from 0 to {BC_DIM_MAX}-1. Subscripts shall be truncated
to integers. The application shall ensure that function identifiers are followed by parentheses,
possibly enclosing arguments. The three types of identifiers do not conflict.

The following table summarizes the rules for precedence and associativity of all operators.
Operators on the same line shall have the same precedence; rows are in order of decreasing
precedence.

Table 4-3 Operatorsin bc

Operator Associativity
++, — N/A
unary - N/A
n Right to left
* |, % Left to right
+, binary - Left to right
= +=, —=, *=, =, %=, = Right to left
==, <=, >=, !:' <, > None

Each expression or named expression has a scale, which is the number of decimal digits that
shall be maintained as the fractional portion of the expression.

Named expressions are places where values are stored. Named expressions shall be valid on the
left side of an assignment. The value of a named expression shall be the value stored in the place
named. Simple identifiers and array elements are named expressions; they have an initial value
of zero and an initial scale of zero.

The internal registers scale, ibase, and obase are all named expressions. The scale of an
expression consisting of the name of one of these registers shall be zero; values assigned to any
of these registers are truncated to integers. The scale register shall contain a global value used in
computing the scale of expressions (as described below). The value of the register scale is
limited to 0 < scale < {BC_SCALE_MAX} and shall have a default value of zero. The ibase and
obase registers are the input and output number radix, respectively. The value of ibase shall be
limited to:

2 < ibase < 16
The value of obase shall be limited to:
2 < obase < {BC_BASE_MAX}

When either ibase or obase is assigned a single digit value from the list in Lexical Conventions
in bc (on page 2410), the value shall be assumed in hexadecimal. (For example, ibase=A sets to

Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7665 base ten, regardless of the current ibase value.) Otherwise, the behavior is undefined when
7666 digits greater than or equal to the value of ibase appear in the input. Both ibase and obase shall
7667 have initial values of 10.

7668 Internal computations shall be conducted as if in decimal, regardless of the input and output
7669 bases, to the specified number of decimal digits. When an exact result is not achieved, (for
7670 example, scale=0; 3.2/1) the result shall be truncated.

7671 For all values of obase specified by this volume of IEEE Std. 1003.1-200x, bc shall output numeric
7672 values by performing each of the following steps in order:

7673 1. If the value is less than zero, a hyphen (" =") character shall be output.

7674 2. One of the following is output, depending on the numerical value:

7675 - If the absolute value of the numerical value is greater than or equal to one, the integer
7676 portion of the value shall be output as a series of digits appropriate to obase (as
7677 described below) most significant digit first. The most significant non-zero digit shall
7678 be output next, followed by each successively less significant digit.

7679 - If the absolute value of the numerical value is less than one but greater than zero and
7680 the scale of the numerical value is greater than zero, it is unspecified whether the
7681 character 0 is output.

7682 - If the numerical value is zero, the character 0 shall be output.

7683 3. If the scale of the value is greater than zero and the numeric value is not zero, a period
7684 character shall be output, followed by a series of digits appropriate to obase (as described
7685 below) representing the most significant portion of the fractional part of the value. If s
7686 represents the scale of the value being output, the number of digits output shall be s if
7687 obase is 10, less than or equal to s if obase is greater than 10, or greater than or equal to s if
7688 obase is less than 10. For obase values other than 10, this should be the number of digits
7689 needed to represent a precision of 10°.

7690 For obase values from 2 to 16, valid digits are the first obase of the single characters:

7691 01 2 3 456 7 8 9 A B C D E F

7692 which represent the values zero to 15, inclusive, respectively.

7693 For bases greater than 16, each digit shall be written as a separate multi-digit decimal number.
7694 Each digit except the most significant fractional digit shall be preceded by a single <space>
7695 character. For bases from 17 to 100, bc shall write two-digit decimal numbers; for bases from 101
7696 to 1000, three-digit decimal strings, and so on. For example, the decimal number 1024 in base 25
7697 would be written as:

7698 A01A15A24

7699 in base 125, as:

7700 A008A024

7701 Very large numbers shall be split across lines with 70 characters per line in the POSIX locale;
7702 other locales may split at different character boundaries. Lines that are continued shall end with
7703 a backslash ('\").

7704 A function call shall consist of a function name followed by parentheses containing a comma-
7705 separated list of expressions, which are the function arguments. A whole array passed as an
7706 argument shall be specified by the array name followed by empty square brackets. All function
7707 arguments shall be passed by value. As a result, changes made to the formal parameters shall
7708 have no effect on the actual arguments. If the function terminates by executing a return

Shell and Utilities, Issue 6 2413

7709
7710

7711
7712
7713

7714
7715

7716
7717

7718
7719

7720
7721

7722

7723
7724
7725

7726
7727
7728

7729
7730
7731

7732
7733
7734

7735
7736
7737

7738
7739
7740

7741

7742
7743
7744
7745

7746

7747

7748
7749
7750

bc

2414

Utilities

statement, the value of the function shall be the value of the expression in the parentheses of the
return statement or shall be zero if no expression is provided or if there is no return statement.

The result of sqrt(expression) shall be the square root of the expression. The result shall be
truncated in the least significant decimal place. The scale of the result shall be the scale of the
expression or the value of scale, whichever is larger.

The result of length(expression) shall be the total number of significant decimal digits in the
expression. The scale of the result shall be zero.

The result of scale(expression) shall be the scale of the expression. The scale of the result shall be
zero.

A numeric constant shall be an expression. The scale shall be the number of digits that follow the
radix point in the input representing the constant, or zero if no radix point appears.

The sequence (expression) shall be an expression with the same value and scale as expression.
The parentheses can be used to alter the normal precedence.

The semantics of the unary and binary operators are as follows:

—expression
The result shall be the negative of the expression. The scale of the result shall be the scale of
expression.

The unary increment and decrement operators shall not modify the scale of the named
expression upon which they operate. The scale of the result shall be the scale of that named
expression.

++named-expression
The named expression shall be incremented by one. The result shall be the value of the
named expression after incrementing.

——named-expression
The named expression shall be decremented by one. The result shall be the value of the
named expression after decrementing.

named-expression++
The named expression shall be incremented by one. The result shall be the value of the
named expression before incrementing.

named-expression——
The named expression shall be decremented by one. The result shall be the value of the
named expression before decrementing.

The exponentiation operator, circumflex (™), shall bind right to left.

expression”expression
The result shall be the first expression raised to the power of the second expression. If the
second expression is not an integer, the behavior is undefined. If a is the scale of the left
expression and b is the absolute value of the right expression, the scale of the result shall be:

if b >= 0 min(a * b, max(scale, a)) i fb <0 scale
The multiplicative operators ("*' ,'/" ,'%’) shall bind left to right.

expression*expression
The result shall be the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result shall be:

Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7751 min(a+b,max(scale,a,b))

7752 expression/Zexpression

7753 The result shall be the quotient of the two expressions. The scale of the result shall be the
7754 value of scale.

7755 expression%expression

7756 For expressions a and b, a%b shall be evaluated equivalent to the steps:

7757 1. Compute a/b to current scale.

7758 2. Use the result to compute:

7759 a-(al/b*b

7760 to scale:

7761 max(scale + scale(b), scale(a))

7762 The scale of the result shall be:

7763 max(scale + scale(b), scale(a))

7764 When scale is zero, the '%’ operator is the mathematical remainder operator.

7765 The additive operators ('+' ,’ =") shall bind left to right.

7766 expression+expression

7767 The result shall be the sum of the two expressions. The scale of the result shall be the
7768 maximum of the scales of the expressions.

7769 expression—expression

7770 The result shall be the difference of the two expressions. The scale of the result shall be the
7771 maximum of the scales of the expressions.

7772 The assignment operators (=" ,"+=" " —=""=" "/=" ["%=","=")shall bind right to left.
7773 named-expression=expression

7774 This expression results in assigning the value of the expression on the right to the named
7775 expression on the left. The scale of both the named expression and the result shall be the
7776 scale of expression.

7777 The compound assignment forms:

7778 named-expression <operator >= expression

7779 shall be equivalent to:

7780 named-expression =named-expression <operator > expression

7781 except that the named-expression shall be evaluated only once.

7782 Unlike all other operators, the relational operators ('<’ ,'>" ,"<=" ,">=" "==" "I=")shall be
7783 only valid as the object of an if, while, or inside a for statement.

7784 expressionl<expression2

7785 The relation shall be true if the value of expressionl is strictly less than the value of
7786 expression2.

7787 expressionl>expression2

7788 The relation shall be true if the value of expressionl is strictly greater than the value of
7789 expression2.

Shell and Utilities, Issue 6 2415

7790
7791
7792

7793
7794
7795

7796
7797

7798
7799

7800
7801
7802
7803
7804
7805
7806
7807
7808

7809
7810

7811
7812

7813

7814
7815
7816

7817

7818
7819

7820

7821
7822
7823

7824

7825
7826
7827
7828
7829

7830

7831

7832
7833

bc

2416

Utilities

expressionl<=expression2
The relation shall be true if the value of expressionl is less than or equal to the value of
expression2.

expression1>=expression2
The relation shall be true if the value of expressionl is greater than or equal to the value of
expression2.

expressionl==expression2
The relation shall be true if the values of expressionl and expression2 are equal.

expressionl!=expression2
The relation shall be true if the values of expressionl and expression2 are unequal.

There are only two storage classes in be, global and automatic (local). Only identifiers that are
local to a function need be declared with the auto command. The arguments to a function shall
be local to the function. AIll other identifiers are assumed to be global and available to all
functions. All identifiers, global and local, have initial values of zero. Identifiers declared as auto
shall be allocated on entry to the function and released on returning from the function. They
therefore do not retain values between function calls. Auto arrays shall be specified by the array
name followed by empty square brackets. On entry to a function, the old values of the names
that appear as parameters and as automatic variables shall be pushed onto a stack. Until the
function returns, reference to these names shall refer only to the new values.

References to any of these names from other functions that are called from this function also
refer to the new value until one of those functions uses the same name for a local variable.

When a statement is an expression, unless the main operator is an assignment, execution of the
statement shall write the value of the expression followed by a <newline> character.

When a statement is a string, execution of the statement shall write the value of the string.

Statements separated by semicolons or <newline> characters shall be executed sequentially. In
an interactive invocation of bc, each time a <newline> character is read that satisfies the
grammatical production;

input_item : semicolon_list NEWLINE

the sequential list of statements making up the semicolon_list shall be executed immediately
and any output produced by that execution shall be written without any delay due to buffering.

In an if statement (if(relation) statement), the statement shall be executed if the relation is true.

The while statement (while(relation) statement) implements a loop in which the relation is tested,;
each time the relation is true, the statement shall be executed and the relation retested. When the
relation is false, execution shall resume after statement.

A for statement(for(expression; relation; expression) statement) shall be the same as:

first-expression

while (relation) {
statement
last-expression

}

The application shall ensure that all three expressions are present.
The break statement shall cause termination of a for or while statement.

The auto statement (auto identifier [,identifier] ...) shall cause the values of the identifiers to be
pushed down. The identifiers can be ordinary identifiers or array identifiers. Array identifiers

Technical Standard (2000) (Draft July 31, 2000)

7834
7835

7836

7837
7838
7839
7840

7841
7842

7843

7844
7845
7846
7847
7848
7849

7850
7851
7852
7853

7854
7855

7856

7857
7858

7859
7860

7861
7862

7863
7864

7865
7866

7867
7868

7869
7870
7871
7872
7873

7874
7875

7876

Utilities

bc

shall be specified by following the array hame by empty square brackets. The application shall
ensure that the auto statement is the first statement in a function definition.

A define statement:

define LETTER (opt_parameter_list) {
opt_auto_define_list
statement _list

}

defines a function named LETTER. If a function named LETTER was previously defined, the
define statement shall replace the previous definition. The expression:

LETTER (opt_argument list)

shall invoke the function named LETTER. The behavior is undefined if the number of
arguments in the invocation does not match the number of parameters in the definition.
Functions shall be defined before they are invoked. A function shall be considered to be defined
within its own body, so recursive calls are valid. The values of numeric constants within a
function shall be interpreted in the base specified by the value of the ibase register when the
function is invoked.

The return statements (return and return(expression)) shall cause termination of a function,
popping of its auto variables, and specification of the result of the function. The first form shall
be equivalent to return(0). The value and scale of the result returned by the function shall be the
value and scale of the expression returned.

The quit statement (quit) shall stop execution of a bc program at the point where the statement
occurs in the input, even if it occurs in a function definition, or in an if, for, or while statement.

The following functions shall be defined when the -l option is specified:

s(expression)
Sine of argument in radians.

c(expression)
Cosine of argument in radians.

a(expression)
Arctangent of argument.

I(expression)
Natural logarithm of argument.

e(expression)
Exponential function of argument.

j(expression, expression)
Bessel function of integer order.

The scale of the result returned by these functions shall be the value of the scale register at the
time the function is invoked. The value of the scale register after these functions have completed
their execution shall be the same value it had upon invocation. The behavior is undefined if any
of these functions is invoked with an argument outside the domain of the mathematical
function.

EXIT STATUS

The following exit values shall be returned:

0 All input files were processed successfully.

Shell and Utilities, Issue 6 2417

7877

7878
7879
7880

7881
7882
7883

7884
7885

7886
7887
7888
7889

7890
7891
7892
7893
7894
7895
7896

7897
7898
7899
7900

7901

7902
7903
7904

7905
7906
7907

7908

7909
7910

7911
7912
7913

7914
7915

7916
7917
7918
7919
7920
7921

bc

Utilities

unspecified An error occurred.

CONSEQUENCES OF ERRORS

If any file operand is specified and the named file cannot be accessed, bc shall write a diagnostic
message to standard error and terminate without any further action.

In an interactive invocation of bc, the utility should print an error message and recover following
any error in the input. In a non-interactive invocation of bc, invalid input causes undefined
behavior.

APPLICATION USAGE

Automatic variables in bc do not work in exactly the same way as in either C or PL/1.

For historical reasons, the exit status from bc cannot be relied upon to indicate that an error has
occurred. Returning zero after an error is possible. Therefore, bc should be used primarily by
interactive users (who can react to error messages) or by application programs that can
somehow validate the answers returned as not including error messages.

The bc utility always uses the period (.") character to represent a radix point, regardless of any
decimal-point character specified as part of the current locale. In languages like C or awk, the
period character is used in program source, so it can be portable and unambiguous, while the
locale-specific character is used in input and output. Because there is no distinction between
source and input in bc, this arrangement would not be possible. Using the locale-specific
character in bc’s input would introduce ambiguities into the language; consider the following
example in a locale with a comma as the decimal-point character:;

define f(a,b) {

}

f(1,2,3)

Because of such ambiguities, the period character is used in input. Having input follow different
conventions from output would be confusing in either pipeline usage or interactive usage, so the
period is also used in output.

EXAMPLES

2418

In the shell, the following assigns an approximation of the first ten digits of ' 1T to the variable
X:

x=$(printf "%s\n" ’'scale = 10; 104348/33215' | bc)

The following bc program prints the same approximation of ' 17, with a label, to standard
output:

scale = 10
"pi equals
104348 / 33215

The following defines a function to compute an approximate value of the exponential function
(note that such a function is predefined if the I option is specified):

scale = 20
define e(x){
auto a, b, ¢, i, s
a=1
b=1
s =1

Technical Standard (2000) (Draft July 31, 2000)

7922
7923
7924
7925
7926
7927
7928
7929
7930
7931

7932

7933
7934
7935

7936
7937
7938
7939
7940

7941

7942
7943

7944
7945

7946

7947
7948
7949

7950
7951
7952
7953
7954

7955
7956
7957
7958
7959
7960
7961
7962
7963

7964

7965
7966
7967

Utilities

bc
for (i = 1; 1 == 1; i++}{
a = a*x
b = b*i
c = ahb
if (c ==0){
return(s)
}
S = s+C
}
}

The following prints approximate values of the exponential function of the first ten integers:
for (i = 1; i <= 10; ++i) {

e(i)
}

RATIONALE

The bc utility is implemented historically as a front-end processor for dc; dc was not selected to
be part of this volume of IEEE Std. 1003.1-200x because bc was thought to have a more intuitive
programmatic interface. Current implementations that implement bc using dc are expected to be
compliant.

The exit status for error conditions has been left unspecified for several reasons:

- The bc utility is used in both interactive and non-interactive situations. Different exit codes
may be appropriate for the two uses.

. It is unclear when a non-zero exit should be given; divide-by-zero, undefined functions, and
syntax errors are all possibilities.

- Itis not clear what utility the exit status has.

« In the 4.3 BSD, System V, and Ninth Edition implementations, bc works in conjunction with
dc. The dc utility is the parent, bc is the child. This was done to cleanly terminate bc if dc
aborted.

The decision to have bc exit upon encountering an inaccessible input file is based on the belief
that bc filel file2 is used most often when at least filel contains data/function
declarations/initializations. Having bc continue with prerequisite files missing is probably not
useful. There is no implication in the CONSEQUENCES OF ERRORS section that bc must check
all its files for accessibility before opening any of them.

There was considerable debate on the appropriateness of the language accepted by bc. Several
reviewers preferred to see either a pure subset of the C language or some changes to make the
language more compatible with C. While the bc language has some obvious similarities to C, it
has never claimed to be compatible with any version of C. An interpreter for a subset of C might
be a very worthwhile utility, and it could potentially make bc obsolete. However, no such utility
is known in historical practice, and it was not within the scope of this volume of
IEEE Std. 1003.1-200x to define such a language and utility. If and when they are defined, it may
be appropriate to include them in a future version of this volume of IEEE Std. 1003.1-200x. This
left the following alternatives:

1. Exclude any calculator language from this volume of IEEE Std. 1003.1-200x.

The consensus of the standard developers was that a simple programmatic calculator
language is very useful for both applications and interactive users. The only arguments for
excluding any calculator were that it would become obsolete if and when a C-compatible

Shell and Utilities, Issue 6 2419

7968
7969
7970

7971

7972
7973
7974

7975

7976
7977
7978
7979
7980
7981
7982
7983

7984
7985
7986
7987

7988
7989
7990

7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004

8005
8006
8007
8008
8009

8010
8011
8012
8013

bc

2420

Utilities

one emerged, or that the absence would encourage the development of such a C-
compatible one. These arguments did not sufficiently address the needs of current
application writers.

2. Standardize the historical dc, possibly with minor modifications.

The consensus of the standard developers was that dc is a fundamentally less usable
language and that that would be far too severe a penalty for avoiding the issue of being
similar to but incompatible with C.

3. Standardize the historical bc, possibly with minor modifications.

This was the approach taken. Most of the proponents of changing the language would not
have been satisfied until most or all of the incompatibilities with C were resolved. Since
most of the changes considered most desirable would break historical applications and
require significant modification to historical implementations, almost no modifications
were made. The one significant modification that was made was the replacement of the
historical bc assignment operators "=+" , and so on, with the more modern "+=" | and so
on. The older versions are considered to be fundamentally flawed because of the lexical
ambiguity in uses like a=-1.

In order to permit implementations to deal with backwards compatibility as they see fit,
the behavior of this one ambiguous construct was made undefined. (At least three
implementations have been known to support this change already, so the degree of change
involved should not be great.)

The '%’ operator is the mathematical remainder operator when scale is zero. The behavior of
this operator for other values of scale is from historical implementations of bc, and has been
maintained for the sake of historical applications despite its non-intuitive nature.

Historical implementations permit setting ibase and obase to a broader range of values. This
includes values less than 2, which were not seen as sufficiently useful to standardize. These
implementations do not interpret input properly for values of ibase that are greater than 16. This
is because numeric constants are recognized syntactically, rather than lexically, as described in
this volume of IEEE Std. 1003.1-200x. They are built from lexical tokens of single hexadecimal
digits and periods. Since <blank>s between tokens are not visible at the syntactic level, it is not
possible to recognize the multi-digit “‘digits’ used in the higher bases properly. The ability to
recognize input in these bases was not considered useful enough to require modifying these
implementations. Note that the recognition of numeric constants at the syntactic level is not a
problem with conformance to this volume of IEEE Std. 1003.1-200x, as it does not impact the
behavior of portable applications (and correct bc programs). Historical implementations also
accept input with all of the digits'0’ —'9" and’A’ —'F' regardless of the value of ibase; since
digits with value greater than or equal to ibase are not really appropriate, the behavior when
they appear is undefined, except for the common case of:

ibase=8;
/* Process in octal base. */

ibase=A

/* Restore decimal base. */
In some historical implementations, if the expression to be written is an uninitialized array
element, a leading <space> character and/or up to four leading 0 characters may be output

before the character zero. This behavior is considered a bug; it is unlikely that any currently
portable application relies on:

Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

8014 echo 'b[3]' | bc

8015 returning 00000 rather than 0.

8016 Exact calculation of the number of fractional digits to output for a given value in a base other
8017 than 10 can be computationally expensive. Historical implementations use a faster
8018 approximation, and this is permitted. Note that the requirements apply only to values of obase
8019 that this volume of IEEE Std. 1003.1-200x requires implementations to support (in particular, not
8020 to 1, 0, or negative bases, if an implementation supports them as an extension).

8021 Historical implementations of bc did not allow array parameters to be passed as the last
8022 parameter to a function. New implementations are encouraged to remove this restriction even
8023 though it is not required by the grammar.

8024 FUTURE DIRECTIONS

8025 None.

8026 SEE ALSO

8027 awk

8028 CHANGE HISTORY

8029 First released in Issue 4.

8030 Issue 5

8031 FUTURE DIRECTIONS section added.

8032 Issue 6

8033 Updated to align with the IEEE P1003.2b draft standard, which included resolution of several
8034 interpretations of the ISO POSIX-2: 1993 standard.

8035 The normative text is reworded to avoid use of the term “must” for application requirements.

Shell and Utilities, Issue 6 2421

8036
8037

8038
8039
8040

8041
8042
8043
8044
8045

8046
8047
8048

8049
8050

8051
8052

8053
8054
8055
8056

8057
8058

8059
8060

8061
8062

8063
8064
8065
8066
8067

8068
8069

8070
8071
8072

8073
8074
8075

8076

bg Utilities

NAME
bg — run jobs in the background
SYNOPSIS
uP bg [job_id ..]
DESCRIPTION
If job control is enabled (see the description of set —m), the bg utility shall resume suspended jobs
from the current environment (see Section 2.13 (on page 2273)) by running them as background
jobs. If the job specified by job_id is already a running background job, the bg utility shall have no
effect and shall exit successfully.
Using bg to place a job into the background shall cause its process ID to become “known in the
current shell execution environment”, as if it had been started as an asynchronous list; see
Section 2.9.3.1 (on page 2259).
OPTIONS
None.
OPERANDS
The following operand shall be supported:
job_id Specify the job to be resumed as a background job. If no job_id operand is given,
the most recently suspended job shall be used. The format of job_id is described in
the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.205, Job Control
Job ID.
STDIN
Not used.
INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of bg:

LANG Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Xsl NLSPATH Determine the location of message catalogs for the processing of LC_ MESSAGES.

2422 Technical Standard (2000) (Draft July 31, 2000)

8077
8078

8079
8080

8081

8082

8083
8084

8085

8086
8087

8088
8089

8090
8091

8092
8093

8094

8095

8096
8097
8098

8099
8100
8101
8102
8103
8104

8105

8106

8107

8108
8109

8110
8111

8112
8113

8114
8115

Utilities bg

ASYNCHRONOUS EVENTS
Default.

STDOUT
The output of bg shall consist of a line in the format:

"[%d] %s\n", < job-number >, < command>
where the fields are as follows:

<job-number> A number that can be used to identify the job to the wait, fg, and kill utilities. Using
these utilities, the job can be identified by prefixing the job number with "%’ .

<command> The associated command that was given to the shell.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.
>0 An error occurred.

CONSEQUENCES OF ERRORS
If job control is disabled, the bg utility shall exit with an error and no job shall be placed in the
background.

APPLICATION USAGE
A job is generally suspended by typing the SUSP character (<control>-Z on most systems); see
the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. At
that point, bg can put the job into the background. This is most effective when the job is
expecting no terminal input and its output has been redirected to non-terminal files. A
background job can be forced to stop when it has terminal output by issuing the command:

stty tostop
A background job can be stopped with the command:
kill -s stop job ID

The bg utility does not work as expected when it is operating in its own utility execution
environment because that environment has no suspended jobs. In the following examples:

... | xargs bg
(bg)

each bg operates in a different environment and does not share its parent shell’s understanding
of jobs. For this reason, bg is generally implemented as a shell regular built-in.

EXAMPLES
None.

Shell and Utilities, Issue 6 2423

8116
8117
8118
8119
8120
8121
8122
8123

8124
8125

8126
8127

8128
8129

8130
8131

8132
8133

8134
8135

bg Utilities

RATIONALE

The extensions to the shell specified in this volume of IEEE Std. 1003.1-200x have mostly been
based on features provided by the KornShell. The job control features provided by bg, fg, and jobs
are also based on the KornShell. The standard developers examined the characteristics of the C
shell versions of these utilities and found that differences exist. Despite widespread use of the C
shell, the KornShell versions were selected for this volume of IEEE Std. 1003.1-200x to maintain a
degree of uniformity with the rest of the KornShell features selected (such as the very popular
command line editing features).

The bg utility is expected to wrap its output if the output exceeds the number of display
columns.

FUTURE DIRECTIONS
None.

SEE ALSO
fg, kill, jobs, wait

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is now marked as part of the User Portability Utilities option.

The JC margin marker on the SYNOPSIS is removed since support for Job Control is mandatory |
in this issue. This is a FIPS requirement.

2424 Technical Standard (2000) (Draft July 31, 2000)

8136
8137

8138
8139
8140
8141

8142
8143
8144
8145
8146
8147

8148

8149

8150
8151

8152
8153
8154

8155
8156

8157

8158

8159
8160
8161

8162
8163

8164

8165
8166

8167

8168
8169

8170
8171
8172

8173
8174
8175
8176

8177
8178

Utilities c99
NAME
€99 — compile standard C programs
SYNOPSIS
cD c99 [—c][-D namd =value 1] ... [-Ell —9l[-| directory | .. [-L directory |
[-o outfile 1 -Q[-sll -U name ... operand
DESCRIPTION

The ¢99 utility is an interface to the standard C compilation system; it shall accept source code
conforming to the ISO C standard. The system conceptually consists of a compiler and link
editor. The files referenced by operands shall be compiled and linked to produce an executable
file. (It is unspecified whether the linking occurs entirely within the operation of c99; some
systems may produce objects that are not fully resolved until the file is executed.)

If the —c option is specified, for all path name operands of the form file.c, the files:
$(basename pathname .c).o

shall be created as the result of successful compilation. If the —c option is not specified, it is
unspecified whether such .o files are created or deleted for the file.c operands.

If there are no options that prevent link editing (such as —c or —E), and all operands compile and
link without error, the resulting executable file shall be written according to the —o outfile option
(if present) or to the file a.out.

The executable file shall be created as specified in Section 1.7.1.4 (on page 2209), except that the
file permission bits shall be set to:

S_IRWXO | S_IRWXG | S_IRWXU

and the bits specified by the umask of the process shall be cleared.

OPTIONS

Shell and

The ¢99 utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section
12.2, Utility Syntax Guidelines, except that:

- The -I library operands have the format of options, but their position within a list of
operands affects the order in which libraries are searched.

- The order of specifying the —I and —-L options is significant.

- Portable applications shall specify each option separately; that is, grouping option letters (for
example, —cO) need not be recognized by all implementations.

The following options shall be supported:

—C Suppress the link-edit phase of the compilation, and do not remove any object files
that are produced.

-g Produce symbolic information in the object or executable files; the nature of this
information is unspecified, and may be modified by implementation-defined
interactions with other options.

=S Produce object or executable files, or both, from which symbolic and other
information not required for proper execution using the exec family defined in the
System Interfaces volume of IEEE Std. 1003.1-200x, has been removed (stripped). If
both —g and —s options are present, the action taken is unspecified.

-0 outfile Use the path name outfile, instead of the default a.out, for the executable file
produced. If the —o option is present with —c or —E, the result is unspecified.

Utilities, Issue 6 2425

8179
8180
8181
8182
8183
8184
8185

8186
8187
8188

8189
8190
8191
8192
8193
8194
8195
8196
8197

8198
8199
8200
8201
8202
8203

8204

8205

8206

8207
8208
8209
8210

8211
8212

8213
8214
8215

8216
8217
8218

8219

8220

8221

8222
8223

c99

2426

Utilities

—D name[=value]

—I directory

—L directory

-0

-U name

Define name as if by a C-language #define directive. If no =value is given, a value of
1 shall be used. The —D option has lower precedence than the —U option. That is, if
name is used in both a —U and a —D option, name shall be undefined regardless of
the order of the options. Additional implementation-defined names may be
provided by the compiler. Implementations shall support at least 2 048 bytes of -D
definitions and 256 names.

Copy C-language source files to standard output, expanding all preprocessor
directives; no compilation shall be performed. If any operand is not a text file, the
effects are unspecified.

Change the algorithm for searching for headers whose nhames are not absolute path
names to look in the directory named by the directory path name before looking in
the usual places. Thus, headers whose names are enclosed in double-quotes ("")
shall be searched for first in the directory of the file with the #include line, then in
directories named in -l options, and last in the usual places. For headers whose
names are enclosed in angle brackets ("<>"), the header shall be searched for only
in directories named in -l options and then in the usual places. Directories named
in -1 options shall be searched in the order specified. Implementations shall
support at least ten instances of this option in a single ¢99 command invocation.

Change the algorithm of searching for the libraries named in the -1 objects to look
in the directory named by the directory path name before looking in the usual
places. Directories named in —L options shall be searched in the order specified.
Implementations shall support at least ten instances of this option in a single ¢99
command invocation. If a directory specified by a —L option contains files named
libc.a, libm.a, libl.a, or liby.a, the results are unspecified.

Optimize. The nature of the optimization is unspecified.

Remove any initial definition of name.

Multiple instances of the —-D, —I, —U, and —L options can be specified.

OPERANDS
An operand is either in the form of a path name or the form -l library. The application shall
ensure that at least one operand of the path name form is specified. The following operands shall
be supported:

file.c

file.a

file.o

A C-language source file to be compiled and optionally linked. The application
shall ensure that the operand is of this form if the —c option is used.

A library of object files typically produced by the ar utility, and passed directly to
the link editor. Implementations may recognize implementation-defined suffixes
other than .a as denoting object file libraries.

An object file produced by c99 —-c and passed directly to the link editor.
Implementations may recognize implementation-defined suffixes other than .o as
denoting object files.

The processing of other files is implementation-defined.

=1 library

(The letter ell.) Search the library named:
lib library .a

A library shall be searched when its name is encountered, so the placement of a —I
operand is significant. Several standard libraries can be specified in this manner, as

Technical Standard (2000) (Draft July 31, 2000)

8224
8225

8226
8227

8228
8229
8230
8231
8232

8233
8234

8235
8236
8237
8238
8239

8240
8241

8242
8243
8244

8245
8246
8247

8248

8249
8250
8251

8252
8253

8254
8255
8256

8257

8258
8259
8260

8261
8262
8263

8264
8265
8266

Utilities c99

described in the EXTENDED DESCRIPTION section. Implementations may
recognize implementation-defined suffixes other than .a as denoting libraries.

STDIN
Not used.

INPUT FILES
The input file shall be one of the following: a text file containing a C-language source program,
an object file in the format produced by ¢c99 —c, or a library of object files, in the format produced
by archiving zero or more object files, using ar. Implementations may supply additional utilities
that produce files in these formats. Additional input file formats are implementation-defined.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of c99:

LANG Provide a default value for the internationalization variables that are unset or null.
If LANG is unset or null, the corresponding value from the implementation-
defined default locale shall be used. If any of the internationalization variables
contains an invalid setting, the utility shall behave as if none of the variables had
been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Xsl NLSPATH Determine the location of message catalogs for the processing of LC_ MESSAGES.

TMPDIR Provide a path name that should override the default directory for temporary files,
Xsl if any. On XSlI-conforming systems, provide a path name that shall override the
default directory for temporary files, if any.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If more than one file operand ending in .c (or possibly other unspecified suffixes) is given, for
each such file:

"%s:\n", < file >

may be written. These messages, if written, shall precede the processing of each input file; they
shall not be written to the standard output if they are written to the standard error, as described
in the STDERR section.

If the —E option is specified, the standard output shall be a text file that represents the results of
the preprocessing stage of the language; it may contain extra information appropriate for
subsequent compilation passes.

STDERR
Used only for diagnostic messages. If more than one file operand ending in .c (or possibly other
unspecified suffixes) is given, for each such file:

Shell and Utilities, Issue 6 2427

8267

8268
8269
8270
8271

8272
8273

8274
8275

8276

8277

8278

8279
8280
8281
8282
8283
8284
8285

8286
8287

8288
8289
8290

8291
8292

8293
8294
8295
8296

8297
8298
8299

8300
8301

8302
8303
8304

8305
8306
8307

c99

Utilities

"%s:\n", < file >

may be written to allow identification of the diagnostic and warning messages with the
appropriate input file. These messages, if written, shall precede the processing of each input file;
they shall not be written to the standard error if they are written to the standard output, as
described in the STDOUT section.

This utility may produce warning messages about certain conditions that do not warrant
returning an error (non-zero) exit value.

OUTPUT FILES

Obiject files or executable files or both are produced in unspecified formats.

EXTENDED DESCRIPTION

2428

Standard Libraries
The ¢99 utility shall recognize the following -1 operands for standard libraries:

-lc This operand shall make visible all library functions referenced in the System
Interfaces volume of IEEE Std. 1003.1-200x, with the possible exception of those
functions listed as residing in <aio.h>, <arpa/inet.h>, <math.h> <mqueue.h>,
<netdb.h>, <netinet/in.h>, <pthread.h>, <sched.h>, <semaphore.h>,
<sys/socket.h>, pthread_atfork() in <unistd.h>, and those functions marked as an
RT extension in <sys/mman.h> and <time.h>. This operand shall not be required
to be present to cause a search of this library.

=11 This operand shall make visible all functions required by the C-language output of
lex that are not made available through the -1 ¢c operand.

-l pthread This operand shall make visible all functions referenced in <pthread.h> and
pthread_atfork() referenced in <unistd.h>. An implementation may search this
library in the absence of this operand.

-Im This operand shall make visible all functions referenced in <math.h> An
implementation may search this library in the absence of this operand.

—Irt This operand shall make visible all functions referenced in <aio.h>, <mqueue.h>,
<sched.h>, and <semaphore.h>, and those functions marked as an RT extension in
<sys/mman.h> and <time.h>. An implementation may search this library in the
absence of this operand.

-l xnet This operand makes visible all functions referenced in <arpa/inet.h>, <netdb.h>,
<netinet/in.h>, and <sys/socket.h>. An implementation may search this library in
the absence of this operand.

-ly This operand shall make visible all functions required by the C-language output of
yacc that are not made available through the —I ¢ operand.

In the absence of options that inhibit invocation of the link editor, such as —c or —E, the ¢99 utility
shall cause the equivalent of a —I ¢ operand to be passed to the link editor as the last -l operand,
causing it to be searched after all other object files and libraries are loaded.

It is unspecified whether the libraries libc.a, libm.a, librt.a, libpthread.a, libl.a, liby.a, or libxnet
exist as regular files. The implementation may accept as -l operands names of objects that do
not exist as regular files.

Technical Standard (2000) (Draft July 31, 2000)

Utilities c99

8308 External Symbols

8309 The C compiler and link editor shall support the significance of external symbols up to a length
8310 of at least 31 bytes; the action taken upon encountering symbols exceeding the implementation-
8311 defined maximum symbol length is unspecified.

8312 The compiler and link editor shall support a minimum of 511 external symbols per source or
8313 object file, and a minimum of 4095 external symbols in total. A diagnostic message shall be
8314 written to the standard output if the implementation-defined limit is exceeded; other actions are
8315 unspecified.

8316 Programming Environments

8317 All implementations shall support one of the following programming environments as a default.
8318 Implementations may support more than one of the following programming environments.
8319 Applications can use sysconf() or getconf to determine which programming environments are
8320 supported.

8321 Table 4-4 Programming Environments: Type Sizes

8322 Programming Environment | Bitsin | Bitsin | Bitsin | Bitsin

8323 getconf Name int long pointer off t

8324 _POSIX_V6_ILP32_OFF32 32 32 32 32

8325 _POSIX_V6_ILP32_OFFBIG 32 32 32 >64

8326 _POSIX_V6_LP64_OFF64 32 64 64 64

8327 _POSIX_V6_LPBIG_OFFBIG =32 >64 >64 >64

g328 Notes to Reviewers

8329 This section with side shading will not appear in the final copy. - Ed.

8330 The names of the macros above may be changed. This has been added to the issues list.

8331 Implementations provide configuration strings for C compiler flags, linker/loader flags, and
8332 libraries for each supported environment. When an application needs to use a specific
8333 programming environment rather than the implementation default programming environment
8334 while compiling, the application shall first verify that the implementation supports the desired
8335 environment. If the desired programming environment is supported, the application shall then
8336 invoke c99 with the appropriate C compiler flags as the first options for the compile, the
8337 appropriate linker/loader flags after any other options but before any operands, and the
8338 appropriate libraries at the end of the operands.

8339 Portable applications shall not attempt to link together object files compiled for different
8340 programming models. Applications shall also be aware that binary data placed in shared
8341 memory or in files might not be recognized by applications built for other programming models.

Shell and Ut