
|||||||||||

Chapter 1 |

Introduction |1

2 1.1 Scope
3 The scope of IEEE Std. 1003.1-200x is described in the Base Definitions volume of |
4 IEEE Std. 1003.1-200x. |

5 1.2 Conformance
6 Conformance requirements for IEEE Std. 1003.1-200x are defined in the Base Definitions volume |
7 of IEEE Std. 1003.1-200x, Chapter 2, Conformance. |

8 1.3 Normative References
9 Normative references for IEEE Std. 1003.1-200x are defined in the Base Definitions volume of |
10 IEEE Std. 1003.1-200x. |

11 1.4 Changes from Issue 4

12 Notes to Reviewers |
13 This section with side shading will not appear in the final copy. - Ed.

14 The change history is subject to revision. The intention is to keep change history from Issue 4,
15 and in the Issue 5 to Issue 6 change history to note changes from POSIX.2-1992 as well as Issue 5.

16 The following sections describe changes made to this volume of IEEE Std. 1003.1-200x since |
17 Issue 4. The CHANGE HISTORY section for each utility describes technical changes made to
18 that utility since Issue 4. Changes made between Issue 2 and Issue 4 are not included.

19 1.4.1 Changes from Issue 4 to Issue 4, Version 2

20 The following list summarizes the major changes that were made in this volume of
21 IEEE Std. 1003.1-200x from Issue 4 to Issue 4, Version 2:

22 • The X/Open UNIX extension was added, which specifies the common core utilities of 4.3
23 Berkeley Software Distribution (4.3 BSD), the OSF AES, and SVID Issue 3.

Shell and Utilities, Issue 6 2203

Changes from Issue 4 Introduction

24 1.4.2 Changes from Issue 4, Version 2 to Issue 5

25 The following list summarizes the major changes that were made in this volume of
26 IEEE Std. 1003.1-200x from Issue 4, Version 2 to Issue 5:

27 • Large File Summit (LFS) Extensions were added.

28 • Some utilities were updated to reflect changes for the POSIX Realtime Extension.

29 • Some utilities were updated to reflect changes for the POSIX Threads Extension.

30 • The LEGACY category of utilities was introduced as a replacement for the TO BE
31 WITHDRAWN, WITHDRAWN, and Possibly Unsupportable categories.

32 • The following utilities were added:

33 fuser
34 ipcrm
35 ipcs
36 link
37 unlink

38 1.4.3 Changes from Issue 5 to Issue 6

39 The following list summarizes the major changes that were made in this volume of
40 IEEE Std. 1003.1-200x from Issue 5 to Issue 6:

41 • This volume of IEEE Std. 1003.1-200x is extensively revised so it can be both an IEEE POSIX
42 Standard and an Open Group Technical Standard.

43 • this volume of IEEE Std. 1003.1-200x is updated to mandate support of FIPS 151-2. The
44 following changes were made:

45 — Support is mandated for the capabilities associated with the following symbolic
46 constants:

47 _POSIX_CHOWN_RESTRICTED
48 _POSIX_JOB_CONTROL
49 _POSIX_SAVED_IDS

50 — In the environment for the login shell, the environment variables LOGNAME and HOME |
51 shall be defined and have the properties described in the Base Definitions volume of |
52 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

53 • this volume of IEEE Std. 1003.1-200x is updated to align with some features of the Single
54 UNIX Specification.

55 • A RATIONALE section is added to each reference page. |

2204 Technical Standard (2000) (Draft July 31, 2000)

Introduction Terminology

56 1.5 Terminology
57 This section appears in the Base Definitions volume of IEEE Std. 1003.1-200x, but is repeated |
58 here for convenience: |

59 For the purposes of IEEE Std. 1003.1-200x, the following terminology definitions apply:

60 can
61 Describes a permissible optional feature or behavior available to the user or application. The
62 feature or behavior is mandatory for an implementation that conforms to
63 IEEE Std. 1003.1-200x. An application can rely on the existence of the feature or behavior.

64 implementation-defined
65 Describes a value or behavior that is not defined by IEEE Std. 1003.1-200x but is selected by
66 an implementor. The value or behavior may vary among implementations that conform to
67 IEEE Std. 1003.1-200x. An application should not rely on the existence of the value or
68 behavior. An application that relies on such a value or behavior cannot be assured to be
69 portable across conforming implementations.

70 The implementor shall document such a value or behavior so that it can be used correctly
71 by an application.

72 legacy
73 Describes a feature or behavior that is being retained for compatibility with older
74 applications, but which has limitations which make it inappropriate for developing portable
75 applications. New applications should use alternative means of obtaining equivalent
76 functionality.

77 may
78 Describes a feature or behavior that is optional for an implementation that conforms to
79 IEEE Std. 1003.1-200x. An application should not rely on the existence of the feature or
80 behavior. An application that relies on such a feature or behavior cannot be assured to be
81 portable across conforming implementations.

82 To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

83 shall
84 For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or
85 behavior that is mandatory. An application can rely on the existence of the feature or
86 behavior.

87 For an application or user, describes a behavior that is mandatory.

88 should
89 For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or
90 behavior that is recommended but not mandatory. An application should not rely on the
91 existence of the feature or behavior. An application that relies on such a feature or behavior
92 cannot be assured to be portable across conforming implementations.

93 For an application, describes a feature or behavior that is recommended programming
94 practice for optimum portability.

95 undefined
96 Describes the nature of a value or behavior not defined by IEEE Std. 1003.1-200x which
97 results from use of an invalid program construct or invalid data input.

98 The value or behavior may vary among implementations that conform to
99 IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the
100 value or behavior. An application that relies on any particular value or behavior cannot be

Shell and Utilities, Issue 6 2205

Terminology Introduction

101 assured to be portable across conforming implementations.

102 unspecified
103 Describes the nature of a value or behavior not specified by IEEE Std. 1003.1-200x which
104 results from use of a valid program construct or valid data input.

105 The value or behavior may vary among implementations that conform to
106 IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the
107 value or behavior. An application that relies on any particular value or behavior cannot be
108 assured to be portable across conforming implementations.

2206 Technical Standard (2000) (Draft July 31, 2000)

Introduction Definitions

109 1.6 Definitions
110 Concepts and definitions are defined in the Base Definitions volume of IEEE Std. 1003.1-200x. |

Shell and Utilities, Issue 6 2207

Relationship to Other Documents Introduction

111 1.7 Relationship to Other Documents

112 1.7.1 The System Interfaces volume of IEEE Std. 1003.1-200x

113 This subsection describes some of the features provided by the System Interfaces volume of
114 IEEE Std. 1003.1-200x that are assumed to be globally available by all systems conforming to this
115 volume of IEEE Std. 1003.1-200x. This subsection does not attempt to detail all of the features
116 defined in the System Interfaces volume of IEEE Std. 1003.1-200x that are required by all of the
117 utilities defined in this volume of IEEE Std. 1003.1-200x; the utility and function descriptions
118 point out additional functionality required to provide the corresponding specific features
119 needed by each.

120 The following subsections describe frequently used concepts. Many of these concepts are |
121 described in the Base Definitions volume of IEEE Std. 1003.1-200x. Utility and function |
122 description statements override these defaults when appropriate.

123 1.7.1.1 Process Attributes

124 The following process attributes, as described in the System Interfaces volume of
125 IEEE Std. 1003.1-200x, are assumed to be supported for all processes in this volume of
126 IEEE Std. 1003.1-200x:

127 Controlling Terminal
128 Current Working Directory
129 Effective Group ID
130 Effective User ID
131 File Descriptors
132 File Mode Creation Mask
133 Process Group ID
134 Process ID

Real Group ID
Real User ID
Root Directory
Saved Set-Group-ID
Saved Set-User-ID
Session Membership
Supplementary Group IDs

135 A conforming implementation may include additional process attributes.

136 1.7.1.2 Concurrent Execution of Processes

137 The following functionality of the fork () function defined in the System Interfaces volume of
138 IEEE Std. 1003.1-200x shall be available on all systems conforming to this volume of
139 IEEE Std. 1003.1-200x:

140 1. Independent processes shall be capable of executing independently without either process
141 terminating.

142 2. A process shall be able to create a new process with all of the attributes referenced in
143 Section 1.7.1.1, determined according to the semantics of a call to the fork () function
144 defined in the System Interfaces volume of IEEE Std. 1003.1-200x followed by a call in the
145 child process to one of the exec functions defined in the System Interfaces volume of
146 IEEE Std. 1003.1-200x.

147 1.7.1.3 File Access Permissions

148 The file access control mechanism described by the Base Definitions volume of |
149 IEEE Std. 1003.1-200x, Section 4.1, File Access Permissions applies to all files on an |
150 implementation conforming to this volume of IEEE Std. 1003.1-200x.

2208 Technical Standard (2000) (Draft July 31, 2000)

Introduction Relationship to Other Documents

151 1.7.1.4 File Read, Write, and Creation

152 If a file that does not exist is to be written, it shall be created as described below, unless the |
153 utility description states otherwise. |

154 When a file that does not exist is created, the following features defined in the System Interfaces
155 volume of IEEE Std. 1003.1-200x shall apply unless the utility or function description states
156 otherwise:

157 1. The user ID of the file is set to the effective user ID of the calling process.

158 2. The group ID of the file is set to the effective group ID of the calling process or the group
159 ID of the directory in which the file is being created.

160 3. If the file is a regular file, the permission bits of the file are set to:

161 S_IROTH | S_IWOTH | S_IRGRP | S_IWGRP | S_IRUSR | S_IWUSR

162 (see the description of File Modes in the Base Definitions volume of IEEE Std. 1003.1-200x, |
163 Chapter 13, Headers, <sys/stat.h>) except that the bits specified by the file mode creation |
164 mask of the process are cleared. If the file is a directory, the permission bits are set to:

165 S_IRWXU | S_IRWXG | S_IRWXO

166 except that the bits specified by the file mode creation mask of the process are cleared.

167 4. The st_atime , st_ctime, and st_mtime fields of the file shall be updated as specified in the
168 System Interfaces volume of IEEE Std. 1003.1-200x, Section 2.5, Standard I/O Streams.

169 5. If the file is a directory, it shall be an empty directory; otherwise, the file shall have length
170 zero.

171 6. If the file is a symbolic link, the effect shall be undefined unless the {POSIX2_SYMLINKS}
172 variable is in effect for the directory in which the symbolic link would be created.

173 7. Unless otherwise specified, the file created shall be a regular file.

174 When an attempt is made to create a file that already exists, the action shall depend on the file
175 type:

176 1. For directories and FIFO special files, the attempt shall fail and the utility shall either
177 continue with its operation or exit immediately with a non-zero status, depending on the
178 description of the utility.

179 2. For regular files:

180 a. The user ID, group ID, and permission bits of the file shall not be changed.

181 b. The file shall be truncated to zero length.

182 c. The st_ctime and st_mtime fields shall be marked for update.

183 3. For other file types, the effect is implementation-defined. |

184 When a file is to be appended, the file shall be opened in a manner equivalent to using the
185 O_APPEND flag, without the O_TRUNC flag, in the open() function defined in the System
186 Interfaces volume of IEEE Std. 1003.1-200x. |

187 When a file is to be read or written, the file shall be opened with an access mode corresponding |
188 to the operation to be performed. If file access permissions deny access, the requested operation |
189 shall fail. |

Shell and Utilities, Issue 6 2209

Relationship to Other Documents Introduction

190 1.7.1.5 File Removal

191 When a directory that is the root directory or current working directory of any process is
192 removed, the effect is implementation-defined. If file access permissions deny access, the |
193 requested operation fails. Otherwise, when a file is removed:

194 1. Its directory entry is removed from the file system.

195 2. The link count of the file is decremented.

196 3. If the file is an empty directory (see the Base Definitions volume of IEEE Std. 1003.1-200x, |
197 Section 3.145, Empty Directory): |

198 a. If no process has the directory open, the space occupied by the directory is freed and
199 the directory is no longer accessible.

200 b. If one or more processes have the directory open, the directory contents are
201 preserved until all references to the file have been closed.

202 4. If the file is a directory that is not empty, the st_ctime field is marked for update.

203 5. If the file is not a directory:

204 a. If the link count becomes zero:

205 i. If no process has the file open, the space occupied by the file is freed and the
206 file is no longer accessible.

207 ii. If one or more processes have the file open, the file contents are preserved until
208 all references to the file have been closed.

209 b. If the link count is not reduced to zero, the st_ctime field is marked for update.

210 6. The st_ctime and st_mtime fields of the containing directory are marked for update.

211 1.7.1.6 File Time Values

212 All files shall have the three time values described by the Base Definitions volume of |
213 IEEE Std. 1003.1-200x, Section 4.3, File Times Update. |

214 1.7.1.7 File Contents

215 When a reference is made to the contents of a file, pathname , this means the equivalent of all of
216 the data placed in the space pointed to by buf when performing the read() function calls in the
217 following operations defined in the System Interfaces volume of IEEE Std. 1003.1-200x:

218 while (read (fildes, buf, nbytes) > 0)
219 ;

220 If the file is indicated by a path name pathname , the file descriptor shall be determined by the
221 equivalent of the following operation defined in the System Interfaces volume of
222 IEEE Std. 1003.1-200x:

223 fildes = open (pathname, O_RDONLY);

224 The value of nbytes in the above sequence is unspecified; if the file is of a type where the data
225 returned by read() would vary with different values, the value is one that results in the most
226 data being returned.

227 If the read() function calls would return an error, it is unspecified whether the contents of the file
228 are considered to include any data from offsets in the file beyond where the error would be
229 returned.

2210 Technical Standard (2000) (Draft July 31, 2000)

Introduction Relationship to Other Documents

230 1.7.1.8 Path Name Resolution

231 The path name resolution algorithm, described by the Base Definitions volume of |
232 IEEE Std. 1003.1-200x, Section 4.5, Path Name Resolution, is used by implementations |
233 conforming to this volume of IEEE Std. 1003.1-200x; see also the Base Definitions volume of |
234 IEEE Std. 1003.1-200x, Section 4.4, File Hierarchy. |

235 1.7.1.9 Changing the Current Working Directory

236 When the current working directory (see the Base Definitions volume of IEEE Std. 1003.1-200x, |
237 Section 3.438, Working Directory) is to be changed, unless the utility or function description |
238 states otherwise, the operation shall succeed unless a call to the chdir() function defined in the
239 System Interfaces volume of IEEE Std. 1003.1-200x would fail when invoked with the new
240 working directory path name as its argument.

241 1.7.1.10 Establish the Locale

242 The functionality of the setlocale () function defined in the System Interfaces volume of
243 IEEE Std. 1003.1-200x is assumed to be available on all systems conforming to this volume of
244 IEEE Std. 1003.1-200x; that is, utilities that require the capability of establishing an international
245 operating environment shall be permitted to set the specified category of the international
246 environment.

247 1.7.1.11 Actions Equivalent to Functions

248 Some utility descriptions specify that a utility performs actions equivalent to a function defined
249 in the System Interfaces volume of IEEE Std. 1003.1-200x. Such specifications require only that
250 the external effects be equivalent, not that any effect within the utility and visible only to the
251 utility be equivalent.

Shell and Utilities, Issue 6 2211

Portability Introduction

252 1.8 Portability
253 Some of the utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x and functions in
254 the System Interfaces volume of IEEE Std. 1003.1-200x describe functionality that might not be
255 fully portable to systems meeting the requirements for POSIX conformance (see the Base
256 Definitions volume of IEEE Std. 1003.1-200x, Chapter 2, Conformance).

257 Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
258 the margin identifies the nature of the option, extension, or warning (see Section 1.8.1). For
259 maximum portability, an application should avoid such functionality.

260 Unless the primary task of a utility is to produce textual material on its standard output,
261 application developers should not rely on the format or content of any such material that may be
262 produced. Where the primary task is to provide such material, but the output format is
263 incompletely specified, the description is marked with the OF margin code and shading.
264 Application developers are warned not to expect that the output of such an interface on one
265 system is any guide to its behavior on another system.

266 1.8.1 Codes

267 Codes and their meanings are listed in the Base Definitions volume of IEEE Std. 1003.1-200x, but |
268 are repeated here for convenience: |

269 ADV Advisory Information
270 The functionality described is optional. The functionality described is also an extension to the
271 ISO C standard.

272 Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
273 Where additional semantics apply to a function, the material is identified by use of the ADV
274 margin legend.

275 AIO Asynchronous Input and Output
276 The functionality described is optional. The functionality described is also an extension to the
277 ISO C standard.

278 Where applicable, functions are marked with the AIO margin legend in the SYNOPSIS section.
279 Where additional semantics apply to a function, the material is identified by use of the AIO
280 margin legend.

281 BAR Barriers
282 The functionality described is optional. The functionality described is also an extension to the
283 ISO C standard.

284 Where applicable, functions are marked with the BAR margin legend in the SYNOPSIS section.
285 Where additional semantics apply to a function, the material is identified by use of the BAR
286 margin legend.

287 BE Batch Environment Services and Utilities
288 The functionality described is optional.

289 Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
290 Where additional semantics apply to a utility, the material is identified by use of the BE margin
291 legend.

292 CD C-Language Development Utilities
293 The functionality described is optional.

294 Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
295 Where additional semantics apply to a utility, the material is identified by use of the CD margin

2212 Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

296 legend.

297 CPT Process CPU-Time Clocks
298 The functionality described is optional. The functionality described is also an extension to the
299 ISO C standard.

300 Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
301 Where additional semantics apply to a function, the material is identified by use of the CPT
302 margin legend.

303 CS Clock Selection
304 The functionality described is optional. The functionality described is also an extension to the
305 ISO C standard.

306 Where applicable, functions are marked with the CS margin legend in the SYNOPSIS section.
307 Where additional semantics apply to a function, the material is identified by use of the CS
308 margin legend.

309 CX Extension to the ISO C standard
310 The functionality described is an extension to the ISO C standard. Application writers may
311 make use of an extension as it is supported on all IEEE Std. 1003.1-200x-conforming systems.

312 FD FORTRAN Development Utilities
313 The functionality described is optional.

314 Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section.
315 Where additional semantics apply to a utility, the material is identified by use of the FD margin
316 legend.

317 FR FORTRAN Runtime Utilities
318 The functionality described is optional.

319 Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.
320 Where additional semantics apply to a utility, the material is identified by use of the FR margin
321 legend.

322 FSC File Synchronization
323 The functionality described is optional. The functionality described is also an extension to the
324 ISO C standard.

325 Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
326 Where additional semantics apply to a function, the material is identified by use of the FSC
327 margin legend.

328 IP6 IPV6
329 The functionality described is optional. The functionality described is also an extension to the
330 ISO C standard.

331 Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
332 Where additional semantics apply to a function, the material is identified by use of the IP6
333 margin legend. |

334 MAN Mandatory in the Next Draft
335 This is an interim draft code used to aid reviewers during the development of
336 IEEE Std. 1003.1-200x. It denotes a feature that was previously an option or extension that is
337 being brought into the mandatory base functionality. This margin code will be removed from the
338 final draft.

339 MF Memory Mapped Files
340 The functionality described is optional. The functionality described is also an extension to the

Shell and Utilities, Issue 6 2213

Portability Introduction

341 ISO C standard.

342 Where applicable, functions are marked with the MF margin legend in the SYNOPSIS section.
343 Where additional semantics apply to a function, the material is identified by use of the MF
344 margin legend.

345 ML Process Memory Locking
346 The functionality described is optional. The functionality described is also an extension to the
347 ISO C standard.

348 Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
349 Where additional semantics apply to a function, the material is identified by use of the ML
350 margin legend.

351 MLR Range Memory Locking
352 The functionality described is optional. The functionality described is also an extension to the
353 ISO C standard.

354 Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
355 Where additional semantics apply to a function, the material is identified by use of the MLR
356 margin legend.

357 MON Monotonic Clock
358 The functionality described is optional. The functionality described is also an extension to the
359 ISO C standard.

360 Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
361 Where additional semantics apply to a function, the material is identified by use of the MON
362 margin legend.

363 MPR Memory Protection
364 The functionality described is optional. The functionality described is also an extension to the
365 ISO C standard.

366 Where applicable, functions are marked with the MPR margin legend in the SYNOPSIS section.
367 Where additional semantics apply to a function, the material is identified by use of the MPR
368 margin legend.

369 MSG Message Passing
370 The functionality described is optional. The functionality described is also an extension to the
371 ISO C standard.

372 Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.
373 Where additional semantics apply to a function, the material is identified by use of the MSG
374 margin legend.

375 OB Obsolescent
376 The functionality described may be withdrawn in a future version of this volume of
377 IEEE Std. 1003.1-200x. Strictly Conforming POSIX Applications and Strictly Conforming XSI
378 Applications shall not use obsolescent features.

379 OF Output Format Incompletely Specified
380 The functionality described is an XSI extension. The format of the output produced by the utility
381 is not fully specified. It is therefore not possible to post-process this output in a consistent
382 fashion. Typical problems include unknown length of strings and unspecified field delimiters.

383 OH Optional Header
384 In the SYNOPSIS section of some interfaces in the System Interfaces volume of
385 IEEE Std. 1003.1-200x an included header is marked as in the following example:

2214 Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

386 OH #include <sys/types.h>
387 #include <grp.h>
388 struct group *getgrnam(const char *name);

389 This indicates that the marked header is not required on XSI-conformant systems. |

390 PIO Prioritized Input and Output
391 The functionality described is optional. The functionality described is also an extension to the
392 ISO C standard.

393 Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
394 Where additional semantics apply to a function, the material is identified by use of the PIO
395 margin legend.

396 PS Process Scheduling
397 The functionality described is optional. The functionality described is also an extension to the
398 ISO C standard.

399 Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
400 Where additional semantics apply to a function, the material is identified by use of the PS
401 margin legend. |

402 RTS Realtime Signals Extension
403 The functionality described is optional. The functionality described is also an extension to the
404 ISO C standard.

405 Where applicable, functions are marked with the RTS margin legend in the SYNOPSIS section.
406 Where additional semantics apply to a function, the material is identified by use of the RTS
407 margin legend. |

408 SD Software Development Utilities
409 The functionality described is optional.

410 Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
411 Where additional semantics apply to a utility, the material is identified by use of the SD margin
412 legend.

413 SEM Semaphores
414 The functionality described is optional. The functionality described is also an extension to the
415 ISO C standard.

416 Where applicable, functions are marked with the SEM margin legend in the SYNOPSIS section.
417 Where additional semantics apply to a function, the material is identified by use of the SEM
418 margin legend.

419 SHM Shared Memory Objects
420 The functionality described is optional. The functionality described is also an extension to the
421 ISO C standard.

422 Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
423 Where additional semantics apply to a function, the material is identified by use of the SHM
424 margin legend.

425 SIO Synchronized Input and Output
426 The functionality described is optional. The functionality described is also an extension to the
427 ISO C standard.

428 Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
429 Where additional semantics apply to a function, the material is identified by use of the SIO
430 margin legend.

Shell and Utilities, Issue 6 2215

Portability Introduction

431 SPI Spin Locks
432 The functionality described is optional. The functionality described is also an extension to the
433 ISO C standard.

434 Where applicable, functions are marked with the SPI margin legend in the SYNOPSIS section.
435 Where additional semantics apply to a function, the material is identified by use of the SPI
436 margin legend.

437 SPN Spawn
438 The functionality described is optional. The functionality described is also an extension to the
439 ISO C standard.

440 Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
441 Where additional semantics apply to a function, the material is identified by use of the SPN
442 margin legend.

443 SS Process Sporadic Server
444 The functionality described is optional. The functionality described is also an extension to the
445 ISO C standard.

446 Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
447 Where additional semantics apply to a function, the material is identified by use of the SS
448 margin legend.

449 TCT Thread CPU-Time Clocks
450 The functionality described is optional. The functionality described is also an extension to the
451 ISO C standard.

452 Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.
453 Where additional semantics apply to a function, the material is identified by use of the TCT
454 margin legend.

455 THR Threads
456 The functionality described is optional. The functionality described is also an extension to the
457 ISO C standard.

458 Where applicable, functions are marked with the THR margin legend in the SYNOPSIS section.
459 Where additional semantics apply to a function, the material is identified by use of the THR
460 margin legend.

461 TMO Timeouts
462 The functionality described is optional. The functionality described is also an extension to the
463 ISO C standard.

464 Where applicable, functions are marked with the TMO margin legend in the SYNOPSIS section.
465 Where additional semantics apply to a function, the material is identified by use of the TMO
466 margin legend.

467 TMR Timers
468 The functionality described is optional. The functionality described is also an extension to the
469 ISO C standard.

470 Where applicable, functions are marked with the TMR margin legend in the SYNOPSIS section.
471 Where additional semantics apply to a function, the material is identified by use of the TMR
472 margin legend.

473 TPI Threads Priority Inheritance
474 The functionality described is optional. The functionality described is also an extension to the
475 ISO C standard.

2216 Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

476 Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
477 Where additional semantics apply to a function, the material is identified by use of the TPI
478 margin legend.

479 TPP Thread Priority Protection
480 The functionality described is optional. The functionality described is also an extension to the
481 ISO C standard.

482 Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
483 Where additional semantics apply to a function, the material is identified by use of the TPP
484 margin legend.

485 TPS Thread Execution Scheduling
486 The functionality described is optional. The functionality described is also an extension to the
487 ISO C standard.

488 Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
489 Where additional semantics apply to a function, the material is identified by use of the TPS
490 margin legend. |

491 TRC Trace |
492 The functionality described is optional. The functionality described is also an extension to the |
493 ISO C standard. |

494 Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section. |
495 Where additional semantics apply to a function, the material is identified by use of the TRC |
496 margin legend. |

497 TEF Trace Event Filter |
498 The functionality described is optional. The functionality described is also an extension to the |
499 ISO C standard. |

500 Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section. |
501 Where additional semantics apply to a function, the material is identified by use of the TEF |
502 margin legend. |

503 TRL Trace Log |
504 The functionality described is optional. The functionality described is also an extension to the |
505 ISO C standard. |

506 Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section. |
507 Where additional semantics apply to a function, the material is identified by use of the TRL |
508 margin legend. |

509 TRI Trace Inherit |
510 The functionality described is optional. The functionality described is also an extension to the |
511 ISO C standard. |

512 Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section. |
513 Where additional semantics apply to a function, the material is identified by use of the TRI |
514 margin legend. |

515 TSA Thread Stack Address Attribute
516 The functionality described is optional. The functionality described is also an extension to the
517 ISO C standard.

518 Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
519 Where additional semantics apply to a function, the material is identified by use of the TSA
520 margin legend.

Shell and Utilities, Issue 6 2217

Portability Introduction

521 TSF Thread-Safe Functions
522 The functionality described is optional. The functionality described is also an extension to the
523 ISO C standard.

524 Where applicable, functions are marked with the TSF margin legend in the SYNOPSIS section.
525 Where additional semantics apply to a function, the material is identified by use of the TSF
526 margin legend.

527 TSH Thread Process-Shared Synchronization
528 The functionality described is optional. The functionality described is also an extension to the
529 ISO C standard.

530 Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
531 Where additional semantics apply to a function, the material is identified by use of the TSH
532 margin legend.

533 TSP Thread Sporadic Server
534 The functionality described is optional. The functionality described is also an extension to the
535 ISO C standard.

536 Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
537 Where additional semantics apply to a function, the material is identified by use of the TSP
538 margin legend.

539 TSS Thread Stack Address Size
540 The functionality described is optional. The functionality described is also an extension to the
541 ISO C standard.

542 Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
543 Where additional semantics apply to a function, the material is identified by use of the TSS
544 margin legend.

545 TYM Typed Memory Objects
546 The functionality described is optional. The functionality described is also an extension to the
547 ISO C standard.

548 Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
549 Where additional semantics apply to a function, the material is identified by use of the TYM
550 margin legend.

551 UN Possibly Unsupportable Feature
552 The functionality described is an XSI extension. It need not be possible to implement the
553 required functionality (as defined) on all conformant systems and the functionality need not be
554 present. This may, for example, be the case where the conformant system is hosted and the
555 underlying system provides the service in an alternative way.

556 UP User Portability Utilities
557 The functionality described is optional.

558 Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
559 Where additional semantics apply to a utility, the material is identified by use of the UP margin
560 legend.

561 XSI Extension
562 The functionality described is an XSI extension. Functionality marked XSI is also an extension to
563 the ISO C standard. Application writers may confidently make use of an extension on all
564 systems supporting the X/Open System Interfaces Extension.

2218 Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

565 If an entire SYNOPSIS section is shaded and marked with one XSI, all the functionality described
566 in that reference page is an extension. See the Base Definitions volume of IEEE Std. 1003.1-200x, |
567 Section 3.441, XSI. |

568 XSR XSI STREAMS
569 The functionality described is optional. The functionality described is also an extension to the
570 ISO C standard.

571 Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
572 Where additional semantics apply to a function, the material is identified by use of the XSR
573 margin legend. |

Shell and Utilities, Issue 6 2219

Utility Limits Introduction

574 1.9 Utility Limits
575 This section lists magnitude limitations imposed by a specific implementation. The braces
576 notation, {LIMIT}, is used in this volume of IEEE Std. 1003.1-200x to indicate these values, but
577 the braces are not part of the name.

578 Table 1-1 Utility Limit Minimum Values

579 Name Description Value___
580 The maximum obase value allowed by the bc
581 utility.

{POSIX2_BC_BASE_MAX} 99

582 The maximum number of elements permitted in
583 an array by the bc utility.

{POSIX2_BC_DIM_MAX} 2048

584 The maximum scale value allowed by the bc
585 utility.

{POSIX2_BC_SCALE_MAX} 99

586 The maximum length of a string constant
587 accepted by the bc utility.

{POSIX2_BC_STRING_MAX} 1000

588 The maximum number of weights that can be
589 assigned to an entry of the LC_COLLATE order
590 keyword in the locale definition file; see the
591 border_start keyword in the Base Definitions
592 volume of IEEE Std. 1003.1-200x, Section 7.3.2,
593 LC_COLLATE.

{POSIX2_COLL_WEIGHTS_MAX} 2

594 The maximum number of expressions that can
595 be nested within parentheses by the expr utility.

{POSIX2_EXPR_NEST_MAX} 32

596 Unless otherwise noted, the maximum length, in
597 bytes, of the input line of a utility (either
598 standard input or another file), when the utility
599 is described as processing text files. The length
600 includes room for the trailing newline.

{POSIX2_LINE_MAX} 2048

601 The maximum number of repeated occurrences
602 of a BRE permitted when using the interval
603 notation \{m,n\}; see the Base Definitions
604 volume of IEEE Std. 1003.1-200x, Section 9.3.6,
605 BREs Matching Multiple Characters.

{POSIX2_RE_DUP_MAX} 255

606 This value indicates the version of the utilities in
607 this volume of IEEE Std. 1003.1-200x that are
608 provided by the implementation. It changes
609 with each published version.

{POSIX2_VERSION} 199209

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

610 The values specified in Table 1-1 represent the lowest values conforming implementations shall
611 provide and, consequently, the largest values on which an application can rely without further
612 enquiries, as described below. These values shall be accessible to applications via the getconf
613 utility (see getconf (on page 2692)) and through the sysconf() function defined in the System
614 Interfaces volume of IEEE Std. 1003.1-200x. The literal names shown in Table 1-1 apply only to
615 the getconf utility; the high-level language binding describes the exact form of each name to be
616 used by the interfaces in that binding.

617 Implementations may provide more liberal, or less restrictive, values than shown in Table 1-1.
618 These possibly more liberal values are accessible using the symbols in Table 1-2 (on page 2221).

619 The sysconf() function defined in the System Interfaces volume of IEEE Std. 1003.1-200x or the
620 getconf utility return the value of each symbol on each specific implementation. The value so

2220 Technical Standard (2000) (Draft July 31, 2000)

Introduction Utility Limits

621 retrieved is the largest, or most liberal, value that is available throughout the session lifetime, as
622 determined at session creation. The literal names shown in the table apply only to the getconf
623 utility; the high-level language binding describes the exact form of each name to be used by the
624 interfaces in that binding.

625 All numeric limits defined by the System Interfaces volume of IEEE Std. 1003.1-200x, such as
626 {PATH_MAX}, also apply to this volume of IEEE Std. 1003.1-200x. All the utilities defined by this
627 volume of IEEE Std. 1003.1-200x are implicitly limited by these values, unless otherwise noted in
628 the utility descriptions.

629 It is not guaranteed that the application can actually reach the specified limit of an |
630 implementation in any given case, or at all, as a lack of virtual memory or other resources may |
631 prevent this. The limit value indicates only that the implementation does not specifically impose |
632 any arbitrary, more restrictive limit. |

633 Table 1-2 Symbolic Utility Limits
634 __
635 Name Description Minimum Value__LL LL LL LL

636 The maximum obase value
637 allowed by the bc utility.

{BC_BASE_MAX} {POSIX2_BC_BASE_MAX}

638 The maximum number of
639 elements permitted in an
640 array by the bc utility.

{BC_DIM_MAX} {POSIX2_BC_DIM_MAX}

641 The maximum scale value
642 allowed by the bc utility.

{BC_SCALE_MAX} {POSIX2_BC_SCALE_MAX}

643 The maximum length of a
644 string constant accepted by
645 the bc utility.

{BC_STRING_MAX} {POSIX2_BC_STRING_MAX}

646 The maximum number of
647 weights that can be
648 assigned to an entry of the
649 LC_COLLATE order
650 keyword in the locale
651 definition file; see the
652 order_start keyword in the
653 Base Definitions volume of
654 IEEE Std. 1003.1-200x,
655 Section 7.3.2, LC_COLLATE.

{COLL_WEIGHTS_MAX} {POSIX2_COLL_WEIGHTS_MAX}

656 The maximum number of
657 expressions that can be
658 nested within parentheses
659 by the expr utility.

{EXPR_NEST_MAX} {POSIX2_EXPR_NEST_MAX}

660 Unless otherwise noted, the
661 maximum length, in bytes,
662 of the input line of a utility
663 (either standard input or
664 another file), when the
665 utility is described as
666 processing text files. The
667 length includes room for the

{LINE_MAX} {POSIX2_LINE_MAX}

668 __LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Shell and Utilities, Issue 6 2221

Utility Limits Introduction

669 __
670 Name Description Minimum Value__LL LL LL LL

671 trailing newline.
672 The maximum number of
673 repeated occurrences of a
674 BRE permitted when using
675 the interval notation
676 \{m,n\}; see the Base
677 Definitions volume of
678 IEEE Std. 1003.1-200x,
679 Section 9.3.6, BREs
680 Matching Multiple
681 Characters.

{RE_DUP_MAX} {POSIX2_RE_DUP_MAX}

__LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

682 The following value may be a constant within an implementation or may vary from one path
683 name to another.

684 {POSIX2_SYMLINKS}
685 When referring to a directory, the system supports the creation of symbolic links within that
686 directory; for non-directory files, the meaning of {POSIX2_SYMLINKS} is undefined.

2222 Technical Standard (2000) (Draft July 31, 2000)

Introduction Grammar Conventions

687 1.10 Grammar Conventions
688 Portions of this volume of IEEE Std. 1003.1-200x are expressed in terms of a special grammar
689 notation. It is used to portray the complex syntax of certain program input. The grammar is
690 based on the syntax used by the yacc utility. However, it does not represent fully functional yacc
691 input, suitable for program use; the lexical processing and all semantic requirements are
692 described only in textual form. The grammar is not based on source used in any traditional
693 implementation and has not been tested with the semantic code that would normally be
694 required to accompany it. Furthermore, there is no implication that the partial yacc code
695 presented represents the most efficient, or only, means of supporting the complex syntax within
696 the utility. Implementations may use other programming languages or algorithms, as long as the
697 syntax supported is the same as that represented by the grammar.

698 The following typographical conventions are used in the grammar; they have no significance
699 except to aid in reading.

700 • The identifiers for the reserved words of the language are shown with a leading capital letter.
701 (These are terminals in the grammar; for example, While, Case.)

702 • The identifiers for terminals in the grammar are all named with uppercase letters and
703 underscores; for example, NEWLINE, ASSIGN_OP, NAME.

704 • The identifiers for non-terminals are all lowercase.

Shell and Utilities, Issue 6 2223

Utility Description Defaults Introduction

705 1.11 Utility Description Defaults
706 This section describes all of the subsections used within the utility descriptions, including:

707 • Intended usage of the section

708 • Global defaults that affect all the standard utilities

709 • The meanings of notations used in this volume of IEEE Std. 1003.1-200x that are specific to
710 individual utility sections

711 Integer variables and constants, including the values of operands and option-arguments, used
712 by the utilities listed in this volume of IEEE Std. 1003.1-200x shall be implemented as equivalent
713 to the ISO C standard signed long data type. Conversion between types shall be as described in
714 the ISO C standard. The evaluation of arithmetic expressions shall be equivalent to that
715 described in Section 6.3 of the ISO C standard.

716 NAME
717 This section gives the name or names of the utility and briefly states its purpose.

718 SYNOPSIS
719 The SYNOPSIS section summarizes the syntax of the calling sequence for the utility,
720 including options, option-arguments, and operands. Standards for utility naming are |
721 described in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, Utility |
722 Syntax Guidelines; for describing the utility’s arguments in the Base Definitions volume |
723 of IEEE Std. 1003.1-200x, Section 12.1, Utility Argument Syntax. |

724 DESCRIPTION
725 The DESCRIPTION section describes the actions of the utility. If the utility has a very
726 complex set of subcommands or its own procedural language, an EXTENDED
727 DESCRIPTION section is also provided. Most explanations of optional functionality are
728 omitted here, as they are usually explained in the OPTIONS section.

729 Some utilities in this volume of IEEE Std. 1003.1-200x are described in terms of
730 functionality equivalent to the System Interfaces volume of IEEE Std. 1003.1-200x.
731 When specific functions are cited, the underlying operating system provides equivalent
732 functionality and all side effects associated with successful execution of the function.
733 The treatment of errors and intermediate results from the individual functions cited is
734 generally not specified by this volume of IEEE Std. 1003.1-200x. See the utility’s EXIT
735 STATUS and CONSEQUENCES OF ERRORS sections for all actions associated with
736 errors encountered by the utility.

737 OPTIONS
738 The OPTIONS section describes the utility options and option-arguments, and how
739 they modify the actions of the utility. Standard utilities that have options either fully |
740 comply with the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, Utility |
741 Syntax Guidelines or describe all deviations. Apparent disagreements between |
742 functionality descriptions in the OPTIONS and DESCRIPTION (or EXTENDED
743 DESCRIPTION) sections are always resolved in favor of the OPTIONS section.

744 Each OPTIONS section that uses the phrase ‘‘The . . . utility shall conform to the Utility |
745 Syntax Guidelines . . .’’ refers only to the use of the utility as specified by this volume of |
746 IEEE Std. 1003.1-200x; implementation extensions should also conform to the |
747 guidelines, but may allow exceptions for historical practice. |

748 Unless otherwise stated in the utility description, when given an option unrecognized
749 by the implementation, or when a required option-argument is not provided, standard |
750 utilities shall issue a diagnostic message to standard error and exit with a non-zero exit |

2224 Technical Standard (2000) (Draft July 31, 2000)

Introduction Utility Description Defaults

751 status. |

752 XSI All utilities in this volume of IEEE Std. 1003.1-200x shall be capable of processing |
753 arguments using 8-bit transparency. |

754 Default Behavior: When this section is listed as ‘‘None.’’, it means that the
755 implementation need not support any options. Standard utilities that do not accept |
756 options, but that do accept operands, shall recognize " −−" as a first argument to be |
757 discarded.

758 The requirement for recognizing " −−" is because portable applications need a way to
759 shield their operands from any arbitrary options that the implementation may provide
760 as an extension. For example, if the standard utility foo is listed as taking no options,
761 and the application needed to give it a path name with a leading hyphen, it could safely
762 do it as:

763 foo −− −myfile

764 and avoid any problems with −m used as an extension.

765 OPERANDS
766 The OPERANDS section describes the utility operands, and how they affect the actions
767 of the utility. Apparent disagreements between functionality descriptions in the
768 OPERANDS and DESCRIPTION (or EXTENDED DESCRIPTION) sections shall be |
769 resolved in favor of the OPERANDS section. |

770 If an operand naming a file can be specified as ’ −’ , which means to use the standard
771 input instead of a named file, this is explicitly stated in this section. Unless otherwise
772 stated, the use of multiple instances of ’ −’ to mean standard input in a single
773 command produces unspecified results.

774 Unless otherwise stated, the standard utilities that accept operands shall process those |
775 operands in the order specified in the command line. |

776 Default Behavior: When this section is listed as ‘‘None.’’, it means that the
777 implementation need not support any operands.

778 STDIN
779 The STDIN section describes the standard input of the utility. This section is frequently
780 merely a reference to the following section, as many utilities treat standard input and
781 input files in the same manner. Unless otherwise stated, all restrictions described in the |
782 INPUT FILES section shall apply to this section as well. |

783 Use of a terminal for standard input can cause any of the standard utilities that read
784 standard input to stop when used in the background. For this reason, applications
785 should not use interactive features in scripts to be placed in the background.

786 The specified standard input format of the standard utilities shall not depend on the |
787 existence or value of the environment variables defined in this volume of
788 IEEE Std. 1003.1-200x, except as provided by this volume of IEEE Std. 1003.1-200x.

789 Default Behavior: When this section is listed as ‘‘Not used.’’, it means that the |
790 standard input shall not be read when the utility is used as described by this volume of |
791 IEEE Std. 1003.1-200x. |

792 INPUT FILES
793 The INPUT FILES section describes the files, other than the standard input, used as
794 input by the utility. It includes files named as operands and option-arguments as well
795 as other files that are referred to, such as start-up and initialization files, databases, and

Shell and Utilities, Issue 6 2225

Utility Description Defaults Introduction

796 so on. Commonly-used files are generally described in one place and cross-referenced
797 by other utilities.

798 XSI All utilities in this volume of IEEE Std. 1003.1-200x shall be capable of processing input |
799 files using 8-bit transparency. |

800 When a standard utility reads a seekable input file and terminates without an error |
801 before it reaches end-of-file, the utility shall ensure that the file offset in the open file |
802 description is properly positioned just past the last byte processed by the utility. For |
803 files that are not seekable, the state of the file offset in the open file description for that |
804 file is unspecified. A portable application shall not assume that the following three |
805 commands are equivalent: |

806 tail −n +2 file
807 (sed −n 1q; cat) < file
808 cat file | (sed −n 1q; cat)

809 The second command is equivalent to the first only when the file is seekable. The third
810 command leaves the file offset in the open file description in an unspecified state. Other
811 utilities, such as head, read, and sh, have similar properties.

812 Some of the standard utilities, such as filters, process input files a line or a block at a
813 time and have no restrictions on the maximum input file size. Some utilities may have
814 size limitations that are not as obvious as file space or memory limitations. Such
815 limitations should reflect resource limitations of some sort, not arbitrary limits set by |
816 implementors. Implementations shall document those utilities that are limited by |
817 constraints other than file system space, available memory, and other limits specifically |
818 cited by this volume of IEEE Std. 1003.1-200x, and identify what the constraint is and |
819 indicate a way of estimating when the constraint would be reached. Similarly, some |
820 utilities descend the directory tree (recursively). Implementations shall also document |
821 any limits that they may have in descending the directory tree that are beyond limits |
822 cited by this volume of IEEE Std. 1003.1-200x. |

823 When an input file is described as a text file , the utility produces undefined results if
824 given input that is not from a text file, unless otherwise stated. Some utilities (for
825 example, make, read, sh) allow for continued input lines using an escaped <newline>
826 convention; unless otherwise stated, the utility need not be able to accumulate more
827 than {LINE_MAX} bytes from a set of multiple, continued input lines. Thus, for a
828 portable application the total of all the continued lines in a set cannot exceed
829 {LINE_MAX}. If a utility using the escaped <newline> convention detects an end-of-
830 file condition immediately after an escaped <newline>, the results are unspecified.

831 Record formats are described in a notation similar to that used by the C-language
832 function, printf(). See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, |
833 File Format Notation for a description of this notation. The format description is |
834 intended to be sufficiently rigorous to allow other applications to generate these input
835 files. However, since <blank> characters can legitimately be included in some of the
836 fields described by the standard utilities, particularly in locales other than the POSIX
837 locale, this intent is not always realized.

838 Default Behavior: When this section is listed as ‘‘None.’’, it means that no input files
839 are required to be supplied when the utility is used as described by this volume of
840 IEEE Std. 1003.1-200x.

841 ENVIRONMENT VARIABLES
842 The ENVIRONMENT VARIABLES section lists what variables affect the utility’s
843 execution.

2226 Technical Standard (2000) (Draft July 31, 2000)

Introduction Utility Description Defaults

844 The entire manner in which environment variables described in this volume of
845 IEEE Std. 1003.1-200x affect the behavior of each utility is described in the
846 ENVIRONMENT VARIABLES section for that utility, in conjunction with the global
847 XSI effects of the LANG, LC_ALL, and NLSPATH environment variables described in the |
848 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |
849 The existence or value of environment variables described in this volume of |
850 IEEE Std. 1003.1-200x shall not otherwise affect the specified behavior of the standard |
851 utilities. Any effects of the existence or value of environment variables not described by
852 this volume of IEEE Std. 1003.1-200x upon the standard utilities are unspecified.

853 For those standard utilities that use environment variables as a means for selecting a
854 utility to execute (such as CC in make), the string provided to the utility is subjected to
855 the path search described for PATH in the Base Definitions volume of |
856 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

857 XSI All utilities in this volume of IEEE Std. 1003.1-200x shall be capable of processing |
858 environment variable names and values using 8-bit transparency. |

859 Default Behavior: When this section is listed as ‘‘None.’’, it means that the behavior of
860 the utility is not directly affected by environment variables described by this volume of
861 IEEE Std. 1003.1-200x when the utility is used as described by this volume of
862 IEEE Std. 1003.1-200x.

863 ASYNCHRONOUS EVENTS
864 The ASYNCHRONOUS EVENTS section lists how the utility reacts to such events as
865 signals and what signals are caught.

866 Default Behavior: When this section is listed as ‘‘Default.’’, or it refers to ‘‘the standard
867 action for all other signals; see Section 1.11 (on page 2224)’’ it means that the action |
868 taken as a result of the signal shall be one of the following: |

869 1. The action is that inherited from the parent according to the rules of inheritance
870 of signal actions defined in the System Interfaces volume of IEEE Std. 1003.1-200x.

871 2. When no action has been taken to change the default, the default action is that
872 specified by the System Interfaces volume of IEEE Std. 1003.1-200x.

873 3. The result of the utility’s execution is as if default actions had been taken.

874 A utility is permitted to catch a signal, perform some additional processing (such as
875 deleting temporary files), restore the default signal action (or action inherited from the
876 parent process), and resignal itself.

877 STDOUT
878 The STDOUT section describes the standard output of the utility. This section is
879 frequently merely a reference to the following section, OUTPUT FILES, because many
880 utilities treat standard output and output files in the same manner.

881 Use of a terminal for standard output may cause any of the standard utilities that write
882 standard output to stop when used in the background. For this reason, applications
883 should not use interactive features in scripts to be placed in the background.

884 Record formats are described in a notation similar to that used by the C-language
885 function, printf(). See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, |
886 File Format Notation for a description of this notation. |

887 The specified standard output of the standard utilities shall not depend on the |
888 existence or value of the environment variables defined in this volume of |
889 IEEE Std. 1003.1-200x, except as provided by this volume of IEEE Std. 1003.1-200x. |

Shell and Utilities, Issue 6 2227

Utility Description Defaults Introduction

890 Some of the standard utilities describe their output using the verb display , defined in |
891 the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.135, Display. Output |
892 described in the STDOUT sections of such utilities may be produced using means other |
893 than standard output. When standard output is directed to a terminal, the output |
894 described shall be written directly to the terminal. Otherwise, the results are undefined. |

895 Default Behavior: When this section is listed as ‘‘Not used.’’, it means that the |
896 standard output shall not be written when the utility is used as described by this |
897 volume of IEEE Std. 1003.1-200x. |

898 STDERR
899 The STDERR section describes the standard error output of the utility. Only those
900 messages that are purposely sent by the utility are described.

901 Use of a terminal for standard error may cause any of the standard utilities that write
902 standard error output to stop when used in the background. For this reason,
903 applications should not use interactive features in scripts to be placed in the
904 background.

905 The format of diagnostic messages for most utilities is unspecified, but the language
906 and cultural conventions of diagnostic and informative messages whose format is
907 unspecified by this volume of IEEE Std. 1003.1-200x should be affected by the setting of
908 XSI LC_MESSAGES andNLSPATH.

909 The specified standard error output of standard utilities shall not depend on the |
910 existence or value of the environment variables defined in this volume of
911 IEEE Std. 1003.1-200x, except as provided by this volume of IEEE Std. 1003.1-200x.

912 Default Behavior: When this section is listed as ‘‘Used only for diagnostic messages.’’, |
913 it means that, unless otherwise stated, the diagnostic messages shall be sent to the |
914 standard error only when the exit status is non-zero and the utility is used as described |
915 by this volume of IEEE Std. 1003.1-200x.

916 When this section is listed as ‘‘Not used.’’, it means that the standard error shall not be |
917 used when the utility is used as described in this volume of IEEE Std. 1003.1-200x. |

918 OUTPUT FILES
919 The OUTPUT FILES section describes the files created or modified by the utility.
920 Temporary or system files that are created for internal usage by this utility or other
921 parts of the implementation (for example, spool, log, and audit files) are not described
922 in this, or any, section. The utilities creating such files and the names of such files are
923 unspecified. If applications are written to use temporary or intermediate files, they
924 should use the TMPDIR environment variable, if it is set and represents an accessible
925 directory, to select the location of temporary files.

926 Implementations shall ensure that temporary files, when used by the standard utilities, |
927 are named so that different utilities or multiple instances of the same utility can operate |
928 simultaneously without regard to their working directories, or any other process |
929 characteristic other than process ID. There are two exceptions to this rule: |

930 1. Resources for temporary files other than the name space (for example, disk space,
931 available directory entries, or number of processes allowed) are not guaranteed.

932 2. Certain standard utilities generate output files that are intended as input for other
933 utilities (for example, lex generates lex.yy.c), and these cannot have unique
934 names. These cases are explicitly identified in the descriptions of the respective
935 utilities.

2228 Technical Standard (2000) (Draft July 31, 2000)

Introduction Utility Description Defaults

936 Any temporary file created by the implementation shall be removed by the |
937 implementation upon a utility’s successful exit, exit because of errors, or before |
938 termination by any of the SIGHUP, SIGINT, or SIGTERM signals, unless specified
939 otherwise by the utility description.

940 Receipt of the SIGQUIT signal should generally cause termination (unless in some
941 debugging mode) that would bypass any attempted recovery actions.

942 Record formats are described in a notation similar to that used by the C-language
943 function, printf(); see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, |
944 File Format Notation for a description of this notation. |

945 Default Behavior: When this section is listed as ‘‘None.’’, it means that no files are
946 created or modified as a consequence of direct action on the part of the utility when the
947 utility is used as described by this volume of IEEE Std. 1003.1-200x. However, the
948 utility may create or modify system files, such as log files, that are outside the utility’s
949 normal execution environment.

950 EXTENDED DESCRIPTION
951 The EXTENDED DESCRIPTION section provides a place for describing the actions of
952 very complicated utilities, such as text editors or language processors, which typically
953 have elaborate command languages.

954 Default Behavior: When this section is listed as ‘‘None.’’, no further description is
955 necessary.

956 EXIT STATUS
957 The EXIT STATUS section describes the values the utility shall return to the calling |
958 program, or shell, and the conditions that cause these values to be returned. Usually, |
959 utilities return zero for successful completion and values greater than zero for various |
960 error conditions. If specific numeric values are listed in this section, the system shall |
961 use those values for the errors described. In some cases, status values are listed more |
962 loosely, such as >0. A portable application shall not rely on any specific value in the |
963 range shown and shall be prepared to receive any value in the range.

964 For example, a utility may list zero as a successful return, 1 as a failure for a specific
965 reason, and >1 as ‘‘an error occurred’’. In this case, unspecified conditions may cause a
966 2 or 3, or other value, to be returned. A portable application should be written so that it
967 tests for successful exit status values (zero in this case), rather than relying upon the
968 single specific error value listed in this volume of IEEE Std. 1003.1-200x. In that way, it
969 has maximum portability, even on implementations with extensions.

970 Unspecified error conditions may be represented by specific values not listed in this
971 volume of IEEE Std. 1003.1-200x.

972 CONSEQUENCES OF ERRORS
973 The CONSEQUENCES OF ERRORS section describes the effects on the environment,
974 file systems, process state, and so on, when error conditions occur. It does not describe
975 error messages produced or exit status values used.

976 The many reasons for failure of a utility are generally not specified by the utility
977 descriptions. Utilities may terminate prematurely if they encounter: invalid usage of
978 options, arguments, or environment variables; invalid usage of the complex syntaxes
979 expressed in EXTENDED DESCRIPTION sections; difficulties accessing, creating,
980 reading, or writing files; or difficulties associated with the privileges of the process.

981 The following shall apply to each utility, unless otherwise stated: |

Shell and Utilities, Issue 6 2229

Utility Description Defaults Introduction

982 • If the requested action cannot be performed on an operand representing a file, |
983 directory, user, process, and so on, the utility shall issue a diagnostic message to |
984 standard error and continue processing the next operand in sequence, but the final |
985 exit status shall be returned as non-zero. |

986 For a utility that recursively traverses a file hierarchy (such as find or chown −R), if
987 the requested action cannot be performed on a file or directory encountered in the |
988 hierarchy, the utility shall issue a diagnostic message to standard error and continue |
989 processing the remaining files in the hierarchy, but the final exit status shall be |
990 returned as non-zero. |

991 • If the requested action characterized by an option or option-argument cannot be |
992 performed, the utility shall issue a diagnostic message to standard error and the exit |
993 status returned shall be non-zero. |

994 • When an unrecoverable error condition is encountered, the utility shall exit with a |
995 non-zero exit status. |

996 • A diagnostic message shall be written to standard error whenever an error |
997 condition occurs. |

998 When a utility encounters an error condition several actions are possible, depending on
999 the severity of the error and the state of the utility. Included in the possible actions of
1000 various utilities are: deletion of temporary or intermediate work files; deletion of
1001 incomplete files; validity checking of the file system or directory.

1002 Default Behavior: When this section is listed as ‘‘Default.’’, it means that any changes
1003 to the environment are unspecified.

1004 APPLICATION USAGE
1005 This section is non-normative.

1006 The APPLICATION USAGE section gives advice to the application programmer or user
1007 about the way the utility should be used.

1008 EXAMPLES
1009 This section is non-normative.

1010 The EXAMPLES section gives one or more examples of usage, where appropriate. In
1011 the event of conflict between an example and a normative part of the specification, the
1012 normative material is to be taken as correct.

1013 In all examples, quoting has been used, showing how sample commands (utility names
1014 combined with arguments) could be passed correctly to a shell (see sh) or as a string to
1015 the system() function defined in the System Interfaces volume of IEEE Std. 1003.1-200x.
1016 Such quoting would not be used if the utility is invoked using one of the exec functions
1017 defined in the System Interfaces volume of IEEE Std. 1003.1-200x.

1018 RATIONALE
1019 This section is non-normative.

1020 This section contains historical information concerning the contents of this volume of
1021 IEEE Std. 1003.1-200x and why features were included or discarded by the standard
1022 developers.

1023 FUTURE DIRECTIONS
1024 This section is non-normative.

1025 The FUTURE DIRECTIONS section should be used as a guide to current thinking; there
1026 is not necessarily a commitment to implement all of these future directions in their

2230 Technical Standard (2000) (Draft July 31, 2000)

Introduction Utility Description Defaults

1027 entirety.

1028 SEE ALSO
1029 This section is non-normative.

1030 The SEE ALSO section lists related entries.

1031 CHANGE HISTORY
1032 This section is non-normative.

1033 The CHANGE HISTORY section shows the derivation of the description used by this
1034 volume of IEEE Std. 1003.1-200x and lists the functional differences between Issues 4
1035 and 6.

1036 Certain of the standard utilities describe how they can invoke other utilities or applications, such
1037 as by passing a command string to the command interpreter. The external influences (STDIN,
1038 ENVIRONMENT VARIABLES, and so on) and external effects (STDOUT, CONSEQUENCES OF
1039 ERRORS, and so on) of such invoked utilities are not described in the section concerning the
1040 standard utility that invokes them.

Shell and Utilities, Issue 6 2231

Considerations for Utilities in Support of Files of Arbitrary Size Introduction

1041 1.12 Considerations for Utilities in Support of Files of Arbitrary Size
1042 The following utilities support files of any size up to the maximum that can be created by the
1043 implementation. This support includes correct writing of file size-related values (such as file
1044 sizes and offsets, line numbers, and block counts) and correct interpretation of command line
1045 arguments that contain such values.

1046 basename Return non-directory portion of path name.

1047 cat Concatenate and print files.

1048 cd Change working directory.

1049 chgrp Change file group ownership.

1050 chmod Change file modes.

1051 chown Change file ownership.

1052 cksum Write file checksums and sizes.

1053 cmp Compare two files.

1054 cp Copy files.

1055 dd Convert and copy a file.

1056 df Report free disk space.

1057 dirname Return directory portion of path name.

1058 du Estimate file space usage.

1059 find Find files.

1060 ln Link files.

1061 ls List directory contents.

1062 mkdir Make directories.

1063 mv Move files.

1064 pathchk Check path names.

1065 pwd Return working directory name.

1066 rm Remove directory entries.

1067 rmdir Remove directories.

1068 sh Shell, the standard command language interpreter.

1069 sum Print checksum and block or byte count of a file.

1070 test Evaluate expression.

1071 touch Change file access and modification times.

1072 ulimit Set or report file size limit.

1073 Exceptions to the requirement that utilities support files of any size up to the maximum are as |
1074 follows: |

1075 1. Uses of files as command scripts, or for configuration or control, are exempt. For example,
1076 it is not required that sh be able to read an arbitrarily large .profile.

2232 Technical Standard (2000) (Draft July 31, 2000)

Introduction Considerations for Utilities in Support of Files of Arbitrary Size

1077 2. Shell input and output redirection are exempt. For example, it is not required that the
1078 redirections sum < file or echo foo > file succeed for an arbitrarily large existing file.

Shell and Utilities, Issue 6 2233

Introduction

1079 |

2234 Technical Standard (2000) (Draft July 31, 2000)

1080

Chapter 2

Shell Command Language

1081 This chapter contains the definition of the Shell Command Language.

1082 2.1 Shell Introduction
1083 The shell is a command language interpreter. This chapter describes the syntax of that command |
1084 language as it is used by the sh utility and the system() and popen() functions defined in the
1085 System Interfaces volume of IEEE Std. 1003.1-200x.

1086 The shell operates according to the following general overview of operations. The specific
1087 details are included in the cited sections of this chapter.

1088 1. The shell reads its input from a file (see sh), from the −c option or from the system() and
1089 popen() functions defined in the System Interfaces volume of IEEE Std. 1003.1-200x. If the
1090 first line of a file of shell commands starts with the characters "#!" , the results are |
1091 XSI unspecified. On XSI-conformant systems, if the first two characters of a file are "#!" , it |
1092 shall behave as described for executable scripts in Section 2.10 (on page 2265). |

1093 2. The shell breaks the input into tokens: words and operators; see Section 2.3 (on page 2238).

1094 3. The shell parses the input into simple commands (see Section 2.9.1 (on page 2256)) and
1095 compound commands (see Section 2.9.4 (on page 2261)).

1096 4. The shell performs various expansions (separately) on different parts of each command,
1097 resulting in a list of path names and fields to be treated as a command and arguments; see
1098 Section 2.6 (on page 2244).

1099 5. The shell performs redirection (see Section 2.7 (on page 2251)) and removes redirection
1100 operators and their operands from the parameter list.

1101 6. The shell executes a function (see Section 2.9.5 (on page 2263)), built-in (see Section 2.15
1102 (on page 2276)), executable file, or script, giving the names of the arguments as positional
1103 parameters numbered 1 to n, and the name of the command (or in the case of a function
1104 within a script, the name of the script) as the positional parameter numbered 0 (see Section
1105 2.9.1.1 (on page 2257)).

1106 7. The shell optionally waits for the command to complete and collects the exit status (see
1107 Section 2.8.2 (on page 2255)).

Shell and Utilities, Issue 6 2235

Quoting Shell Command Language

1108 2.2 Quoting
1109 Quoting is used to remove the special meaning of certain characters or words to the shell.
1110 Quoting can be used to preserve the literal meaning of the special characters in the next
1111 paragraph, prevent reserved words from being recognized as such, and prevent parameter
1112 expansion and command substitution within here-document processing (see Section 2.7.4 (on
1113 page 2252)).

1114 The application shall quote the following characters if they are to represent themselves:

1115 | & ; < > () $ ‘ \ " ’ <space> <tab> <newline>

1116 and the following may need to be quoted under certain circumstances. That is, these characters
1117 may be special depending on conditions described elsewhere in this volume of
1118 IEEE Std. 1003.1-200x:

1119 * ? [# ~ = %

1120 The various quoting mechanisms are the escape character, single-quotes, and double-quotes.
1121 The here-document represents another form of quoting; see Section 2.7.4 (on page 2252).

1122 2.2.1 Escape Character (Backslash)

1123 A backslash that is not quoted shall preserve the literal value of the following character, with the
1124 exception of a <newline> character. If a <newline> character follows the backslash, the shell
1125 shall interpret this as line continuation. The backslash and <newline> characters shall be
1126 removed before splitting the input into tokens. Since the escaped <newline> character is
1127 removed entirely from the input and is not replaced by any white space, it cannot serve as a
1128 token separator.

1129 2.2.2 Single-Quotes

1130 Enclosing characters in single-quotes (’ ’) shall preserve the literal value of each character
1131 within the single-quotes. A single-quote cannot occur within single-quotes. |

1132 2.2.3 Double-Quotes

1133 Enclosing characters in double-quotes (" ") shall preserve the literal value of all characters
1134 within the double-quotes, with the exception of the characters dollar sign, backquote, and
1135 backslash, as follows:

1136 $ The dollar sign shall retain its special meaning introducing parameter expansion (see
1137 Section 2.6.2 (on page 2245)), a form of command substitution (see Section 2.6.3 (on page
1138 2247)), and arithmetic expansion (see Section 2.6.4 (on page 2248)).

1139 The input characters within the quoted string that are also enclosed between "$(" and the
1140 matching ’)’ is not affected by the double-quotes, but rather shall define that command
1141 whose output replaces the "$(...)" when the word is expanded. The tokenizing rules in
1142 Section 2.3 (on page 2238) shall be applied recursively to find the matching ’)’ .

1143 Within the string of characters from an enclosed "${" to the matching ’}’ , an even number
1144 of unescaped double-quotes or single-quotes, if any, shall occur. A preceding backslash
1145 character shall be used to escape a literal ’{’ or ’}’ . The rule in Section 2.6.2 (on page
1146 2245) shall be used to determine the matching ’}’ .

1147 ‘ The backquote shall retain its special meaning introducing the other form of command
1148 substitution (see Section 2.6.3 (on page 2247)). The portion of the quoted string from the
1149 initial backquote and the characters up to the next backquote that is not preceded by a

2236 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Quoting

1150 backslash, having escape characters removed, defines that command whose output replaces
1151 "‘...‘" when the word is expanded. Either of the following cases produces undefined
1152 results:

1153 • A single-quoted or double-quoted string that begins, but does not end, within the
1154 "‘...‘" sequence

1155 • A "‘...‘" sequence that begins, but does not end, within the same double-quoted
1156 string

1157 \ The backslash shall retain its special meaning as an escape character (see Section 2.2.1 (on
1158 page 2236)) only when followed by one of the following characters when considered special:

1159 $ ‘ " \ <newline>

1160 The application shall ensure that a double-quote is preceded by a backslash to be included
1161 within double-quotes. The parameter ’@’ has special meaning inside double-quotes and is
1162 described in Section 2.5.2 (on page 2241). |

Shell and Utilities, Issue 6 2237

Token Recognition Shell Command Language

1163 2.3 Token Recognition
1164 The shell reads its input in terms of lines from a file, from a terminal in the case of an interactive
1165 shell, or from a string in the case of sh −c or system(). The input lines can be of unlimited length.
1166 These lines are parsed using two major modes: ordinary token recognition and processing of
1167 here-documents.

1168 When an io_here token has been recognized by the grammar (see Section 2.11 (on page 2266)),
1169 one or more of the subsequent lines immediately following the next NEWLINE token form the
1170 body of one or more here-documents and shall be parsed according to the rules of Section 2.7.4
1171 (on page 2252).

1172 When it is not processing an io_here, the shell shall break its input into tokens by applying the
1173 first applicable rule below to the next character in its input. The token shall be from the current
1174 position in the input until a token is delimited according to one of the rules below; the characters
1175 forming the token are exactly those in the input, including any quoting characters. If it is
1176 indicated that a token is delimited, and no characters have been included in a token, processing
1177 shall continue until an actual token is delimited.

1178 1. If the end of input is recognized, the current token shall be delimited. If there is no current
1179 token, the end-of-input indicator shall be returned as the token.

1180 2. If the previous character was used as part of an operator and the current character is not
1181 quoted and can be used with the current characters to form an operator, it shall be used as
1182 part of that (operator) token.

1183 On some systems, the symbol "((" is a control operator; its use produces unspecified |
1184 results. Applications that wish to have nested subshells, such as: |

1185 ((echo Hello);(echo World)) |

1186 shall separate the "((" characters into two tokens by including white space between them. |
1187 Some systems may treat these as invalid arithmetic expressions instead of subshells. |

1188 Certain combinations of characters are invalid in portable scripts, as shown in the |
1189 grammar, and that some systems have assigned these combinations (such as "|&") as |
1190 valid control operators. Portable scripts cannot rely on receiving errors in all cases where
1191 this volume of IEEE Std. 1003.1-200x indicates that a syntax is invalid.

1192 3. If the previous character was used as part of an operator and the current character cannot
1193 be used with the current characters to form an operator, the operator containing the
1194 previous character shall be delimited.

1195 4. If the current character is backslash, single-quote, or double-quote (’\\’ , ’\’’ , or ’"’) |
1196 and it is not quoted, it shall affect quoting for subsequent characters up to the end of the
1197 quoted text. The rules for quoting are as described in Section 2.2 (on page 2236). During
1198 token recognition no substitutions shall be actually performed, and the result token shall
1199 contain exactly the characters that appear in the input (except for <newline> character
1200 joining), unmodified, including any embedded or enclosing quotes or substitution
1201 operators, between the quote mark and the end of the quoted text. The token shall not be
1202 delimited by the end of the quoted field.

1203 5. If the current character is an unquoted ’$’ or ’‘’ , the shell shall identify the start of any
1204 candidates for parameter expansion (Section 2.6.2 (on page 2245)), command substitution
1205 (Section 2.6.3 (on page 2247)), or arithmetic expansion (Section 2.6.4 (on page 2248)) from
1206 their introductory unquoted character sequences: ’$’ or "${" , "$(" or ’‘’ , and "$((" ,
1207 respectively. The shell shall read sufficient input to determine the end of the unit to be
1208 expanded (as explained in the cited sections). While processing the characters, if instances

2238 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Token Recognition

1209 of expansions or quoting are found nested within the substitution, the shell shall
1210 recursively process them in the manner specified for the construct that is found. The
1211 characters found from the beginning of the substitution to its end, allowing for any
1212 recursion necessary to recognize embedded constructs, shall be included unmodified in the
1213 result token, including any embedded or enclosing substitution operators or quotes. The
1214 token shall not be delimited by the end of the substitution.

1215 6. If the current character is not quoted and can be used as the first character of a new
1216 operator, the current token (if any) shall be delimited. The current character shall be used
1217 as the beginning of the next (operator) token.

1218 7. If the current character is an unquoted <newline> character, the current token shall be
1219 delimited.

1220 8. If the current character is an unquoted <blank> character, any token containing the
1221 previous character is delimited and the current character shall be discarded.

1222 9. If the previous character was part of a word, the current character shall be appended to
1223 that word.

1224 10. If the current character is a ’#’ , it and all subsequent characters up to, but excluding, the
1225 next <newline> character shall be discarded as a comment. The <newline> character that |
1226 ends the line is not considered part of the comment. |

1227 11. The current character is used as the start of a new word.

1228 Once a token is delimited, it is categorized as required by the grammar in Section 2.11 (on page
1229 2266). |

1230 2.3.1 Alias Substitution

1231 UP XSI The processing of aliases shall be supported on all XSI-conformant systems or if the system
1232 supports the User Portability Utilities option (and the rest of this section is not further shaded for |
1233 these options). |

1234 After a token has been delimited, but before applying the grammatical rules in Section 2.11 (on
1235 page 2266), a resulting word that is identified to be the command name word of a simple
1236 command shall be examined to determine whether it is an unquoted, valid alias name. However,
1237 reserved words in correct grammatical context shall not be candidates for alias substitution. A |
1238 valid alias name (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.10, Alias |
1239 Name) shall be one that has been defined by the alias utility and not subsequently undefined |
1240 using unalias. Implementations also may provide predefined valid aliases that are in effect when
1241 the shell is invoked. To prevent infinite loops in recursive aliasing, if the shell is not currently
1242 processing an alias of the same name, the word shall be replaced by the value of the alias;
1243 otherwise, it shall not be replaced.

1244 If the value of the alias replacing the word ends in a <blank> character, the shell shall check the
1245 next command word for alias substitution; this process shall continue until a word is found that
1246 is not a valid alias or an alias value does not end in a <blank> character.

1247 When used as specified by this volume of IEEE Std. 1003.1-200x, alias definitions shall not be
1248 inherited by separate invocations of the shell or by the utility execution environments invoked
1249 by the shell; see Section 2.13 (on page 2273). |

Shell and Utilities, Issue 6 2239

Reserved Words Shell Command Language

1250 2.4 Reserved Words
1251 Reserved words are words that have special meaning to the shell; see Section 2.9 (on page 2256).
1252 The following words shall be recognized as reserved words:

1253 !
1254 {
1255 }
1256 case

do
done
elif
else

esac
fi
for
if

in
then
until
while

1257 This recognition shall only occur when none of the characters is quoted and when the word is
1258 used as:

1259 • The first word of a command

1260 • The first word following one of the reserved words other than case, for, or in

1261 • The third word in a case or for command (only in is valid in this case)

1262 See the grammar in Section 2.11 (on page 2266).

1263 The following words may be recognized as reserved words on some systems (when none of the
1264 characters are quoted), causing unspecified results:

1265 [[]] function select

1266 Words that are the concatenation of a name and a colon (’:’) are reserved; their use produces
1267 unspecified results. This reservation is to allow future implementations that support named
1268 labels for flow control. |

2240 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Parameters and Variables

1269 2.5 Parameters and Variables
1270 A parameter can be denoted by a name, a number, or one of the special characters listed in
1271 Section 2.5.2. A variable is a parameter denoted by a name.

1272 A parameter is set if it has an assigned value (null is a valid value). Once a variable is set, it can
1273 only be unset by using the unset special built-in command.

1274 2.5.1 Positional Parameters

1275 A positional parameter is a parameter denoted by the decimal value represented by one or more
1276 digits, other than the single digit 0. The digits denoting the positional parameters shall always be |
1277 interpreted as a decimal value, even if there is a leading zero. When a positional parameter with |
1278 more than one digit is specified, the application shall enclose the digits in braces (see Section
1279 2.6.2 (on page 2245)). Positional parameters are initially assigned when the shell is invoked (see
1280 sh), temporarily replaced when a shell function is invoked (see Section 2.9.5 (on page 2263)), and
1281 can be reassigned with the set special built-in command. |

1282 2.5.2 Special Parameters

1283 Listed below are the special parameters and the values to which they shall expand. Only the
1284 values of the special parameters are listed; see Section 2.6 (on page 2244) for a detailed summary
1285 of all the stages involved in expanding words.

1286 @ Expands to the positional parameters, starting from one. When the expansion occurs within
1287 double-quotes, and where field splitting (see Section 2.6.5 (on page 2249)) is performed,
1288 each positional parameter expands as a separate field, with the provision that the expansion
1289 of the first parameter is still joined with the beginning part of the original word (assuming
1290 that the expanded parameter was embedded within a word), and the expansion of the last
1291 parameter is still joined with the last part of the original word. If there are no positional
1292 parameters, the expansion of ’@’ generates zero fields, even when ’@’ is double-quoted.

1293 * Expands to the positional parameters, starting from one. When the expansion occurs within
1294 a double-quoted string (see Section 2.2.3 (on page 2236)), it expands to a single field with the
1295 value of each parameter separated by the first character of the IFS variable, or by a <space>
1296 character if IFS is unset. If IFS is set to a null string, this is not equivalent to unsetting it; its
1297 first character does not exist, so the parameter values are concatenated.

1298 # Expands to the decimal number of positional parameters. The command name (parameter
1299 0) is not counted in the number given by ’#’ because it is a special parameter, not a
1300 positional parameter.

1301 ? Expands to the decimal exit status of the most recent pipeline (see Section 2.9.2 (on page
1302 2258)).

1303 − (Hyphen.) Expands to the current option flags (the single-letter option names concatenated
1304 into a string) as specified on invocation by the set special built-in command or implicitly by
1305 the shell.

1306 $ Expands to the decimal process ID of the invoked shell. In a subshell (see Section 2.13 (on
1307 page 2273)), ’$’ shall expand to the same value as that of the current shell. |

1308 ! Expands to the decimal process ID of the most recent background command (see Section
1309 2.9.3 (on page 2259)) executed from the current shell. (For example, background commands
1310 executed from subshells do not affect the value of "$!" in the current shell environment.)
1311 For a pipeline, the process ID is that of the last command in the pipeline.

Shell and Utilities, Issue 6 2241

Parameters and Variables Shell Command Language

1312 0 (Zero.) Expands to the name of the shell or shell script. See sh (on page 3060) for a detailed
1313 description of how this name is derived.

1314 See the description of the IFS variable in Section 2.5.3. |

1315 2.5.3 Shell Variables

1316 Variables shall be initialized from the environment (as defined by the Base Definitions volume of |
1317 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables and the exec function in the System |
1318 Interfaces volume of IEEE Std. 1003.1-200x) and can be given new values with variable
1319 assignment commands. If a variable is initialized from the environment, it shall be marked for
1320 export immediately; see the export special built-in. New variables can be defined and initialized
1321 with variable assignments, with the read or getopts utilities, with the name parameter in a for
1322 loop, with the ${name=word} expansion, or with other mechanisms provided as implementation |
1323 extensions. |

1324 The following variables shall affect the execution of the shell. |

1325 ENV This variable, when and only when an interactive shell is invoked, shall be
1326 subjected to parameter expansion (see Section 2.6.2 (on page 2245)) by the
1327 shell and the resulting value shall be used as a path name of a file containing
1328 shell commands to execute in the current environment. The file need not be
1329 executable. If the expanded value of ENV is not an absolute path name, the
1330 results are unspecified. ENV shall be ignored if the user’s real and effective
1331 user IDs or real and effective group IDs are different. |

1332 UP XSI The processing of the ENV shell variable shall be supported on all XSI- |
1333 conformant systems or if the system supports the User Portability Utilities |
1334 option. |

1335 HOME This variable shall be interpreted as the path name of the user’s home
1336 directory. The contents of HOME are used in tilde expansion (see Section 2.6.1
1337 (on page 2244)).

1338 IFS (Input Field Separators.) A string treated as a list of characters that is used for
1339 field splitting and to split lines into fields with the read command. If IFS is not
1340 set, the shell shall behave as if the value of IFS were the <space>, <tab>, and
1341 <newline> characters; see Section 2.6.5 (on page 2249).

1342 LANG This variable shall provide a default value for the internationalization
1343 variables that are unset or null. If LANG is unset or null, the corresponding
1344 value from the implementation-defined default locale is used. If any of the |
1345 internationalization variables contains an invalid setting, the utility behaves as
1346 if none of the variables had been defined.

1347 LC_ALL This variable shall provide a default value for the LC_* variables, as described |
1348 in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, |
1349 Environment Variables. |

1350 LC_COLLATE This variable shall determine the behavior of range expressions, equivalence
1351 classes, and multi-character collating elements within pattern matching.

1352 LC_CTYPE This variable shall determine the interpretation of sequences of bytes of text
1353 data as characters (for example, single-byte as opposed to multi-byte
1354 characters), which characters are defined as letters (character class alpha) and
1355 <blank> characters (character class blank), and the behavior of character
1356 classes within pattern matching. Changing the value of LC_CTYPE after the
1357 shell has started shall not affect the lexical processing of shell commands in

2242 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Parameters and Variables

1358 the current shell execution environment or its subshells. Invoking a shell
1359 script or performing exec sh subjects the new shell to the changes in
1360 LC_CTYPE.

1361 LC_MESSAGES This variable shall determine the language in which messages should be
1362 written.

1363 LINENO This variable shall be set by the shell to a decimal number representing the
1364 current sequential line number (numbered starting with 1) within a script or
1365 function before it executes each command. If the user unsets or resets
1366 LINENO, the variable may lose its special meaning for the life of the shell. If
1367 the shell is not currently executing a script or function, the value of LINENO is
1368 unspecified. This volume of IEEE Std. 1003.1-200x specifies the effects of the
1369 variable only for systems supporting the User Portability Utilities option.

1370 XSI NLSPATH This variable shall determine the location of message catalogs for the
1371 processing of LC_MESSAGES.

1372 PATH This variable represents a string formatted as described in the Base Definitions |
1373 volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables, used to |
1374 effect command interpretation; see Section 2.9.1.1 (on page 2257).

1375 PPID This variable shall be set by the shell to the decimal process ID of the process
1376 that invoked this shell. In a subshell (see Section 2.13 (on page 2273)), PPID
1377 shall be set to the same value as that of the parent of the current shell. For
1378 example, echo$PPID and (echo$PPID) would produce the same value. This
1379 volume of IEEE Std. 1003.1-200x specifies the effects of the variable only for
1380 systems supporting the User Portability Utilities option.

1381 PS1 Each time an interactive shell is ready to read a command, the value of this
1382 variable shall be subjected to parameter expansion and written to standard
1383 error. The default value shall be "$ " . For users who have specific additional |
1384 implementation-defined privileges, the default may be another, |
1385 implementation-defined value. (Historically, the superuser has had a prompt |
1386 of ’#’ .) The shell shall replace each instance of the character ’!’ in PS1 with
1387 the history file number of the next command to be typed. Escaping the ’!’
1388 with another ’!’ (that is, "!!") shall place the literal character ’!’ in the
1389 prompt. This volume of IEEE Std. 1003.1-200x specifies the effects of the
1390 variable only for systems supporting the User Portability Utilities option.

1391 PS2 Each time the user enters a <newline> character prior to completing a
1392 command line in an interactive shell, the value of this variable shall be
1393 subjected to parameter expansion and written to standard error. The default
1394 value is "> " . This volume of IEEE Std. 1003.1-200x specifies the effects of the
1395 variable only for systems supporting the User Portability Utilities option.

1396 PS4 When an execution trace (set −x) is being performed in an interactive shell,
1397 before each line in the execution trace, the value of this variable shall be
1398 subjected to parameter expansion and written to standard error. The default
1399 value is "+ " . This volume of IEEE Std. 1003.1-200x specifies the effects of the
1400 variable only for systems supporting the User Portability Utilities option.

1401 PWD This variable shall be set by the shell to be an absolute path name of the
1402 current working directory, containing no components of type symbolic link,
1403 no components that are dot, and no components that are dot-dot when the
1404 shell is initialized. If an application sets or unsets the value of PWD, the
1405 behaviors of the cd and pwd utilities are unspecified.

Shell and Utilities, Issue 6 2243

Parameters and Variables Shell Command Language

1406 2.6 Word Expansions
1407 This section describes the various expansions that are performed on words. Not all expansions
1408 are performed on every word, as explained in the following sections.

1409 Tilde expansions, parameter expansions, command substitutions, arithmetic expansions, and
1410 quote removals that occur within a single word expand to a single field. It is only field splitting
1411 or path name expansion that can create multiple fields from a single word. The single exception
1412 to this rule is the expansion of the special parameter ’@’ within double-quotes, as described in
1413 Section 2.5.2 (on page 2241).

1414 The order of word expansion shall be as follows:

1415 1. Tilde expansion (see Section 2.6.1), parameter expansion (see Section 2.6.2 (on page 2245)),
1416 command substitution (see Section 2.6.3 (on page 2247)), and arithmetic expansion (see
1417 Section 2.6.4 (on page 2248)) shall be performed, beginning to end. See item 5 in Section 2.3
1418 (on page 2238).

1419 2. Field splitting (see Section 2.6.5 (on page 2249)) shall be performed on the portions of the
1420 fields generated by step 1, unless IFS is null.

1421 3. Path name expansion (see Section 2.6.6 (on page 2249)) shall be performed, unless set −f is
1422 in effect.

1423 4. Quote removal (see Section 2.6.7 (on page 2250)) shall always be performed last.

1424 The expansions described in this section shall occur in the same shell environment as that in
1425 which the command is executed.

1426 If the complete expansion appropriate for a word results in an empty field, that empty field shall
1427 be deleted from the list of fields that form the completely expanded command, unless the
1428 original word contained single-quote or double-quote characters.

1429 The ’$’ character is used to introduce parameter expansion, command substitution, or
1430 arithmetic evaluation. If an unquoted ’$’ is followed by a character that is either not numeric,
1431 the name of one of the special parameters (see Section 2.5.2 (on page 2241)), a valid first
1432 character of a variable name, a left curly brace (’{’) or a left parenthesis, the result is
1433 unspecified. |

1434 2.6.1 Tilde Expansion

1435 A tilde-prefix consists of an unquoted tilde character at the beginning of a word, followed by all
1436 of the characters preceding the first unquoted slash in the word, or all the characters in the word
1437 if there is no slash. In an assignment (see the Base Definitions volume of IEEE Std. 1003.1-200x, |
1438 Section 4.16, Variable Assignment), multiple tilde-prefixes can be used: at the beginning of the |
1439 word (that is, following the equal sign of the assignment), following any unquoted colon, or
1440 both. A tilde-prefix in an assignment is terminated by the first unquoted colon or slash. If none
1441 of the characters in the tilde-prefix are quoted, the characters in the tilde-prefix following the
1442 tilde are treated as a possible login name from the user database. A portable login name cannot
1443 contain characters outside the set given in the description of the LOGNAME environment |
1444 variable in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 8.3, Other Environment |
1445 Variables. If the login name is null (that is, the tilde-prefix contains only the tilde), the tilde- |
1446 prefix is replaced by the value of the variable HOME. If HOME is unset, the results are
1447 unspecified. Otherwise, the tilde-prefix is replaced by a path name of the initial working
1448 directory associated with the login name obtained using the getpwnam() function as defined in
1449 the System Interfaces volume of IEEE Std. 1003.1-200x. If the system does not recognize the login
1450 name, the results are undefined. |

2244 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Word Expansions

1451 2.6.2 Parameter Expansion

1452 The format for parameter expansion is as follows:

1453 ${ expression }

1454 where expression consists of all characters until the matching ’}’ . Any ’}’ escaped by a
1455 backslash or within a quoted string, and characters in embedded arithmetic expansions,
1456 command substitutions, and variable expansions, shall not be examined in determining the
1457 matching ’}’ .

1458 The simplest form for parameter expansion is:

1459 ${ parameter }

1460 The value, if any, of parameter shall be substituted.

1461 The parameter name or symbol can be enclosed in braces, which are optional except for
1462 positional parameters with more than one digit or when parameter is followed by a character that
1463 could be interpreted as part of the name. The matching closing brace shall be determined by
1464 counting brace levels, skipping over enclosed quoted strings, and command substitutions.

1465 If the parameter name or symbol is not enclosed in braces, the expansion shall use the longest |
1466 valid name (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.232, Name), |
1467 whether or not the symbol represented by that name exists. |

1468 If a parameter expansion occurs inside double-quotes:

1469 • Path name expansion shall not be performed on the results of the expansion.

1470 • Field splitting shall not be performed on the results of the expansion, with the exception of
1471 ’@’ ; see Section 2.5.2 (on page 2241).

1472 In addition, a parameter expansion can be modified by using one of the following formats. In
1473 each case that a value of word is needed (based on the state of parameter, as described below),
1474 word shall be subjected to tilde expansion, parameter expansion, command substitution, and
1475 arithmetic expansion. If word is not needed, it shall not be expanded. The ’}’ character that
1476 delimits the following parameter expansion modifications shall be determined as described
1477 previously in this section and in Section 2.2.3 (on page 2236). (For example, ${foo-bar}xyz}
1478 would result in the expansion of foo followed by the string xyz} if foo is set, else the string
1479 "barxyz}").

1480 ${parameter :−word} Use Default Values. If parameter is unset or null, the expansion of word
1481 shall be substituted; otherwise, the value of parameter shall be substituted.

1482 ${parameter :=word} Assign Default Values. If parameter is unset or null, the expansion of
1483 word shall be assigned to parameter. In all cases, the final value of
1484 parameter shall be substituted. Only variables, not positional parameters
1485 or special parameters, can be assigned in this way.

1486 ${parameter :?[word]} Indicate Error if Null or Unset. If parameter is unset or null, the
1487 expansion of word (or a message indicating it is unset if word is omitted)
1488 shall be written to standard error and the shell exits with a non-zero exit
1489 status. Otherwise, the value of parameter shall be substituted. An
1490 interactive shell need not exit.

1491 ${parameter :+word} Use Alternative Value. If parameter is unset or null, null shall be
1492 substituted; otherwise, the expansion of word shall be substituted.

1493 In the parameter expansions shown previously, use of the colon in the format results in a test for
1494 a parameter that is unset or null; omission of the colon results in a test for a parameter that is

Shell and Utilities, Issue 6 2245

Word Expansions Shell Command Language

1495 only unset. The following table summarizes the effect of the colon:

1496 parameter parameter parameter
1497 Set and Not Null Set But Null Unset___
1498 ${parameter:−word} substitute parameter substitute word substitute word
1499 ${parameter−word} substitute parameter substitute null substitute word
1500 ${parameter:=word} substitute parameter assign word assign word
1501 ${parameter=word} substitute parameter substitute parameter assign null
1502 ${parameter:?word} substitute parameter error, exit error, exit
1503 ${parameter?word} substitute parameter substitute null error, exit
1504 ${parameter:+word} substitute word substitute null substitute null
1505 ${parameter+word} substitute word substitute word substitute null___LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

1506 In all cases shown with ‘‘substitute’’, the expression is replaced with the value shown. In all
1507 cases shown with ‘‘assign’’, parameter is assigned that value, which also replaces the expression.

1508 ${#parameter} String Length. The length in characters of the value of parameter shall be
1509 substituted. If parameter is ’*’ or ’@’ , the result of the expansion is
1510 unspecified.

1511 The following four varieties of parameter expansion provide for substring processing. In each
1512 case, pattern matching notation (see Section 2.14 (on page 2274)), rather than regular expression
1513 notation, shall be used to evaluate the patterns. If parameter is ’*’ or ’@’ , the result of the
1514 expansion is unspecified. Enclosing the full parameter expansion string in double-quotes shall
1515 not cause the following four varieties of pattern characters to be quoted, whereas quoting
1516 characters within the braces shall have this effect.

1517 ${parameter%word} Remove Smallest Suffix Pattern. The word is expanded to produce a
1518 pattern. The parameter expansion then results in parameter, with the
1519 smallest portion of the suffix matched by the pattern deleted.

1520 ${parameter%%word} Remove Largest Suffix Pattern. The word shall be expanded to produce a
1521 pattern. The parameter expansion then results in parameter, with the
1522 largest portion of the suffix matched by the pattern deleted.

1523 ${parameter#word} Remove Smallest Prefix Pattern. The word shall be expanded to produce
1524 a pattern. The parameter expansion then results in parameter, with the
1525 smallest portion of the prefix matched by the pattern deleted.

1526 ${parameter##word} Remove Largest Prefix Pattern. The word shall be expanded to produce a
1527 pattern. The parameter expansion then results in parameter, with the
1528 largest portion of the prefix matched by the pattern deleted.

1529 Examples

1530 ${parameter :−word}
1531 In this example, ls is executed only if x is null or unset. (The $(ls) command substitution
1532 notation is explained in Section 2.6.3 (on page 2247).)

1533 ${x: −$(ls)}

1534 ${parameter :=word}
1535 unset X
1536 echo ${X:=abc}
1537 abc

1538 ${parameter :?word}
1539 unset posix

2246 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Word Expansions

1540 echo ${posix:?}
1541 sh: posix: parameter null or not set

1542 ${parameter :+word}
1543 set a b c
1544 echo ${3:+posix}
1545 posix

1546 ${#parameter}
1547 HOME=/usr/posix
1548 echo ${#HOME}
1549 10

1550 ${parameter%word}
1551 x=file.c
1552 echo ${x%.c}.o
1553 file.o

1554 ${parameter%%word}
1555 x=posix/src/std
1556 echo ${x%%/*}
1557 posix

1558 ${parameter#word}
1559 x=$HOME/src/cmd
1560 echo ${x#$HOME}
1561 /src/cmd

1562 ${parameter##word}
1563 x=/one/two/three
1564 echo ${x##*/}
1565 three

1566 The double-quoting of patterns is different depending on where the double-quotes are placed:

1567 "${x#*}" The asterisk is a pattern character. |

1568 ${x#"*"} The literal asterisk is quoted and not special. |

1569 2.6.3 Command Substitution

1570 Command substitution allows the output of a command to be substituted in place of the
1571 command name itself. Command substitution shall occur when the command is enclosed as
1572 follows:

1573 $(command)

1574 or (backquoted version):

1575 ‘ command‘

1576 The shell shall expand the command substitution by executing command in a subshell
1577 environment (see Section 2.13 (on page 2273)) and replacing the command substitution (the text
1578 of command plus the enclosing "$()" or backquotes) with the standard output of the command,
1579 removing sequences of one or more <newline> characters at the end of the substitution.
1580 Embedded <newline> characters before the end of the output shall not be removed; however,
1581 they may be treated as field delimiters and eliminated during field splitting, depending on the
1582 value of IFS and quoting that is in effect.

Shell and Utilities, Issue 6 2247

Word Expansions Shell Command Language

1583 Within the backquoted style of command substitution, backslash shall retain its literal meaning,
1584 except when followed by: ’$’ , ’‘’ , or ’\\’ (dollar sign, backquote, backslash). The search for |
1585 the matching backquote shall be satisfied by the first backquote found without a preceding
1586 backslash; during this search, if a non-escaped backquote is encountered within a shell
1587 comment, a here-document, an embedded command substitution of the $(command) form, or a
1588 quoted string, undefined results occur. A single-quoted or double-quoted string that begins, but
1589 does not end, within the "‘...‘" sequence produces undefined results.

1590 With the $(command) form, all characters following the open parenthesis to the matching closing
1591 parenthesis constitute the command . Any valid shell script can be used for command , except:

1592 • A script consisting solely of redirections produces unspecified results

1593 • See the restriction on single subshells described below

1594 The results of command substitution shall not be processed for further tilde expansion,
1595 parameter expansion, command substitution, or arithmetic expansion. If a command
1596 substitution occurs inside double-quotes, it shall not be performed on the results of the
1597 substitution.

1598 Command substitution can be nested. To specify nesting within the backquoted version, the
1599 application shall precede the inner backquotes with backslashes, for example:

1600 \‘ command\‘

1601 If the command substitution consists of a single subshell, such as:

1602 $((command))

1603 a portable application shall separate the "$(" and ’(’ into two tokens (that is, separate them
1604 with white space). This is required to avoid any ambiguities with arithmetic expansion. |

1605 2.6.4 Arithmetic Expansion

1606 Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and
1607 substituting its value. The format for arithmetic expansion shall be as follows:

1608 $((expression))

1609 The expression shall be treated as if it were in double-quotes, except that a double-quote inside
1610 the expression is not treated specially. The shell expands all tokens in the expression for
1611 parameter expansion, command substitution, and quote removal.

1612 Next, the shell shall treat this as an arithmetic expression and substitutes the value of the
1613 expression. The arithmetic expression shall be processed according to the rules of the ISO C
1614 standard, with the following exceptions:

1615 • Only integer arithmetic is required.

1616 • The sizeof () operator and the prefix and postfix "++" and " −−" operators are not required.

1617 • Selection, iteration, and jump statements are not supported.

1618 As an extension, the shell may recognize arithmetic expressions beyond those listed. If the
1619 expression is invalid, the expansion fails and the shell shall write a message to standard error
1620 indicating the failure.

2248 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Word Expansions

1621 Examples

1622 A simple example using arithmetic expansion:

1623 # repeat a command 100 times
1624 x=100
1625 while [$x −gt 0]
1626 do
1627 command
1628 x=$(($x −1))
1629 done

1630 2.6.5 Field Splitting

1631 After parameter expansion (Section 2.6.2 (on page 2245)), command substitution (Section 2.6.3
1632 (on page 2247)), and arithmetic expansion (Section 2.6.4 (on page 2248)), the shell shall scan the
1633 results of expansions and substitutions that did not occur in double-quotes for field splitting and
1634 multiple fields can result.

1635 The shell shall treat each character of the IFS as a delimiter and uses the delimiters to split the
1636 results of parameter expansion and command substitution into fields.

1637 1. If the value of IFS is a <space>, <tab>, and <newline> character, or if it is unset, any
1638 sequence of <space>, <tab>, or <newline> characters at the beginning or end of the input
1639 shall be ignored and any sequence of those characters within the input shall delimit a field.
1640 For example, the input:

1641 <newline><space><tab>foo<tab><tab>bar<space>

1642 yields two fields, foo and bar.

1643 2. If the value of IFS is null, no field splitting shall be performed.

1644 3. Otherwise, the following rules shall be applied in sequence. The term ‘‘IFS white space’’ is
1645 used to mean any sequence (zero or more instances) of white space characters that are in
1646 the IFS value (for example, if IFS contains <space>/<comma>/<tab>, any sequence of
1647 <space> and <tab> characters is considered IFS white space).

1648 a. IFS white space shall be ignored at the beginning and end of the input.

1649 b. Each occurrence in the input of an IFS character that is not IFS white space, along
1650 with any adjacent IFS white space, shall delimit a field, as described previously.

1651 c. Non-zero-length IFS white space shall delimit a field.

1652 2.6.6 Path Name Expansion

1653 After field splitting, if set −f is not in effect, each field in the resulting command line shall be
1654 expanded using the algorithm described in Section 2.14 (on page 2274), qualified by the rules in
1655 Section 2.14.3 (on page 2275).

Shell and Utilities, Issue 6 2249

Word Expansions Shell Command Language

1656 2.6.7 Quote Removal

1657 The quote characters: ’\’ , ’\’’ , and ’"’ (backslash, single-quote, double-quote) that were |
1658 present in the original word shall be removed unless they have themselves been quoted.

2250 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Redirection

1659 2.7 Redirection
1660 Redirection is used to open and close files for the current shell execution environment (see
1661 Section 2.13 (on page 2273)) or for any command. Redirection operators can be used with numbers |
1662 representing file descriptors (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
1663 3.167, File Descriptor) as described below. |

1664 The overall format used for redirection is:

1665 [n] redir-op word

1666 The number n is an optional decimal number designating the file descriptor number; the
1667 application shall ensure it is delimited from any preceding text and immediately precede the
1668 redirection operator redir-op . If n is quoted, the number shall not be recognized as part of the
1669 redirection expression. For example:

1670 echo \2>a

1671 writes the character 2 into file a. If any part of redir-op is quoted, no redirection expression is
1672 recognized. For example:

1673 echo 2\>a

1674 writes the characters 2>a to standard output. The optional number, redirection operator, and
1675 word shall not appear in the arguments provided to the command to be executed (if any).

1676 Open files are represented by decimal numbers starting with zero. The largest possible value is |
1677 implementation-defined; however, all implementations shall support at least 0 to 9, inclusive, for |
1678 use by the application. These numbers are called file descriptors . The values 0, 1, and 2 have |
1679 special meaning and conventional uses and are implied by certain redirection operations; they
1680 are referred to as standard input , standard output , and standard error, respectively. Programs
1681 usually take their input from standard input, and write output on standard output. Error
1682 messages are usually written on standard error. The redirection operators can be preceded by
1683 one or more digits (with no intervening <blank> characters allowed) to designate the file
1684 descriptor number.

1685 If the redirection operator is "<<" or "<< −" , the word that follows the redirection operator shall
1686 be subjected to quote removal; it is unspecified whether any of the other expansions occur. For
1687 the other redirection operators, the word that follows the redirection operator shall be subjected
1688 to tilde expansion, parameter expansion, command substitution, arithmetic expansion, and
1689 quote removal. Path name expansion shall not be performed on the word by a non-interactive
1690 shell; an interactive shell may perform it, but does do so only when the expansion would result
1691 in one word.

1692 If more than one redirection operator is specified with a command, the order of evaluation is
1693 from beginning to end.

1694 A failure to open or create a file shall cause a redirection to fail.

Shell and Utilities, Issue 6 2251

Redirection Shell Command Language

1695 2.7.1 Redirecting Input

1696 Input redirection shall cause the file whose name results from the expansion of word to be
1697 opened for reading on the designated file descriptor, or standard input if the file descriptor is not
1698 specified.

1699 The general format for redirecting input is:

1700 [n] <word

1701 where the optional n represents the file descriptor number. If the number is omitted, the
1702 redirection shall refer to standard input (file descriptor 0).

1703 2.7.2 Redirecting Output

1704 The two general formats for redirecting output are:

1705 [n] >word
1706 [n] >| word

1707 where the optional n represents the file descriptor number. If the number is omitted, the
1708 redirection shall refer to standard output (file descriptor 1).

1709 Output redirection using the ’>’ format shall fail if the noclobber option is set (see the |
1710 description of set −C) and the file named by the expansion of word exists and is a regular file.
1711 Otherwise, redirection using the ’>’ or ">|" formats shall cause the file whose name results
1712 from the expansion of word to be created and opened for output on the designated file
1713 descriptor, or standard output if none is specified. If the file does not exist, it shall be created;
1714 otherwise, it shall be truncated to be an empty file after being opened.

1715 2.7.3 Appending Redirected Output

1716 Appended output redirection shall cause the file whose name results from the expansion of
1717 word to be opened for output on the designated file descriptor. The file is opened as if the open()
1718 function as defined in the System Interfaces volume of IEEE Std. 1003.1-200x was called with the
1719 O_APPEND flag. If the file does not exist, it shall be created.

1720 The general format for appending redirected output is as follows:

1721 [n] >>word

1722 where the optional n represents the file descriptor number. If the number is omitted, the
1723 redirection refers to standard output (file descriptor 1).

1724 2.7.4 Here-Document

1725 The redirection operators "<<" and "<< −" both allow redirection of lines contained in a shell
1726 input file, known as a here-document, to the input of a command.

1727 The here-document shall be treated as a single word that begins after the next <newline>
1728 character and continues until there is a line containing only the delimiter, with no trailing
1729 <blank> characters. Then the next here-document starts, if there is one. The format is as follows:

1730 [n] <<word
1731 here-document
1732 delimiter

1733 where the optional n represents the file descriptor number. If the number is omitted, the here-
1734 document refers to standard output (file descriptor 0).

2252 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Redirection

1735 If any character in word is quoted, the delimiter shall be formed by performing quote removal on
1736 word , and the here-document lines are not expanded. Otherwise, the delimiter shall be the word
1737 itself.

1738 If no characters in word are quoted, all lines of the here-document shall be expanded for
1739 parameter expansion, command substitution, and arithmetic expansion. In this case, the
1740 backslash in the input behaves as the backslash inside double-quotes (see Section 2.2.3 (on page
1741 2236)). However, the double-quote character (’"’) shall not be treated specially within a here- |
1742 document, except when the double-quote appears within "$()" , "‘‘" , or "${}" .

1743 If the redirection symbol is "<< −" , all leading tab characters shall be stripped from input lines
1744 and the line containing the trailing delimiter. If more than one "<<" or "<< −" operator is
1745 specified on a line, the here-document associated with the first operator shall be supplied first by
1746 the application and shall be read first by the shell.

1747 Examples

1748 An example of a here-document follows:

1749 cat <<eof1; cat <<eof2
1750 Hi,
1751 eof1
1752 Helene.
1753 eof2

1754 2.7.5 Duplicating an Input File Descriptor

1755 The redirection operator:

1756 [n] <&word

1757 is used to duplicate one input file descriptor from another, or to close one. If word evaluates to
1758 one or more digits, the file descriptor denoted by n, or standard input if n is not specified, shall
1759 be made to be a copy of the file descriptor denoted by word ; if the digits in word do not represent
1760 a file descriptor already open for input, a redirection error shall result; see Section 2.8.1 (on page
1761 2255). If word evaluates to ’ −’ , file descriptor n, or standard input if n is not specified, shall be
1762 closed. If word evaluates to something else, the behavior is unspecified.

1763 2.7.6 Duplicating an Output File Descriptor

1764 The redirection operator:

1765 [n] >&word

1766 is used to duplicate one output file descriptor from another, or to close one. If word evaluates to
1767 one or more digits, the file descriptor denoted by n, or standard output if n is not specified, shall
1768 be made to be a copy of the file descriptor denoted by word ; if the digits in word do not represent
1769 a file descriptor already open for output, a redirection error shall result; see Section 2.8.1 (on
1770 page 2255). If word evaluates to ’ −’ , file descriptor n, or standard output if n is not specified, is
1771 closed. If word evaluates to something else, the behavior is unspecified.

Shell and Utilities, Issue 6 2253

Redirection Shell Command Language

1772 2.7.7 Open File Descriptors for Reading and Writing

1773 The redirection operator:

1774 [n] <>word

1775 shall cause the file whose name is the expansion of word to be opened for both reading and
1776 writing on the file descriptor denoted by n, or standard input if n is not specified. If the file does
1777 not exist, it shall be created. |

2254 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Exit Status and Errors

1778 2.8 Exit Status and Errors

1779 2.8.1 Consequences of Shell Errors

1780 For a non-interactive shell, an error condition encountered by a special built-in (see Section 2.15
1781 (on page 2276)) or other type of utility shall cause the shell to write a diagnostic message to
1782 standard error and exit as shown in the following table:

1783 Error Special Built-In Other Utilities___
1784 Shell language syntax error Shall exit Shall exit
1785 Utility syntax error (option or operand error) Shall exit Shall not exit
1786 Redirection error Shall exit Shall not exit
1787 Variable assignment error Shall exit Shall not exit
1788 Expansion error Shall exit Shall exit
1789 Command not found N/A May exit
1790 Dot script not found Shall exit N/A___L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

1791 An expansion error is one that occurs when the shell expansions defined in Section 2.6 (on page
1792 2244) are carried out (for example, "${x!y}" , because ’!’ is not a valid operator); an
1793 implementation may treat these as syntax errors if it is able to detect them during tokenization,
1794 rather than during expansion.

1795 If any of the errors shown as ‘‘shall exit’’ or ‘‘(may) exit’’ occur in a subshell, the subshell shall
1796 (or may exit) with a non-zero status, but the script containing the subshell shall not exit because
1797 of the error.

1798 In all of the cases shown in the table, an interactive shell shall write a diagnostic message to
1799 standard error without exiting.

1800 2.8.2 Exit Status for Commands

1801 Each command has an exit status that can influence the behavior of other shell commands. The
1802 exit status of commands that are not utilities is documented in this section. The exit status of the
1803 standard utilities is documented in their respective sections.

1804 If a command is not found, the exit status shall be 127. If the command name is found, but it is
1805 not an executable utility, the exit status shall be 126. Applications that invoke utilities without
1806 using the shell should use these exit status values to report similar errors.

1807 If a command fails during word expansion or redirection, its exit status shall be greater than
1808 zero.

1809 Internally, for purposes of deciding whether a command exits with a non-zero exit status, the
1810 shell shall recognize the entire status value retrieved for the command by the equivalent of the
1811 wait() function WEXITSTATUS macro (as defined in the System Interfaces volume of
1812 IEEE Std. 1003.1-200x). When reporting the exit status with the special parameter ’?’ , the shell
1813 shall report the full eight bits of exit status available. The exit status of a command that
1814 terminated because it received a signal shall be reported as greater than 128. |

Shell and Utilities, Issue 6 2255

Shell Commands Shell Command Language

1815 2.9 Shell Commands
1816 This section describes the basic structure of shell commands. The following command
1817 descriptions each describe a format of the command that is only used to aid the reader in
1818 recognizing the command type, and does not formally represent the syntax. Each description
1819 discusses the semantics of the command; for a formal definition of the command language,
1820 consult Section 2.11 (on page 2266).

1821 A command is one of the following:

1822 • Simple command (see Section 2.9.1)

1823 • Pipeline (see Section 2.9.2 (on page 2258))

1824 • List or compound-list (see Section 2.9.3 (on page 2259))

1825 • Compound command (see Section 2.9.4 (on page 2261))

1826 • Function definition (see Section 2.9.5 (on page 2263))

1827 Unless otherwise stated, the exit status of a command is that of the last simple command
1828 executed by the command. There is no limit on the size of any shell command other than that
1829 imposed by the underlying system (memory constraints, {ARG_MAX}, and so on). |

1830 2.9.1 Simple Commands

1831 A simple command is a sequence of optional variable assignments and redirections, in any
1832 sequence, optionally followed by words and redirections, terminated by a control operator.

1833 When a given simple command is required to be executed (that is, when any conditional
1834 construct such as an AND-OR list or a case statement has not bypassed the simple command),
1835 the following expansions, assignments, and redirections are all performed from the beginning of
1836 the command text to the end:

1837 1. The words that are recognized as variable assignments or redirections according to Section
1838 2.11.2 (on page 2266) are saved for processing in steps 3 and 4.

1839 2. The words that are not variable assignments or redirections shall be expanded. If any fields
1840 remain following their expansion, the first field shall be considered the command name
1841 and remaining fields are the arguments for the command.

1842 3. Redirections shall be performed as described in Section 2.7 (on page 2251).

1843 4. Each variable assignment shall be expanded for tilde expansion, parameter expansion,
1844 command substitution, arithmetic expansion, and quote removal prior to assigning the
1845 value.

1846 In the preceding list, the order of steps 3 and 4 may be reversed for the processing of special
1847 built-in utilities; see Section 2.15 (on page 2276).

1848 If no command name results, variable assignments shall affect the current execution
1849 environment. Otherwise, the variable assignments shall be exported for the execution
1850 environment of the command and shall not affect the current execution environment (except for
1851 special built-ins). If any of the variable assignments attempt to assign a value to a read-only
1852 variable, a variable assignment error occurs. See Section 2.8.1 (on page 2255) for the
1853 consequences of these errors.

1854 If there is no command name, any redirections shall be performed in a subshell environment; it
1855 is unspecified whether this subshell environment is the same one as that used for a command
1856 substitution within the command. (To affect the current execution environment, see the exec (on
1857 page 2287) special built-in.) If any of the redirections performed in the current shell execution

2256 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Commands

1858 environment fail, the command shall immediately fail with an exit status greater than zero, and
1859 the shell shall write an error message indicating the failure. See Section 2.8.1 (on page 2255) for
1860 the consequences of these failures on interactive and non-interactive shells.

1861 If there is a command name, execution shall continue as described in Section 2.9.1.1. If there is
1862 no command name, but the command contained a command substitution, the command shall
1863 complete with the exit status of the last command substitution performed. Otherwise, the
1864 command shall complete with a zero exit status. |

1865 2.9.1.1 Command Search and Execution

1866 If a simple command results in a command name and an optional list of arguments, the
1867 following actions shall be performed:

1868 1. If the command name does not contain any slashes, the first successful step in the
1869 following sequence shall occur:

1870 a. If the command name matches the name of a special built-in utility, that special
1871 built-in utility shall be invoked.

1872 b. If the command name matches the name of a function known to this shell, the
1873 function shall be invoked as described in Section 2.9.5 (on page 2263). If the
1874 implementation has provided a standard utility in the form of a function, it shall not
1875 be recognized at this point. It shall be invoked in conjunction with the path search in
1876 step 1d.

1877 c. If the command name matches the name of a utility listed in the following table, that
1878 utility shall be invoked.

1879 alias false jobs true
1880 bg fc kill umask
1881 cd fg newgrp unalias
1882 command getopts read wait

1883 d. Otherwise, the command is searched for using the PATH environment variable as |
1884 described in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, |
1885 Environment Variables: |

1886 i. If the search is successful:

1887 a. If the system has implemented the utility as a regular built-in or as a shell
1888 function, it shall be invoked at this point in the path search.

1889 b. Otherwise, the shell executes the utility in a separate utility environment
1890 (see Section 2.13 (on page 2273)) with actions equivalent to calling the
1891 execve() function as defined in the System Interfaces volume of
1892 IEEE Std. 1003.1-200x with the path argument set to the path name
1893 resulting from the search, arg0 set to the command name, and the
1894 remaining arguments set to the operands, if any.

1895 If the execve() function fails due to an error equivalent to the [ENOEXEC]
1896 error defined in the System Interfaces volume of IEEE Std. 1003.1-200x,
1897 the shell shall execute a command equivalent to having a shell invoked
1898 with the command name as its first operand, along with any remaining
1899 arguments passed along. If the executable file is not a text file, the shell
1900 may bypass this command execution, write an error message, and return
1901 an exit status of 126.

Shell and Utilities, Issue 6 2257

Shell Commands Shell Command Language

1902 Once a utility has been searched for and found (either as a result of this specific
1903 search or as part of an unspecified shell start-up activity), an implementation
1904 may remember its location and need not search for the utility again unless the
1905 PATH variable has been the subject of an assignment. If the remembered
1906 location fails for a subsequent invocation, the shell shall repeat the search to
1907 find the new location for the utility, if any.

1908 ii. If the search is unsuccessful, the command shall fail with an exit status of 127
1909 and the shell shall write an error message.

1910 2. If the command name contains at least one slash, the shell shall execute the utility in a
1911 separate utility environment with actions equivalent to calling the execve() function
1912 defined in the System Interfaces volume of IEEE Std. 1003.1-200x with the path and arg0
1913 arguments set to the command name, and the remaining arguments set to the operands, if
1914 any.

1915 If the execve() function fails due to an error equivalent to the [ENOEXEC] error, the shell
1916 shall execute a command equivalent to having a shell invoked with the command name as
1917 its first operand, along with any remaining arguments passed along. If the executable file is
1918 not a text file, the shell may bypass this command execution, write an error message, and
1919 return an exit status of 126.

1920 2.9.2 Pipelines

1921 A pipeline is a sequence of one or more commands separated by the control operator ’|’ . The
1922 standard output of all but the last command shall be connected to the standard input of the next
1923 command.

1924 The format for a pipeline is:

1925 [!] command1 [| command2 ...]

1926 The standard output of command1 shall be connected to the standard input of command2 . The
1927 standard input, standard output, or both of a command shall be considered to be assigned by the
1928 pipeline before any redirection specified by redirection operators that are part of the command
1929 (see Section 2.7 (on page 2251)).

1930 If the pipeline is not in the background (see Section 2.9.3.1 (on page 2259)), the shell shall wait for
1931 the last command specified in the pipeline to complete, and may also wait for all commands to
1932 complete.

1933 Exit Status

1934 If the reserved word ! does not precede the pipeline, the exit status shall be the exit status of the
1935 last command specified in the pipeline. Otherwise, the exit status shall be the logical NOT of the
1936 exit status of the last command. That is, if the last command returns zero, the exit status shall be
1937 1; if the last command returns greater than zero, the exit status shall be zero. |

2258 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Commands

1938 2.9.3 Lists

1939 An AND-OR list is a sequence of one or more pipelines separated by the operators "&&" and
1940 "||" .

1941 A list is a sequence of one or more AND-OR lists separated by the operators ’;’ and ’&’ and
1942 optionally terminated by ’;’ , ’&’ , or <newline>.

1943 The operators "&&" and "||" shall have equal precedence and are evaluated from beginning to
1944 end. For example, both of the following commands write solely bar to standard output:

1945 false && echo foo || echo bar
1946 true || echo foo && echo bar

1947 A ’;’ or <newline> character terminator shall cause the preceding AND-OR list to be executed
1948 sequentially; an ’&’ shall cause asynchronous execution of the preceding AND-OR list.

1949 The term compound-list is derived from the grammar in Section 2.11 (on page 2266); it is
1950 equivalent to a sequence of lists , separated by <newline> characters, that can be preceded or
1951 followed by an arbitrary number of <newline> characters.

1952 Examples

1953 The following is an example that illustrates <newline> characters in compound-lists:

1954 while
1955 # a couple of <newline>s

1956 # a list
1957 date && who || ls; cat file
1958 # a couple of <newline>s

1959 # another list
1960 wc file > output & true

1961 do
1962 # 2 lists
1963 ls
1964 cat file
1965 done

1966 2.9.3.1 Asynchronous Lists

1967 If a command is terminated by the control operator ampersand (’&’), the shell shall execute the
1968 command asynchronously in a subshell. This means that the shell shall not wait for the
1969 command to finish before executing the next command.

1970 The format for running a command in the background is:

1971 command1 & [command2 & ...]

1972 The standard input for an asynchronous list, before any explicit redirections are performed, shall
1973 be considered to be assigned to a file that has the same properties as /dev/null. If it is an
1974 interactive shell, this need not happen. In all cases, explicit redirection of standard input shall
1975 override this activity.

1976 When an element of an asynchronous list (the portion of the list ended by an ampersand, such as
1977 command1 , above) is started by the shell, the process ID of the last command in the asynchronous
1978 list element shall become known in the current shell execution environment; see Section 2.13 (on
1979 page 2273). This process ID shall remain known until:

Shell and Utilities, Issue 6 2259

Shell Commands Shell Command Language

1980 1. The command terminates and the application waits for the process ID.

1981 2. Another asynchronous list invoked before "$!" (corresponding to the previous
1982 asynchronous list) is expanded in the current execution environment.

1983 The implementation need not retain more than the {CHILD_MAX} most recent entries in its list
1984 of known process IDs in the current shell execution environment.

1985 Exit Status

1986 The exit status of an asynchronous list shall be zero. |

1987 2.9.3.2 Sequential Lists

1988 Commands that are separated by a semicolon (’;’) shall be executed sequentially.

1989 The format for executing commands sequentially shall be:

1990 command1 [; command2] ...

1991 Each command shall be expanded and executed in the order specified.

1992 Exit Status

1993 The exit status of a sequential list shall be the exit status of the last command in the list.

1994 2.9.3.3 AND Lists

1995 The control operator "&&" denotes an AND list. The format shall be:

1996 command1 [&& command2] ...

1997 First command1 shall be executed. If its exit status is zero, command2 shall be executed, and so on,
1998 until a command has a non-zero exit status or there are no more commands left to execute. The
1999 commands are expanded only if they are executed.

2000 Exit Status

2001 The exit status of an AND list shall be the exit status of the last command that is executed in the
2002 list.

2003 2.9.3.4 OR Lists

2004 The control operator "||" denotes an OR List. The format shall be:

2005 command1 [|| command2] ...

2006 First, command1 shall be executed. If its exit status is non-zero, command2 shall be executed, and
2007 so on, until a command has a zero exit status or there are no more commands left to execute.

2008 Exit Status

2009 The exit status of an OR list shall be the exit status of the last command that is executed in the
2010 list.

2260 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Commands

2011 2.9.4 Compound Commands

2012 The shell has several programming constructs that are compound commands, which provide
2013 control flow for commands. Each of these compound commands has a reserved word or control
2014 operator at the beginning, and a corresponding terminator reserved word or operator at the end.
2015 In addition, each can be followed by redirections on the same line as the terminator. Each
2016 redirection shall apply to all the commands within the compound command that do not
2017 explicitly override that redirection.

2018 2.9.4.1 Grouping Commands

2019 The format for grouping commands is as follows:

2020 (compound-list) Execute compound-list in a subshell environment; see Section 2.13 (on page
2021 2273). Variable assignments and built-in commands that affect the
2022 environment shall not remain in effect after the list finishes.

2023 { compound-list;} Execute compound-list in the current process environment. The semicolon
2024 shown here is an example of a control operator delimiting the } reserved
2025 word. Other delimiters are possible, as shown in Section 2.11 (on page
2026 2266); a <newline> character is frequently used.

2027 Exit Status

2028 The exit status of a grouping command shall be the exit status of list . |

2029 2.9.4.2 For Loop

2030 The for loop executes a sequence of commands for each member in a list of items. The for loop
2031 requires that the reserved words do and done be used to delimit the sequence of commands.

2032 The format for the for loop is as follows:

2033 for name [in [word ...]]
2034 do
2035 compound-list
2036 done

2037 First, the list of words following in shall be expanded to generate a list of items. Then, the
2038 variable name shall be set to each item, in turn, and the compound-list executed each time. If no
2039 items result from the expansion, the compound-list shall not be executed. Omitting:

2040 in word ...

2041 is equivalent to:

2042 in "$@"

2043 Exit Status

2044 The exit status of a for command shall be the exit status of the last command that executes. If
2045 there are no items, the exit status shall be zero. |

Shell and Utilities, Issue 6 2261

Shell Commands Shell Command Language

2046 2.9.4.3 Case Conditional Construct

2047 The conditional construct case shall execute the compound-list corresponding to the first one of
2048 several patterns (see Section 2.14 (on page 2274)) that is matched by the string resulting from the
2049 tilde expansion, parameter expansion, command substitution, arithmetic expansion, and quote
2050 removal of the given word. The reserved word in shall denote the beginning of the patterns to be
2051 matched. Multiple patterns with the same compound-list shall be delimited by the ’|’ symbol.
2052 The control operator ’)’ terminates a list of patterns corresponding to a given action. The
2053 compound-list for each list of patterns, with the possible exception of the last, shall be terminated
2054 with ";;" . The case construct terminates with the reserved word esac (case reversed).

2055 The format for the case construct is as follows:

2056 case word in
2057 [(] pattern1) compound-list ;;
2058 [[(] pattern [| pattern] ...) compound-list ;;] ...
2059 [[(] pattern [| pattern] ...) compound-list]
2060 esac

2061 The ";;" is optional for the last compound-list.

2062 In order from the beginning to the end of the case statement, each pattern that labels a
2063 compound-list shall be subjected to tilde expansion, parameter expansion, command substitution,
2064 and arithmetic expansion, and the result of these expansions shall be compared against the
2065 expansion of word , according to the rules described in Section 2.14 (on page 2274) (which also
2066 describes the effect of quoting parts of the pattern). After the first match, no more patterns shall
2067 be expanded, and the compound-list shall be executed. The order of expansion and comparison of
2068 multiple patterns that label a compound-list statement is unspecified.

2069 Exit Status

2070 The exit status of case shall be zero if no patterns are matched. Otherwise, the exit status shall be
2071 the exit status of the last command executed in the compound-list. |

2072 2.9.4.4 If Conditional Construct

2073 The if command shall execute a compound-list and use its exit status to determine whether to
2074 execute another compound-list.

2075 The format for the if construct is as follows:

2076 if compound-list
2077 then
2078 compound-list
2079 [elif compound-list
2080 then
2081 compound-list] ...
2082 [else
2083 compound-list]

2084 The if compound-list shall be executed; if its exit status is zero, the then compound-list shall be
2085 executed and the command shall complete. Otherwise, each elif compound-list shall be executed,
2086 in turn, and if its exit status is zero, the then compound-list shall be executed and the command
2087 shall complete. Otherwise, the else compound-list shall be executed.

2262 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Commands

2088 Exit Status

2089 The exit status of the if command shall be the exit status of the then or else compound-list that
2090 was executed, or zero, if none was executed. |

2091 2.9.4.5 While Loop

2092 The while loop shall continuously execute one compound-list as long as another compound-list has
2093 a zero exit status.

2094 The format of the while loop is as follows:

2095 while compound-list-1
2096 do
2097 compound-list-2
2098 done

2099 The compound-list-1 shall be executed, and if it has a non-zero exit status, the while command
2100 shall complete. Otherwise, the compound-list-2 shall be executed, and the process shall repeat.

2101 Exit Status

2102 The exit status of the while loop shall be the exit status of the last compound-list-2 executed, or
2103 zero if none was executed. |

2104 2.9.4.6 Until Loop

2105 The until loop shall continuously execute one compound-list as long as another compound-list has
2106 a non-zero exit status.

2107 The format of the until loop is as follows:

2108 until compound-list-1
2109 do
2110 compound-list-2
2111 done

2112 The compound-list-1 shall be executed, and if it has a zero exit status, the until command
2113 completes. Otherwise, the compound-list-2 shall be executed, and the process repeats.

2114 Exit Status

2115 The exit status of the until loop shall be the exit status of the last compound-list-2 executed, or
2116 zero if none was executed. |

2117 2.9.5 Function Definition Command

2118 A function is a user-defined name that is used as a simple command to call a compound
2119 command with new positional parameters. A function is defined with a function definition
2120 command .

2121 The format of a function definition command is as follows:

2122 fname () compound-command [io-redirect ...]

2123 The function is named fname; the application shall ensure that it is a name (see the Base |
2124 Definitions volume of IEEE Std. 1003.1-200x, Section 3.232, Name). An implementation may |
2125 allow other characters in a function name as an extension. The implementation shall maintain
2126 separate name spaces for functions and variables.

Shell and Utilities, Issue 6 2263

Shell Commands Shell Command Language

2127 The argument compound-command represents a compound command, as described in Section
2128 2.9.4 (on page 2261).

2129 When the function is declared, none of the expansions in Section 2.6 (on page 2244) shall be
2130 performed on the text in compound-command or io-redirect ; all expansions shall be performed as
2131 normal each time the function is called. Similarly, the optional io-redirect redirections and any
2132 variable assignments within compound-command shall be performed during the execution of the
2133 function itself, not the function definition. See Section 2.8.1 (on page 2255) for the consequences
2134 of failures of these operations on interactive and non-interactive shells.

2135 When a function is executed, it shall have the syntax-error and variable-assignment properties
2136 described for special built-in utilities in the enumerated list at the beginning of Section 2.15 (on
2137 page 2276).

2138 The compound-command shall be executed whenever the function name is specified as the name
2139 of a simple command (see Section 2.9.1.1 (on page 2257)). The operands to the command
2140 temporarily shall become the positional parameters during the execution of the compound-
2141 command ; the special parameter ’#’ also shall be changed to reflect the number of operands. The
2142 special parameter 0 shall be unchanged. When the function completes, the values of the
2143 positional parameters and the special parameter ’#’ shall be restored to the values they had
2144 before the function was executed. If the special built-in return is executed in the compound-
2145 command , the function completes and execution shall resume with the next command after the
2146 function call.

2147 Exit Status

2148 The exit status of a function definition shall be zero if the function was declared successfully;
2149 otherwise, it shall be greater than zero. The exit status of a function invocation shall be the exit
2150 status of the last command executed by the function. |

2264 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Executable Script

2151 2.10 Executable Script |

2152 XSI XSI-Conformant systems shall support executable scripts. A successful call to a function of the |
2153 exec family with an executable script as the first parameter shall result in a new process, where |
2154 the process image that is started is that of the interpreter. The path name of the interpreter |
2155 follows the "#!" characters. |

2156 If the executable script has a first line: |

2157 #! interpreter [arg] |

2158 then the interpreter shall be called with an argument array consisting of an unspecified zero’th |
2159 argument, followed by arg (if present), followed by a path name for the script, followed by the |
2160 arguments following the zero’th argument in the exec call of the script. |

2161 No shell operations (as described in Section 2.1 (on page 2235)) shall be performed on the first |
2162 line of an executable script. |

2163 The behavior shall be unspecified if the first line of the executable script does not meet all of the |
2164 following criteria: |

2165 1. The first line shall be in one of the formats below: |

2166 "#!%s\n" interpreter |
2167 "#!<delta>%s\n" interpreter |
2168 "#!%s<delta>%s\n" interpreter arg |
2169 "#!<delta>%s<delta>%s\n" interpreter arg |

2170 2. The interpreter argument shall be an absolute path name of an executable file other than an |
2171 executable script. |

2172 3. The interpreter argument and the arg argument, if present, shall not contain any quoting |
2173 characters. |

2174 4. The interpreter argument and the arg argument, if present, shall not contain any white- |
2175 space characters. |

2176 5. The length of the first line shall be no longer than 80 bytes. |
2177 |

Shell and Utilities, Issue 6 2265

Shell Grammar Shell Command Language

2178 2.11 Shell Grammar
2179 The following grammar defines the Shell Command Language. This formal syntax shall take
2180 precedence over the preceding text syntax description.

2181 2.11.1 Shell Grammar Lexical Conventions

2182 The input language to the shell must be first recognized at the character level. The resulting
2183 tokens shall be classified by their immediate context according to the following rules (applied in
2184 order). These rules are used to determine what a ‘‘token’’ is that is subject to parsing at the
2185 token level. The rules for token recognition in Section 2.3 (on page 2238) shall apply.

2186 1. A <newline> character shall be returned as the token identifier NEWLINE.

2187 2. If the token is an operator, the token identifier for that operator shall result.

2188 3. If the string consists solely of digits and the delimiter character is one of ’<’ or ’>’ , the
2189 token identifier IO_NUMBER shall be returned.

2190 4. Otherwise, the token identifier TOKEN results.

2191 Further distinction on TOKEN is context-dependent. It may be that the same TOKEN yields
2192 WORD, a NAME, an ASSIGNMENT, or one of the reserved words below, dependent upon the
2193 context. Some of the productions in the grammar below are annotated with a rule number from
2194 the following list. When a TOKEN is seen where one of those annotated productions could be
2195 used to reduce the symbol, the applicable rule shall be applied to convert the token identifier
2196 type of the TOKEN to a token identifier acceptable at that point in the grammar. The reduction
2197 shall then proceed based upon the token identifier type yielded by the rule applied. When more
2198 than one rule applies, the highest numbered rule shall apply (which in turn may refer to another
2199 rule). (Note that except in rule 7, the presence of an ’=’ in the token has no effect.)

2200 The WORD tokens shall have the word expansion rules applied to them immediately before the
2201 associated command is executed, not at the time the command is parsed.

2202 2.11.2 Shell Grammar Rules

2203 1. [Command Name]

2204 When the TOKEN is exactly a reserved word, the token identifier for that reserved word
2205 shall result. Otherwise, the token WORD shall be returned. Also, if the parser is in any
2206 state where only a reserved word could be the next correct token, proceed as above. This
2207 rule applies rather narrowly: when a compound list is terminated by some clear delimiter
2208 (such as the closing fi of an inner if_clause) then it would apply; where the compound list
2209 might continue (as in after a ’;’), rule 7a (and consequently the first sentence of this rule)
2210 would apply. In many instances the two conditions are identical, but this part of this rule
2211 does not give license to treating a WORD as a reserved word unless it is in a place where a
2212 reserved word shall appear.

2213 Note: Because at this point quote marks are retained in the token, quoted strings
2214 cannot be recognized as reserved words. This rule also implies that reserved
2215 words are not recognized except in certain positions in the input, such as after a
2216 <newline> character or semicolon; the grammar presumes that if the reserved
2217 word is intended, it is properly delimited by the user, and does not attempt to
2218 reflect that requirement directly. Also note that line joining is done before
2219 tokenization, as described in Section 2.2.1 (on page 2236), so escaped
2220 <newline>s are already removed at this point.

2266 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Grammar

2221 Rule 1 is not directly referenced in the grammar, but is referred to by other rules, or applies
2222 globally.

2223 2. [Redirection to or from file name]

2224 The expansions specified in Section 2.7 (on page 2251) shall occur. As specified there,
2225 exactly one field can result (or the result is unspecified), and there are additional
2226 requirements on path name expansion.

2227 3. [Redirection from here-document]

2228 Quote removal shall be applied to the word to determine the delimiter that is used to find
2229 the end of the here-document that begins after the next <newline> character.

2230 4. [Case statement termination]

2231 When the TOKEN is exactly the reserved word esac, the token identifier for esac shall
2232 result. Otherwise, the token WORD shall be returned.

2233 5. [NAME in for]

2234 When the TOKEN meets the requirements for a name (see the Base Definitions volume of |
2235 IEEE Std. 1003.1-200x, Section 3.232, Name), the token identifier NAME shall result. |
2236 Otherwise, the token WORD shall be returned.

2237 6. [Third word of for and case]

2238 When the TOKEN is exactly the reserved word in, the token identifier for in shall result.
2239 Otherwise, the token WORD shall be returned. (As indicated in the grammar, a linebreak
2240 precedes the token in. If <newline> characters are present at the indicated location, it is
2241 the token after them that is treated in this fashion.)

2242 7. [Assignment preceding command name]

2243 a. [When the first word]

2244 If the TOKEN does not contain the character ’=’ , rule 1 is applied. Otherwise, 7b
2245 shall be applied.

2246 b. [Not the first word]

2247 If the TOKEN contains the equal sign character:

2248 — If it begins with ’=’ , the token WORD shall be returned.

2249 — If all the characters preceding ’=’ form a valid name (see the Base Definitions |
2250 volume of IEEE Std. 1003.1-200x, Section 3.232, Name), the token |
2251 ASSIGNMENT_WORD shall be returned. (Quoted characters cannot participate
2252 in forming a valid name.)

2253 — Otherwise, it is unspecified whether it is ASSIGNMENT_WORD or WORD that
2254 is returned.

2255 Assignment to the NAME shall occur as specified in Section 2.9.1 (on page 2256).

2256 8. [NAME in function]

2257 When the TOKEN is exactly a reserved word, the token identifier for that reserved word
2258 shall result. Otherwise, when the TOKEN meets the requirements for a name, the token
2259 identifier NAME shall result. Otherwise, rule 7 applies.

2260 9. [Body of function]

Shell and Utilities, Issue 6 2267

Shell Grammar Shell Command Language

2261 Word expansion and assignment shall never occur, even when required by the rules above,
2262 when this rule is being parsed. Each TOKEN that might either be expanded or have
2263 assignment applied to it shall instead be returned as a single WORD consisting only of
2264 characters that are exactly the token described in Section 2.3 (on page 2238).

2265 /* ---
2266 The grammar symbols
2267 --- */

2268 %token WORD
2269 %token ASSIGNMENT_WORD
2270 %token NAME
2271 %token NEWLINE
2272 %token IO_NUMBER

2273 /* The following are the operators mentioned above. */

2274 %token AND_IF OR_IF DSEMI
2275 /* ’&&’ ’||’ ’;;’ */

2276 %token DLESS DGREAT LESSAND GREATAND LESSGREAT DLESSDASH
2277 /* ’<<’ ’>>’ ’<&’ ’>&’ ’<>’ ’<< −’ */

2278 %token CLOBBER
2279 /* ’>|’ */

2280 /* The following are the reserved words. */

2281 %token If Then Else Elif Fi Do Done
2282 /* ’if’ ’then’ ’else’ ’elif’ ’fi’ ’do’ ’done’ */

2283 %token Case Esac While Until For
2284 /* ’case’ ’esac’ ’while’ ’until’ ’for’ */

2285 /* These are reserved words, not operator tokens, and are
2286 recognized when reserved words are recognized. */

2287 %token Lbrace Rbrace Bang
2288 /* ’{’ ’}’ ’!’ */

2289 %token In
2290 /* ’in’ */

2291 /* ---
2292 The Grammar
2293 --- */

2294 %start complete_command
2295 %%
2296 complete_command : list separator
2297 | list
2298 ;
2299 list : list separator_op and_or
2300 | and_or
2301 ;
2302 and_or : pipeline
2303 | and_or AND_IF linebreak pipeline
2304 | and_or OR_IF linebreak pipeline
2305 ;

2268 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Grammar

2306 pipeline : pipe_sequence
2307 | Bang pipe_sequence
2308 ;
2309 pipe_sequence : command
2310 | pipe_sequence ’|’ linebreak command
2311 ;
2312 command : simple_command
2313 | compound_command
2314 | compound_command redirect_list
2315 | function_definition
2316 ;
2317 compound_command : brace_group
2318 | subshell
2319 | for_clause
2320 | case_clause
2321 | if_clause
2322 | while_clause
2323 | until_clause
2324 ;
2325 subshell : ’(’ compound_list ’)’
2326 ;
2327 compound_list : term
2328 | newline_list term
2329 | term separator
2330 | newline_list term separator
2331 ;
2332 term : term separator and_or
2333 | and_or
2334 ;
2335 for_clause : For name linebreak do_group
2336 | For name linebreak in sequential_sep_do_group
2337 | For name linebreak in wordlist sequential_sep do_group
2338 ;
2339 name : NAME /* Apply rule 5 */
2340 ;
2341 in : In /* Apply rule 6 */
2342 ;
2343 wordlist : wordlist WORD
2344 | WORD
2345 ;
2346 case_clause : Case WORD linebreak in linebreak case_list Esac
2347 | Case WORD linebreak in linebreak case_list_ns Esac
2348 | Case WORD linebreak in linebreak Esac
2349 ;
2350 case_list_ns : case_list case_item_ns
2351 | case_item_ns
2352 ;
2353 case_list : case_list case_item
2354 | case_item
2355 ;
2356 case_item_ns : pattern ’)’ linebreak linebreak
2357 | pattern ’)’ compound_list linebreak

Shell and Utilities, Issue 6 2269

Shell Grammar Shell Command Language

2358 | ’(’ pattern ’)’ linebreak linebreak
2359 | ’(’ pattern ’)’ compound_list linebreak
2360 ;
2361 case_item : pattern ’)’ linebreak DSEMI linebreak
2362 | pattern ’)’ compound_list linebreak
2363 | ’(’ pattern ’)’ linebreak linebreak
2364 | ’(’ pattern ’)’ compound_list linebreak
2365 ;
2366 pattern : WORD /* Apply rule 4 */
2367 | pattern ’|’ WORD /* Do not apply rule (4) */
2368 ;
2369 if_clause : If compound_list Then compound_list else_part Fi
2370 | If compound_list Then compound_list Fi
2371 ;
2372 else_part : Elif compound_list Then else_part
2373 | Else compound_list
2374 ;
2375 while_clause : While compound_list do_group
2376 ;
2377 until_clause : Until compound_list do_group
2378 ;
2379 function_definition : fname ’(’ ’)’ linebreak function_body
2380 ;
2381 function_body : compound_command /* Apply rule 9 */
2382 | compound_command redirect_list /* Apply rule 9 */
2383 ;
2384 fname : NAME /* Apply rule 8 */
2385 ;
2386 brace_group : Lbrace compound_list Rbrace
2387 ;
2388 do_group : Do compound_list Done
2389 ;
2390 simple_command : cmd_prefix cmd_word cmd_suffix
2391 | cmd_prefix cmd_word
2392 | cmd_prefix
2393 | cmd_name cmd_suffix
2394 | cmd_name
2395 ;
2396 cmd_name : WORD /* Apply rule 7a */
2397 ;
2398 cmd_word : WORD /* Apply rule 7b */
2399 ;
2400 cmd_prefix : io_redirect
2401 | cmd_prefix io_redirect
2402 | ASSIGNMENT_WORD
2403 | cmd_prefix ASSIGNMENT_WORD
2404 ;
2405 cmd_suffix : io_redirect
2406 | cmd_suffix io_redirect
2407 | WORD
2408 | cmd_suffix WORD
2409 ;

2270 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Grammar

2410 redirect_list : io_redirect
2411 | redirect_list io_redirect
2412 ;
2413 io_redirect : io_file
2414 | IO_NUMBER io_file
2415 | io_here
2416 | IO_NUMBER io_here
2417 ;
2418 io_file : ’<’ filename
2419 | LESSAND filename
2420 | ’>’ filename
2421 | GREATAND filename
2422 | DGREAT filename
2423 | LESSGREAT filename
2424 | CLOBBER filename
2425 ;
2426 filename : WORD /* Apply rule 2 */
2427 ;
2428 io_here : DLESS here_end
2429 | DLESSDASH here_end
2430 ;
2431 here_end : WORD /* Apply rule 3 */
2432 ;
2433 newline_list : NEWLINE
2434 | newline_list NEWLINE
2435 ;
2436 linebreak : newline_list
2437 | /* empty */
2438 ;
2439 separator_op : ’&’
2440 | ’;’
2441 ;
2442 separator : separator_op linebreak
2443 | newline_list
2444 ;
2445 sequential_sep : ’;’ linebreak
2446 | newline_list
2447 ;

Shell and Utilities, Issue 6 2271

Signals and Error Handling Shell Command Language

2448 2.12 Signals and Error Handling
2449 When a command is in an asynchronous list, the shell shall prevent SIGQUIT and SIGINT
2450 signals from the keyboard from interrupting the command. Otherwise, signals shall have the
2451 values inherited by the shell from its parent (see also the trap (on page 2307) special built-in).

2452 When a signal for which a trap has been set is received while the shell is waiting for the
2453 completion of a utility executing a foreground command, the trap associated with that signal
2454 shall not be executed until after the foreground command has completed. When the shell is
2455 waiting, by means of the wait utility, for asynchronous commands to complete, the reception of a
2456 signal for which a trap has been set shall cause the wait utility to return immediately with an exit
2457 status >128, immediately after which the trap associated with that signal shall be taken.

2458 If multiple signals are pending for the shell for which there are associated trap actions, the order
2459 of execution of trap actions is unspecified.

2272 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Shell Execution Environment

2460 2.13 Shell Execution Environment
2461 A shell execution environment consists of the following:

2462 • Open files inherited upon invocation of the shell, plus open files controlled by exec

2463 • Working directory as set by cd

2464 • File creation mask set by umask

2465 • Current traps set by trap

2466 • Shell parameters that are set by variable assignment (see the set (on page 2297) special built-
2467 in) or from the System Interfaces volume of IEEE Std. 1003.1-200x environment inherited by
2468 the shell when it begins (see the export (on page 2291) special built-in)

2469 • Shell functions; see Section 2.9.5 (on page 2263)

2470 • Options turned on at invocation or by set

2471 • Process IDs of the last commands in asynchronous lists known to this shell environment; see
2472 Section 2.9.3.1 (on page 2259)

2473 • Shell aliases; see Section 2.3.1 (on page 2239)

2474 Utilities other than the special built-ins (see Section 2.15 (on page 2276)) shall be invoked in a
2475 separate environment that consists of the following. The initial value of these objects shall be the
2476 same as that for the parent shell, except as noted below.

2477 • Open files inherited on invocation of the shell, open files controlled by the exec special built-
2478 in plus any modifications, and additions specified by any redirections to the utility

2479 • Current working directory

2480 • File creation mask

2481 • If the utility is a shell script, traps caught by the shell shall be set to the default values and
2482 traps ignored by the shell shall be set to be ignored by the utility; if the utility is not a shell
2483 script, the trap actions (default or ignore) shall be mapped into the appropriate signal
2484 handling actions for the utility

2485 • Variables with the export attribute, along with those explicitly exported for the duration of the
2486 command, shall be passed to the utility as System Interfaces volume of IEEE Std. 1003.1-200x
2487 environment variables

2488 The environment of the shell process shall not be changed by the utility unless explicitly
2489 specified by the utility description (for example, cd and umask).

2490 A subshell environment shall be created as a duplicate of the shell environment, except that
2491 signal traps set by that shell environment shall be set to the default values. Changes made to the
2492 subshell environment shall not affect the shell environment. Command substitution, commands
2493 that are grouped with parentheses, and asynchronous lists shall be executed in a subshell
2494 environment. Additionally, each command of a multi-command pipeline is in a subshell
2495 environment; as an extension, however, any or all commands in a pipeline may be executed in
2496 the current environment. All other commands shall be executed in the current shell
2497 environment. |

Shell and Utilities, Issue 6 2273

Pattern Matching Notation Shell Command Language

2498 2.14 Pattern Matching Notation
2499 The pattern matching notation described in this section is used to specify patterns for matching
2500 strings in the shell. Historically, pattern matching notation is related to, but slightly different
2501 from, the regular expression notation described in the Base Definitions volume of |
2502 IEEE Std. 1003.1-200x, Chapter 9, Regular Expressions. For this reason, the description of the |
2503 rules for this pattern matching notation are based on the description of regular expression
2504 notation, modified to include backslash escape processing. |

2505 2.14.1 Patterns Matching a Single Character

2506 The following patterns matching a single character match a single character: ordinary characters ,
2507 special pattern characters , and pattern bracket expressions. The pattern bracket expression also shall
2508 match a single collating element. A backslash character shall escape the following character. The
2509 escaping backslash shall be discarded.

2510 An ordinary character is a pattern that shall match itself. It can be any character in the supported
2511 character set except for NUL, those special shell characters in Section 2.2 (on page 2236) that
2512 require quoting, and the following three special pattern characters. Matching shall be based on
2513 the bit pattern used for encoding the character, not on the graphic representation of the
2514 character. If any character (ordinary, shell special, or pattern special) is quoted, that pattern shall
2515 match the character itself. The shell special characters always require quoting.

2516 When unquoted and outside a bracket expression, the following three characters shall have
2517 special meaning in the specification of patterns:

2518 ? A question-mark is a pattern that shall match any character.

2519 * An asterisk is a pattern that shall match multiple characters, as described in Section 2.14.2.

2520 [The open bracket shall introduce a pattern bracket expression.

2521 The description of basic regular expression bracket expressions in the Base Definitions volume |
2522 of IEEE Std. 1003.1-200x, Section 9.3.5, RE Bracket Expression shall also apply to the pattern |
2523 bracket expression, except that the exclamation mark character (’!’) shall replace the |
2524 circumflex character (’ˆ’) in its role in a non-matching list in the regular expression notation. A
2525 bracket expression starting with an unquoted circumflex character produces unspecified results.

2526 When pattern matching is used where shell quote removal is not performed (such as in the
2527 argument to the find name primary when find is being called using one of the exec functions as
2528 defined in the System Interfaces volume of IEEE Std. 1003.1-200x, or in the pattern argument to
2529 the fnmatch() function), special characters can be escaped to remove their special meaning by
2530 preceding them with a backslash character. This escaping backslash is discarded. The sequence
2531 "\\" represents one literal backslash. All of the requirements and effects of quoting on ordinary,
2532 shell special, and special pattern characters shall apply to escaping in this context. |

2533 2.14.2 Patterns Matching Multiple Characters

2534 The following rules are used to construct patterns matching multiple characters from patterns
2535 matching a single character:

2536 1. The asterisk (’*’) is a pattern that shall match any string, including the null string.

2537 2. The concatenation of patterns matching a single character is a valid pattern that shall match
2538 the concatenation of the single characters or collating elements matched by each of the
2539 concatenated patterns.

2274 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language Pattern Matching Notation

2540 3. The concatenation of one or more patterns matching a single character with one or more
2541 asterisks is a valid pattern. In such patterns, each asterisk shall match a string of zero or
2542 more characters, matching the greatest possible number of characters that still allows the
2543 remainder of the pattern to match the string.

2544 2.14.3 Patterns Used for File Name Expansion

2545 The rules described so far in Section 2.14.1 (on page 2274) and Section 2.14.2 (on page 2274) are
2546 qualified by the following rules that apply when pattern matching notation is used for file name
2547 expansion:

2548 1. The application shall ensure that the slash character in a path name is explicitly matched
2549 by using one or more slashes in the pattern; it cannot be matched by the asterisk or
2550 question-mark special characters or by a bracket expression. Slashes in the pattern are
2551 identified before bracket expressions; thus, a slash cannot be included in a pattern bracket |
2552 expression used for file name expansion. If a slash character is found following an |
2553 unescaped open square bracket character before a corresponding closing square bracket is |
2554 found, the open bracket is treated as an ordinary character. For example, the pattern |
2555 "a[b/c]d" does not match such path names as abd or a/d. It only matches a path name
2556 of literally a[b/c]d.

2557 2. If a file name begins with a period (’.’), the application shall ensure that the period is
2558 explicitly matched by using a period as the first character of the pattern or immediately
2559 following a slash character. The leading period shall not be matched by:

2560 • The asterisk or question-mark special characters

2561 • A bracket expression containing a non-matching list, such as "[!a]" , a range
2562 expression, such as "[% −0]" , or a character class expression, such as "[[:punct:]]"

2563 It is unspecified whether an explicit period in a bracket expression matching list, such as
2564 "[.abc]" , can match a leading period in a file name.

2565 3. Specified patterns are matched against existing file names and path names, as appropriate.
2566 Each component that contains a pattern character requires read permission in the directory
2567 containing that component. Any component, except the last, that does not contain a
2568 pattern character requires search permission. For example, given the pattern:

2569 /foo/bar/x*/bam

2570 search permission is needed for directories / and foo, search and read permissions are
2571 needed for directory bar, and search permission is needed for each x* directory. If the
2572 pattern matches any existing file names or path names, the pattern shall be replaced with
2573 those file names and path names, sorted according to the collating sequence in effect in the
2574 current locale. If the pattern contains an invalid bracket expression or does not match any
2575 existing file names or path names, the pattern string shall be left unchanged.

Shell and Utilities, Issue 6 2275

Special Built-In Utilities Shell Command Language

2576 2.15 Special Built-In Utilities
2577 The following special built-in utilities shall be supported in the shell command language. The
2578 output of each command, if any, shall be written to standard output, subject to the normal
2579 redirection and piping possible with all commands.

2580 The term built-in implies that the shell can execute the utility directly and does not need to
2581 search for it. An implementation can choose to make any utility a built-in; however, the special
2582 built-in utilities described here differ from regular built-in utilities in two respects:

2583 1. A syntax error in a special built-in utility may cause a shell executing that utility to abort,
2584 while a syntax error in a regular built-in utility shall not cause a shell executing that utility
2585 to abort. (See Section 2.8.1 (on page 2255) for the consequences of errors on interactive and
2586 non-interactive shells.) If a special built-in utility encountering a syntax error does not
2587 abort the shell, its exit value shall be non-zero.

2588 2. Variable assignments specified with special built-in utilities remain in effect after the
2589 built-in completes; this shall not be the case with a regular built-in or other utility.

2590 The special built-in utilities in this section need not be provided in a manner accessible via the
2591 exec family of functions defined in the System Interfaces volume of IEEE Std. 1003.1-200x.

2592 Some of the special built-ins are described as conforming to the Base Definitions volume of |
2593 IEEE Std. 1003.1-200x, Section 12.2, Utility Syntax Guidelines. For those that are not, the |
2594 requirement in Section 1.11 (on page 2224) that " −−" be recognized as a first argument to be
2595 discarded does not apply and a portable application shall not use that argument.

2276 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language break

2596 NAME
2597 break — exit from for, while, or until loop

2598 SYNOPSIS
2599 break [n]

2600 DESCRIPTION
2601 The break utility shall exit from the smallest enclosing for, while, or until loop, if any; or from the
2602 nth enclosing loop if n is specified. The value of n is an unsigned decimal integer greater than or
2603 equal to 1. The default shall be equivalent to n=1. If n is greater than the number of enclosing
2604 loops, the last enclosing loop shall be exited from. Execution shall continue with the command
2605 immediately following the loop.

2606 OPTIONS
2607 None.

2608 OPERANDS
2609 None.

2610 STDIN
2611 None.

2612 INPUT FILES
2613 None.

2614 ENVIRONMENT VARIABLES
2615 None.

2616 ASYNCHRONOUS EVENTS
2617 None.

2618 STDOUT
2619 None.

2620 STDERR
2621 None.

2622 OUTPUT FILES
2623 None.

2624 EXTENDED DESCRIPTION
2625 None.

2626 EXIT STATUS

2627 0 Successful completion.

2628 >0 The n value was not an unsigned decimal integer greater than or equal to 1.

2629 CONSEQUENCES OF ERRORS
2630 None.

Shell and Utilities, Issue 6 2277

break Shell Command Language

2631 APPLICATION USAGE
2632 None.

2633 EXAMPLES
2634 for i in * do
2635 if test −d "$i" then break fi done

2636 RATIONALE
2637 In early proposals, consideration was given to expanding the syntax of break and continue to refer
2638 to a label associated with the appropriate loop as a preferable alternative to the n method.
2639 However, this volume of IEEE Std. 1003.1-200x does reserve the namespace of command names
2640 ending with a colon. It is anticipated that a future implementation could take advantage of this
2641 and provide something like:

2642 outofloop: for i i n a b c d e
2643 do
2644 for j in 0 1 2 3 4 5 6 7 8 9
2645 do
2646 if test −r "${i}${j}"
2647 then break outofloop
2648 fi
2649 done
2650 done

2651 and that this might be standardized after implementation experience is achieved.

2652 FUTURE DIRECTIONS
2653 None.

2654 SEE ALSO
2655 Section 2.15 (on page 2276)

2656 CHANGE HISTORY
2657 None.

2278 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language colon

2658 NAME
2659 colon — null utility

2660 SYNOPSIS
2661 : [argument ...]

2662 DESCRIPTION
2663 This utility shall only expand command arguments. It is used when a command is needed, as in
2664 the then condition of an if command, but nothing is to be done by the command.

2665 OPTIONS
2666 None.

2667 OPERANDS
2668 None.

2669 STDIN
2670 None.

2671 INPUT FILES
2672 None.

2673 ENVIRONMENT VARIABLES
2674 None.

2675 ASYNCHRONOUS EVENTS
2676 None.

2677 STDOUT
2678 None.

2679 STDERR
2680 None.

2681 OUTPUT FILES
2682 None.

2683 EXTENDED DESCRIPTION
2684 None.

2685 EXIT STATUS
2686 Zero.

2687 CONSEQUENCES OF ERRORS
2688 None.

2689 APPLICATION USAGE
2690 None.

2691 EXAMPLES
2692 : ${X=abc}
2693 if false
2694 then :
2695 else echo $X
2696 fi
2697 abc

2698 As with any of the special built-ins, the null utility can also have variable assignments and
2699 redirections associated with it, such as:

Shell and Utilities, Issue 6 2279

colon Shell Command Language

2700 x=y : > z

2701 which sets variable x to the value y (so that it persists after the null utility completes) and creates
2702 or truncates file z.

2703 RATIONALE
2704 None.

2705 FUTURE DIRECTIONS
2706 None.

2707 SEE ALSO
2708 Section 2.15 (on page 2276)

2709 CHANGE HISTORY
2710 None.

2280 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language continue

2711 NAME
2712 continue — continue for, while, or until loop

2713 SYNOPSIS
2714 continue [n]

2715 DESCRIPTION
2716 The continue utility shall return to the top of the smallest enclosing for, while, or until loop, or to
2717 the top of the nth enclosing loop, if n is specified. This involves repeating the condition list of a
2718 while or until loop or performing the next assignment of a for loop, and reexecuting the loop if
2719 appropriate.

2720 The value of n is a decimal integer greater than or equal to 1. The default is equivalent to n=1. If
2721 n is greater than the number of enclosing loops, the last enclosing loop shall be used.

2722 OPTIONS
2723 None.

2724 OPERANDS
2725 None.

2726 STDIN
2727 None.

2728 INPUT FILES
2729 None.

2730 ENVIRONMENT VARIABLES
2731 None.

2732 ASYNCHRONOUS EVENTS
2733 None.

2734 STDOUT
2735 None.

2736 STDERR
2737 None.

2738 OUTPUT FILES
2739 None.

2740 EXTENDED DESCRIPTION
2741 None.

2742 EXIT STATUS

2743 0 Successful completion.

2744 >0 The n value was not an unsigned decimal integer greater than or equal to 1.

2745 CONSEQUENCES OF ERRORS
2746 None.

Shell and Utilities, Issue 6 2281

continue Shell Command Language

2747 APPLICATION USAGE
2748 None.

2749 EXAMPLES
2750 for i in *
2751 do
2752 if test −d "$i"
2753 then continue
2754 fi
2755 echo "\"$i\"" is not a directory.
2756 done

2757 RATIONALE
2758 None.

2759 FUTURE DIRECTIONS
2760 None.

2761 SEE ALSO
2762 Section 2.15 (on page 2276)

2763 CHANGE HISTORY
2764 None.

2282 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language dot

2765 NAME
2766 dot — execute commands in current environment

2767 SYNOPSIS
2768 . file

2769 DESCRIPTION
2770 The shell shall execute commands from the file in the current environment.

2771 If file does not contain a slash, the shell shall use the search path specified by PATH to find the
2772 directory containing file . Unlike normal command search, however, the file searched for by the
2773 dot utility need not be executable. If no readable file is found, a non-interactive shell shall abort;
2774 an interactive shell shall write a diagnostic message to standard error, but this condition shall
2775 not be considered a syntax error.

2776 OPTIONS
2777 None.

2778 OPERANDS
2779 None.

2780 STDIN
2781 None.

2782 INPUT FILES
2783 None.

2784 ENVIRONMENT VARIABLES
2785 None.

2786 ASYNCHRONOUS EVENTS
2787 None.

2788 STDOUT
2789 None.

2790 STDERR
2791 None.

2792 OUTPUT FILES
2793 None.

2794 EXTENDED DESCRIPTION
2795 None.

2796 EXIT STATUS
2797 Returns the value of the last command executed, or a zero exit status if no command is executed.

2798 CONSEQUENCES OF ERRORS
2799 None.

2800 APPLICATION USAGE
2801 None.

2802 EXAMPLES
2803 cat foobar
2804 foo=hello bar=world
2805 . foobar
2806 echo $foo $bar
2807 hello world

Shell and Utilities, Issue 6 2283

dot Shell Command Language

2808 RATIONALE
2809 Some older implementations searched the current directory for the file , even if the value of PATH
2810 disallowed it. This behavior was omitted from this volume of IEEE Std. 1003.1-200x due to
2811 concerns about introducing the susceptibility to trojan horses that the user might be trying to
2812 avoid by leaving dot out of PATH.

2813 The KornShell version of dot takes optional arguments that are set to the positional parameters.
2814 This is a valid extension that allows a dot script to behave identically to a function.

2815 FUTURE DIRECTIONS
2816 None.

2817 SEE ALSO
2818 Section 2.15 (on page 2276)

2819 CHANGE HISTORY
2820 None.

2284 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language eval

2821 NAME
2822 eval — construct command by concatenating arguments

2823 SYNOPSIS
2824 eval [argument ...]

2825 DESCRIPTION
2826 The eval utility shall construct a command by concatenating arguments together, separating each
2827 with a <space> character. The constructed command shall be read and executed by the shell.

2828 OPTIONS
2829 None.

2830 OPERANDS
2831 None.

2832 STDIN
2833 None.

2834 INPUT FILES
2835 None.

2836 ENVIRONMENT VARIABLES
2837 None.

2838 ASYNCHRONOUS EVENTS
2839 None.

2840 STDOUT
2841 None.

2842 STDERR
2843 None.

2844 OUTPUT FILES
2845 None.

2846 EXTENDED DESCRIPTION
2847 None.

2848 EXIT STATUS
2849 If there are no arguments, or only null arguments, eval shall return a zero exit status; otherwise, it
2850 shall return the exit status of the command defined by the string of concatenated arguments
2851 separated by spaces.

2852 CONSEQUENCES OF ERRORS
2853 None.

2854 APPLICATION USAGE
2855 None.

2856 EXAMPLES
2857 foo=10 x=foo
2858 y=’$’$x
2859 echo $y
2860 $foo
2861 eval y=’$’$x
2862 echo $y
2863 10

Shell and Utilities, Issue 6 2285

eval Shell Command Language

2864 RATIONALE
2865 None.

2866 FUTURE DIRECTIONS
2867 None.

2868 SEE ALSO
2869 Section 2.15 (on page 2276)

2870 CHANGE HISTORY
2871 None.

2286 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language exec

2872 NAME
2873 exec — execute commands and open, close, or copy file descriptors

2874 SYNOPSIS
2875 exec [command [argument ...]]

2876 DESCRIPTION
2877 The exec utility shall open, close, and/or copy file descriptors as specified by any redirections as
2878 part of the command.

2879 If exec is specified without command or arguments, and any file descriptors with numbers greater
2880 than 2 are opened with associated redirection statements, it is unspecified whether those file
2881 descriptors remain open when the shell invokes another utility. Scripts concerned that child
2882 shells could misuse open file descriptors can always close them explicitly, as shown in one of the
2883 following examples.

2884 If exec is specified with command , it shall replace the shell with command without creating a new
2885 process. If arguments are specified, they shall be arguments to command . Redirection affects the
2886 current shell execution environment.

2887 OPTIONS
2888 None.

2889 OPERANDS
2890 None.

2891 STDIN
2892 None.

2893 INPUT FILES
2894 None.

2895 ENVIRONMENT VARIABLES
2896 None.

2897 ASYNCHRONOUS EVENTS
2898 None.

2899 STDOUT
2900 None.

2901 STDERR
2902 None.

2903 OUTPUT FILES
2904 None.

2905 EXTENDED DESCRIPTION
2906 None.

2907 EXIT STATUS
2908 If command is specified, exec shall not return to the shell; rather, the exit status of the process shall
2909 be the exit status of the program implementing command , which overlaid the shell. If command is
2910 not found, the exit status shall be 127. If command is found, but it is not an executable utility, the
2911 exit status shall be 126. If a redirection error occurs (see Section 2.8.1 (on page 2255)), the shell
2912 shall exit with a value in the range 1−125. Otherwise, exec shall return a zero exit status.

Shell and Utilities, Issue 6 2287

exec Shell Command Language

2913 CONSEQUENCES OF ERRORS
2914 None.

2915 APPLICATION USAGE
2916 None.

2917 EXAMPLES
2918 Open readfile as file descriptor 3 for reading:

2919 exec 3< readfile

2920 Open writefile as file descriptor 4 for writing:

2921 exec 4> writefile

2922 Make file descriptor 5 a copy of file descriptor 0:

2923 exec 5<&0

2924 Close file descriptor 3:

2925 exec 3<& −

2926 Cat the file maggie by replacing the current shell with the cat utility:

2927 exec cat maggie

2928 RATIONALE
2929 Most historical implementations were not conformant in that:

2930 foo=bar exec cmd

2931 did not pass foo to cmd.

2932 FUTURE DIRECTIONS
2933 None.

2934 SEE ALSO
2935 Section 2.15 (on page 2276)

2936 CHANGE HISTORY
2937 None.

2288 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language exit

2938 NAME
2939 exit — cause the shell to exit

2940 SYNOPSIS
2941 exit [n]

2942 DESCRIPTION
2943 The exit utility shall cause the shell to exit with the exit status specified by the unsigned decimal
2944 integer n. If n is specified, but its value is not between 0 and 255 inclusively, the exit status is
2945 undefined.

2946 A trap on EXIT shall be executed before the shell terminates, except when the exit utility is
2947 invoked in that trap itself, in which case the shell shall exit immediately.

2948 OPTIONS
2949 None.

2950 OPERANDS
2951 None.

2952 STDIN
2953 None.

2954 INPUT FILES
2955 None.

2956 ENVIRONMENT VARIABLES
2957 None.

2958 ASYNCHRONOUS EVENTS
2959 None.

2960 STDOUT
2961 None.

2962 STDERR
2963 None.

2964 OUTPUT FILES
2965 None.

2966 EXTENDED DESCRIPTION
2967 None.

2968 EXIT STATUS
2969 The exit status shall be n, if specified. Otherwise, the value shall be the exit value of the last
2970 command executed, or zero if no command was executed. When exit is executed in a trap action,
2971 the last command is considered to be the command that executed immediately preceding the
2972 trap action.

2973 CONSEQUENCES OF ERRORS
2974 None.

2975 APPLICATION USAGE
2976 None.

2977 EXAMPLES
2978 Exit with a true value:

2979 exit 0

Shell and Utilities, Issue 6 2289

exit Shell Command Language

2980 Exit with a false value:

2981 exit 1

2982 RATIONALE
2983 As explained in other sections, certain exit status values have been reserved for special uses and
2984 should be used by applications only for those purposes:

2985 126 A file to be executed was found, but it was not an executable utility.

2986 127 A utility to be executed was not found.

2987 >128 A command was interrupted by a signal.

2988 FUTURE DIRECTIONS
2989 None.

2990 SEE ALSO
2991 Section 2.15 (on page 2276)

2992 CHANGE HISTORY
2993 None.

2290 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language export

2994 NAME
2995 export — set export attribute for variables

2996 SYNOPSIS
2997 export name [=word] ...

2998 export −p

2999 DESCRIPTION
3000 The shell shall give the export attribute to the variables corresponding to the specified names,
3001 which shall cause them to be in the environment of subsequently executed commands.

3002 The export special built-in shall support the Base Definitions volume of IEEE Std. 1003.1-200x, |
3003 Section 12.2, Utility Syntax Guidelines. |

3004 When −p is specified, export shall write to the standard output the names and values of all
3005 exported variables, in the following format:

3006 "export %s=%s\n", < name>, < value >

3007 The shell shall format the output, including the proper use of quoting, so that it is suitable for
3008 reinput to the shell as commands that achieve the same exporting results.

3009 When no arguments are given, the results are unspecified.

3010 OPTIONS
3011 None.

3012 OPERANDS
3013 None.

3014 STDIN
3015 None.

3016 INPUT FILES
3017 None.

3018 ENVIRONMENT VARIABLES
3019 None.

3020 ASYNCHRONOUS EVENTS
3021 None.

3022 STDOUT
3023 None.

3024 STDERR
3025 None.

3026 OUTPUT FILES
3027 None.

3028 EXTENDED DESCRIPTION
3029 None.

3030 EXIT STATUS
3031 Zero.

Shell and Utilities, Issue 6 2291

export Shell Command Language

3032 CONSEQUENCES OF ERRORS
3033 None.

3034 APPLICATION USAGE
3035 None.

3036 EXAMPLES
3037 Export PWD and HOME variables:

3038 export PWD HOME

3039 Set and export the PATH variable:

3040 export PATH=/local/bin:$PATH

3041 Save and restore all exported variables:

3042 export −p > temp-file
3043 unset a lot of variables
3044 ... processing
3045 . temp-file

3046 RATIONALE
3047 Some historical shells use the no-argument case as the functional equivalent of what is required
3048 here with −p. This feature was left unspecified because it is not historical practice in all shells,
3049 and some scripts may rely on the now-unspecified results on their implementations. Attempts to
3050 specify the −p output as the default case were unsuccessful in achieving consensus. The −p
3051 option was added to allow portable access to the values that can be saved and then later restored
3052 using; for example, a dot script.

3053 FUTURE DIRECTIONS
3054 None.

3055 SEE ALSO
3056 Section 2.15 (on page 2276)

3057 CHANGE HISTORY
3058 None.

2292 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language readonly

3059 NAME
3060 readonly — set read-only attribute for variables

3061 SYNOPSIS
3062 readonly name [=word] ...

3063 readonly −p

3064 DESCRIPTION
3065 The variables whose names are specified shall be given the readonly attribute. The values of
3066 variables with the readonly attribute cannot be changed by subsequent assignment, nor can those
3067 variables be unset by the unset utility.

3068 The readonly special built-in shall support the Base Definitions volume of IEEE Std. 1003.1-200x, |
3069 Section 12.2, Utility Syntax Guidelines. |

3070 When −p is specified, readonly writes to the standard output the names and values of all read-
3071 only variables, in the following format:

3072 "readonly %s=%s\n", < name>, < value >

3073 The shell shall format the output, including the proper use of quoting, so that it is suitable for
3074 reinput to the shell as commands that achieve the same attribute-setting results.

3075 When no arguments are given, the results are unspecified.

3076 OPTIONS
3077 None.

3078 OPERANDS
3079 None.

3080 STDIN
3081 None.

3082 INPUT FILES
3083 None.

3084 ENVIRONMENT VARIABLES
3085 None.

3086 ASYNCHRONOUS EVENTS
3087 None.

3088 STDOUT
3089 None.

3090 STDERR
3091 None.

3092 OUTPUT FILES
3093 None.

3094 EXTENDED DESCRIPTION
3095 None.

3096 EXIT STATUS
3097 Zero.

Shell and Utilities, Issue 6 2293

readonly Shell Command Language

3098 CONSEQUENCES OF ERRORS
3099 None.

3100 APPLICATION USAGE
3101 None.

3102 EXAMPLES
3103 readonly HOME PWD

3104 RATIONALE
3105 Some historical shells preserve the read-only attribute across separate invocations. This volume
3106 of IEEE Std. 1003.1-200x allows this behavior, but does not require it.

3107 The −p option allows portable access to the values that can be saved and then later restored
3108 using; for example, a dot script. Also see the RATIONALE for export (on page 2291) for a
3109 description of the no-argument and −p output cases and a related example.

3110 Read-only functions were considered, but they were omitted as not being historical practice or
3111 particularly useful. Furthermore, functions must not be readonly across invocations to preclude
3112 spoofing (spoofing is the term for the practice of creating a program that acts like a well-known
3113 utility with the intent of subverting the real intent of the user) of administrative or security-
3114 relevant (or security-conscious) shell scripts.

3115 FUTURE DIRECTIONS
3116 None.

3117 SEE ALSO
3118 Section 2.15 (on page 2276)

3119 CHANGE HISTORY
3120 None.

2294 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language return

3121 NAME
3122 return — return from a function

3123 SYNOPSIS
3124 return [n]

3125 DESCRIPTION
3126 The return utility shall cause the shell to stop executing the current function or dot script. If the
3127 shell is not currently executing a function or dot script, the results are unspecified.

3128 OPTIONS
3129 None.

3130 OPERANDS
3131 None.

3132 STDIN
3133 None.

3134 INPUT FILES
3135 None.

3136 ENVIRONMENT VARIABLES
3137 None.

3138 ASYNCHRONOUS EVENTS
3139 None.

3140 STDOUT
3141 None.

3142 STDERR
3143 None.

3144 OUTPUT FILES
3145 None.

3146 EXTENDED DESCRIPTION
3147 None.

3148 EXIT STATUS
3149 The value of the special parameter ’?’ shall be set to n, an unsigned decimal integer, or to the
3150 exit status of the last command executed if n is not specified. If the value of n is greater than 255,
3151 the results are undefined. When return is executed in a trap action, the last command is
3152 considered to be the command that executed immediately preceding the trap action.

3153 CONSEQUENCES OF ERRORS
3154 None.

3155 APPLICATION USAGE
3156 None.

3157 EXAMPLES
3158 None.

3159 RATIONALE
3160 The behavior of return when not in a function or dot script differs between the System V shell
3161 and the KornShell. In the System V shell this is an error, whereas in the KornShell, the effect is
3162 the same as exit.

Shell and Utilities, Issue 6 2295

return Shell Command Language

3163 The results of returning a number greater than 255 are undefined because of differing practices
3164 in the various historical implementations. Some shells AND out all but the low-order 8 bits;
3165 others allow larger values, but not of unlimited size.

3166 See the discussion of appropriate exit status values under exit (on page 2289).

3167 FUTURE DIRECTIONS
3168 None.

3169 SEE ALSO
3170 Section 2.15 (on page 2276)

3171 CHANGE HISTORY
3172 None.

2296 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language set

3173 NAME
3174 set — set or unset options and positional parameters

3175 SYNOPSIS
3176 XSI set [−abCefmnuvx] [−h][−o option][argument ...]

3177 XSI set [+abCefmnuvx] [+h][+o option][argument ...]

3178 set −−[argument ...]

3179 set −o

3180 set +o

3181 DESCRIPTION
3182 If no options or arguments are specified, set shall write the names and values of all shell variables
3183 in the collation sequence of the current locale. Each name shall start on a separate line, using the
3184 format:

3185 "%s=%s\n", < name>, < value >

3186 The value string shall be written with appropriate quoting so that it is suitable for reinput to the
3187 shell, setting or resetting, as far as possible, the variables that are currently set. Read-only
3188 variables cannot be reset; see the description of shell quoting in Section 2.2 (on page 2236).

3189 When options are specified, they shall set or unset attributes of the shell, as described below.
3190 When arguments are specified, they cause positional parameters to be set or unset, as described
3191 below. Setting or unsetting attributes and positional parameters are not necessarily related
3192 actions, but they can be combined in a single invocation of set.

3193 The set special built-in shall support the Base Definitions volume of IEEE Std. 1003.1-200x, |
3194 Section 12.2, Utility Syntax Guidelines except that options can be specified with either a leading |
3195 hyphen (meaning enable the option) or plus sign (meaning disable it).

3196 Implementations shall support the options in the following list in both their hyphen and plus-
3197 sign forms. These options can also be specified as options to sh.

3198 −a When this option is on, the export attribute shall be set for each variable to which an |
3199 assignment is performed; see the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
3200 4.16, Variable Assignment. If the assignment precedes a utility name in a command, the |
3201 export attribute shall not persist in the current execution environment after the utility
3202 completes, with the exception that preceding one of the special built-in utilities causes the
3203 export attribute to persist after the built-in has completed. If the assignment does not
3204 precede a utility name in the command, or if the assignment is a result of the operation of
3205 the getopts or read utilities, the export attribute shall persist until the variable is unset.

3206 −b This option is supported if the system supports the User Portability Utilities option. It shall
3207 cause the shell to notify the user asynchronously of background job completions. The
3208 following message is written to standard error:

3209 "[%d]%c %s%s\n", < job-number >, < current >, <status>, <job-name>

3210 where the fields shall be as follows:

3211 <current> The character ’+’ identifies the job that would be used as a default for
3212 the fg or bg utilities; this job can also be specified using the job_id "%+" or
3213 "%%". The character ’ −’ identifies the job that would become the default
3214 if the current default job were to exit; this job can also be specified using
3215 the job_id "%−" . For other jobs, this field is a <space> character. At most
3216 one job can be identified with ’+’ and at most one job can be identified

Shell and Utilities, Issue 6 2297

set Shell Command Language

3217 with ’ −’ . If there is any suspended job, then the current job shall be a
3218 suspended job. If there are at least two suspended jobs, then the previous
3219 job also shall be a suspended job.

3220 <job-number> A number that can be used to identify the process group to the wait, fg, bg,
3221 and kill utilities. Using these utilities, the job can be identified by
3222 prefixing the job number with ’%’ .

3223 <status> Unspecified.

3224 <job-name> Unspecified.

3225 When the shell notifies the user a job has been completed, it may remove the job’s process
3226 ID from the list of those known in the current shell execution environment; see Section
3227 2.9.3.1 (on page 2259). Asynchronous notification shall not be enabled by default.

3228 −C (Uppercase C.) Prevent existing files from being overwritten by the shell’s ’>’ redirection
3229 operator (see Section 2.7.2 (on page 2252)); the ">|" redirection operator shall override this
3230 noclobber option for an individual file.

3231 −e When this option is on, if a simple command fails for any of the reasons listed in Section
3232 2.8.1 (on page 2255) or returns an exit status value >0, and is not part of the compound list
3233 following a while, until, or if keyword, and is not a part of an AND or OR list, and is not a
3234 pipeline preceded by the ! reserved word, then the shell shall immediately exit.

3235 −f The shell shall disable path name expansion.

3236 XSI −h Locate and remember utilities invoked by functions as those functions are defined (the
3237 utilities are normally located when the function is executed).

3238 −m This option is supported if the system supports the User Portability Utilities option. All jobs
3239 shall be run in their own process groups. Immediately before the shell issues a prompt after
3240 completion of the background job, a message reporting the exit status of the background job
3241 shall be written to standard error. If a foreground job stops, the shell shall write a message
3242 to standard error to that effect, formatted as described by the jobs utility. In addition, if a job
3243 changes status other than exiting (for example, if it stops for input or output or is stopped
3244 by a SIGSTOP signal), the shell shall write a similar message immediately prior to writing
3245 the next prompt. This option is enabled by default for interactive shells.

3246 −n The shell shall read commands but does not execute them; this can be used to check for
3247 shell script syntax errors. An interactive shell may ignore this option.

3248 −o Write the current settings of the options to standard output in an unspecified format.

3249 +o Write the current option settings to standard output in a format that is suitable for reinput
3250 to the shell as commands that achieve the same options settings.

3251 −o option
3252 This option is supported if the system supports the User Portability Utilities option. It shall
3253 set various options, many of which shall be equivalent to the single option letters. The
3254 following values of option shall be supported:

3255 allexport Equivalent to −a.

3256 errexit Equivalent to −e.

3257 ignoreeof Prevent an interactive shell from exiting on end-of-file. This setting prevents |
3258 accidental logouts when <control>-D is entered. A user shall explicitly exit to |
3259 leave the interactive shell.

2298 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language set

3260 monitor Equivalent to −m. This option is supported if the system supports the User
3261 Portability Utilities option.

3262 noclobber Equivalent to −C (uppercase C).

3263 noglob Equivalent to −f.

3264 noexec Equivalent to −n. |

3265 nolog Prevent the entry of function definitions into the command history; see |
3266 Command History List (on page 3064). |

3267 notify Equivalent to −b.

3268 nounset Equivalent to −u.

3269 verbose Equivalent to −v.

3270 vi Allow shell command line editing using the built-in vi editor. Enabling vi
3271 mode shall disable any other command line editing mode provided as an
3272 implementation extension.

3273 It need not be possible to set vi mode on for certain block-mode terminals.

3274 xtrace Equivalent to −x.

3275 −u The shell writes a message to standard error when it tries to expand a variable that is not set
3276 and immediately exit. An interactive shell shall not exit.

3277 −v The shell writes its input to standard error as it is read.

3278 −x The shell writes to standard error a trace for each command after it expands the command
3279 and before it executes it. It is unspecified whether the command that turns tracing off is
3280 traced.

3281 The default for all these options is off (unset) unless the shell was invoked with them on; see sh.

3282 The remaining arguments shall be assigned in order to the positional parameters. The special
3283 parameter ’#’ shall be set to reflect the number of positional parameters. All positional
3284 parameters shall be unset before any new values are assigned.

3285 The special argument " −−" immediately following the set command name can be used to delimit
3286 the arguments if the first argument begins with ’+’ or ’ −’ , or to prevent inadvertent listing of
3287 all shell variables when there are no arguments. The command set− − without argument shall
3288 unset all positional parameters and set the special parameter ’#’ to zero.

3289 OPTIONS
3290 None.

3291 OPERANDS
3292 None.

3293 STDIN
3294 None.

3295 INPUT FILES
3296 None.

3297 ENVIRONMENT VARIABLES
3298 None.

Shell and Utilities, Issue 6 2299

set Shell Command Language

3299 ASYNCHRONOUS EVENTS
3300 None.

3301 STDOUT
3302 None.

3303 STDERR
3304 None.

3305 OUTPUT FILES
3306 None.

3307 EXTENDED DESCRIPTION
3308 None.

3309 EXIT STATUS
3310 Zero.

3311 CONSEQUENCES OF ERRORS
3312 None.

3313 APPLICATION USAGE
3314 None.

3315 EXAMPLES
3316 Write out all variables and their values:

3317 set

3318 Set $1, $2, and $3 and set "$#" to 3:

3319 set c a b

3320 Turn on the −x and −v options:

3321 set −xv

3322 Unset all positional parameters:

3323 set −−

3324 Set $1 to the value of −x, even if x begins with ’ −’ or ’+’ :

3325 set −− "$x"

3326 Set the positional parameters to the expansion of x, even if x expands with a leading ’ −’ or ’+’ :

3327 set −− $x

3328 RATIONALE
3329 The set − − form is listed specifically in the SYNOPSIS even though this usage is implied by the
3330 Utility Syntax Guidelines. The explanation of this feature removes any ambiguity about whether
3331 the set − − form might be misinterpreted as being equivalent to set without any options or
3332 arguments. The functionality of this form has been adopted from the KornShell. In System V, set
3333 − − only unsets parameters if there is at least one argument; the only way to unset all parameters
3334 is to use shift. Using the KornShell version should not affect System V scripts because there
3335 should be no reason to issue it without arguments deliberately; if it were issued as, for example:

3336 set −− "$@"

3337 and there were in fact no arguments resulting from "$@" , unsetting the parameters would have
3338 no result.

2300 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language set

3339 The set + form in early proposals was omitted as being an unnecessary duplication of set alone
3340 and not widespread historical practice.

3341 The noclobber option was changed to allow set −C as well as the set −o noclobber option. The
3342 single-letter version was added so that the historical "$ −" paradigm would not be broken; see
3343 Section 2.5.2 (on page 2241).

3344 The −h flag is related to command name hashing and is only required on XSI-conformant
3345 systems.

3346 The following set flags were omitted intentionally with the following rationale:

3347 −k The −k flag was originally added by the author of the Bourne shell to make it easier for
3348 users of pre-release versions of the shell. In early versions of the Bourne shell the construct
3349 set name=value , had to be used to assign values to shell variables. The problem with −k is
3350 that the behavior affects parsing, virtually precluding writing any compilers. To explain the
3351 behavior of −k, it is necessary to describe the parsing algorithm, which is implementation- |
3352 defined. For example: |

3353 set −k; echo name=value

3354 and:

3355 set x −−k
3356 echo name=value

3357 behave differently. The interaction with functions is even more complex. What is more, the
3358 −k flag is never needed, since the command line could have been reordered.

3359 −t The −t flag is hard to specify and almost never used. The only known use could be done
3360 with here-documents. Moreover, the behavior with ksh and sh differs. The reference page
3361 says that it exits after reading and executing one command. What is one command? If the
3362 input is date ;date , sh executes both date commands while ksh does only the first.

3363 Consideration was given to rewriting set to simplify its confusing syntax. A specific suggestion
3364 was that the unset utility should be used to unset options instead of using the non-getopt()-able
3365 +option syntax. However, the conclusion was reached that the historical practice of using +option
3366 was satisfactory and that there was no compelling reason to modify such widespread historical
3367 practice.

3368 The −o option was adopted from the KornShell to address user needs. In addition to its generally
3369 friendly interface, −o is needed to provide the vi command line editing mode, for which
3370 historical practice yields no single-letter option name. (Although it might have been possible to
3371 invent such a letter, it was recognized that other editing modes would be developed and −o
3372 provides ample name space for describing such extensions.)

3373 Historical implementations are inconsistent in the format used for −o option status reporting.
3374 The +o format without an option-argument was added to allow portable access to the options
3375 that can be saved and then later restored using, for instance, a dot script.

3376 Historically, sh did trace the command set +x, but ksh did not.

3377 The ignoreeof setting prevents accidental logouts when the end-of-file character (typically |
3378 <control>-D) is entered. A user shall explicitly exit to leave the interactive shell. |

3379 The set −m option was added to apply only to the UPE because it applies primarily to interactive
3380 use, not shell script applications.

3381 The ability to do asynchronous notification became available in the 1988 version of the
3382 KornShell. To have it occur, the user had to issue the command:

Shell and Utilities, Issue 6 2301

set Shell Command Language

3383 trap "jobs −n" CLD

3384 The C shell provides two different levels of an asynchronous notification capability. The
3385 environment variable notify is analogous to what is done in set −b or set −o notify . When set, it
3386 notifies the user immediately of background job completions. When unset, this capability is
3387 turned off.

3388 The other notification ability comes through the built-in utility notify. The syntax is:

3389 notify [%job ...]

3390 By issuing notify with no operands, it causes the C shell to notify the user asynchronously when
3391 the state of the current job changes. If given operands, notify asynchronously informs the user of
3392 changes in the states of the specified jobs.

3393 To add asynchronous notification to the POSIX shell, neither the KornShell extensions to trap,
3394 nor the C shell notify environment variable seemed appropriate (notify is not a proper POSIX
3395 environment variable name).

3396 The set −b option was selected as a compromise.

3397 The notify built-in was considered to have more functionality than was required for simple
3398 asynchronous notification.

3399 FUTURE DIRECTIONS
3400 None.

3401 SEE ALSO
3402 Section 2.15 (on page 2276)

3403 CHANGE HISTORY

Issue3404 6
3405 The obsolescent set command name followed by ’ −’ has been removed.

3406 The following new requirements on POSIX implementations derive from alignment with the
3407 Single UNIX Specification:

3408 • The nolog option is added to set −o.

2302 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language shift

3409 NAME
3410 shift — shift positional parameters

3411 SYNOPSIS
3412 shift [n]

3413 DESCRIPTION
3414 The positional parameters shall be shifted. Positional parameter 1 shall be assigned the value of
3415 parameter (1+n), parameter 2 shall be assigned the value of parameter (2+n), and so on. The
3416 parameters represented by the numbers "$#" down to "$# −n+1" shall be unset, and the
3417 parameter ’#’ is updated to reflect the new number of positional parameters.

3418 The value n shall be an unsigned decimal integer less than or equal to the value of the special
3419 parameter ’#’ . If n is not given, it shall be assumed to be 1. If n is 0, the positional and special
3420 parameters are not changed.

3421 OPTIONS
3422 None.

3423 OPERANDS
3424 None.

3425 STDIN
3426 None.

3427 INPUT FILES
3428 None.

3429 ENVIRONMENT VARIABLES
3430 None.

3431 ASYNCHRONOUS EVENTS
3432 None.

3433 STDOUT
3434 None.

3435 STDERR
3436 None.

3437 OUTPUT FILES
3438 None.

3439 EXTENDED DESCRIPTION
3440 None.

3441 EXIT STATUS
3442 The exit status is >0 if n>$#; otherwise, it is zero.

3443 CONSEQUENCES OF ERRORS
3444 None.

Shell and Utilities, Issue 6 2303

shift Shell Command Language

3445 APPLICATION USAGE
3446 None.

3447 EXAMPLES
3448 $ set a b c d e
3449 $ shift 2
3450 $ echo $*
3451 c d e

3452 RATIONALE
3453 None.

3454 FUTURE DIRECTIONS
3455 None.

3456 SEE ALSO
3457 Section 2.15 (on page 2276)

3458 CHANGE HISTORY
3459 None.

2304 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language times

3460 NAME
3461 times — write process times

3462 SYNOPSIS
3463 times |

3464 DESCRIPTION |
3465 Write the accumulated user and system times for the shell and for all of its child processes, in the
3466 following POSIX locale format:

3467 "%dm%fs %dm%fs\n%dm%fs %dm%fs\n", < shell user minutes >,
3468 <shell user seconds >, < shell system minutes >,
3469 <shell system seconds >, < children user minutes >,
3470 <children user seconds >, < children system minutes >,
3471 <children system seconds >

3472 The four pairs of times correspond to the members of the <sys/times.h> tms structure (defined |
3473 in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers) as returned by |
3474 times(): tms_utime, tms_stime, tms_cutime, and tms_cstime, respectively.

3475 OPTIONS
3476 None.

3477 OPERANDS
3478 None.

3479 STDIN
3480 None.

3481 INPUT FILES
3482 None.

3483 ENVIRONMENT VARIABLES
3484 None.

3485 ASYNCHRONOUS EVENTS
3486 None.

3487 STDOUT
3488 None.

3489 STDERR
3490 None.

3491 OUTPUT FILES
3492 None.

3493 EXTENDED DESCRIPTION
3494 None.

3495 EXIT STATUS
3496 Zero.

3497 CONSEQUENCES OF ERRORS
3498 None.

Shell and Utilities, Issue 6 2305

times Shell Command Language

3499 APPLICATION USAGE
3500 None.

3501 EXAMPLES
3502 $ times
3503 0m0.43s 0m1.11s
3504 8m44.18s 1m43.23s

3505 RATIONALE
3506 The times special built-in from the Single UNIX Specification is now required for all conforming
3507 shells.

3508 FUTURE DIRECTIONS
3509 None.

3510 SEE ALSO
3511 Section 2.15 (on page 2276)

3512 CHANGE HISTORY
3513 None.

2306 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language trap

3514 NAME
3515 trap — trap signals

3516 SYNOPSIS
3517 trap [action condition ...]

3518 DESCRIPTION
3519 If action is ’ −’ , the shell shall reset each condition to the default value. If action is null (" "), the
3520 shell shall ignore each specified condition if it arises. Otherwise, the argument action shall be read
3521 and executed by the shell when one of the corresponding conditions arises. The action of trap
3522 shall override a previous action (either default action or one explicitly set). The value of "$?"
3523 after the trap action completes shall be the value it had before trap was invoked.

3524 The condition can be EXIT, 0 (equivalent to EXIT), or a signal specified using a symbolic name,
3525 without the SIG prefix, as listed in the tables of signal names in the <signal.h> header defined in |
3526 the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers; for example, HUP, |
3527 INT, QUIT, TERM. Implementations may permit lowercase signal names or names with the SIG |
3528 prefix as an extension. Setting a trap for SIGKILL or SIGSTOP produces undefined results.

3529 The environment in which the shell executes a trap on EXIT shall be identical to the environment
3530 immediately after the last command executed before the trap on EXIT was taken.

3531 Each time trap is invoked, the action argument shall be processed in a manner equivalent to:

3532 eval "$action"

3533 Signals that were ignored on entry to a non-interactive shell cannot be trapped or reset, although
3534 no error need be reported when attempting to do so. An interactive shell may reset or catch
3535 signals ignored on entry. Traps shall remain in place for a given shell until explicitly changed
3536 with another trap command.

3537 When a subshell is entered, traps that are not being ignored are set to the default actions. This
3538 does not imply that the trap command cannot be used within the subshell to set new traps.

3539 The trap command with no arguments shall write to standard output a list of commands
3540 associated with each condition. The format shall be:

3541 "trap −− %s %s ...\n", < action >, < condition > ...

3542 The shell shall format the output, including the proper use of quoting, so that it is suitable for
3543 reinput to the shell as commands that achieve the same trapping results. For example:

3544 save_traps=$(trap)
3545 ...
3546 eval "$save_traps"

3547 XSI XSI-conformant systems also allow numeric signal numbers for the conditions corresponding to
3548 the following signal names:

Shell and Utilities, Issue 6 2307

trap Shell Command Language

3549 _______________________________
3550 Signal Number Signal Name_______________________________
3551 XSI 1 SIGHUP
3552 XSI 2 SIGINT
3553 XSI 3 SIGQUIT
3554 XSI 6 SIGABRT
3555 XSI 9 SIGKILL
3556 XSI 14 SIGALRM
3557 XSI 15 SIGTERM_______________________________L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

3558 The trap special built-in shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, |
3559 Section 12.2, Utility Syntax Guidelines. |

3560 OPTIONS
3561 None.

3562 OPERANDS
3563 None.

3564 STDIN
3565 None.

3566 INPUT FILES
3567 None.

3568 ENVIRONMENT VARIABLES
3569 None.

3570 ASYNCHRONOUS EVENTS
3571 None.

3572 STDOUT
3573 None.

3574 STDERR
3575 None.

3576 OUTPUT FILES
3577 None.

3578 EXTENDED DESCRIPTION
3579 None.

3580 EXIT STATUS
3581 XSI If the trap name or number is invalid, a non-zero exit status shall be returned; otherwise, zero
3582 XSI shall be returned. For both interactive and non-interactive shells, invalid signal names or
3583 numbersshall not be considered a syntax error and do not cause the shell to abort.

3584 CONSEQUENCES OF ERRORS
3585 None.

3586 APPLICATION USAGE
3587 None.

3588 EXAMPLES
3589 Write out a list of all traps and actions:

3590 trap

3591 Set a trap so the logout utility in the directory referred to by the HOME environment variable
3592 executes when the shell terminates:

2308 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language trap

3593 trap ’$HOME/logout’ EXIT

3594 or:

3595 trap ’$HOME/logout’ 0

3596 Unset traps on INT, QUIT, TERM, and EXIT:

3597 trap − INT QUIT TERM EXIT

3598 RATIONALE
3599 Implementations may permit lowercase signal names as an extension. Implementations may
3600 also accept the names with the SIG prefix; no known historical shell does so. The trap and kill
3601 utilities in this volume of IEEE Std. 1003.1-200x are now consistent in their omission of the SIG
3602 prefix for signal names. Some kill implementations do not allow the prefix, and kill −l lists the
3603 signals without prefixes.

3604 Trapping SIGKILL or SIGSTOP is syntactically accepted by some historical implementations, but
3605 it has no effect. Portable POSIX applications cannot attempt to trap these signals.

3606 The output format is not historical practice. Since the output of historical trap commands is not
3607 portable (because numeric signal values are not portable) and had to change to become so, an
3608 opportunity was taken to format the output in a way that a shell script could use to save and
3609 then later reuse a trap if it wanted.

3610 The KornShell uses an ERR trap that is triggered whenever set −e would cause an exit. This is
3611 allowable as an extension, but was not mandated, as other shells have not used it.

3612 The text about the environment for the EXIT trap invalidates the behavior of some historical
3613 versions of interactive shells which, for example, close the standard input before executing a
3614 trap on 0. For example, in some historical interactive shell sessions the following trap on 0 would
3615 always print " −−" :

3616 trap ’read foo; echo " −$foo −"’ 0

3617 FUTURE DIRECTIONS
3618 None.

3619 SEE ALSO
3620 Section 2.15 (on page 2276)

3621 CHANGE HISTORY

Issue3622 6
3623 XSI-conforming implementations provide the mapping of signal names to numbers given above
3624 (previously this had been marked obsolescent). Other implementations need not provide this
3625 optional mapping.

Shell and Utilities, Issue 6 2309

unset Shell Command Language

3626 NAME
3627 unset — unset values and attributes of variables and functions

3628 SYNOPSIS
3629 unset [−fv] name ...

3630 DESCRIPTION
3631 Each variable or function specified by name shall be unset.

3632 If −v is specified, name refers to a variable name and the shell shall unset it and remove it from
3633 the environment. Read-only variables cannot be unset.

3634 If −f is specified, name refers to a function and the shell shall unset the function definition.

3635 If neither −f nor −v is specified, name refers to a variable; if a variable by that name does not
3636 exist, it is unspecified whether a function by that name, if any, shall be unset.

3637 Unsetting a variable or function that was not previously set shall not be considered an error and
3638 does not cause the shell to abort.

3639 The unset special built-in shall support the Base Definitions volume of IEEE Std. 1003.1-200x, |
3640 Section 12.2, Utility Syntax Guidelines. |

3641 Note that:

3642 VARIABLE=

3643 is not equivalent to an unset of VARIABLE; in the example, VARIABLE is set to " " . Also, the
3644 variables that can be unset should not be misinterpreted to include the special parameters (see
3645 Section 2.5.2 (on page 2241)).

3646 OPTIONS
3647 None.

3648 OPERANDS
3649 None.

3650 STDIN
3651 None.

3652 INPUT FILES
3653 None.

3654 ENVIRONMENT VARIABLES
3655 None.

3656 ASYNCHRONOUS EVENTS
3657 None.

3658 STDOUT
3659 None.

3660 STDERR
3661 None.

3662 OUTPUT FILES
3663 None.

3664 EXTENDED DESCRIPTION
3665 None.

2310 Technical Standard (2000) (Draft July 31, 2000)

Shell Command Language unset

3666 EXIT STATUS

3667 0 All name operands were successfully unset.

3668 >0 At least one name could not be unset.

3669 CONSEQUENCES OF ERRORS
3670 None.

3671 APPLICATION USAGE
3672 None.

3673 EXAMPLES
3674 Unset VISUAL variable:

3675 unset −v VISUAL

3676 Unset the functions foo and bar:

3677 unset −f foo bar

3678 RATIONALE
3679 Consideration was given to omitting the −f option in favor of an unfunction utility, but the
3680 standard developers decided to retain historical practice.

3681 The −v option was introduced because System V historically used one name space for both
3682 variables and functions. When unset is used without options, System V historically unset either a
3683 function or a variable, and there was no confusion about which one was intended. A portable
3684 POSIX application can use unset without an option to unset a variable, but not a function; the −f
3685 option must be used.

3686 FUTURE DIRECTIONS
3687 None.

3688 SEE ALSO
3689 Section 2.15 (on page 2276)

3690 CHANGE HISTORY
3691 None.

Shell and Utilities, Issue 6 2311

Shell Command Language

3692 |

2312 Technical Standard (2000) (Draft July 31, 2000)

3693

|||||||||||

Chapter 3 |

Batch Environment Services |

3694 BE This chapter describes the services and utilities that shall be implemented on all systems that |
3695 claim conformance to the Batch Environment option. This functionality is dependent on support |
3696 of this option (and the rest of this section is not further shaded for this option). |

3697 3.1 General Concepts

3698 3.1.1 Batch Client-Server Interaction

3699 Batch jobs are created and managed by batch servers. A batch client interacts with a batch server
3700 to access batch services on behalf of the user. In order to use batch services, a user must have
3701 access to a batch client.

3702 A batch server is a computational entity, such as a daemon process, that provides batch services.
3703 Batch servers route, queue, modify, and execute batch jobs on behalf of batch clients.

3704 The batch utilities described in this volume of IEEE Std. 1003.1-200x (and listed in Table 3-1 (on
3705 page 2314)) are clients of batch services; they allow users to perform actions on the job such as
3706 creating, modifying, and deleting batch jobs from a shell command line. Although these batch
3707 utilities may be said to accomplish certain services, they actually obtain services on behalf of a
3708 user by means of requests to batch servers.

Shell and Utilities, Issue 6 2313

General Concepts Batch Environment Services

3709 Table 3-1 Batch Utilities

3710 qalter
3711 qdel
3712 qhold

qmove
qmsg
qrerun

qrls
qselect
qsig

qstat
qsub

3713 Client-server interaction takes place by means of the batch requests defined in this chapter.
3714 Because direct access to batch jobs and queues is limited to batch servers, clients and servers of
3715 different implementations can interoperate, since dependencies on private structures for batch
3716 jobs and queues are limited to batch servers. Also, batch servers may be clients of other batch
3717 servers.

3718 3.1.2 Batch Queues

3719 Two types of batch queue are described: routing queues and execution queues. When a batch job is
3720 placed in a routing queue, it is a candidate for routing. A batch job is removed from routing
3721 queues under the following conditions:

3722 • The batch job has been routed to another queue.

3723 • The batch job has been deleted from the batch queue.

3724 • The batch job has been aborted.

3725 When a batch job is placed in an execution queue, it is a candidate for execution.

3726 A batch job is removed from an execution queue under the following conditions:

3727 • The batch job has been executed and exited.

3728 • The batch job has been aborted.

3729 • The batch job has been deleted from the batch queue.

3730 • The batch job has been moved to another queue.

3731 Access to a batch queue is limited to the batch server that manages the batch queue. Clients
3732 never access a batch queue or a batch job directly, either to read or write information; all client
3733 access to batch queues or jobs takes place through batch servers.

3734 3.1.3 Batch Job Creation

3735 When a batch server creates a batch job on behalf of a client, it assigns a batch job identifier to
3736 the job. A batch job identifier consists of both a sequence number that is unique among the
3737 sequence numbers issued by that server and the name of the server. Since the batch server name
3738 is unique within a name space, the job identifier is likewise unique within the name space.

3739 The batch server that creates a batch job returns the batch server-assigned job identifier to the
3740 client that requested the job creation. If the batch server routes or moves the job to another
3741 server, it sends the job identifier with the job. Once assigned, the job identifier of a batch job
3742 never changes.

2314 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services General Concepts

3743 3.1.4 Batch Job Tracking

3744 Since a batch job may be moved after creation, the batch server name component of the job
3745 identifier does not always indicate the location of the job. An implementation may provide a
3746 batch job tracking mechanism, in which case the user generally does not need to know the
3747 location of the job. However, an implementation is not required to provide a batch job tracking
3748 mechanism, in which case the user must find routed jobs by probing the possible destinations.

3749 3.1.5 Batch Job Routing

3750 To route a batch job, a batch server either moves the job to some other queue that is managed by
3751 the batch server, or requests that some other batch server accept the job.

3752 Each routing queue has one or more queues to which it can route batch jobs. The batch server
3753 administrator creates routing queues.

3754 A batch server may route a batch job from a routing queue to another routing queue. Batch
3755 servers shall prevent or otherwise handle cases of circular routing paths. As a deferred service, a
3756 batch server routes jobs from the routing queues that it manages. The algorithm by which a
3757 batch server selects a batch queue to which to route a batch job is implementation-defined. |

3758 A batch job need not be eligible for routing to all the batch queues fed by the routing queue from
3759 which it is routed. A batch server that has been asked to accept the job may reject the request if
3760 the job requires resources that are unavailable to that batch server, or if the client is not
3761 authorized to access the batch server.

3762 Batch servers may route high-priority jobs before low-priority jobs, but, on other than
3763 overloaded systems, the effect may be imperceptible to the user. If all the batch servers fed by a
3764 routing queue reject requests to accept the job for reasons that are permanent, the batch server
3765 that manages the job aborts the job. If all or some rejections are temporary, the batch server
3766 should try to route the job again at some later point.

3767 The conformance document for an implementation shall list the reasons for rejecting the routing
3768 of a batch job. The conformance document shall indicate the reasons for which the routing
3769 should be retried later and the reasons for which the job should be aborted.

3770 3.1.6 Batch Job Execution

3771 To execute a batch job is to create a session leader (a process) that runs the shell program
3772 indicated by the Shell_Path attribute of the job. The script is passed to the program as its
3773 standard input. An implementation of the batch server may pass the script to the program by
3774 other means. The implementation shall document the alternate means in the conformance
3775 document. At the time a batch job begins execution, it is defined to enter the RUNNING state.
3776 The primary program that is executed by a batch job is typically, though not necessarily, a shell
3777 program.

3778 A batch server executes eligible jobs as a deferred service—no client request is necessary once
3779 the batch job is created and eligible. However, the attributes of a batch job, such as the job hold
3780 type, may render the job ineligible. A batch server scans the execution queues that it manages for
3781 jobs that are eligible for execution. The algorithm by which the batch server selects eligible jobs
3782 for execution is implementation-defined. |

3783 As part of creating the process for the batch job, the batch server opens the standard output and
3784 standard error streams of the session.

3785 The attributes of a batch job may indicate that the batch server that executes the job is to send
3786 mail to a list of users at the time it begins execution of the job.

Shell and Utilities, Issue 6 2315

General Concepts Batch Environment Services

3787 3.1.7 Batch Job Exit

3788 When the session leader of an executing job terminates, the job exits. As part of exiting a batch
3789 job, the batch server that manages the job shall remove the job from the batch queue in which it
3790 resides. The server shall transfer output files of the job to a location described by the attributes of
3791 the job.

3792 The attributes of a batch job may indicate that the batch server that manages the job should send
3793 mail to a list of users at the time the job exits.

3794 3.1.8 Batch Job Abort

3795 A batch server aborts jobs for which a required deferred service cannot be performed. The
3796 attributes of a batch job may indicate that the batch server that aborts the job shall send mail to a
3797 list of users at the time it aborts the job. |

3798 3.1.9 Batch Authorization

3799 In order to access batch services, a user must have execute access to a batch client. For example,
3800 to use the command language interface defined in this section, the user must be able to execute
3801 the programs that embody those utilities.

3802 Clients, such as the batch environment utilities (marked BE), access batch services by means of |
3803 requests to one or more batch servers. To acquire the services of any given batch server, the user |
3804 identifier under which the client runs must be authorized to use that batch server. |

3805 The user with an associated user name that creates a batch job owns the job and can perform
3806 actions such as read, modify, delete, and move.

3807 A user identifier of the same value at a different host need not be the same user. For example,
3808 user name smith at host alpha may or may not represent the same person as user name smith at
3809 host beta. Likewise, the same person may have access to different user names on different hosts.

3810 An implementation may optionally provide an authorization mechanism that permits one user
3811 name to access jobs under another user name.

3812 A process on a client host may be authorized to run processes under multiple user names at a
3813 batch server host. Where appropriate, the utilities defined in this volume of
3814 IEEE Std. 1003.1-200x provide a means for a user to choose from among such user names when
3815 creating or modifying a batch job.

3816 3.1.10 Batch Administration

3817 The processing of a batch job by a batch server is affected by the attributes of the job. The
3818 processing of a batch job may also be affected by the attributes of the batch queue in which the
3819 job resides and by the status of the batch server that manages the job.

3820 A batch administrator is a user that is authorized to modify all the attributes of queues and jobs
3821 and to change the status of a batch server. A batch operator is a user that is authorized to modify
3822 some, but not all, of the attributes of jobs and queues, and may change the status of the batch
3823 server.

2316 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services General Concepts

3824 3.1.11 Batch Notification

3825 Whereas batch servers are persistent entities, clients are often transient. For example, the qsub
3826 utility creates a batch job and exits. For this reason, batch servers notify users of batch job events
3827 by sending mail to the user that owns the job, or to other designated users.

3828 3.2 Batch Services
3829 The presence of Batch Environment option services is indicated by the configuration variable
3830 POSIX2_PBS. A conforming batch server provides services as defined in this section.

3831 A batch server provides batch services in two ways:

3832 1. The batch server provides a service at the request of a client.

3833 2. The batch server provides a deferred service as a result of a change in conditions
3834 monitored by the batch server.

3835 If a batch server cannot complete a request, it rejects the request. If a batch server cannot
3836 complete a deferred service for a batch job, the batch server aborts the batch job. Table 3-2 is a
3837 summary of environment variables that shall be supported by an implementation of the batch
3838 server and utilities.

3839 Table 3-2 Environment Variable Summary |

3840 Variable Description___
3841 Defines the directive prefix (see qsub)PBS_DPREFIX
3842 Batch Job is batch or interactive (see Section 3.2.2.1 (on page
3843 2319))

PBS_ENVIRONMENT

3844 The job_identifier attribute of job (see Section 3.2.3.8 (on page
3845 2331))

PBS_JOBID

3846 The job_name attribute of job (see Section 3.2.3.8 (on page 2331))PBS_JOBNAME
3847 Defines the HOME of the batch client (see qsub)PBS_O_HOME
3848 Defines the host name of the batch client (see qsub)PBS_O_HOST
3849 Defines the LANG of the batch client (see qsub)PBS_O_LANG
3850 Defines the LOGNAME of the batch client (see qsub)PBS_O_LOGNAME
3851 Defines the MAIL of the batch client (see qsub)PBS_O_MAIL
3852 Defines the PATH of the batch client (see qsub)PBS_O_PATH
3853 Defines the submit queue of the batch client (see qsub)PBS_O_QUEUE
3854 Defines the SHELL of the batch client (see qsub)PBS_O_SHELL
3855 Defines the TZ of the batch client (see qsub)PBS_O_TZ
3856 Defines the working directory of the batch client (see qsub)PBS_O_WORKDIR
3857 Defines the initial execution queue (see Section 3.2.2.1 (on page
3858 2319))

PBS_QUEUE

___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Shell and Utilities, Issue 6 2317

Batch Services Batch Environment Services

3859 3.2.1 Batch Job States

3860 A batch job is always in one of several states: QUEUED, RUNNING, HELD, WAITING,
3861 EXITING, or TRANSITING. The state of a batch job determines the types of requests that the
3862 batch server that manages the batch job can accept for the batch job. A batch server changes the
3863 state of a batch job either in response to service requests from clients or as a result of deferred
3864 services, such as job execution or job routing.

3865 A batch job that is in the QUEUED state resides in a queue but is still pending either execution or
3866 routing, depending on the queue type.

3867 A batch server that queues a batch job in a routing queue shall put the batch job in the QUEUED
3868 state. A batch server that puts a batch job in an execution queue, but has not yet executed the
3869 batch job, shall put the batch job in the QUEUED state. A batch job that resides in an execution
3870 queue and is executing is defined to be in the RUNNING state. While a batch job is in the
3871 RUNNING state, a session leader is associated with the batch job.

3872 A batch job that resides in an execution queue, but is ineligible to run because of a hold attribute,
3873 is defined to be in the HELD state.

3874 A batch job that is not held, but must wait until a future date and time before executing, is
3875 defined to be in the WAITING state.

3876 When the session leader associated with a running job exits, the batch job shall be placed in the
3877 EXITING state.

3878 A batch job for which the session leader has terminated is defined to be in the EXITING state,
3879 and the batch server that manages such a batch job cannot accept job modification requests that
3880 affect the batch job. While a batch job is in the EXITING state, the batch server that manages the
3881 batch job is staging output files and notifying clients of job completion. Once a batch job has
3882 exited, it no longer exists as an object managed by a batch server.

3883 A batch job that is being moved from a routing queue to another queue is defined to be in the
3884 TRANSITING state.

3885 When a batch job in a routing queue has been selected to be moved to a new destination, then
3886 the batch job is in either the QUEUED state or the TRANSITING state, depending on the batch
3887 server implementation.

3888 Batch jobs with either a Execution_Time attribute value set in the future or a Hold_Types attribute
3889 of value not equal to NO_HOLD, or both, may be routed or held in the routing queue. An
3890 implementation shall document the treatment of jobs with the Execution_Time or Hold_Types
3891 attributes in a routing queue.

3892 When a batch job in a routing queue has not been selected to be moved to a new destination and
3893 the batch job has a Hold_Types attribute value of other than NO_HOLD, then the job should be in
3894 the HELD state.

3895 Note: The effect of a hold upon a batch job in a routing queue is implementation-defined. |
3896 The implementation should use the state that matches whether the batch job can |
3897 route with a hold or not.

3898 When a batch job in a routing queue has not been selected to be moved to a new destination and
3899 the batch job has:

3900 • A Hold_Types attribute value of NO_HOLD

3901 • An Execution_Time attribute in the past

2318 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

3902 then the batch job shall be in the QUEUED state.

3903 When a batch job in a routing queue has not been selected to be moved to a new destination and
3904 the batch job has:

3905 • A Hold_Types attribute value of NO_HOLD

3906 • A Execution_Time attribute in the future

3907 then the batch job may be in the WAITING state.

3908 Note: The effect of a future execution time upon a batch job in a routing queue is |
3909 implementation-defined. The implementation should use the state that matches |
3910 whether the batch job can route with a hold or not.

3911 Table 3-3 describes the next state of a batch job, given the current state of the batch job and the
3912 type of request. Table 3-4 (on page 2321) describes the response of a batch server to a request,
3913 given the current state of the batch job and the type of request.

3914 3.2.2 Deferred Batch Services

3915 This section describes the deferred services performed by batch servers: job execution, job
3916 routing, job exit, job abort, and the rerunning of jobs after a restart.

3917 3.2.2.1 Batch Job Execution

3918 To execute a batch job is to create a session leader (a process) that runs the shell program
3919 indicated by the Shell_Path_List attribute of the batch job. The script is passed to the program as
3920 its standard input. An implementation of the batch server may pass the script to the program by
3921 other means. The implementation shall document the alternate means in the conformance
3922 document. At the time a batch job begins execution, it is defined to enter the RUNNING state.

3923 Table 3-3 Next State Table
__

3924 Current State______________________________________
3925 Request Type X Q R H W E T__
3926 Queue Batch Job Request Q e e e e e e
3927 Modify Batch Job Request e Q R H W e T
3928 Delete Batch Job Request e X E X X E X
3929 Batch Job Message Request e Q R H W E T
3930 Rerun Batch Job Request e e Q e e e e
3931 Signal Batch Job Request e e R H W e e
3932 Batch Job Status Request e Q R H W E T
3933 Batch Queue Status Request X Q R H W E T
3934 Server Status Request X Q R H W E T
3935 Select Batch Jobs Request X Q R H W E T
3936 Move Batch Job Request e Q R H W e T
3937 Hold Batch Job Request e H R/H H H e T
3938 Release Batch Job Request Q R Q/W/H W e T
3939 Server Shutdown Request X Q Q H W E T
3940 Locate Batch Job Request e Q R H W E T__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Shell and Utilities, Issue 6 2319

Batch Services Batch Environment Services

3941 Legend

3942 X Nonexistent

3943 Q QUEUED

3944 R RUNNING

3945 H HELD

3946 W WAITING

3947 E EXITING

3948 T TRANSITING

3949 e Error

3950 A batch server that has an execution queue containing jobs is said to own the queue and manage
3951 the batch jobs in that queue. A batch server that has been started shall execute the batch jobs in
3952 the execution queues owned by the batch server. The batch server shall schedule for execution
3953 those jobs in the execution queues that are in the QUEUED state. The algorithm for scheduling |
3954 jobs is implementation-defined. |

3955 A batch server that executes a batch job shall create, in the environment of the session leader of
3956 the batch job, an environment variable named PBS_ENVIRONMENT, the value of which is the
3957 string PBS_BATCH encoded in the portable character set.

3958 A batch server that executes a batch job shall create, in the environment of the session leader of
3959 the batch job, an environment variable named PBS_QUEUE, the value of which is the name of
3960 the execution queue of the batch job encoded in the portable character set.

3961 To rerun a batch job is to requeue a batch job that is currently executing and then kill the session
3962 leader of the executing job by sending a SIGKILL prior to completion; see Section 3.2.3.11 (on
3963 page 2333). A batch server that reruns a batch job shall append the standard output and
3964 standard error files of the batch job to the corresponding files of the previous execution, if they
3965 exist, with appropriate annotation. If either file does not exist, that file shall be created as in
3966 normal execution.

2320 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

3967 Table 3-4 Results/Output Table
__

3968 Current State_________________________________
3969 Request Type X Q R H W E T__
3970 Queue Batch Job Request O e e e e e e
3971 Modify Batch Job Request e O e O O e e
3972 Delete Batch Job Request e O O O O e O
3973 Batch Job Message Request e e O e e e e
3974 Rerun Batch Job Request e e O e e e e
3975 Signal Batch Job Request e e O e e e e
3976 Batch Job Status Request e O O O O O O
3977 Batch Queue Status Request O O O O O O O
3978 Server Status Request O O O O O O O
3979 Select Batch Job Request e O O O O O O
3980 Move Batch Job Request e O O O O e e
3981 Hold Batch Job Request e O O O O e e
3982 Release Batch Job Request e O e O O e e
3983 Server Shutdown Request O O e O O e e
3984 Locate Batch Job Request e O O O O O O__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

3985 Legend

3986 O OK

3987 e Error message

3988 The execution of a batch job by a batch server is controlled by job, queue, and server attributes,
3989 as defined in this section.

3990 Account_Name Attribute

3991 Batch accounting is an optional feature of batch servers. If a batch server implements
3992 accounting, the statements in this section apply and the configuration variable
3993 POSIX2_PBS_ACCOUNTING shall be set to 1.

3994 A batch server that executes a batch job shall charge the account named in the Account_Name
3995 attribute of the batch job for resources consumed by the batch job.

3996 If the Account_Name attribute of the batch job is absent from the batch job attribute list or is
3997 altered while the batch job is in execution, the batch server action is implementation-defined. |

3998 Checkpoint Attribute

3999 Batch checkpointing is an optional feature of batch servers. If a batch server implements
4000 checkpointing, the statements in this section apply and the configuration variable
4001 POSIX2_PBS_CHECKPOINT shall be set to 1.

4002 There are two attributes associated with the checkpointing feature: Checkpoint and
4003 Minimum_Cpu_Interval . Checkpoint is a batch job attribute, while Minimum_Cpu_Interval is a
4004 queue attribute. An implementation that does not support checkpointing shall support the
4005 Checkpoint job attribute to the extent that the batch server shall maintain and pass this attribute
4006 to other servers.

4007 The behavior of a batch server that executes a batch job for which the value of the Checkpoint |
4008 attribute is CHECKPOINT_UNSPECIFIED is implementation-defined. The implementation shall |
4009 document the behavior of the batch server. A batch server that executes a batch job for which the

Shell and Utilities, Issue 6 2321

Batch Services Batch Environment Services

4010 value of the Checkpoint attribute is NO_CHECKPOINT shall not checkpoint the batch job.

4011 A batch server that executes a batch job for which the value of the Checkpoint attribute is
4012 CHECKPOINT_AT_SHUTDOWN shall checkpoint the batch job only when the batch server
4013 accepts a request to shut down during the time when the batch job is in the RUNNING state.

4014 A batch server that executes a batch job for which the value of the Checkpoint attribute is
4015 CHECKPOINT_AT_MIN_CPU_INTERVAL shall checkpoint the batch job at the interval
4016 specified by the Minimum_Cpu_Interval attribute of the queue for which the batch job has been
4017 selected. The Minimum_Cpu_Interval attribute shall be specified in units of CPU minutes.

4018 A batch server that executes a batch job for which the value of the Checkpoint attribute is an
4019 unsigned integer shall checkpoint the batch job at an interval that is the value of either the
4020 Checkpoint attribute, or the Minimum_Cpu_Interval attribute of the queue for which the batch job
4021 has been selected, whichever is greater. Both intervals shall be in units of CPU minutes. When
4022 the Minimum_Cpu_Interval attribute is greater than the Checkpoint attribute, the batch job shall
4023 write a warning message to the standard error stream of the batch job.

4024 Error_Path Attribute

4025 The Error_Path attribute of a running job cannot be changed by a Modify Batch Job Request. When
4026 the Join_Path attribute of the batch job is set to the value FALSE and the Keep_Files attribute of
4027 the batch job does not contain the value KEEP_STD_ERROR, a batch server that executes a batch
4028 job shall perform one of the following actions:

4029 • Set the standard error stream of the session leader of the batch job to the path described by
4030 the value of the Error_Path attribute of the batch job.

4031 • Buffer the standard error of the session leader of the batch job until completion of the batch
4032 job, and when the batch job exits return the contents to the destination described by the value
4033 of the Error_Path attribute of the batch job. Where the batch server buffers standard error is |
4034 implementation-defined. |

4035 Applications shall not rely on having access to the standard error of a batch job prior to the
4036 completion of the batch job.

4037 When the Error_Path attribute does not specify a host name, then the batch server shall retain the
4038 standard error of the batch job on the host of execution.

4039 When the Error_Path attribute does specify a host name and the Keep_Files attribute does not
4040 contain the value KEEP_STD_ERROR, then the final destination of the standard error of the
4041 batch job shall be on the host whose host name is specified.

4042 If the path indicated by the value of the Error_Path attribute of the batch job is a relative path, the
4043 batch server shall expand the path relative to the home directory of the user on the host to which
4044 the file is being returned.

4045 When the batch server buffers the standard error of the batch job and the file cannot be opened
4046 for write upon completion of the batch job, then the server shall place the standard error in an |
4047 implementation-defined location and notify the user of the location via mail. It shall be possible |
4048 for the user to process this mail using the mailx utility.

4049 If a batch server that does not buffer the standard error cannot open the standard error path of
4050 the batch job for write access, then the batch server shall abort the batch job.

2322 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4051 Execution_Time Attribute

4052 A batch server shall not execute a batch job before the time represented by the value of the
4053 Execution_Time attribute of the batch job. The Execution_Time attribute is defined in seconds since
4054 the Epoch.

4055 Hold_Types Attribute

4056 A batch server shall support the following hold types:

4057 s Can be set or released by a user with at least a privilege level of batch administrator
4058 (SYSTEM).

4059 o Can be set or released by a user with at least a privilege level of batch operator
4060 (OPERATOR).

4061 u Can be set or released by the user with at least a privilege level of user, where the user is
4062 defined in the Job_Owner attribute (USER).

4063 n Indicates that none of the Hold_Types attributes are set (NO_HOLD).

4064 An implementation may define other hold types. The conformance document for an
4065 implementation shall describe any additional hold types, how they are specified, their internal
4066 representation, their behavior, and how they affect the behavior of other utilities.

4067 The value of the Hold_Types attribute shall be the union of the valid hold types (ss, oo, uu, and |
4068 any implementation-defined hold types), or nn. |

4069 A batch server shall not execute a batch job if the Hold_Types attribute of the batch job has a
4070 value other than NO_HOLD. If the Hold_Types attribute of the batch job has a value other than
4071 NO_HOLD, the batch job shall be in the HELD state.

4072 Job_Owner Attribute

4073 The Job_Owner attribute consists of a pair of user name and host name values of the form:

4074 username@hostname

4075 A batch server that accepts a Queue Batch Job Request shall set the Job_Owner attribute to a string
4076 that is the username@hostname of the user who submitted the job.

4077 Join_Path Attribute

4078 A batch server that executes a batch job for which the value of the Join_Path attribute is TRUE
4079 shall ignore the value of the Error_Path attribute and merge the standard error of the batch job
4080 with the standard output of the batch job.

4081 Keep_Files Attribute

4082 A batch server that executes a batch job for which the value of the Keep_Files attribute includes
4083 the value KEEP_STD_OUTPUT shall retain the standard output of the batch job on the host
4084 where execution occurs. The standard output shall be retained in the home directory of the user
4085 under whose user ID the batch job is executed and the file name shall be the default file name for
4086 the standard output as defined under the −o option of the qsub utility. The Output_Path attribute
4087 is not modified.

4088 A batch server that executes a batch job for which the value of the Keep_Files attribute includes
4089 the value KEEP_STD_ERROR shall retain the standard error of the batch job on the host where
4090 execution occurs. The standard error shall be retained in the home directory of the user under
4091 whose user ID the batch job is executed and the file name shall be the default file name for

Shell and Utilities, Issue 6 2323

Batch Services Batch Environment Services

4092 standard error as defined under the −e option of the qsub utility. The Error_Path attribute is not
4093 modified.

4094 A batch server that executes a batch job for which the value of the Keep_Files attribute includes
4095 values other than KEEP_STD_OUTPUT and KEEP_STD_ERROR shall retain these other files on
4096 the host where execution occurs. These files shall be retained in the home directory of the user
4097 under whose user identifier the batch job is executed and the file names shall be the default file
4098 names for the files as defined in the conformance document for the implementation.

4099 Mail_Points and Mail_Users Attributes

4100 A batch server that executes a batch job for which one of the values of the Mail_Points attribute is
4101 the value MAIL_AT_BEGINNING shall send a mail message to each user account listed in the
4102 Mail_Users attribute of the batch job.

4103 The mail message shall contain at least the batch job identifier, queue, and server at which the
4104 batch job currently resides, and the Job_Owner attribute.

4105 Output_Path Attribute

4106 The Output_Path attribute of a running job cannot be changed by a Modify Batch Job Request.
4107 When the Keep_Files attribute of the batch job does not contain the value KEEP_STD_OUTPUT, a
4108 batch server that executes a batch job shall either:

4109 • Set the standard output stream of the session leader of the batch job to the destination
4110 described by the value of the Output_Path attribute of the batch job.

4111 or:

4112 • Buffer the standard output of the session leader of the batch job until completion of the batch
4113 job, and when the batch job exits return the contents to the destination described by the value
4114 of the Output_Path attribute of the batch job.

4115 When the Output_Path attribute does not specify a host name, then the batch server shall retain
4116 the standard output of the batch job on the host of execution.

4117 When the Keep_Files attribute does not contain the value KEEP_STD_OUTPUT and the
4118 Output_Path attribute does specify a host name, then the final destination of the standard output
4119 of the batch job shall be on the host specified.

4120 If the path specified in the Output_Path attribute of the batch job is a relative path, the batch
4121 server shall expand the path relative to the home directory of the user on the host to which the
4122 file is being returned.

4123 Whether or not the batch server buffers the standard output of the batch job until completion of
4124 the batch job is implementation-defined. Applications shall not rely on having access to the |
4125 standard output of a batch job prior to the completion of the batch job.

4126 When the batch server does buffer the standard output of the batch job and the file cannot be
4127 opened for write upon completion of the batch job, then the batch server shall place the standard
4128 output in an implementation-defined location and notify the user of the location via mail. It shall |
4129 be possible for the user to process this mail using the mailx utility.

4130 If a batch server that does not buffer the standard output cannot open the standard output path
4131 of the batch job for write access, then the batch server shall abort the batch job.

2324 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4132 Priority Attribute

4133 A batch server implementation may choose to preferentially execute a batch job based on the |
4134 Priority attribute. The interpretation of the batch job Priority attribute by a batch server is |
4135 implementation-defined. If an implementation uses the Priority attribute, it shall interpret larger |
4136 values of the Priority attribute to mean the batch job shall be preferentially selected for execution.

4137 Rerunable Attribute

4138 A batch job that began execution but did not complete, because the batch server either shut
4139 down or terminated abnormally, shall be requeued if the Rerunable attribute of the batch job has
4140 the value TRUE.

4141 If a batch job, which was requeued after beginning execution but prior to completion, has a valid
4142 checkpoint file and the batch server supports checkpointing, then the batch job shall be restarted
4143 from the last valid checkpoint.

4144 If the batch job cannot be restarted from a checkpoint, then when a batch job has a Rerunable
4145 attribute value of TRUE and was requeued after beginning execution but prior to completion,
4146 the batch server shall place the batch job into execution at the beginning of the job.

4147 When a batch job has a Rerunable attribute value other than TRUE and was requeued after
4148 beginning execution but prior to completion, and the batch job cannot be restarted from a
4149 checkpoint, then the batch server shall abort the batch job.

4150 Resource_List Attribute

4151 A batch server that executes a batch job shall establish the resource limits of the session leader of
4152 the batch job according to the values of the Resource_List attribute of the batch job. Resource
4153 limits shall be enforced by an implementation-defined method. |

4154 Shell_Path_List Attribute

4155 The Shell_Path_List job attribute consists of a list of pairs of path name and host name values.
4156 The host name component can be omitted, in which case the path name serves as the default
4157 path name when a batch server cannot find the name of the host on which it is running in the
4158 list.

4159 A batch server that executes a batch job shall select, from the value of the Shell_Path_List
4160 attribute of the batch job, a path name where the shell to execute the batch job shall be found.
4161 The batch server shall select the path name, in order of preference, according to the following
4162 methods:

4163 • Select the path name that contains the name of the host on which the batch server is running.

4164 • Select the path name for which the host name has been omitted.

4165 • Select the path name for the login shell of the user under which the batch job is to execute.

4166 If the shell path value selected is an invalid path name, the batch server shall abort the batch job.

4167 If the value of the selected path name from the Shell_Path_List attribute of the batch job
4168 represents a partial path, the batch server shall expand the path relative to a path that is |
4169 implementation-defined. |

4170 The batch server that executes the batch job shall execute the program that was selected from the
4171 Shell_Path_List attribute of the batch job. The batch server shall pass the path to the script of the
4172 batch job as the first argument to the shell program.

Shell and Utilities, Issue 6 2325

Batch Services Batch Environment Services

4173 User_List Attribute

4174 The User_List job attribute consists of a list of pairs of user name and host name values. The host
4175 name component can be omitted, in which case the user name serves as a default when a batch
4176 server cannot find the name of the host on which it is running in the list.

4177 A batch server that executes a batch job shall select, from the value of the User_List attribute of
4178 the batch job, a user name under which to create the session leader. The server shall select the
4179 user name, in order of preference, according to the following methods:

4180 • Select the user name of a value that contains the name of the host on which the batch server
4181 executes.

4182 • Select the user name of a value for which the host name has been omitted.

4183 • Select the user name from the Job_Owner attribute of the batch job.

4184 Variable_List Attribute

4185 A batch server that executes a batch job shall create, in the environment of the session leader of
4186 the batch job, each environment variable listed in the Variable_List attribute of the batch job, and
4187 set the value of each such environment variable to that of the corresponding variable in the
4188 variable list.

4189 3.2.2.2 Batch Job Routing

4190 To route a batch job is to select a queue from a list and move the batch job to that queue.

4191 A batch server that has routing queues, which have been started, shall route the jobs in the
4192 routing queues owned by the batch server. A batch server is allowed to delay the routing of a
4193 batch job. The algorithm for selecting a batch job and the queue to which it will be routed is |
4194 implementation-defined. |

4195 When a routing queue has multiple possible destinations specified, then the precedence of the |
4196 destination is implementation-defined. |

4197 A batch server that routes a batch job to a queue at another server shall move the batch job into
4198 the target queue with a Queue Batch Job Request.

4199 If the target server rejects the Queue Batch Job Request, the routing server shall retry routing the
4200 batch job or abort the batch job. A batch server that retries failed routings shall provide a means
4201 for the batch administrator to specify the number of retries and the minimum period of time
4202 between retries. The means by which an administrator specifies the number of retries and the
4203 delay between retries is implementation-defined. When the number of retries specified by the |
4204 batch administrator has been exhausted, the batch server shall abort the batch job and perform
4205 the functions of Batch Job Exit ; see Section 3.2.2.3.

4206 3.2.2.3 Batch Job Exit

4207 For each job in the EXITING state, the batch server that exited the batch job shall perform the
4208 following deferred services in the order specified:

4209 1. If buffering standard error, move that file into the location specified by the Error_Path
4210 attribute of the batch job.

4211 2. If buffering standard output, move that file into the location specified by the Output_Path
4212 attribute of the batch job.

4213 3. If the Mail_Points attribute of the batch job includes MAIL_AT_EXIT, send mail to the users
4214 listed in the Mail_Users attribute of the batch job. The mail message shall contain at least

2326 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4215 the batch job identifier, queue, and server at which the batch job currently resides, and the
4216 Job_Owner attribute.

4217 4. Remove the batch job from the queue.

4218 If a batch server that buffers the standard error output cannot return the standard error file to
4219 the standard error path at the time the batch job exits, the batch server shall do one of the
4220 following:

4221 • Mail the standard error file to the batch job owner.

4222 • Save the standard error file and mail the location and name of the file where the standard
4223 error is stored to the batch job owner.

4224 • Save the standard error file and notify the user by other means, in which case the
4225 conformance document for the implementation shall document the method of notification.

4226 If a batch server that buffers the standard output cannot return the standard output file to the
4227 standard output path at the time the batch job exits, the batch server shall do one of the
4228 following:

4229 • Mail the standard output file to the batch job owner.

4230 • Save the standard output file and mail the location and name of the file where the standard
4231 output is stored to the batch job owner.

4232 • Save the standard output file and notify the user by other means, in which case the
4233 conformance document for the implementation shall document the method of notification.

4234 At the conclusion of job exit processing, the batch job is no longer managed by a batch server.

4235 3.2.2.4 Batch Server Restart

4236 A batch server that has been either shutdown or terminated abnormally, and has returned to
4237 operation, is said to have restarted.

4238 Upon restarting, a batch server shall requeue those jobs managed by the batch server that were
4239 in the RUNNING state at the time the batch server shut down and for which the Rerunable
4240 attribute of the batch job has the value TRUE.

4241 Queues are defined to be non-volatile. A batch server shall store the content of queues that it
4242 controls in such a way that server and system shutdowns do not erase the content of the queues.

4243 3.2.2.5 Batch Job Abort

4244 A batch server that cannot perform a deferred service for a batch job shall abort the batch job.

4245 A batch server that aborts a batch job shall perform the following services:

4246 • Delete the batch job from the queue in which it resides.

4247 • If the Mail_Points attribute of the batch job includes the value MAIL_AT_ABORT, send mail
4248 to the users listed in the value of the Mail_Users attribute of the job. The mail message shall
4249 contain at least the batch job identifier, queue, and server at which the batch job currently
4250 resides, the Job_Owner attribute, and the reason for the abort.

4251 • If the batch job was in the RUNNING state, terminate the session leader of the executing job
4252 by sending the session leader a SIGKILL, place the batch job in the EXITING state, and
4253 perform the services of Batch Job Exit .

Shell and Utilities, Issue 6 2327

Batch Services Batch Environment Services

4254 3.2.3 Requested Batch Services

4255 This section describes the services provided by batch servers in response to requests from
4256 clients. Table 3-5 summarizes the current set of batch service requests and for each gives its type
4257 (deferred or not) and whether it is an optional function. |

4258 Table 3-5 Batch Services Summary

4259 Batch Service Deferred Optional___
4260 Batch Job Execution Yes No
4261 Batch Job Routing Yes No
4262 Batch Job Exit Yes No
4263 Batch Server Restart Yes No
4264 Batch Job Abort Yes No
4265 Delete Batch Job Request No No
4266 Hold Batch Job Request No No
4267 Batch Job Message Request No Yes
4268 Batch Job Status Request No No
4269 Locate Batch Job Request No Yes
4270 Modify Batch Job Request No No
4271 Move Batch Job Request No No
4272 Queue Batch Job Request No No
4273 Batch Queue Status Request No No
4274 Release Batch Job Request No No
4275 Rerun Batch Job Request No No
4276 Select Batch Jobs Request No No
4277 Server Shutdown Request No No
4278 Server Status Request No No
4279 Signal Batch Job Request No No
4280 Track Batch Job Request No Yes___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

4281 If a request is rejected because the batch client is not authorized to perform the action, the batch |
4282 server shall return the same status as when the batch job does not exist. |

4283 3.2.3.1 Delete Batch Job Request |

4284 A batch job is defined to have been deleted when it has been removed from the queue in which it |
4285 resides and not instantiated in another queue. A client requests that the server that manages a |
4286 batch job delete the batch job. Such a request is called a Delete Batch Job Request. |

4287 A batch server shall reject a Delete Batch Job Request if any of the following statements are true: |

4288 • The user of the batch client is not authorized to delete the designated job.

4289 • The designated job is not managed by the batch server.

4290 • The designated job is in a state inconsistent with the delete request.

4291 A batch server may reject a Delete Batch Job Request for other reasons. The conformance document
4292 for an implementation shall describe the reasons for which a Delete Batch Job Request may be
4293 rejected. The conformance document for an implementation shall describe the method used to
4294 determine whether the user of a client is authorized to perform the requested action.

4295 A batch server requested to delete a batch job shall delete the batch job if the batch job exists and
4296 is not in the EXITING state.

2328 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4297 A batch server that deletes a batch job in the RUNNING state shall send a SIGKILL signal to the
4298 session leader of the batch job. A batch server may send additional signals to the session leader
4299 of the job prior to sending the SIGKILL signal. The conformance document for such a batch
4300 server shall document the signals that are sent to the session leader.

4301 A batch server that deletes a batch job in the RUNNING state shall place the batch job in the
4302 EXITING state after it has killed the session leader of the batch job and shall perform the services
4303 of batch job exit.

4304 3.2.3.2 Hold Batch Job Request

4305 A batch client can request that the batch server add one or more holds to a batch job. Such a
4306 request is called a Hold Batch Job Request.

4307 A batch server shall reject a Hold Batch Job Request if any of the following statements are true:

4308 • The batch server does not support one or more of the requested holds to be added to the
4309 batch job.

4310 • The user of the batch client is not authorized to add one or more of the requested holds to the
4311 batch job.

4312 • The batch server does not manage the specified job.

4313 • The designated job is in the EXITING state.

4314 A batch server may reject a Hold Batch Job Request for other reasons. The conformance document
4315 for an implementation shall document the reasons for which a Hold Batch Job Request may be
4316 rejected. The conformance document for an implementation shall describe the method used to
4317 determine whether the user of a client is authorized to perform the requested action.

4318 A batch server that accepts a Hold Batch Job Request for a batch job in the RUNNING state shall
4319 place a hold on the batch job. The conformance document shall describe what effect, if any, the
4320 hold will have on a batch job in the RUNNING state.

4321 A batch server that accepts a Hold Batch Job Request shall add each type of hold listed in the Hold
4322 Batch Job Request, that is not already present, to the value of the Hold_Types attribute of the batch
4323 job.

4324 3.2.3.3 Batch Job Message Request

4325 Batch Job Message Request is an optional feature of batch servers. If an implementation supports
4326 Batch Job Message Request, the statements in this section apply and the configuration variable
4327 POSIX2_PBS_MESSAGE shall be set to 1.

4328 A batch client can request that a batch server write a message into certain output files of a batch
4329 job. Such a request is called a Batch Job Message Request.

4330 A batch server shall reject a Batch Job Message Request if any of the following statements are true:

4331 • The batch server does not support sending messages to jobs.

4332 • The user of the batch client is not authorized to post a message to the designated job.

4333 • The designated job does not exist on the batch server.

4334 • The designated job is not in the RUNNING state.

4335 A batch server may reject a Batch Job Message Request for other reasons. The conformance
4336 document for an implementation shall describe the reasons for which a Batch Job Message Request
4337 may be rejected. The conformance document for an implementation shall describe the method

Shell and Utilities, Issue 6 2329

Batch Services Batch Environment Services

4338 used to determine whether the user of a client is authorized to perform the requested action.

4339 A batch server that accepts a Batch Job Message Request shall write the message sent by the batch
4340 client into the files indicated by the batch client.

4341 3.2.3.4 Batch Job Status Request

4342 A batch client can request that a batch server respond with the status and attributes of a batch
4343 job. Such a request is called a Batch Job Status Request.

4344 A batch server shall reject a Batch Job Status Request if any of the following statements are true:

4345 • The user of the batch client is not authorized to query the status of the designated job.

4346 • The designated job is not managed by the batch server.

4347 A batch server may reject a Batch Job Status Request for other reasons. The conformance
4348 document for an implementation shall describe the reasons for which a Batch Job Status Request
4349 may be rejected. The conformance document for an implementation shall describe the method
4350 used to determine whether the user of a client is authorized to perform the requested action.

4351 A batch server that accepts a Batch Job Status Request shall return a Batch Job Status Message to the
4352 batch client.

4353 A batch server may return other information in response to a Batch Job Status Request.

4354 3.2.3.5 Locate Batch Job Request

4355 Locate Batch Job Request is an optional feature of batch servers. If an implementation supports
4356 Locate Batch Job Request, the statements in this section apply and the configuration variable
4357 POSIX2_PBS_LOCATE shall be set to 1.

4358 A batch client can ask a batch server to respond with the location of a batch job that was created
4359 by the batch server. Such a request is called a Locate Batch Job Request.

4360 A batch server that accepts a Locate Batch Job Request shall return a Batch Job Location Message to
4361 the batch client.

4362 A batch server may reject a Locate Batch Job Request for a batch job that was not created by that
4363 server.

4364 A batch server may reject a Locate Batch Job Request for a batch job that is no longer managed by
4365 that server; that is, for a batch job that is not in a queue owned by that server.

4366 A batch server may reject a Locate Batch Job Request for other reasons. The conformance
4367 document for an implementation shall document the reasons for which a Locate Batch Job Request
4368 may be rejected.

4369 3.2.3.6 Modify Batch Job Request

4370 Batch clients modify (alter) the attributes of a batch job by making a request to the server that
4371 manages the batch job. Such a request is called a Modify Batch Job Request.

4372 A batch server shall reject a Modify Batch Job Request if any of the following statements are true:

4373 • The user of the batch client is not authorized to make the requested modification to the batch
4374 job.

4375 • The designated job is not managed by the batch server.

4376 • The requested modification is inconsistent with the state of the batch job.

2330 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4377 • An unrecognized resource is requested for a batch job in an execution queue.

4378 A batch server may reject a Modify Batch Job Request for other reasons. The conformance
4379 document for an implementation shall describe the reasons for which a Modify Batch Job Request
4380 may be rejected. The conformance document for an implementation shall describe the method
4381 used to determine whether the user of a client is authorized to perform the requested action.

4382 A batch server that accepts a Modify Batch Job Request shall modify all the specified attributes of
4383 the batch job. A batch server that rejects a Modify Batch Job Request shall modify none of the
4384 attributes of the batch job.

4385 If the servicing by a batch server of an otherwise valid request would result in no change, then
4386 the batch server shall indicate successful completion of the request.

4387 3.2.3.7 Move Batch Job Request

4388 A batch client can request that a batch server move a batch job to another destination. Such a
4389 request is called a Move Batch Job Request.

4390 A batch server shall reject a Move Batch Job Request if any of the following statements are true:

4391 • The user of the batch client is not authorized to remove the designated job from the queue in
4392 which the batch job resides.

4393 • The user of the batch client is not authorized to move the designated job to the destination.

4394 • The designated job is not managed by the batch server.

4395 • The designated job is in the EXITING state.

4396 • The destination is inaccessible.

4397 A batch server can reject a Move Batch Job Request for other reasons. The conformance document
4398 for an implementation shall describe the reasons for which a Move Batch Job Request may be
4399 rejected. The conformance document for an implementation shall describe the method used to
4400 determine whether the user of a client is authorized to perform the requested action.

4401 A batch server that accepts a Move Batch Job Request shall perform the following services:

4402 • Queue the designated job at the destination.

4403 • Remove the designated job from the queue in which the batch job resides.

4404 If the destination resides on another batch server, the batch server shall queue the batch job at
4405 the destination by sending a Queue Batch Job Request to the other server. If the Queue Batch Job
4406 Request fails, the batch server shall reject the Move Batch Job Request. If the Queue Batch Job Request
4407 succeeds, the batch server shall remove the batch job from its queue.

4408 The batch server shall not modify any attributes of the batch job.

4409 3.2.3.8 Queue Batch Job Request

4410 A batch queue is controlled by one and only one batch server. A batch server is said to own the
4411 queues that it controls. Batch clients make requests of batch servers to have jobs queued. Such a
4412 request is called a Queue Batch Job Request.

4413 A batch server requested to queue a batch job for which the queue is unspecified shall select a
4414 queue for the batch job. Such a queue is called the default queue of the batch server. The
4415 conformance document for the implementation shall document the means by which the batch
4416 server determines the default queue. The implementation shall provide the means for a batch
4417 administrator to specify the default queue. The queue, whether specified or defaulted, is called

Shell and Utilities, Issue 6 2331

Batch Services Batch Environment Services

4418 the target queue.

4419 A batch server shall reject a Queue Batch Job Request if any of the following statements are true:

4420 • The client is not authorized to create a batch job in the target queue.

4421 • The request specifies a queue that does not exist on the batch server.

4422 • The target queue is an execution queue and the batch server cannot satisfy a resource
4423 requirement of the batch job.

4424 • The target queue is an execution queue and an unrecognized resource is requested.

4425 • The target queue is an execution queue, the batch server does not support checkpointing, and
4426 the value of the Checkpoint attribute of the batch job is not NO_CHECKPOINT.

4427 • The job requires access to a user identifier that the batch client is not authorized to access.

4428 A batch server may reject a Queue Batch Job Request for other reasons. The conformance
4429 document for an implementation shall document the reasons for which a Queue Batch Job Request
4430 may be rejected.

4431 A batch server that accepts a Queue Batch Job Request for a batch job for which the
4432 PBS_O_QUEUE value is missing from the value of the Variable_List attribute of the batch job
4433 shall add that variable to the list and set the value to the name of the target queue. Once set, no
4434 server shall change the value of PBS_O_QUEUE, even if the batch job is moved to another
4435 queue.

4436 A batch server that accepts a Queue Batch Job Request for a batch job for which the PBS_JOBID
4437 value is missing from the value of the Variable_List attribute shall add that variable to the list and
4438 set the value to the batch job identifier assigned by the server in the format:

4439 sequence_number.server

4440 A batch server that accepts a Queue Batch Job Request for a batch job for which the
4441 PBS_JOBNAME value is missing from the value of the Variable_List attribute of the batch job
4442 shall add that variable to the list and set the value to the Job_Name attribute of the batch job.

4443 3.2.3.9 Batch Queue Status Request

4444 A batch client can request that a batch server respond with the status and attributes of a queue.
4445 Such a request is called a Batch Queue Status Request.

4446 A batch server shall reject a Batch Queue Status Request if any of the following statements are true:

4447 • The user of the batch client is not authorized to query the status of the designated queue.

4448 • The designated queue does not exist on the batch server.

4449 A batch server may reject a Batch Queue Status Request for other reasons. The conformance
4450 document for an implementation shall describe the reasons for which a Batch Queue Status
4451 Request is rejected. The conformance document for an implementation shall describe the method
4452 used to determine whether the user of a client is authorized to perform the requested action.

4453 A batch server that accepts a Batch Queue Status Request shall return a Batch Queue Status Reply to
4454 the batch client.

2332 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4455 3.2.3.10 Release Batch Job Request

4456 A batch client can request that server remove one or more holds from a batch job. Such a request
4457 is called a Release Batch Job Request.

4458 A batch server shall reject a Release Batch Job Request if any of the following statements are true:

4459 • The user of the batch client is not authorized to remove one or more of the requested holds
4460 from the batch job.

4461 • The batch server does not manage the specified job.

4462 A batch server may reject a Release Batch Job Request for other reasons. The conformance
4463 document for an implementation shall document the reasons for which a Release Batch Job
4464 Request may be rejected. The conformance document for an implementation shall describe the
4465 method used to determine whether the user of a client is authorized to perform the requested
4466 action.

4467 A batch server that accepts a Release Batch Job Request shall remove each type of hold listed in the
4468 Release Batch Job Request, that is present, from the value of the Hold_Types attribute of the batch
4469 job.

4470 3.2.3.11 Rerun Batch Job Request

4471 To rerun a batch job is to kill the session leader of the batch job and leave the batch job eligible
4472 for re-execution. A batch client can request that a batch server rerun a batch job. Such a request is
4473 called Rerun Batch Job Request.

4474 A batch server shall reject a Rerun Batch Job Request if any of the following statements are true:

4475 • The user of the batch client is not authorized to rerun the designated job.

4476 • The Rerunable attribute of the designated job has the value FALSE.

4477 • The designated job is not in the RUNNING state.

4478 • The batch server does not manage the designated job.

4479 A batch server may reject a Rerun Batch Job Request for other reasons. The conformance document
4480 for an implementation shall describe the reasons for which a Rerun Batch Job Request may be
4481 rejected. The conformance document for an implementation shall describe the method used to
4482 determine whether the user of a client is authorized to perform the requested action.

4483 A batch server that rejects a Rerun Batch Job Request shall in no way modify the execution of the
4484 batch job.

4485 A batch server that accepts a request to rerun a batch job shall perform the following services:

4486 • Requeue the batch job in the execution queue in which it was executing.

4487 • Send a SIGKILL signal to the process group of the session leader of the batch job.

4488 An implementation may indicate to the batch job owner that the batch job has been rerun. The
4489 conformance document for an implementation shall state whether the batch job owner is
4490 notified that a batch job is rerun, and if so, shall describe the means used.

4491 A batch server that reruns a batch job may send other signals to the session leader of the batch
4492 job prior to sending the SIGKILL signal. The conformance document for an implementation
4493 shall describe any other signals that may be sent.

4494 A batch server may preferentially select a rerun job for execution. The conformance document
4495 for an implementation shall state whether rerun jobs shall be selected for execution before other

Shell and Utilities, Issue 6 2333

Batch Services Batch Environment Services

4496 jobs.

4497 3.2.3.12 Select Batch Jobs Request

4498 A batch client can request from a batch server a list of jobs managed by that server that match a
4499 list of selection criteria. Such a request is called a Select Batch Jobs Request. All the batch jobs
4500 managed by the batch server that receives the request are candidates for selection.

4501 A batch server that accepts a Select Batch Jobs Request shall return a list of zero or more job
4502 identifiers that correspond to jobs that meet the selection criteria.

4503 If the batch client is not authorized to query the status of a batch job, the batch server shall not
4504 select the batch job.

4505 3.2.3.13 Server Shutdown Request

4506 A batch server is defined to have shut down when it does not respond to requests from clients
4507 and does not perform deferred services for jobs. A batch client can request that a batch server
4508 shut down. Such a request is called a Server Shutdown Request.

4509 A batch server shall reject a Server Shutdown Request from a client that is not authorized to shut
4510 down the batch server. The conformance document for an implementation shall describe the
4511 method used to determine whether the user of a client is authorized to perform the requested
4512 action.

4513 A batch server may reject a Server Shutdown Request for other reasons. The conformance
4514 document for an implementation shall document the reasons for which a Server Shutdown
4515 Request may be rejected.

4516 At server shutdown, a batch server shall do, in order of preference, one of the following:

4517 • If checkpointing is implemented and the batch job is checkpointable, then checkpoint the
4518 batch job and requeue it.

4519 • If the batch job is rerunable, then requeue the batch job to be rerun (restarted from the
4520 beginning).

4521 • Abort the batch job.

4522 3.2.3.14 Server Status Request

4523 A batch client can request that a batch server respond with the status and attributes of the batch
4524 server. Such a request is called a Server Status Request.

4525 A batch server shall reject a Server Status Request if the following statement is true:

4526 • The user of the batch client is not authorized to query the status of the designated server.

4527 A batch server may reject a Server Status Request for other reasons. The conformance document
4528 for an implementation shall describe the reasons for which a Server Status Request may be
4529 rejected. The conformance document for an implementation shall describe the method used to
4530 determine whether the user of a client is authorized to perform the requested action.

4531 A batch server that accepts a Server Status Request shall return a Server Status Reply to the batch
4532 client.

2334 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Batch Services

4533 3.2.3.15 Signal Batch Job Request

4534 A batch client can request that a batch server signal the session leader of a batch job. Such a
4535 request is called a Signal Batch Job Request.

4536 A batch server shall reject a Signal Batch Job Request if any of the following statements are true:

4537 • The user of the batch client is not authorized to signal the batch job.

4538 • The job is not in the RUNNING state.

4539 • The batch server does not manage the designated job.

4540 • The requested signal is not supported by the implementation.

4541 A batch server may reject a Signal Batch Job Request for other reasons. The conformance
4542 document for an implementation shall describe the reasons for which a Signal Batch Job Request
4543 may be rejected. The conformance document for an implementation shall describe the method
4544 used to determine whether the user of a client is authorized to perform the requested action.

4545 A batch server that accepts a request to signal a batch job shall send the signal requested by the
4546 batch client to the process group of the session leader of the batch job.

4547 3.2.3.16 Track Batch Job Request

4548 Track Batch Job Request is an optional feature of batch servers. If an implementation supports
4549 Track Batch Job Request, the statements in this section apply and the configuration variable
4550 POSIX2_PBS_TRACK shall be set to 1.

4551 Track Batch Job Request provides a method for tracking the current location of a batch job. Clients
4552 may use the tracking information to determine the batch server that should receive a batch
4553 server request.

4554 If Track Batch Job Request is supported by a batch server, then when the batch server queues a
4555 batch job as a result of a Queue Batch Job Request, and the batch server is not the batch server that
4556 created the batch job, the batch server shall send a Track Batch Job Request to the batch server that
4557 created the job.

4558 If Track Batch Job Request is supported by a batch server, then the Track Batch Job Request may also
4559 be sent to other servers as a backup to the primary server. The method by which backup servers
4560 are specified is implementation-defined. |

4561 If Track Batch Job Request is supported by a batch server that receives a Track Batch Job Request,
4562 then the batch server shall record the current location of the batch job as contained in the
4563 request.

Shell and Utilities, Issue 6 2335

Common Behavior for Batch Environment Utilities Batch Environment Services

4564 3.3 Common Behavior for Batch Environment Utilities

4565 3.3.1 Batch Job Identifier

4566 A utility shall recognize job_identifiers of the format:

4567 [sequence_number][.server_name][@server]

4568 where:

4569 sequence_number An integer that, when combined with server_name, provides a batch job
4570 identifier that is unique within the batch system.

4571 server_name The name of the batch server to which the batch job was originally submitted.

4572 server The name of the batch server that is currently managing the batch job.

4573 If the application omits the batch server_name portion of a batch job identifier, a utility shall use
4574 the name of a default batch server.

4575 If the application omits the batch server portion of a batch job identifier, a utility shall use:

4576 • The batch server indicated by server_name, if present.

4577 • The name of the default batch server.

4578 • The name of the batch server that is currently managing the batch job.

4579 If only @server is specified, then the status of all jobs owned by the user on the requested server
4580 is listed.

4581 The means by which a utility determines the default batch server is implementation-defined. |

4582 If the application presents the batch server portion of a batch job identifier to a utility, the utility
4583 shall send the request to the specified server.

4584 A strictly conforming application shall use the syntax described for the job identifier. Whenever
4585 a batch job identifier is specified whose syntax is not recognized by an implementation, then a
4586 message for each error that occurs shall be written to standard error and the utility shall exit
4587 with an exit status greater than zero.

4588 When a batch job identifier is supplied as an argument to a batch utility and the server_name
4589 portion of the batch job identifier is omitted, then the utility shall use the name of the default
4590 batch server.

4591 When a batch job identifier is supplied as an argument to a batch utility and the batch server
4592 portion of the batch job identifier is omitted, then the utility shall use either:

4593 • The name of the default batch server

4594 or:

4595 • The name of the batch server that is currently managing the batch job

4596 When a batch job identifier is supplied as an argument to a batch utility and the batch server
4597 portion of the batch job identifier is specified, then the utility shall send the required Batch Server
4598 Request to the specified server.

2336 Technical Standard (2000) (Draft July 31, 2000)

Batch Environment Services Common Behavior for Batch Environment Utilities

4599 3.3.2 Destination

4600 The utility shall recognize a destination of the format:

4601 [queue][@server]

4602 where:

4603 queue The name of a valid execution or routing queue at the batch server denoted by
4604 @server, defined as a string of up to 15 alphanumeric characters in the portable |
4605 character set (see the Base Definitions volume of IEEE Std. 1003.1-200x, |
4606 Section 6.1, Portable Character Set) where the first character is alphabetic. |

4607 server The name of a batch server, defined as a string of alphanumeric characters in
4608 the portable character set.

4609 If the application omits the batch server portion of a destination, then the utility shall use either:

4610 • The name of the default batch server

4611 or:

4612 • The name of the batch server that is currently managing the batch job

4613 The means by which a utility determines the default batch server is implementation-defined. |

4614 If the application omits the queue portion of a destination, then the utility shall use the name of
4615 the default queue at the batch server chosen.

4616 The means by which a batch server determines its default queue is implementation-defined. |

4617 If a destination is specified in the queue@server form, then the utility shall use the specified queue
4618 at the specified server.

4619 A strictly conforming application shall use the syntax described for a destination. Whenever a
4620 destination is specified whose syntax is not recognized by an implementation, then a message
4621 shall be written to standard error and the utility shall exit with an exit status greater than zero.

4622 3.3.3 Multiple Keyword-Value Pairs

4623 For each option that can have multiple keyword-value pair arguments, the following rules shall
4624 apply. Examples of options that can have list-oriented option-arguments are −u value@keyword
4625 and −l keyword=value .

4626 1. If a batch utility is presented with a list-oriented option-argument for which a keyword has
4627 a corresponding value that begins with a single or double quote, then the utility shall stop
4628 interpreting the input stream for delimiters until a second single or double quote,
4629 respectively, is encountered. This feature allows some flexibility for a comma (’,’) or
4630 equals sign (’=’) to be part of the value string for a particular keyword; for example:

4631 keywd1=’val1,val2’,keywd2="val3,val4"

4632 Note: This may require the user to escape the quotes as in the following command:

4633 foo −xkeywd1=\’val1,val2\’,keywd2=\"val3,val4\"

4634 2. If a batch server is presented with a list-oriented attribute that has a keyword that was
4635 encountered earlier in the list, then the later entry for that keyword shall replace the earlier
4636 entry.

4637 3. If a batch server is presented with a list-oriented attribute that has a keyword without any
4638 corresponding value of the form keyword= or @keyword and the same keyword was
4639 encountered earlier in the list, then the prior entry for that keyword shall be ignored by the

Shell and Utilities, Issue 6 2337

Common Behavior for Batch Environment Utilities Batch Environment Services

4640 batch server.

4641 4. If a batch utility is expecting a list-oriented option-argument entry of the form
4642 keyword=value , but is presented with an entry of the form keyword without any
4643 corresponding value , then the entry shall be treated as though a default value of NULL was
4644 assigned (that is, keyword=NULL) for entry parsing purposes. The utility shall include only
4645 the keyword, not the NULL value, in the associated job attribute.

4646 5. If a batch utility is expecting a list-oriented option-argument entry of the form
4647 value@keyword , but is presented with an entry of the form value without any corresponding
4648 keyword , then the entry shall be treated as though a keyword of NULL was assigned (that
4649 is, value@NULL) for entry parsing purposes. The utility shall include only the value, not
4650 the NULL keyword, in the associated job attribute.

4651 6. A batch server shall accept a list-oriented attribute that has multiple occurrences of the
4652 same keyword, interpreting the keywords, in order, with the last value encountered taking |
4653 precedence over prior instances of the same keyword. This rule allows, but does not |
4654 require, a batch utility to preprocess the attribute to remove duplicate keywords.

4655 7. If a batch utility is presented with multiple list-oriented option-arguments on the
4656 command line or in script directives, or both, for a single option, then the utility shall
4657 concatenate, in order, any command line keyword and value pairs to the end of any
4658 directive keyword and value pairs separated by a single comma to produce a single string
4659 that is an equivalent, valid option-argument. The resulting string shall be assigned to the
4660 associated attribute of the batch job (after optionally removing duplicate entries as
4661 described in item 6. |

2338 Technical Standard (2000) (Draft July 31, 2000)

4662

Chapter 4

Utilities

4663 This chapter contains the definitions of the utilities, as follows:

4664 • Mandatory utilities that are present on every conformant system

4665 • Optional utilities that are present only on systems supporting the associated option; see
4666 Section 1.8.1 (on page 2212) for information on the options in this volume of
4667 IEEE Std. 1003.1-200x

Shell and Utilities, Issue 6 2339

admin Utilities

4668 NAME
4669 admin — create and administer SCCS files (DEVELOPMENT)

4670 SYNOPSIS
4671 XSI admin −i [name][−n][−a login][−d flag][−f flag][−m mrlist][−r rel]
4672 [−t [name][−y [comment]] newfile

4673 admin −n[−a login][−d flag][−f flag][−m mrlist][−t [name]][−y [comment]]
4674 newfile ...

4675 admin [−a login][−d flag][−m mrlist][−r rel][−t [name]] file ...

4676 admin −h file ...

4677 admin −z file ...
4678

4679 DESCRIPTION
4680 The admin utility shall create new SCCS files or change parameters of existing ones. If a named
4681 file does not exist, it shall be created, and its parameters shall be initialized according to the
4682 specified options. Parameters not initialized by an option shall be assigned a default value. If a
4683 named file does exist, parameters corresponding to specified options shall be changed, and other
4684 parameters shall be left as is.

4685 All SCCS file names supplied by the application shall be of the form s.filename. New SCCS files
4686 shall be given read-only permission mode. Write permission in the parent directory is required
4687 to create a file. All writing done by admin shall be to a temporary x-file , named x.filename (see get)
4688 created with read-only mode if admin is creating a new SCCS file, or created with the same mode
4689 as that of the SCCS file if the file already exists. After successful execution of admin, the SCCS file
4690 shall be removed (if it exists), and the x-file shall be renamed with the name of the SCCS file. This
4691 ensures that changes are made to the SCCS file only if no errors occur.

4692 The admin utility shall also use a transient lock file (named z.filename), which is used to prevent
4693 simultaneous updates to the SCCS file; see get (on page 2685).

4694 OPTIONS
4695 The admin utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
4696 12.2, Utility Syntax Guidelines, except that the −i, −t, and −y options have optional option- |
4697 arguments. These optional option-arguments shall not be presented as separate arguments. The |
4698 following options are supported: |

4699 −n Create a new SCCS file. When −n is used without −i, the SCCS file shall be created |
4700 with control information but without any file data. |

4701 −i[name] Specify the name of a file from which the text for a new SCCS file shall be taken. |
4702 The text constitutes the first delta of the file (see the −r option for delta numbering |
4703 scheme). If the −i option is used, but the name option-argument is omitted, the text |
4704 shall be obtained by reading the standard input. If this option is omitted, the SCCS |
4705 file shall be created with control information but without any file data. The −i |
4706 option implies the −n option.

4707 −r rel Specify the release into which the initial delta is inserted. If the −r option is not |
4708 used, the initial delta shall be inserted into release 1. The level of the initial delta |
4709 shall always be 1 (by default, initial deltas are named 1.1). |

4710 −t[name] Specify the name of a file from which descriptive text for the SCCS file shall be |
4711 taken. In the case of existing SCCS files (neither −i nor −n is specified): |

2340 Technical Standard (2000) (Draft July 31, 2000)

Utilities admin

4712 • A −t option without a name option-argument shall cause the removal of |
4713 descriptive text (if any) currently in the SCCS file. |

4714 • A −t option with a name option-argument shall cause the text (if any) in the |
4715 named file to replace the descriptive text (if any) currently in the SCCS file. |

4716 −f flag Specify a flag , and, possibly, a value for the flag , to be placed in the SCCS file.
4717 Several −f options may be supplied on a single admin command line. The allowable
4718 flags and their values are:

4719 b Allow use of the −b option on a get command to create branch deltas.

4720 cceil Specify the highest release (that is, ceiling), a number less than or equal to
4721 9 999, which may be retrieved by a get command for editing. The default
4722 value for an unspecified c flag shall be 9 999. |

4723 ffloor Specify the lowest release (that is, floor), a number greater than 0 but less
4724 than 9 999, which may be retrieved by a get command for editing. The
4725 default value for an unspecified f flag shall be 1. |

4726 dSID Specify the default delta number (SID) to be used by a get command.

4727 istr Treat the ‘‘No ID keywords’’ message issued by get or delta as a fatal
4728 error. In the absence of this flag, the message is only a warning. The
4729 message is issued if no SCCS identification keywords (see get (on page
4730 2685)) are found in the text retrieved or stored in the SCCS file. If a value
4731 is supplied, the application shall ensure that the keywords exactly match
4732 the given string; however, the string shall contain a keyword, and no
4733 embedded <newline>s.

4734 j Allow concurrent get commands for editing on the same SID of an SCCS
4735 file. This allows multiple concurrent updates to the same version of the
4736 SCCS file.

4737 llist Specify a list of releases to which deltas can no longer be made (that is, get
4738 −e against one of these locked releases fails). The list has the following
4739 syntax:

4740 <list> :: = a | <range-list>
4741 <range-list> ::= <range> | <range-list>, <range>

4742 The character a in the list shall be equivalent to specifying all releases for |
4743 the named SCCS file. |

4744 n Cause delta to create a null delta in each of those releases (if any) being
4745 skipped when a delta is made in a new release (for example, in making
4746 delta 5.1 after delta 2.7, releases 3 and 4 are skipped). These null deltas
4747 serve as anchor points so that branch deltas may later be created from
4748 them. The absence of this flag shall cause skipped releases to be |
4749 nonexistent in the SCCS file, preventing branch deltas from being created |
4750 from them in the future. |

4751 qtext Substitute user-definable text for all occurrences of the %Q% keyword in
4752 the SCCS file text retrieved by get.

4753 mmod Specify the module name of the SCCS file substituted for all occurrences
4754 of the %M% keyword in the SCCS file text retrieved by get. If the m flag |
4755 is not specified, the value assigned shall be the name of the SCCS file with |
4756 the leading ’.’ removed. |

Shell and Utilities, Issue 6 2341

admin Utilities

4757 ttype Specify the type of module in the SCCS file substituted for all occurrences
4758 of the %Y% keyword in the SCCS file text retrieved by get.

4759 vpgm Cause delta to prompt for modification request (MR) numbers as the
4760 reason for creating a delta. The optional value specifies the name of an
4761 MR number validation program. (If this flag is set when creating an SCCS
4762 file, the application shall ensure that the m option is also used even if its
4763 value is null.)

4764 −d flag Remove (delete) the specified flag from an SCCS file. Several −d options may be
4765 supplied on a single admin command. See the −f option for allowable flag names.
4766 (The llist flag gives a list of releases to be unlocked. See the −f option for further
4767 description of the l flag and the syntax of a list .)

4768 −a login Specify a login name, or numerical group ID, to be added to the list of users who
4769 may make deltas (changes) to the SCCS file. A group ID is equivalent to specifying
4770 all login names common to that group ID. Several −a options may be used on a
4771 single admin command line. As many logins, or numerical group IDs, as desired
4772 may be on the list simultaneously. If the list of users is empty, then anyone may
4773 add deltas. If login or group ID is preceded by a ’!’ , the users so specified are
4774 denied permission to make deltas.

4775 −e login Specify a login name, or numerical group ID, to be erased from the list of users
4776 allowed to make deltas (changes) to the SCCS file. Specifying a group ID is
4777 equivalent to specifying all login names common to that group ID. Several −e
4778 options may be used on a single admin command line.

4779 −y[comment] Insert the comment text into the SCCS file as a comment for the initial delta in a
4780 manner identical to that of delta. In the POSIX locale, omission of the −y option
4781 results in a default comment line being inserted in the form:

4782 "date and time created %s %s by %s", < date >, < time >, < login >

4783 where <date> is expressed in the date utility’s %y/%m/%d format, <time> in the
4784 date utility’s %T format, and <login> is the login name of the user creating the file.

4785 −m mrlist Insert the list of modification request (MR) numbers into the SCCS file as the
4786 reason for creating the initial delta in a manner identical to delta. The application
4787 shall ensure that the v flag is set and the MR numbers are validated if the v flag has
4788 a value (the name of an MR number validation program). Diagnostics occur if the
4789 v flag is not set or MR validation fails.

4790 −h Check the structure of the SCCS file and compare the newly computed checksum
4791 (the sum of all the characters in the SCCS file except those in the first line) with the
4792 checksum that is stored in the first line of the SCCS file. Appropriate error
4793 diagnostics are produced.

4794 −z Recompute the SCCS file checksum and store it in the first line of the SCCS file (see
4795 the −h option above). Note that use of this option on a truly corrupted file may
4796 prevent future detection of the corruption.

4797 OPERANDS
4798 The following operands shall be supported:

4799 file A path name of an existing SCCS file or a directory. If file is a directory, the admin |
4800 utility shall behave as though each file in the directory were specified as a named |
4801 file, except that non-SCCS files (last component of the path name does not begin |
4802 with s.) and unreadable files shall be silently ignored. |

2342 Technical Standard (2000) (Draft July 31, 2000)

Utilities admin

4803 newfile A path name of an SCCS file to be created.

4804 If a single instance of file or newfile is specified as ’ −’ , the standard input shall be read; each line |
4805 of the standard input shall be taken to be the name of an SCCS file to be processed. Non-SCCS |
4806 files and unreadable files shall be silently ignored. |

4807 STDIN
4808 The standard input shall be a text file used only if the −i is specified without an option-argument
4809 or if a file or newfile operand is specified as ’ −’ . If the first character of any standard input line is
4810 SOH (binary 001), the results are unspecified.

4811 INPUT FILES
4812 The existing SCCS files are text files of an unspecified format. The file named by the −i option’s
4813 name option-argument is a text file; if the first character of any line in this file is SOH (binary
4814 001), the results are unspecified.

4815 ENVIRONMENT VARIABLES
4816 The following environment variables shall affect the execution of admin:

4817 LANG Provide a default value for the internationalization variables that are unset or null.
4818 If LANG is unset or null, the corresponding value from the implementation- |
4819 defined default locale shall be used. If any of the internationalization variables |
4820 contains an invalid setting, the utility shall behave as if none of the variables had
4821 been defined.

4822 LC_ALL If set to a non-empty string value, override the values of all the other
4823 internationalization variables.

4824 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
4825 characters (for example, single-byte as opposed to multi-byte characters in
4826 arguments and input files).

4827 LC_MESSAGES
4828 Determine the locale that should be used to affect the format and contents of
4829 diagnostic messages written to standard error and the contents of the default −y
4830 comment.

4831 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

4832 ASYNCHRONOUS EVENTS
4833 Default.

4834 STDOUT
4835 Not used.

4836 STDERR
4837 Used only for diagnostic messages.

4838 OUTPUT FILES
4839 Any SCCS files created shall be text files of an unspecified format. During processing of a file , a
4840 locking z-file , as described in get (on page 2685), may be created and deleted.

4841 EXTENDED DESCRIPTION
4842 None.

4843 EXIT STATUS
4844 The following exit values shall be returned:

4845 0 Successful completion.

Shell and Utilities, Issue 6 2343

admin Utilities

4846 >0 An error occurred.

4847 CONSEQUENCES OF ERRORS
4848 Default.

4849 APPLICATION USAGE
4850 It is recommended that directories containing SCCS files be writable by the owner only, and that
4851 SCCS files themselves be read-only. The mode of the directories should allow only the owner to
4852 modify SCCS files contained in the directories. The mode of the SCCS files prevents any
4853 modification at all except by SCCS commands.

4854 EXAMPLES
4855 None.

4856 RATIONALE
4857 None.

4858 FUTURE DIRECTIONS
4859 None. |

4860 SEE ALSO
4861 delta , get, prs, what

4862 CHANGE HISTORY
4863 First released in Issue 2.

4864 Issue 4
4865 Format reorganized.

4866 Conformance to Utility Syntax Guidelines mandated, with exceptions as noted.

4867 Internationalized environment variable support mandated.

4868 Issue 6
4869 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

4870 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements. |

4871 The grammar is updated. |

2344 Technical Standard (2000) (Draft July 31, 2000)

Utilities alias

4872 NAME
4873 alias — define or display aliases

4874 SYNOPSIS
4875 UP alias [alias-name [=string] ...]
4876

4877 DESCRIPTION
4878 The alias utility shall create or redefine alias definitions or write the values of existing alias
4879 definitions to standard output. An alias definition provides a string value that shall replace a
4880 command name when it is encountered; see Section 2.3.1 (on page 2239).

4881 An alias definition shall affect the current shell execution environment and the execution
4882 environments of the subshells of the current shell. When used as specified by this volume of
4883 IEEE Std. 1003.1-200x, the alias definition shall not affect the parent process of the current shell
4884 nor any utility environment invoked by the shell; see Section 2.13 (on page 2273).

4885 OPTIONS
4886 None.

4887 OPERANDS
4888 The following operands shall be supported:

4889 alias-name Write the alias definition to standard output.

4890 alias-name=string
4891 Assign the value of string to the alias alias-name .

4892 If no operands are given, all alias definitions shall be written to standard output.

4893 STDIN
4894 Not used.

4895 INPUT FILES
4896 None.

4897 ENVIRONMENT VARIABLES
4898 The following environment variables shall affect the execution of alias:

4899 LANG Provide a default value for the internationalization variables that are unset or null.
4900 If LANG is unset or null, the corresponding value from the implementation- |
4901 defined default locale shall be used. If any of the internationalization variables |
4902 contains an invalid setting, the utility shall behave as if none of the variables had
4903 been defined.

4904 LC_ALL If set to a non-empty string value, override the values of all the other
4905 internationalization variables.

4906 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
4907 characters (for example, single-byte as opposed to multi-byte characters in
4908 arguments).

4909 LC_MESSAGES
4910 Determine the locale that should be used to affect the format and contents of
4911 diagnostic messages written to standard error.

4912 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Shell and Utilities, Issue 6 2345

alias Utilities

4913 ASYNCHRONOUS EVENTS
4914 Default.

4915 STDOUT
4916 The format for displaying aliases (when no operands or only name operands are specified) shall
4917 be:

4918 "%s=%s\n", name, value

4919 The value string shall be written with appropriate quoting so that it is suitable for reinput to the
4920 shell. See the description of shell quoting in Section 2.2 (on page 2236).

4921 STDERR
4922 Used only for diagnostic messages.

4923 OUTPUT FILES
4924 None.

4925 EXTENDED DESCRIPTION
4926 None.

4927 EXIT STATUS
4928 The following exit values shall be returned:

4929 0 Successful completion.

4930 >0 One of the name operands specified did not have an alias definition, or an error occurred.

4931 CONSEQUENCES OF ERRORS
4932 Default.

4933 APPLICATION USAGE
4934 None. |

4935 EXAMPLES

4936 1. Change ls to give a columnated, more annotated output:

4937 alias ls="ls −CF"

4938 2. Create a simple ‘‘redo’’ command to repeat previous entries in the command history file:

4939 alias r=’fc −s’

4940 3. Use 1K units for du:

4941 alias du=du\ −k

4942 4. Set up nohup so that it can deal with an argument that is itself an alias name:

4943 alias nohup="nohup "

4944 RATIONALE
4945 The alias description is based on historical KornShell implementations. Known differences exist
4946 between that and the C shell. The KornShell version was adopted to be consistent with all the
4947 other KornShell features in this volume of IEEE Std. 1003.1-200x, such as command line editing.

4948 Since alias affects the current shell execution environment, it is generally provided as a shell
4949 regular built-in.

4950 Historical versions of the KornShell have allowed aliases to be exported to scripts that are
4951 invoked by the same shell. This is triggered by the alias −x flag; it is allowed by this volume of
4952 IEEE Std. 1003.1-200x only when an explicit extension such as −x is used. The standard
4953 developers considered that aliases were of use primarily to interactive users and that they

2346 Technical Standard (2000) (Draft July 31, 2000)

Utilities alias

4954 should normally not affect shell scripts called by those users; functions are available to such
4955 scripts.

4956 Historical versions of the KornShell had not written aliases in a quoted manner suitable for
4957 reentry to the shell, but this volume of IEEE Std. 1003.1-200x has made this a requirement for all
4958 similar output. Therefore, consistency with this volume of IEEE Std. 1003.1-200x was chosen
4959 over this detail of historical practice.

4960 FUTURE DIRECTIONS
4961 None.

4962 SEE ALSO
4963 Section 2.9.5 (on page 2263)

4964 CHANGE HISTORY
4965 First released in Issue 4.

4966 Issue 6
4967 This utility is now marked as part of the User Portability Utilities option.

4968 The APPLICATION USAGE section is added.

Shell and Utilities, Issue 6 2347

ar Utilities

4969 NAME
4970 ar — create and maintain library archives

4971 SYNOPSIS
4972 SD ar −d[−v] archive file ...
4973

4974 XSI ar −m[−abiv][posname] archive file ...
4975

4976 XSI ar −p[−v][−s] archive [file ...]

4977 XSI ar −q[−cv] archive file ...
4978

4979 XSI ar −r [−cuv][−abi][posname] archive file ...

4980 XSI ar −t [−v][−s] archive [file ...]

4981 XSI ar −x [−v][−sCT] archive [file ...]

4982 DESCRIPTION
4983 The ar utility can be used to create and maintain groups of files combined into an archive. Once
4984 an archive has been created, new files can be added, and existing files can be extracted, deleted,
4985 or replaced. When an archive consists entirely of valid object files, the implementation shall
4986 format the archive so that it is usable as a library for link editing (see c99, cc, and fort77). When |
4987 some of the archived files are not valid object files, the suitability of the archive for library use is
4988 XSI undefined. If an archive file consists entirely of printable files, the entire archive file is printable.

4989 When ar creates an archive file, it creates administrative information indicating whether a
4990 symbol table is present in the archive. When there is at least one object file that ar recognizes as
4991 such in the archive, an archive symbol table is created in the archive file and maintained by ar; it
4992 is used by the link editor to search the archive file. Whenever the ar utility is used to create or
4993 update the contents of such an archive, the symbol table is rebuilt. The −s option forces the
4994 symbol table to be rebuilt.

4995 All file operands can be path names. However, files within archives shall be named by a file
4996 name, which is the last component of the path name used when the file was entered into the
4997 archive. The comparison of file operands to the names of files in archives shall be performed by
4998 comparing the last component of the operand to the name of the archive file.

4999 It is unspecified whether multiple files in the archive may be identically named. In the case of
5000 XSI such files, however, each file and posnameoperand shall match only the first archive file having a
5001 name that is the same as the last component of the operand.

5002 OPTIONS
5003 The ar utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
5004 Utility Syntax Guidelines. |

5005 The following options shall be supported:

5006 XSI −a Position new files in the archive after the file named by the posname operand.

5007 XSI −b Position new files in the archive before the file named by the posname operand.

5008 −c Suppress the diagnostic message that is written to standard error by default when
5009 the archive file archive is created.

5010 XSI −C Prevent extracted files from replacing like-named files in the file system. This
5011 option is useful when −T is also used, to prevent truncated file names from
5012 replacing files with the same prefix.

2348 Technical Standard (2000) (Draft July 31, 2000)

Utilities ar

5013 −d Delete one or more files from archive .

5014 XSI −i Position new files in the archive before the file named by the posname operand
5015 (equivalent to −b).

5016 XSI −m Move the named files. The −a, −b, or −i options with the posname operand indicate
5017 the position; otherwise, move the files to the end of the archive.

5018 −p Write the contents of the files from archive to the standard output. If no files are
5019 specified, the contents of all files in the archive shall be written in the order of the
5020 archive.

5021 XSI −q Quickly append the named files to the end of the archive file. In this case ar does
5022 not check whether the added members are already in the archive. This is useful to
5023 bypass the searching otherwise done when creating a large archive piece by piece.

5024 −r Replace or add files to archive . If the archive named by archive does not exist, a
5025 new archive file shall be created and a diagnostic message shall be written to
5026 standard error (unless the −c option is specified). If no files are specified and the
5027 archive exists, the results are undefined. Files that replace existing files shall not
5028 change the order of the archive. Files that do not replace existing files shall be
5029 XSI appended to the archive unless a −a, −b, or −i option specifies another position.

5030 XSI −s Force the regeneration of the archive symbol table even if ar is not invoked with an
5031 option that modifies the archive file contents. This option is useful to restore the
5032 archive symbol table after it has been stripped; see strip.

5033 −t Write a table of contents of archive to the standard output. The files specified by the
5034 file operands shall be included in the written list. If no file operands are specified,
5035 all files in archive shall be included in the order of the archive.

5036 XSI −T Allow file name truncation of extracted files whose archive names are longer than
5037 the file system can support. By default, extracting a file with a name that is too
5038 long is an error; a diagnostic message is written and the file is not extracted.

5039 −u Update older files. When used with the −r option, files within the archive are
5040 replaced only if the corresponding file has a modification time that is at least as
5041 new as the modification time of the file within the archive.

5042 −v Give verbose output. When used with the option characters −d, −r, or −x, write a
5043 detailed file-by-file description of the archive creation and maintenance activity, as
5044 described in the STDOUT section.

5045 When used with −p, write the name of the file to the standard output before
5046 writing the file itself to the standard output, as described in the STDOUT section.

5047 When used with −t, include a long listing of information about the files within the
5048 archive, as described in the STDOUT section.

5049 −x Extract the files named by the file operands from archive . The contents of the
5050 archive file shall not be changed. If no file operands are given, all files in the
5051 archive shall be extracted. The modification time of each file extracted shall be set
5052 to the time the file is extracted from the archive.

5053 OPERANDS
5054 The following operands shall be supported:

5055 archive A path name of the archive file.

Shell and Utilities, Issue 6 2349

ar Utilities

5056 file A path name. Only the last component shall be used when comparing against the
5057 names of files in the archive. If two or more file operands have the same last path
5058 name component (basename), the results are unspecified. The implementation’s
5059 archive format shall not truncate valid file names of files added to or replaced in
5060 the archive.

5061 XSI posname The name of a file in the archive file, used for relative positioning; see options −m
5062 and −r.

5063 STDIN
5064 Not used.

5065 INPUT FILES
5066 The input file named by archive shall be a file in the format created by ar −r.

5067 ENVIRONMENT VARIABLES
5068 The following environment variables shall affect the execution of ar:

5069 LANG Provide a default value for the internationalization variables that are unset or null.
5070 If LANG is unset or null, the corresponding value from the implementation- |
5071 defined default locale shall be used. If any of the internationalization variables |
5072 contains an invalid setting, the utility shall behave as if none of the variables had
5073 been defined.

5074 LC_ALL If set to a non-empty string value, override the values of all the other
5075 internationalization variables.

5076 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
5077 characters (for example, single-byte as opposed to multi-byte characters in
5078 arguments and input files).

5079 LC_MESSAGES
5080 Determine the locale that should be used to affect the format and contents of
5081 diagnostic messages written to standard error.

5082 LC_TIME Determine the format and content for date and time strings written by ar −tv.

5083 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

5084 TMPDIR Determine the path name that overrides the default directory for temporary files, if
5085 any.

5086 ASYNCHRONOUS EVENTS
5087 Default.

5088 STDOUT
5089 If the −d option is used with the −v option, the standard output format shall be:

5090 "d − %s\n", < file >

5091 where file is the operand specified on the command line.

5092 If the −p option is used with the −v option, ar shall precede the contents of each file with:

5093 "\n<%s>\n\n", < file >

5094 where file is the operand specified on the command line, if file operands were specified, and the
5095 name of the file in the archive if they were not.

5096 If the −r option is used with the −v option:

2350 Technical Standard (2000) (Draft July 31, 2000)

Utilities ar

5097 • If file is already in the archive, the standard output format shall be:

5098 "r − %s\n", < file >

5099 where <file> is the operand specified on the command line.

5100 • If file is not already in the archive, the standard output format shall be:

5101 "a − %s\n", < file >

5102 where <file> is the operand specified on the command line.

5103 Notes to Reviewers |
5104 This section with side shading will not appear in the final copy. - Ed. |

5105 D3, XCU, ERN 48 suggests changing the above to "where <file> is the member name found to be |
5106 in conflict". If the command line contains a path name which is not a simple file name (that is, |
5107 contains a slash), does it print the member name (which seems what’s intended) or the actual |
5108 text from the command line (which is what’s said)? This will eventually need to be an |
5109 interpretation against .2b. |

5110 If the −t option is used, ar shall write the names of the files to the standard output in the format: |

5111 "%s\n", < file >

5112 where file is the operand specified on the command line, if file operands were specified, or the
5113 name of the file in the archive if they were not.

5114 If the −t option is used with the −v option, the standard output format shall be:

5115 "%s %u/%u %u %s %d %d:%d %d %s\n", <member mode>, < user ID >,
5116 <group ID >, < number of bytes in member >,
5117 <abbreviated month >, < day-of-month >, < hour >,
5118 <minute >, < year >, < file >

5119 where:

5120 <file> Shall be the operand specified on the command line, if file operands were specified,
5121 or the name of the file in the archive if they were not.

5122 <member
5123 Shall be formatted the same as the <file mode> string defined in the STDOUT section of
5124 ls, except that the first character, the <entry type>, is not used; the string represents
5125 the file mode of the archive member at the time it was added to or replaced in the
5126 archive.

5127 The following represent the last-modification time of a file when it was most recently added to
5128 or replaced in the archive:

5129 <abbreviated month>
5130 Equivalent to the %b format in date.

5131 <day-of-month>
5132 Equivalent to the %e format in date.

5133 <hour> Equivalent to the %H format in date.

5134 <minute> Equivalent to the %M format in date.

5135 <year> Equivalent to the %Y format in date.

Shell and Utilities, Issue 6 2351

ar Utilities

5136 When LC_TIME does not specify the POSIX locale, a different format and order of presentation
5137 of these fields relative to each other may be used in a format appropriate in the specified locale.

5138 If the −x option is used with the −v option, the standard output format shall be:

5139 "x − %s\n", < file >

5140 where file is the operand specified on the command line, if file operands were specified, or the
5141 name of the file in the archive if they were not.

5142 STDERR
5143 Used only for diagnostic messages. The diagnostic message about creating a new archive when
5144 −c is not specified shall not modify the exit status.

5145 OUTPUT FILES
5146 Archives are files with unspecified formats.

5147 EXTENDED DESCRIPTION
5148 None.

5149 EXIT STATUS
5150 The following exit values shall be returned:

5151 0 Successful completion.

5152 >0 An error occurred.

5153 CONSEQUENCES OF ERRORS
5154 Default.

5155 APPLICATION USAGE
5156 None.

5157 EXAMPLES
5158 None.

5159 RATIONALE
5160 The archive format is not described. It is recognized that there are several known ar formats,
5161 which are not compatible. The ar utility is included, however, to allow creation of archives that
5162 are intended for use only on one machine. The archive file is specified as a file, and it can be
5163 moved as a file. This does allow an archive to be moved from one machine to another machine
5164 that uses the same implementation of ar.

5165 Utilities such as pax (and its forebears tar and cpio) also provide portable ‘‘archives’’. This is a not
5166 a duplication; the ar utility is included to provide an interface primarily for make and the
5167 compilers, based on a historical model.

5168 In historical implementations, the −q option (available on XSI-conforming systems) is known to
5169 execute quickly because ar does not check on whether the added members are already in the
5170 archive. This is useful to bypass the searching otherwise done when creating a large archive
5171 piece-by-piece. These remarks may but need not remain true for a brand new implementation of
5172 this utility; hence, these remarks have been moved into the RATIONALE.

5173 BSD implementations historically required applications to provide the −s option whenever the
5174 archive was supposed to contain a symbol table. As in this volume of IEEE Std. 1003.1-200x,
5175 System V historically creates or updates an archive symbol table whenever an object file is
5176 removed from, added to, or updated in the archive.

5177 The OPERANDS section requires what might seem to be true without specifying it: the archive
5178 cannot truncate the file names below {NAME_MAX}. Some historical implementations do so,
5179 however, causing unexpected results for the application. Therefore, this volume of

2352 Technical Standard (2000) (Draft July 31, 2000)

Utilities ar

5180 IEEE Std. 1003.1-200x makes the requirement explicit to avoid misunderstandings.

5181 According to the System V documentation, the options −dmpqrtx are not required to begin with
5182 a hyphen (’ −’). This volume of IEEE Std. 1003.1-200x requires that a conforming application
5183 use the leading hyphen.

5184 The archive format used by the 4.4 BSD implementation is documented in this RATIONALE as
5185 an example:

5186 A file created by ar begins with the ‘‘magic’’ string "!<arch>\n" . The rest of the archive is
5187 made up of objects, each of which is composed of a header for a file, a possible file name, and
5188 the file contents. The header is portable between machine architectures, and, if the file
5189 contents are printable, the archive is itself printable.

5190 The header is made up of six ASCII fields, followed by a two-character trailer. The fields are
5191 the object name (16 characters), the file last modification time (12 characters), the user and
5192 group IDs (each 6 characters), the file mode (8 characters), and the file size (10 characters). All
5193 numeric fields are in decimal, except for the file mode, which is in octal.

5194 The modification time is the file st_mtime field. The user and group IDs are the file st_uid and
5195 st_gid fields. The file mode is the file st_mode field. The file size is the file st_size field. The
5196 two-byte trailer is the string "<newline>" .

5197 Only the name field has any provision for overflow. If any file name is more than 16
5198 characters in length or contains an embedded space, the string "#1/" followed by the ASCII
5199 length of the name is written in the name field. The file size (stored in the archive header) is
5200 incremented by the length of the name. The name is then written immediately following the
5201 archive header.

5202 Any unused characters in any of these fields are written as <space> characters. If any fields
5203 are their particular maximum number of characters in length, there is no separation between
5204 the fields.

5205 Objects in the archive are always an even number of bytes long; files that are an odd number
5206 of bytes long are padded with a <newline> character, although the size in the header does
5207 not reflect this.

5208 The ar utility description requires that (when all its members are valid object files) ar produce an
5209 object code library, which the linkage editor can use to extract object modules. If the linkage
5210 editor needs a symbol table to permit random access to the archive, ar must provide it; however,
5211 ar does not require a symbol table.

5212 The BSD −o option was omitted. It is a rare portable application that uses ar to extract object
5213 code from a library with concern for its modification time, since this can only be of importance
5214 to make. Hence, since this functionality is not deemed important for applications portability, the
5215 modification time of the extracted files is set to the current time.

5216 There is at least one known implementation (for a small computer) that can accommodate only
5217 object files for that system, disallowing mixed object and other files. The ability to handle any
5218 type of file is not only historical practice for most implementations, but is also a reasonable
5219 expectation.

5220 Consideration was given to changing the output format of ar −tv to the same format as the
5221 output of ls −l. This would have made parsing the output of ar the same as that of ls. This was
5222 rejected in part because the current ar format is commonly used and changes would break
5223 historical usage. Second, ar gives the user ID and group ID in numeric format separated by a
5224 slash. Changing this to be the user name and group name would not be correct if the archive
5225 were moved to a machine that contained a different user database. Since ar cannot know

Shell and Utilities, Issue 6 2353

ar Utilities

5226 whether the archive file was generated on the same machine, it cannot tell what to report.

5227 The text on the −ur option combination is historical practice—since one file name can easily
5228 represent two different files (for example, /a/foo and /b/foo), it is reasonable to replace the
5229 member in the archive even when the modification time in the archive is identical to that in the
5230 file system.

5231 FUTURE DIRECTIONS
5232 None.

5233 SEE ALSO
5234 c99 , pax , strip the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers, |
5235 <unistd.h> description of {POSIX_NO_TRUNC}

5236 CHANGE HISTORY
5237 First released in Issue 2.

5238 Issue 4
5239 Aligned with the ISO/IEC 9945-2: 1993 standard.

5240 The −C and −T options are added.

5241 Issue 5
5242 FUTURE DIRECTIONS section added.

5243 Issue 6
5244 This utility is now marked as part of the Software Development Utilities option.

5245 The STDOUT description is changed for the −v option to align with the IEEE P1003.2b draft
5246 standard.

5247 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2354 Technical Standard (2000) (Draft July 31, 2000)

Utilities asa

5248 NAME
5249 asa — interpret carriage-control characters

5250 SYNOPSIS
5251 FR asa [file ...]
5252

5253 DESCRIPTION
5254 The asa utility shall write its input files to standard output, mapping carriage-control characters
5255 from the text files to line-printer control sequences in an implementation-defined manner. |

5256 The first character of every line shall be removed from the input, and the following actions are
5257 performed:

5258 If the character removed is:

5259 <space> The rest of the line is output without change.

5260 0 A <newline> character is output, then the rest of the input line.

5261 1 One or more implementation-defined characters that causes an advance to the next |
5262 page shall be output, followed by the rest of the input line.

5263 + The <newline> character of the previous line shall be replaced with one or more |
5264 implementation-defined characters that causes printing to return to column position 1, |
5265 followed by the rest of the input line. If the ’+’ is the first character in the input, it shall
5266 have the same effect as the <space> character.

5267 The action of the asa utility is unspecified upon encountering any character other than those
5268 listed above as the first character in a line.

5269 OPTIONS
5270 None.

5271 OPERANDS

5272 file A path name of a text file used for input. If no file operands are specified, the
5273 standard input shall be used.

5274 STDIN
5275 The standard input is used only if no file operands are specified; see the INPUT FILES section.

5276 INPUT FILES
5277 The input files shall be text files.

5278 ENVIRONMENT VARIABLES
5279 The following environment variables shall affect the execution of asa:

5280 LANG Provide a default value for the internationalization variables that are unset or null.
5281 If LANG is unset or null, the corresponding value from the implementation- |
5282 defined default locale shall be used. If any of the internationalization variables |
5283 contains an invalid setting, the utility shall behave as if none of the variables had
5284 been defined.

5285 LC_ALL If set to a non-empty string value, override the values of all the other
5286 internationalization variables.

5287 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
5288 characters (for example, single-byte as opposed to multi-byte characters in
5289 arguments and input files).

Shell and Utilities, Issue 6 2355

asa Utilities

5290 LC_MESSAGES
5291 Determine the locale that should be used to affect the format and contents of
5292 diagnostic messages written to standard error.

5293 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

5294 ASYNCHRONOUS EVENTS
5295 Default.

5296 STDOUT
5297 The standard output shall be the text from the input file modified as described in the
5298 DESCRIPTION section.

5299 STDERR
5300 None.

5301 OUTPUT FILES
5302 None.

5303 EXTENDED DESCRIPTION
5304 None.

5305 EXIT STATUS
5306 The following exit values shall be returned:

5307 0 All input files were output successfully.

5308 >0 An error occurred.

5309 CONSEQUENCES OF ERRORS
5310 Default.

5311 APPLICATION USAGE
5312 None.

5313 EXAMPLES

5314 1. The following command:

5315 asa file

5316 permits the viewing of file (created by a program using FORTRAN-style carriage control
5317 characters) on a terminal.

5318 2. The following command:

5319 a.out | asa | lp

5320 formats the FORTRAN output of a.out and directs it to the printer.

5321 RATIONALE
5322 The asa utility is needed to map ‘‘standard’’ FORTRAN 77 output into a form acceptable to
5323 contemporary printers. Usually, asa is used to pipe data to the lp utility; see lp.

5324 This utility is generally used only by FORTRAN programs. The standard developers decided to
5325 retain asa to avoid breaking the historical large base of FORTRAN applications that put
5326 carriage-control characters in their output files. There is no requirement that a system have a
5327 FORTRAN compiler in order to run applications that need asa.

5328 Historical implementations have used an ASCII <form-feed> character in response to a 1 and an
5329 ASCII <carriage-return> in response to a ’+’ . It is suggested that implementations treat
5330 characters other than 0, 1, and ’+’ as <space> in the absence of any compelling reason to do
5331 otherwise. However, the action is listed here as ‘‘unspecified’’, permitting an implementation to

2356 Technical Standard (2000) (Draft July 31, 2000)

Utilities asa

5332 provide extensions to access fast multiple-line slewing and channel seeking in a non-portable
5333 manner.

5334 FUTURE DIRECTIONS
5335 None.

5336 SEE ALSO
5337 fort77 , lp

5338 CHANGE HISTORY
5339 First released in Issue 4.

5340 Issue 6
5341 This utility is now marked as part of the FORTRAN Runtime Utilities option.

5342 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2357

at Utilities

5343 NAME
5344 at — execute commands at a later time

5345 SYNOPSIS
5346 UP at [−m][−f file][−q queuename] −t time_arg

5347 at [−m][−f file][−q queuename] timespec ...

5348 at −r at_job_id ...

5349 at −l −q queuename

5350 at −l [at_job_id ...]
5351

5352 DESCRIPTION
5353 The at utility shall read commands from standard input and group them together as an at-job , to
5354 be executed at a later time.

5355 The at-job shall be executed in a separate invocation of the shell, running in a separate process
5356 group with no controlling terminal, except that the environment variables, current working
5357 directory, file creation mask, and other implementation-defined execution-time attributes in |
5358 effect when the at utility is executed shall be retained and used when the at-job is executed.

5359 When the at-job is submitted, the at_job_id and scheduled time shall be written to standard error.
5360 The at_job_id is an identifier that shall be a string consisting solely of alphanumeric characters
5361 and the period character. The at_job_id shall be assigned by the system when the job is scheduled
5362 such that it uniquely identifies a particular job.

5363 User notification and the processing of the job’s standard output and standard error are
5364 described under the −m option.

5365 XSI Users are permitted to use at if their name appears in the file /usr/lib/cron/at.allow. If that file
5366 does not exist, the file /usr/lib/cron/at.deny is checked to determine whether the user should be
5367 denied access to at. If neither file exists, only a process with the appropriate privileges is
5368 allowed to submit a job. If only at.deny exists and is empty, global usage is permitted. The
5369 at.allow and at.deny files consist of one user name per line.

5370 OPTIONS
5371 The at utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
5372 Utility Syntax Guidelines. |

5373 The following options shall be supported:

5374 −f file Specify the path name of a file to be used as the source of the at-job, instead of
5375 standard input.

5376 −l (The letter ell.) Report all jobs scheduled for the invoking user if no at_job_id
5377 operands are specified. If at_job_ids are specified, report only information for these
5378 jobs. The output shall be written to standard output.

5379 −m Send mail to the invoking user after the at-job has run, announcing its completion.
5380 Standard output and standard error produced by the at-job shall be mailed to the
5381 user as well, unless redirected elsewhere. Mail shall be sent even if the job
5382 produces no output.

5383 If −m is not used, the job’s standard output and standard error shall be provided to |
5384 the user by means of mail, unless they are redirected elsewhere; if there is no such |
5385 output to provide, the implementation need not notify the user of the job’s |
5386 completion. |

2358 Technical Standard (2000) (Draft July 31, 2000)

Utilities at

5387 −q queuename
5388 Specify in which queue to schedule a job for submission. When used with the −l
5389 option, limit the search to that particular queue. By default, at-jobs shall be
5390 scheduled in queue a . In contrast, queue b shall be reserved for batch jobs; see
5391 batch. The meanings of all other queuenames are implementation-defined. If −q is |
5392 specified along with either of the −t time_arg or timespec arguments, the results are
5393 unspecified.

5394 −r Remove the jobs with the specified at_job_id operands that were previously
5395 scheduled by the at utility.

5396 −t time_arg Submit the job to be run at the time specified by the time option-argument, which
5397 the application shall ensure has the format as specified by the touch −t time utility.

5398 OPERANDS
5399 The following operands shall be supported:

5400 at_job_id The name reported by a previous invocation of the at utility at the time the job was
5401 scheduled.

5402 timespec Submit the job to be run at the date and time specified. All of the timespec operands
5403 are interpreted as if they were separated by <space> characters and concatenated,
5404 and shall be parsed as described in the grammar at the end of this section. The date
5405 and time shall be interpreted as being in the timezone of the user (as determined
5406 by the TZ variable), unless a timezone name appears as part of time, below.

5407 In the POSIX locale, the following describes the three parts of the time
5408 specification string. All of the values from the LC_TIME categories in the POSIX
5409 locale shall be recognized in a case-insensitive manner.

5410 time The time can be specified as one, two, or four digits. One-digit and
5411 two-digit numbers shall be taken to be hours; four-digit numbers to
5412 be hours and minutes. The time can alternatively be specified as two
5413 numbers separated by a colon, meaning hour:minute. An AM/PM
5414 indication (one of the values from the am_pm keywords in the
5415 LC_TIME locale category) can follow the time; otherwise, a 24-hour
5416 clock time shall be understood. A timezone name can also follow to
5417 further qualify the time. The acceptable timezone names are |
5418 implementation-defined, except that they shall be case-insensitive |
5419 and the string utc is supported to indicate the time is in Coordinated
5420 Universal Time. In the POSIX locale, the time field can also be one of
5421 the following tokens:

5422 midnight Indicates the time 12:00 am (00:00).

5423 noon Indicates the time 12:00 pm.

5424 now Indicates the current day and time. Invoking at <now>
5425 shall submit an at-job for potentially immediate
5426 execution (that is, subject only to unspecified
5427 scheduling delays).

5428 date An optional date can be specified as either a month name (one of the
5429 values from the mon or abmon keywords in the LC_TIME locale
5430 category) followed by a day number (and possibly year number
5431 preceded by a comma), or a day of the week (one of the values from
5432 the day or abday keywords in the LC_TIME locale category). In the
5433 POSIX locale, two special days shall be recognized:

Shell and Utilities, Issue 6 2359

at Utilities

5434 today Indicates the current day.

5435 tomorrow Indicates the day following the current day.

5436 If no date is given, today shall be assumed if the given time is greater
5437 than the current time, and tomorrow shall be assumed if it is less. If
5438 the given month is less than the current month (and no year is given),
5439 next year shall be assumed.

5440 increment The optional increment shall be a number preceded by a plus sign
5441 (’+’) and suffixed by one of the following: minutes, hours, days,
5442 weeks, months, or years. (The singular forms shall be also
5443 accepted.) The keyword next shall be equivalent to an increment
5444 number of +1. For example, the following are equivalent commands:

5445 at 2pm + 1 week
5446 at 2pm next week

5447 The following grammar describes the precise format of timespec in the POSIX locale. The general
5448 conventions for this style of grammar are described in Section 1.10 (on page 2223). This formal
5449 syntax shall take precedence over the preceding text syntax description. The longest possible
5450 token or delimiter shall be recognized at a given point. When used in a timespec, white space
5451 shall also delimit tokens.

5452 %token hr24clock_hr_min
5453 %token hr24clock_hour
5454 /*
5455 A hr24clock_hr_min is a one, two, or four-digit number. A one-digit
5456 or two-digit number constitutes a hr24clock_hour. A hr24clock_hour
5457 may be any of the single digits 0-9, or may be double digits, ranging
5458 from 00-23. If a hr24clock_hr_min is a four digit number, the
5459 first two digits shall be a valid hr24clock_hour, while the last two
5460 represent the number of minutes, from 00-59.
5461 */

5462 %token wallclock_hr_min
5463 %token wallclock_hour
5464 /*
5465 A wallclock_hr_min is a one, two-digit, or four-digit number.
5466 A one-digit or two-digit number constitutes a wallclock_hour.
5467 A wallclock_hour may be any of the single digits 1-9, or may
5468 be double digits, ranging from 01-12. If a wallclock_hr_min
5469 is a four-digit number, the first two digits shall be a valid
5470 wallclock_hour, while the last two represent the number of
5471 minutes, from 00-59.
5472 */

5473 %token minute
5474 /*
5475 A minute is a one or two-digit number whose values can be 0-9
5476 or 00-59.
5477 */

5478 %token day_number
5479 /*
5480 A day_number is a number in the range appropriate for the particular
5481 month and year specified by month_name and year_number, respectively.

2360 Technical Standard (2000) (Draft July 31, 2000)

Utilities at

5482 If no year_number is given, the current year is assumed if the given
5483 date and time are later this year. If no year_number is given and
5484 the date and time have already occurred this year and the month is
5485 not the current month, next year is the assumed year.
5486 */

5487 %token year_number
5488 /*
5489 A year_number is a four-digit number representing the year A.D., in
5490 which the at_job is to be run.
5491 */

5492 %token inc_number
5493 /*
5494 The inc_number is the number of times the succeeding increment
5495 period is to be added to the specified date and time.
5496 */

5497 %token timezone_name
5498 /*
5499 The name of an optional timezone suffix to the time field, in an
5500 implementation-defined format.
5501 */

5502 %token month_name
5503 /*
5504 One of the values from the mon or abmon keywords in the LC_TIME
5505 locale category.
5506 */

5507 %token day_of_week
5508 /*
5509 One of the values from the day or abday keywords in the LC_TIME
5510 locale category.
5511 */

5512 %token am_pm
5513 /*
5514 One of the values from the am_pm keyword in the LC_TIME locale
5515 category.
5516 */

5517 %start timespec
5518 %%
5519 timespec : time
5520 | time date
5521 | time increment
5522 | time date increment
5523 | nowspec
5524 ;

5525 nowspec : "now"
5526 | "now" increment
5527 ;

5528 time : hr24clock_hr_min
5529 | hr24clock_hr_min timezone_name

Shell and Utilities, Issue 6 2361

at Utilities

5530 | hr24clock_hour ":" minute
5531 | hr24clock_hour ":" minute timezone_name
5532 | wallclock_hr_min am_pm
5533 | wallclock_hr_min am_pm timezone_name
5534 | wallclock_hour ":" minute am_pm
5535 | wallclock_hour ":" minute am_pm timezone_name
5536 | "noon"
5537 | "midnight"
5538 ;

5539 date : month_name day_number
5540 | month_name day_number "," year_number
5541 | day_of_week
5542 | "today"
5543 | "tomorrow"
5544 ;

5545 increment : "+" inc_number inc_period
5546 | "next" inc_period
5547 ;

5548 inc_period : "minute" | "minutes"
5549 | "hour" | "hours"
5550 | "day" | "days"
5551 | "week" | "weeks"
5552 | "month" | "months"
5553 | "year" | "years"
5554 ;

5555 STDIN
5556 The standard input shall be a text file consisting of commands acceptable to the shell command
5557 language described in Chapter 2 (on page 2235). The standard input shall only be used if no −f
5558 file option is specified.

5559 INPUT FILES
5560 See the STDIN section.

5561 XSI The text files /usr/lib/cron/at.allow and /usr/lib/cron/at.deny contain user names, one per line, of
5562 users who are, respectively, authorized or denied access to the at and batch utilities.

5563 ENVIRONMENT VARIABLES
5564 The following environment variables shall affect the execution of at:

5565 LANG Provide a default value for the internationalization variables that are unset or null.
5566 If LANG is unset or null, the corresponding value from the implementation- |
5567 defined default locale shall be used. If any of the internationalization variables |
5568 contains an invalid setting, the utility shall behave as if none of the variables had
5569 been defined.

5570 LC_ALL If set to a non-empty string value, override the values of all the other
5571 internationalization variables.

5572 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
5573 characters (for example, single-byte as opposed to multi-byte characters in
5574 arguments and input files).

5575 LC_MESSAGES
5576 Determine the locale that should be used to affect the format and contents of

2362 Technical Standard (2000) (Draft July 31, 2000)

Utilities at

5577 diagnostic messages written to standard error and informative messages written to
5578 standard output.

5579 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

5580 LC_TIME Determine the format and contents for date and time strings written and accepted
5581 by at.

5582 SHELL Determine a name of a command interpreter to be used to invoke the at-job. If the
5583 variable is unset or null, sh shall be used. If it is set to a value other than a name for
5584 sh, the implementation shall do one of the following: use that shell; use sh; use the
5585 login shell from the user database; or any of the preceding accompanied by a
5586 warning diagnostic about which was chosen.

5587 TZ Determine the timezone. The job shall be submitted for execution at the time
5588 specified by timespec or −t time relative to the timezone specified by the TZ
5589 variable. If timespec specifies a timezone, it shall override TZ. If timespec does not
5590 specify a timezone and TZ is unset or null, an unspecified default timezone shall
5591 be used.

5592 ASYNCHRONOUS EVENTS
5593 Default.

5594 STDOUT
5595 When standard input is a terminal, prompts of unspecified format for each line of the user input
5596 described in the STDIN section may be written to standard output.

5597 In the POSIX locale, the following shall be written to the standard output for each job when jobs
5598 are listed in response to the −l option:

5599 "%s\t%s\n", at_job_id , < date >

5600 where date shall be equivalent in format to the output of:

5601 date +"%a %b %e %T %Y"

5602 The date and time written shall be adjusted so that they appear in the timezone of the user (as
5603 determined by the TZ variable).

5604 STDERR
5605 In the POSIX locale, the following shall be written to standard error when a job has been
5606 successfully submitted:

5607 "job %s at %s\n", at_job_id , < date >

5608 where date has the same format as is described in the STDOUT section. Neither this, nor warning
5609 messages concerning the selection of the command interpreter, shall be considered a diagnostic
5610 that changes the exit status.

5611 Diagnostic messages, if any, shall be written to standard error.

5612 OUTPUT FILES
5613 None.

5614 EXTENDED DESCRIPTION
5615 None.

5616 EXIT STATUS
5617 The following exit values shall be returned:

5618 0 The at utility successfully submitted, removed, or listed a job or jobs.

Shell and Utilities, Issue 6 2363

at Utilities

5619 >0 An error occurred.

5620 CONSEQUENCES OF ERRORS
5621 The job shall not be scheduled, removed, or listed.

5622 APPLICATION USAGE
5623 The format of the at command line shown here is guaranteed only for the POSIX locale. Other
5624 cultures may be supported with substantially different interfaces, although implementations are
5625 encouraged to provide comparable levels of functionality.

5626 Since the commands run in a separate shell invocation, running in a separate process group with
5627 no controlling terminal, open file descriptors, traps, and priority inherited from the invoking
5628 environment are lost.

5629 Some implementations do not allow substitution of different shells using SHELL. System V
5630 systems, for example, have used the login shell value for the user in /etc/passwd. To select
5631 reliably another command interpreter, the user must include it as part of the script, such as:

5632 $ at 1800
5633 myshell myscript
5634 job ... at ...
5635 $

5636 EXAMPLES |

5637 1. This sequence can be used at a terminal:

5638 at −m 0730 tomorrow
5639 sort < file >outfile
5640 EOT

5641 2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
5642 command procedure (the sequence of output redirection specifications is significant):

5643 at now + 1 hour <<!
5644 diff file1 file2 2>&1 >outfile | mailx mygroup
5645 !

5646 3. To have a job reschedule itself, at can be invoked from within the at-job. For example, this
5647 daily processing script named my.daily runs every day (although crontab is a more
5648 appropriate vehicle for such work):

5649 # my.daily runs every day
5650 daily processing
5651 at now tomorrow < my.daily

5652 4. The spacing of the three portions of the POSIX locale timespec is quite flexible as long as
5653 there are no ambiguities. Examples of various times and operand presentation include:

5654 at 0815am Jan 24
5655 at 8 :15amjan24
5656 at now "+ 1day"
5657 at 5 pm FRIday
5658 at ’17
5659 utc+
5660 30minutes’

2364 Technical Standard (2000) (Draft July 31, 2000)

Utilities at

5661 RATIONALE
5662 The at utility reads from standard input the commands to be executed at a later time. It may be
5663 useful to redirect standard output and standard error within the specified commands.

5664 The −t time option was added as a new capability to support an internationalized way of
5665 specifying a time for execution of the submitted job.

5666 Early proposals added a ‘‘jobname’’ concept as a way of giving submitted jobs names that are
5667 meaningful to the user submitting them. The historical, system-specified at_job_id gives no
5668 indication of what the job is. Upon further reflection, it was decided that the benefit of this was
5669 not worth the change in historical interface. It is anticipated that considerably more
5670 sophisticated ways of controlling background or batch work will be the subject of a future
5671 version of this volume of IEEE Std. 1003.1-200x.

5672 The −q option historically has been an undocumented option, used mainly by the batch utility.

5673 The System V −m option was added to provide a method for informing users that an at-job had
5674 completed. Otherwise, users are only informed when output to standard error or standard
5675 output are not redirected.

5676 The behavior of at <now> was changed in an early proposal from being unspecified to
5677 submitting a job for potentially immediate execution. Historical BSD at implementations
5678 support this. Historical System V implementations give an error in that case, but a change to the
5679 System V versions should have no backwards compatibility ramifications.

5680 On BSD-based systems, a −u user option has allowed those with appropriate privileges to access
5681 the work of other users. Since this is primarily a system administration feature and is not
5682 universally implemented, it has been omitted. Similarly, a specification for the output format for
5683 user with appropriate privileges viewing the queues of other users has been omitted.

5684 The −f file option from System V is used instead of the BSD method of using the last operand as
5685 the path name. The BSD method is ambiguous—does:

5686 at 1200 friday

5687 mean the same thing if there is a file named friday in the current directory?

5688 The at_job_id is composed of a limited character set in historical practice, and it is mandated here
5689 to invalidate systems that might try using characters that require shell quoting or that could not
5690 be easily parsed by shell scripts.

5691 The at utility varies between System V and BSD systems in the way timezones are used. On
5692 System V systems, the TZ variable affects the at-job submission times and the times displayed
5693 for the user. On BSD systems, TZ is not taken into account. The BSD behavior is easily achieved
5694 with the current specification. If the user wishes to have the timezone default to that of the
5695 system, they merely need to issue the at command immediately following an unsetting or null
5696 assignment to TZ. For example:

5697 TZ= at noon ...

5698 gives the desired BSD result.

5699 While the yacc-like grammar specified in the OPERANDS section is lexically unambiguous with
5700 respect to the digit strings, a lexical analyzer would probably be written to look for and return
5701 digit strings in those cases. The parser could then check whether the digit string returned is a
5702 valid day_number, year_number, and so on, based on the context.

Shell and Utilities, Issue 6 2365

at Utilities

5703 FUTURE DIRECTIONS
5704 None.

5705 SEE ALSO
5706 batch , crontab

5707 CHANGE HISTORY
5708 First released in Issue 2.

5709 Issue 4
5710 Aligned with the ISO/IEC 9945-2: 1993 standard.

5711 Issue 6
5712 This utility is now marked as part of the User Portability Utilities option.

5713 The following new requirements on POSIX implementations derive from alignment with the
5714 Single UNIX Specification:

5715 • If −m is not used, the job’s standard output and standard error are provided to the user by
5716 mail.

5717 The effects of using the −q and −t options as defined in the IEEE P1003.2b draft standard are
5718 specified.

5719 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2366 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

5720 NAME
5721 awk — pattern scanning and processing language

5722 SYNOPSIS
5723 awk [−F ERE][−v assignment] ... program [argument ...]

5724 awk [−F ERE] −f progfile ... [−v assignment] ... [argument ...]

5725 DESCRIPTION
5726 The awk utility shall execute programs written in the awk programming language, which is
5727 specialized for textual data manipulation. An awk program is a sequence of patterns and
5728 corresponding actions. When input is read that matches a pattern, the action associated with
5729 that pattern is carried out.

5730 Input shall be interpreted as a sequence of records. By default, a record is a line, but this can be
5731 changed by using the RS built-in variable. Each record of input shall be matched in turn against
5732 each pattern in the program. For each pattern matched, the associated action shall be executed.

5733 The awk utility shall interpret each input record as a sequence of fields where, by default, a field
5734 is a string of non-<blank> characters. This default white-space field delimiter can be changed by
5735 using the FS built-in variable or the −F ERE. The awk utility shall denote the first field in a
5736 record $1, the second $2, and so on. The symbol $0 shall refer to the entire record; setting any
5737 other field causes the re-evaluation of $0. Assigning to $0 shall reset the values of all other fields
5738 and the NF built-in variable.

5739 OPTIONS
5740 The awk utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
5741 12.2, Utility Syntax Guidelines. |

5742 The following options shall be supported:

5743 −F ERE Define the input field separator to be the extended regular expression ERE, before
5744 any input is read; see Regular Expressions (on page 2375).

5745 −f progfile Specify the path name of the file progfile containing an awk program. If multiple
5746 instances of this option are specified, the concatenation of the files specified as
5747 progfile in the order specified shall be the awk program. The awk program can
5748 alternatively be specified in the command line as a single argument.

5749 −v assignment
5750 The application shall ensure that the assignment argument is in the same form as an
5751 assignment operand. The specified variable assignment shall occur prior to
5752 executing the awk program, including the actions associated with BEGIN patterns
5753 (if any). Multiple occurrences of this option can be specified.

5754 OPERANDS
5755 The following operands shall be supported:

5756 program If no −f option is specified, the first operand to awk shall be the text of the awk
5757 program. The application shall supply the program operand as a single argument to
5758 awk. If the text does not end in a <newline> character, awk shall interpret the text
5759 as if it did.

5760 argument Either of the following two types of argument can be intermixed:

5761 file A path name of a file that contains the input to be read, which is
5762 matched against the set of patterns in the program. If no file operands
5763 are specified, or if a file operand is ’ −’ , the standard input shall be
5764 used.

Shell and Utilities, Issue 6 2367

awk Utilities

5765 assignment An operand that begins with an underscore or alphabetic character
5766 from the portable character set (see the table in the Base Definitions |
5767 volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set), |
5768 followed by a sequence of underscores, digits, and alphabetics from |
5769 the portable character set, followed by the ’=’ character, shall
5770 specify a variable assignment rather than a path name. The
5771 characters before the ’=’ represent the name of an awk variable; if
5772 that name is an awk reserved word (see Grammar (on page 2384)) the
5773 behavior is undefined. The characters following the equal sign shall
5774 be interpreted as if they appeared in the awk program preceded and
5775 followed by a double-quote (’"’) character, as a STRING token (see
5776 Grammar (on page 2384)), except that if the last character is an
5777 unescaped backslash, it shall be interpreted as a literal backslash
5778 rather than as the first character of the sequence "\"" . The variable
5779 shall be assigned the value of that STRING token and, if
5780 appropriate, shall be considered a numeric string (see Expressions in
5781 awk (on page 2370)), the variable shall also be assigned its numeric
5782 value. Each such variable assignment shall occur just prior to the
5783 processing of the following file , if any. Thus, an assignment before
5784 the first file argument shall be executed after the BEGIN actions (if
5785 any), while an assignment after the last file argument shall occur
5786 before the END actions (if any). If there are no file arguments,
5787 assignments shall be executed before processing the standard input.

5788 STDIN
5789 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ ;
5790 see the INPUT FILES section. If the awk program contains no actions and no patterns, but is
5791 otherwise a valid awk program, standard input and any file operands shall not be read and awk
5792 shall exit with a return status of zero.

5793 INPUT FILES
5794 Input files to the awk program from any of the following sources shall be text files:

5795 • Any file operands or their equivalents, achieved by modifying the awk variables ARGV and
5796 ARGC

5797 • Standard input in the absence of any file operands

5798 • Arguments to the getline function

5799 Whether the variable RS is set to a value other than a <newline> character or not, for these files,
5800 implementations shall support records terminated with the specified separator up to
5801 {LINE_MAX} bytes and may support longer records.

5802 If −f progfile is specified, the application shall ensure that the files named by each of the progfile
5803 option-arguments are text files containing an awk program.

5804 ENVIRONMENT VARIABLES
5805 The following environment variables shall affect the execution of awk:

5806 LANG Provide a default value for the internationalization variables that are unset or null.
5807 If LANG is unset or null, the corresponding value from the implementation- |
5808 defined default locale shall be used. If any of the internationalization variables |
5809 contains an invalid setting, the utility shall behave as if none of the variables had
5810 been defined.

2368 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

5811 LC_ALL If set to a non-empty string value, override the values of all the other
5812 internationalization variables.

5813 LC_COLLATE
5814 Determine the locale for the behavior of ranges, equivalence classes, and multi-
5815 character collating elements within regular expressions and in comparisons of
5816 string values.

5817 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
5818 characters (for example, single-byte as opposed to multi-byte characters in
5819 arguments and input files), the behavior of character classes within regular
5820 expressions, the identification of characters as letters, and the mapping of
5821 uppercase and lowercase characters for the toupper and tolower functions.

5822 LC_MESSAGES
5823 Determine the locale that should be used to affect the format and contents of
5824 diagnostic messages written to standard error.

5825 LC_NUMERIC
5826 Determine the radix character used when interpreting numeric input, performing
5827 conversions between numeric and string values, and formatting numeric output.
5828 Regardless of locale, the period character (the decimal-point character of the
5829 POSIX locale) is the decimal-point character recognized in processing awk
5830 programs (including assignments in command line arguments).

5831 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

5832 PATH Determine the search path when looking for commands executed by system(expr), |
5833 or input and output pipes; see the Base Definitions volume of |
5834 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

5835 In addition, all environment variables shall be visible via the awk variable ENVIRON.

5836 ASYNCHRONOUS EVENTS
5837 Default.

5838 STDOUT
5839 The nature of the output files depends on the awk program.

5840 STDERR
5841 Used only for diagnostic messages.

5842 OUTPUT FILES
5843 The nature of the output files depends on the awk program.

5844 EXTENDED DESCRIPTION

5845 Overall Program Structure

5846 An awk program is composed of pairs of the form:

5847 pattern { action }

5848 Either the pattern or the action (including the enclosing brace characters) can be omitted.

5849 A missing pattern shall match any record of input, and a missing action shall be equivalent to:

5850 { print }

5851 Execution of the awk program shall start by first executing the actions associated with all BEGIN
5852 patterns in the order they occur in the program. Then each file operand (or standard input if no

Shell and Utilities, Issue 6 2369

awk Utilities

5853 files were specified) shall be processed in turn by reading data from the file until a record
5854 separator is seen (<newline> by default). Before the first reference to a field in the record is
5855 evaluated, the record shall be split into fields, according to the rules in Regular Expressions (on
5856 page 2375), using the value of FS that was current at the time the record was read. Each pattern
5857 in the program then shall be evaluated in the order of occurrence, and the action associated with
5858 each pattern that matches the current record executed. The action for a matching pattern shall be
5859 executed before evaluating subsequent patterns. Finally, the actions associated with all END
5860 patterns shall be executed in the order they occur in the program.

5861 Expressions in awk

5862 Expressions describe computations used in patterns and actions . In the following table, valid
5863 expression operations are given in groups from highest precedence first to lowest precedence
5864 last, with equal-precedence operators grouped between horizontal lines. In expression
5865 evaluation, where the grammar is formally ambiguous, higher precedence operators shall be
5866 evaluated before lower precedence operators. In this table expr, expr1, expr2, and expr3 represent
5867 any expression, while lvalue represents any entity that can be assigned to (that is, on the left side
5868 of an assignment operator). The precise syntax of expressions is given in Grammar (on page
5869 2384).

5870 Table 4-1 Expressions in Decreasing Precedence in awk
5871 ___
5872 Syntax Name Type of Result Associativity___LL LL LL LL LL

5873 (expr) Grouping Type of expr N/A___
5874 $expr Field reference String N/A___
5875 ++ lvalue Pre-increment Numeric N/A
5876 −− lvalue Pre-decrement Numeric N/A
5877 lvalue ++ Post-increment Numeric N/A
5878 lvalue −− Post-decrement Numeric N/A___
5879 expr ˆ expr Exponentiation Numeric Right___
5880 ! expr Logical not Numeric N/A
5881 + expr Unary plus Numeric N/A
5882 − expr Unary minus Numeric N/A___
5883 expr * expr Multiplication Numeric Left
5884 expr / expr Division Numeric Left
5885 expr % expr Modulus Numeric Left___
5886 expr + expr Addition Numeric Left
5887 expr − expr Subtraction Numeric Left___
5888 expr expr String concatenation String Left___
5889 expr < expr Less than Numeric None
5890 expr <= expr Less than or equal to Numeric None
5891 expr != expr Not equal to Numeric None
5892 expr == expr Equal to Numeric None
5893 expr > expr Greater than Numeric None
5894 expr >= expr Greater than or equal to Numeric None___
5895 expr ˜ expr ERE match Numeric None
5896 expr !˜ expr ERE non-match Numeric None___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

2370 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

5897 ___
5898 Syntax Name Type of Result Associativity___LL LL LL LL LL___
5899 expr in array Array membership Numeric Left
5900 (index) in array Multi-dimension array Numeric Left
5901 membership___
5902 expr && expr Logical AND Numeric Left___
5903 expr || expr Logical OR Numeric Left___
5904 expr1 ? expr2 : expr3 Conditional expression Type of selected Right
5905 expr2 or expr3___
5906 lvalue ˆ= expr Exponentiation assignment Numeric Right
5907 lvalue %= expr Modulus assignment Numeric Right
5908 lvalue *= expr Multiplication assignment Numeric Right
5909 lvalue /= expr Division assignment Numeric Right
5910 lvalue += expr Addition assignment Numeric Right
5911 lvalue −= expr Subtraction assignment Numeric Right
5912 lvalue = expr Assignment Type of expr Right___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5913 Each expression shall have either a string value, a numeric value, or both. Except as stated for
5914 specific contexts, the value of an expression shall be implicitly converted to the type needed for
5915 the context in which it is used. A string value shall be converted to a numeric value by the
5916 equivalent of the following calls to functions defined by the ISO C standard:

5917 setlocale(LC_NUMERIC, "");
5918 numeric_value = atof(string_value);

5919 A numeric value that is exactly equal to the value of an integer shall be converted to a string by
5920 the equivalent of a call to the sprintf function (see String Functions (on page 2381)) with the
5921 string "%d" as the fmt argument and the numeric value being converted as the first and only expr
5922 argument. Any other numeric value shall be converted to a string by the equivalent of a call to
5923 the sprintf function with the value of the variable CONVFMT as the fmt argument and the
5924 numeric value being converted as the first and only expr argument. The result of the conversion
5925 is unspecified if the value of CONVFMT is not a floating-point format specification. This
5926 volume of IEEE Std. 1003.1-200x specifies no explicit conversions between numbers and strings.
5927 An application can force an expression to be treated as a number by adding zero to it, or can
5928 force it to be treated as a string by concatenating the null string (" ") to it.

5929 A string value shall be considered a numeric string if it comes from one of the following:

5930 1. Field variables

5931 2. Input from the getline() function

5932 3. FILENAME

5933 4. ARGV array elements

5934 5. ENVIRON array elements

5935 6. Array elements created by the split() function

5936 7. A command line variable assignment

5937 8. Variable assignment from another numeric string variable

5938 and after all the following conversions have been applied, the resulting string would lexically be
5939 recognized as a NUMBER token as described by the lexical conventions in Grammar (on page
5940 2384):

Shell and Utilities, Issue 6 2371

awk Utilities

5941 • All leading and trailing <blank>s are discarded

5942 • If the first non-<blank> character is ’+’ or ’-’ , it is discarded

5943 • Changing each occurrence of the decimal point character from the current locale to a period

5944 If a ’ −’ character is ignored in the preceding description, the numeric value of the numeric string
5945 shall be the negation of the numeric value of the recognized NUMBER token. Otherwise, the
5946 numeric value of the numeric string shall be the numeric value of the recognized NUMBER
5947 token. Whether or not a string is a numeric string shall be relevant only in contexts where that
5948 term is used in this section.

5949 When an expression is used in a Boolean context, if it has a numeric value, a value of zero shall
5950 be treated as false and any other value shall be treated as true. Otherwise, a string value of the
5951 null string shall be treated as false and any other value shall be treated as true. A Boolean
5952 context shall be one of the following:

5953 • The first subexpression of a conditional expression

5954 • An expression operated on by logical NOT, logical AND, or logical OR

5955 • The second expression of a for statement

5956 • The expression of an if statement

5957 • The expression of the while clause in either a while or do. . .while statement

5958 • An expression used as a pattern (as in Overall Program Structure)

5959 All arithmetic shall follow the semantics of floating-point arithmetic as specified by the ISO C
5960 standard.

5961 The value of the expression:

5962 expr1 ˆ expr2

5963 shall be equivalent to the value returned by the ISO C standard function call:

5964 pow(expr1 , expr2)

5965 The expression:

5966 lvalue ˆ= expr

5967 shall be equivalent to the ISO C standard expression:

5968 lvalue = pow(lvalue , expr)

5969 except that lvalue shall be evaluated only once. The value of the expression:

5970 expr1 % expr2

5971 shall be equivalent to the value returned by the ISO C standard function call:

5972 fmod(expr1 , expr2)

5973 The expression:

5974 lvalue %= expr

5975 shall be equivalent to the ISO C standard expression:

5976 lvalue = fmod(lvalue , expr)

5977 except that lvalue shall be evaluated only once.

2372 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

5978 Variables and fields shall be set by the assignment statement:

5979 lvalue = expression

5980 and the type of expression shall determine the resulting variable type. The assignment includes
5981 the arithmetic assignments ("+=" , " −=" , "*=" , "/=" , "%=" , "ˆ=" , "++" , " −−") all of which
5982 shall produce a numeric result. The left-hand side of an assignment and the target of increment
5983 and decrement operators can be one of a variable, an array with index, or a field selector.

5984 The awk language supplies arrays that are used for storing numbers or strings. Arrays need not
5985 be declared. They shall initially be empty, and their sizes shall change dynamically. The
5986 subscripts, or element identifiers, are strings, providing a type of associative array capability. An
5987 array name followed by a subscript within square brackets can be used as an lvalue and thus as
5988 an expression, as described in the grammar; see Grammar (on page 2384). Unsubscripted array
5989 names can be used in only the following contexts:

5990 • A parameter in a function definition or function call

5991 • The NAME token following any use of the keyword in as specified in the grammar (see
5992 Grammar (on page 2384)); if the name used in this context is not an array name, the behavior
5993 is undefined

5994 A valid array index shall consist of one or more comma-separated expressions, similar to the way
5995 in which multi-dimensional arrays are indexed in some programming languages. Because awk
5996 arrays are really one-dimensional, such a comma-separated list shall be converted to a single
5997 string by concatenating the string values of the separate expressions, each separated from the
5998 other by the value of the SUBSEP variable. Thus, the following two index operations shall be
5999 equivalent:

6000 var [expr1 , expr2 , ... exprn]

6001 var [expr1 SUBSEP expr2 SUBSEP ... SUBSEP exprn]

6002 The application shall ensure that a multi-dimensioned index used with the in operator is
6003 parenthesized. The in operator, which tests for the existence of a particular array element, shall
6004 not cause that element to exist. Any other reference to a nonexistent array element shall
6005 automatically create it.

6006 Comparisons (with the ’<’ , "<=" , "!=" , "==" , ’>’ , and ">=" operators) shall be made
6007 numerically if both operands are numeric, if one is numeric and the other has a string value that
6008 is a numeric string, or if one is numeric and the other has the uninitialized value. Otherwise,
6009 operands shall be converted to strings as required and a string comparison shall be made using
6010 the locale-specific collation sequence. The value of the comparison expression shall be 1 if the
6011 relation is true, or 0 if the relation is false.

6012 Variables and Special Variables

6013 Variables can be used in an awk program by referencing them. With the exception of function
6014 parameters (see User-Defined Functions (on page 2383)), they are not explicitly declared.
6015 Function parameter names shall be local to the function; all other variable names shall be global.
6016 The same name shall not be used as both a function parameter name and as the name of a
6017 function or a special awk variable. The same name shall not be used both as a variable name with
6018 global scope and as the name of a function. The same name shall not be used within the same
6019 scope both as a scalar variable and as an array. Uninitialized variables, including scalar
6020 variables, array elements, and field variables, shall have an uninitialized value. An uninitialized
6021 value shall have both a numeric value of zero and a string value of the empty string. Evaluation
6022 of variables with an uninitialized value, to either string or numeric, shall be determined by the
6023 context in which they are used.

Shell and Utilities, Issue 6 2373

awk Utilities

6024 Field variables shall be designated by a ’$’ followed by a number or numerical expression. The
6025 effect of the field number expression evaluating to anything other than a non-negative integer is
6026 unspecified; uninitialized variables or string values need not be converted to numeric values in
6027 this context. New field variables can be created by assigning a value to them. References to
6028 nonexistent fields (that is, fields after $NF), shall evaluate to the uninitialized value. Such
6029 references shall not create new fields. However, assigning to a nonexistent field (for example,
6030 $(NF+2)=5) shall increase the value of NF; create any intervening fields with the uninitialized
6031 value; and cause the value of $0 to be recomputed, with the fields being separated by the value
6032 of OFS. Each field variable shall have a string value or an uninitialized value when created.
6033 Field variables shall have the uninitialized value when created from $0 using FS and the variable
6034 does not contain any characters. If appropriate, the field variable shall be considered a numeric
6035 string (see Expressions in awk (on page 2370)).

6036 Implementations shall support the following other special variables that are set by awk:

6037 ARGC The number of elements in the ARGV array.

6038 ARGV An array of command line arguments, excluding options and the program
6039 argument, numbered from zero to ARGC−1.

6040 The arguments in ARGV can be modified or added to; ARGC can be altered. As
6041 each input file ends, awk shall treat the next non-null element of ARGV, up to the
6042 current value of ARGC−1, inclusive, as the name of the next input file. Thus,
6043 setting an element of ARGV to null means that it shall not be treated as an input
6044 file. The name ’ −’ indicates the standard input. If an argument matches the
6045 format of an assignment operand, this argument shall be treated as an assignment
6046 rather than a file argument.

6047 CONVFMT The printf format for converting numbers to strings (except for output statements,
6048 where OFMT is used); "%.6g" by default.

6049 ENVIRON The variable ENVIRON is an array representing the value of the environment, as
6050 described in the exec functions defined in the System Interfaces volume of
6051 IEEE Std. 1003.1-200x. The indices of the array shall be strings consisting of the
6052 names of the environment variables, and the value of each array element is a string
6053 consisting of the value of that variable. If appropriate, the environment variable
6054 shall be considered a numeric string (see Expressions in awk (on page 2370)), the
6055 array element shall also have its numeric value.

6056 In all cases where the behavior of awk is affected by environment variables
6057 (including the environment of any commands that awk executes via the system
6058 function or via pipeline redirections with the print statement, the printf statement,
6059 or the getline function), the environment used shall be the environment at the time
6060 awk began executing; it is implementation-defined whether any modification of |
6061 ENVIRON affects this environment.

6062 FILENAME A path name of the current input file. Inside a BEGIN action the value is
6063 undefined. Inside an END action the value is the name of the last input file
6064 processed.

6065 FNR The ordinal number of the current record in the current file. Inside a BEGIN action
6066 the value is zero. Inside an END action the value is the number of the last record
6067 processed in the last file processed.

6068 FS Input field separator regular expression; a <space> character by default.

6069 NF The number of fields in the current record. Inside a BEGIN action, the use of NF is
6070 undefined unless a getline function without a var argument is executed

2374 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6071 previously. Inside an END action, NF retains the value it had for the last record
6072 read, unless a subsequent redirected, getline function without a var argument is
6073 performed prior to entering the END action.

6074 NR The ordinal number of the current record from the start of input. Inside a BEGIN
6075 action the value is zero. Inside an END action the value is the number of the last
6076 record processed.

6077 OFMT The printf format for converting numbers to strings in output statements (see
6078 Output Statements (on page 2379)); "%.6g" by default. The result of the
6079 conversion is unspecified if the value of OFMT is not a floating-point format
6080 specification.

6081 OFS The print statement output field separation; <space> by default.

6082 ORS The print statement output record separator; a <newline> character by default.

6083 RLENGTH The length of the string matched by the match function.

6084 RS The first character of the string value of RS is the input record separator; a
6085 <newline> character by default. If RS contains more than one character, the results
6086 are unspecified. If RS is null, then records are separated by sequences of one or
6087 more blank lines, leading or trailing blank lines do not result in empty records at
6088 the beginning or end of the input, and a <newline> character is always a field
6089 separator, no matter what the value of FS is.

6090 RSTART The starting position of the string matched by the match function, numbering from
6091 1. This is always equivalent to the return value of the match function.

6092 SUBSEP The subscript separator string for multi-dimensional arrays; the default value is |
6093 implementation-defined. |

6094 Regular Expressions

6095 The awk utility shall make use of the extended regular expression notation (see the Base |
6096 Definitions volume of IEEE Std. 1003.1-200x, Section 9.4, Extended Regular Expressions) except |
6097 that it shall allow the use of C-language conventions for escaping special characters within the |
6098 EREs, as specified in the table in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, |
6099 File Format Notation (’\\’ , ’\a’ , ’\b’ , ’\f’ , ’\n’ , ’\r’ , ’\t’ , ’\v’) and the following |
6100 table; these escape sequences shall be recognized both inside and outside bracket expressions.
6101 Note that records need not be separated by <newline> characters and string constants can
6102 contain <newline> characters, so even the "\n" sequence is valid in awk EREs. Using a slash
6103 character within an ERE requires the escaping shown in the following table. |

Shell and Utilities, Issue 6 2375

awk Utilities

6104 Table 4-2 Escape Sequences in awk |

6105 Escape
6106 Sequence Description Meaning___
6107 Backslash quotation-mark Quotation-mark character\"___
6108 Backslash slash Slash character\/___
6109 A backslash character followed by the
6110 longest sequence of one, two, or three
6111 octal-digit characters (01234567). If all
6112 of the digits are 0 (that is,
6113 representation of the NUL character),
6114 the behavior is undefined.

The character whose encoding is
represented by the one, two, or three-
digit octal integer. If the size of a byte
on the system is greater than nine bits,
the valid escape sequence used to
represent a byte is implementation-

6115 defined. Multi-byte characters require
6116 multiple, concatenated escape
6117 sequences of this type, including the
6118 leading ’\’ for each byte.

\ddd

6119 A backslash character followed by any
6120 character not described in this table or
6121 in the table in the Base Definitions
6122 volume of IEEE Std. 1003.1-200x,
6123 Chapter 5, File Format Notation
6124 (’\\’ , ’\a’ , ’\b’ , ’\f’ , ’\n’ ,
6125 ’\r’ , ’\t’ , ’\v’)

\c Undefined

___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

6126 A regular expression can be matched against a specific field or string by using one of the two
6127 regular expression matching operators, ’˜’ and "!˜" . These operators shall interpret their
6128 right-hand operand as a regular expression and their left-hand operand as a string. If the regular
6129 expression matches the string, the ’˜’ expression shall evaluate to a value of 1, and the "!˜"
6130 expression shall evaluate to a value of 0. (The regular expression matching operation is as |
6131 defined by the term matched in the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
6132 9.1, Regular Expression Definitions, where a match occurs on any part of the string unless the |
6133 regular expression is limited with the circumflex or dollar sign special characters.) If the regular
6134 expression does not match the string, the ’˜’ expression shall evaluate to a value of 0, and the
6135 "!˜" expression shall evaluate to a value of 1. If the right-hand operand is any expression other
6136 than the lexical token ERE, the string value of the expression shall be interpreted as an extended
6137 regular expression, including the escape conventions described above. Note that these same
6138 escape conventions shall also be applied in determining the value of a string literal (the lexical
6139 token STRING), and thus shall be applied a second time when a string literal is used in this
6140 context.

6141 When an ERE token appears as an expression in any context other than as the right-hand of the
6142 ’˜’ or "!˜" operator or as one of the built-in function arguments described below, the value of
6143 the resulting expression shall be the equivalent of:

6144 $0 ˜ / ere /

6145 The ere argument to the gsub, match, sub functions, and the fs argument to the split function
6146 (see String Functions (on page 2381)) shall be interpreted as extended regular expressions. These
6147 can be either ERE tokens or arbitrary expressions, and shall be interpreted in the same manner as
6148 the right-hand side of the ’˜’ or "!˜" operator.

6149 An extended regular expression can be used to separate fields by using the −F ERE option or by
6150 assigning a string containing the expression to the built-in variable FS. The default value of the
6151 FS variable shall be a single <space> character. The following describes FS behavior:

2376 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6152 1. If FS is a null string, the behavior is unspecified.

6153 2. If FS is a single character:

6154 a. If FS is the <space> character, skip leading and trailing <blank> characters; fields
6155 shall be delimited by sets of one or more <blank> characters.

6156 b. Otherwise, if FS is any other character c, fields shall be delimited by each single
6157 occurrence of c.

6158 3. Otherwise, the string value of FS shall be considered to be an extended regular expression.
6159 Each occurrence of a sequence matching the extended regular expression shall delimit
6160 fields.

6161 Except for the ’˜’ and "!˜" operators, and in the gsub, match, split, and sub built-in functions,
6162 ERE matching shall be based on input records; that is, record separator characters (the first
6163 character of the value of the variable RS, <newline> by default) cannot be embedded in the
6164 expression, and no expression shall match the record separator character. If the record separator
6165 is not <newline>, <newline> characters embedded in the expression can be matched. For the
6166 ’˜’ and "!˜" operators, and in those four built-in functions, ERE matching shall be based on
6167 text strings; that is, any character (including <newline> and the record separator) can be
6168 embedded in the pattern, and an appropriate pattern shall match any character. However, in all
6169 awk ERE matching, the use of one or more NUL characters in the pattern, input record, or text
6170 string produces undefined results.

6171 Patterns

6172 A pattern is any valid expression, a range specified by two expressions separated by comma, or
6173 one of the two special patterns BEGIN or END.

6174 Special Patterns

6175 The awk utility shall recognize two special patterns, BEGIN and END. Each BEGIN pattern
6176 shall be matched once and its associated action executed before the first record of input is read
6177 (except possibly by use of the getline function—see Input/Output and General Functions (on
6178 page 2382)—in a prior BEGIN action) and before command line assignment is done. Each END
6179 pattern shall be matched once and its associated action executed after the last record of input has
6180 been read. These two patterns shall have associated actions.

6181 BEGIN and END shall not combine with other patterns. Multiple BEGIN and END patterns
6182 shall be allowed. The actions associated with the BEGIN patterns shall be executed in the order
6183 specified in the program, as are the END actions. An END pattern can precede a BEGIN pattern
6184 in a program.

6185 If an awk program consists of only actions with the pattern BEGIN, and the BEGIN action
6186 contains no getline function, awk shall exit without reading its input when the last statement in
6187 the last BEGIN action is executed. If an awk program consists of only actions with the pattern
6188 END or only actions with the patterns BEGIN and END, the input shall be read before the
6189 statements in the END actions are executed.

Shell and Utilities, Issue 6 2377

awk Utilities

6190 Expression Patterns

6191 An expression pattern shall be evaluated as if it were an expression in a Boolean context. If the
6192 result is true, the pattern shall be considered to match, and the associated action (if any) shall be
6193 executed. If the result is false, the action shall not be executed.

6194 Pattern Ranges

6195 A pattern range consists of two expressions separated by a comma; in this case, the action shall
6196 be performed for all records between a match of the first expression and the following match of
6197 the second expression, inclusive. At this point, the pattern range can be repeated starting at
6198 input records subsequent to the end of the matched range.

6199 Actions

6200 An action is a sequence of statements as shown in the grammar in Grammar (on page 2384).
6201 Any single statement can be replaced by a statement list enclosed in braces. The application shall
6202 ensure that statements in a statement list are separated by <newline> characters or semicolons,
6203 and are executed sequentially in the order that they appear.

6204 The expression acting as the conditional in an if statement shall be evaluated and if it is non-zero
6205 or non-null, the following statement shall be executed; otherwise, if else is present, the statement
6206 following the else shall be executed.

6207 The if, while, do. . .while, for, break, and continue statements are based on the ISO C standard,
6208 except that the Boolean expressions shall be treated as described in Expressions in awk (on page
6209 2370), and except in the case of:

6210 for (variable in array)

6211 which shall iterate, assigning each index of array to variable in an unspecified order. The results of
6212 adding new elements to array within such a for loop are undefined. If a break or continue
6213 statement occurs outside of a loop, the behavior is undefined.

6214 The delete statement shall remove an individual array element. Thus, the following code deletes
6215 an entire array:

6216 for (index in array)
6217 delete array[index]

6218 The next statement shall cause all further processing of the current input record to be
6219 abandoned. The behavior is undefined if a next statement appears or is invoked in a BEGIN or
6220 END action.

6221 The exit statement shall invoke all END actions in the order in which they occur in the program
6222 source and then terminate the program without reading further input. An exit statement inside
6223 an END action shall terminate the program without further execution of END actions. If an
6224 expression is specified in an exit statement, its numeric value shall be the exit status of awk,
6225 unless subsequent errors are encountered or a subsequent exit statement with an expression is
6226 executed.

2378 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6227 Output Statements

6228 Both print and printf statements shall write to standard output by default. The output shall be
6229 written to the location specified by output_redirection if one is supplied, as follows:

6230 > expression
6231 >> expression
6232 | expression

6233 In all cases, the expression shall be evaluated to produce a string that is used as a path name into
6234 which to write (for ’>’ or ">>") or as a command to be executed (for ’|’). Using the first two
6235 forms, if the file of that name is not currently open, it shall be opened, creating it if necessary and
6236 using the first form, truncating the file. The output then shall be appended to the file. As long as
6237 the file remains open, subsequent calls in which expression evaluates to the same string value
6238 shall simply append output to the file. The file remains open until the close function (see
6239 Input/Output and General Functions (on page 2382)) is called with an expression that evaluates
6240 to the same string value.

6241 The third form shall write output onto a stream piped to the input of a command. The stream
6242 shall be created if no stream is currently open with the value of expression as its command name.
6243 The stream created shall be equivalent to one created by a call to the popen() function defined in
6244 the System Interfaces volume of IEEE Std. 1003.1-200x with the value of expression as the
6245 command argument and a value of w as the mode argument. As long as the stream remains open,
6246 subsequent calls in which expression evaluates to the same string value shall write output to the
6247 existing stream. The stream shall remain open until the close function (see Input/Output and
6248 General Functions (on page 2382)) is called with an expression that evaluates to the same string
6249 value. At that time, the stream shall be closed as if by a call to the pclose() function defined in
6250 the System Interfaces volume of IEEE Std. 1003.1-200x.

6251 As described in detail by the grammar in Grammar (on page 2384), these output statements shall
6252 take a comma-separated list of expressions referred to in the grammar by the non-terminal
6253 symbols expr_list, print_expr_list, or print_expr_list_opt. This list is referred to here as the
6254 expression list , and each member is referred to as an expression argument.

6255 The print statement shall write the value of each expression argument onto the indicated output
6256 stream separated by the current output field separator (see variable OFS above), and terminated
6257 by the output record separator (see variable ORS above). All expression arguments shall be
6258 taken as strings, being converted if necessary; this conversion shall be as described in
6259 Expressions in awk (on page 2370), with the exception that the printf format in OFMT shall be
6260 used instead of the value in CONVFMT. An empty expression list shall stand for the whole
6261 input record ($0).

6262 The printf statement shall produce output based on a notation similar to the File Format
6263 Notation used to describe file formats in this volume of IEEE Std. 1003.1-200x (see the Base |
6264 Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, File Format Notation). Output shall be |
6265 produced as specified with the first expression argument as the string format and subsequent |
6266 expression arguments as the strings arg1 to argn , inclusive, with the following exceptions:

6267 1. The format shall be an actual character string rather than a graphical representation.
6268 Therefore, it cannot contain empty character positions. The <space> character in the format
6269 string, in any context other than a flag of a conversion specification, shall be treated as an
6270 ordinary character that is copied to the output.

6271 2. If the character set contains a ’ ∆’ character and that character appears in the format string,
6272 it shall be treated as an ordinary character that is copied to the output.

Shell and Utilities, Issue 6 2379

awk Utilities

6273 3. The escape sequences beginning with a backslash character shall be treated as sequences of
6274 ordinary characters that are copied to the output. Note that these same sequences shall be
6275 interpreted lexically by awk when they appear in literal strings, but they shall not be
6276 treated specially by the printf statement.

6277 4. A field width or precision can be specified as the ’*’ character instead of a digit string. In
6278 this case the next argument from the expression list shall be fetched and its numeric value
6279 taken as the field width or precision.

6280 5. The implementation shall not precede or follow output from the d or u conversion
6281 specifications with <blank> characters not specified by the format string.

6282 6. The implementation shall not precede output from the o conversion specification with
6283 leading zeros not specified by the format string.

6284 7. For the c conversion specification: if the argument has a numeric value, the character
6285 whose encoding is that value shall be output. If the value is zero or is not the encoding of
6286 any character in the character set, the behavior is undefined. If the argument does not have
6287 a numeric value, the first character of the string value shall be output; if the string does not
6288 contain any characters, the behavior is undefined.

6289 8. For each conversion specification that consumes an argument, the next expression
6290 argument shall be evaluated. With the exception of the c conversion, the value shall be
6291 converted (according to the rules specified in Expressions in awk (on page 2370)) to the
6292 appropriate type for the conversion specification.

6293 9. If there are insufficient expression arguments to satisfy all the conversion specifications in
6294 the format string, the behavior is undefined.

6295 10. If any character sequence in the format string begins with a ’%’ character, but does not
6296 form a valid conversion specification, the behavior is unspecified.

6297 Both print and printf can output at least {LINE_MAX} bytes.

6298 Functions

6299 The awk language has a variety of built-in functions: arithmetic, string, input/output, and
6300 general.

6301 Arithmetic Functions

6302 The arithmetic functions, except for int, shall be based on the ISO C standard. The behavior is
6303 undefined in cases where the ISO C standard specifies that an error be returned or that the
6304 behavior is undefined. Although the grammar (see Grammar (on page 2384)) permits built-in
6305 functions to appear with no arguments or parentheses, unless the argument or parentheses are
6306 indicated as optional in the following list (by displaying them within the "[]" brackets), such
6307 use is undefined.

6308 atan2(y,x) Return arctangent of y/x in radians in the range −{π} to {.

6309 cos(x) Return cosine of x, where x is in radians.

6310 sin(x) Return sine of x, where x is in radians.

6311 exp(x) Return the exponential function of x.

6312 log(x) Return the natural logarithm of x.

6313 sqrt(x) Return the square root of x.

2380 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6314 int(x) Truncate its argument to an integer. It shall be truncated toward 0 when x>0.

6315 rand() Return a random number n, such that 0≤n<1.

6316 srand([expr]) Set the seed value for rand to expr or use the time of day if expr is omitted. The
6317 previous seed value shall be returned.

6318 String Functions

6319 The string functions in the following list shall be supported. Although the grammar (see
6320 Grammar (on page 2384)) permits built-in functions to appear with no arguments or
6321 parentheses, unless the argument or parentheses are indicated as optional in the following list
6322 (by displaying them within the "[]" brackets), such use is undefined.

6323 gsub(ere, repl[, in])
6324 Behave like sub (see below), except that it shall replace all occurrences of the
6325 regular expression (like the ed utility global substitute) in $0 or in the in argument,
6326 when specified.

6327 index(s, t) Return the position, in characters, numbering from 1, in string s where string t first
6328 occurs, or zero if it does not occur at all.

6329 length[([s])] Return the length, in characters, of its argument taken as a string, or of the whole
6330 record, $0, if there is no argument. |

6331 match(s, ere) Return the position, in characters, numbering from 1, in string s where the
6332 extended regular expression ere occurs, or zero if it does not occur at all. RSTART
6333 shall be set to the starting position (which is the same as the returned value), zero
6334 if no match is found; RLENGTH shall be set to the length of the matched string, −1
6335 if no match is found.

6336 split(s, a[, fs])
6337 Split the string s into array elements a[1], a[2], . . ., a[n], and return n. All elements
6338 of the array shall be deleted before the split is performed. The separation shall be
6339 done with the ERE fs or with the field separator FS if fs is not given. Each array
6340 element shall have a string value when created and, if appropriate, the array
6341 element shall be considered a numeric string (see Expressions in awk (on page
6342 2370)). The effect of a null string as the value of fs is unspecified.

6343 sprintf(fmt, expr, expr, . . .)
6344 Format the expressions according to the printf format given by fmt and return the
6345 resulting string.

6346 sub(ere, repl[, in])
6347 Substitute the string repl in place of the first instance of the extended regular
6348 expression ERE in string in and return the number of substitutions. An ampersand
6349 (’&’) appearing in the string repl shall be replaced by the string from in that |
6350 matches the ERE. An ampersand preceded with a backslash (’\’) shall be |
6351 interpreted as the literal ampersand character. Any other occurrence of a backslash
6352 (for example, preceding any other character) shall be treated as a literal backslash
6353 character. Note that if repl is a string literal (the lexical token STRING; see
6354 Grammar (on page 2384)), the handling of the ampersand character occurs after
6355 any lexical processing, including any lexical backslash escape sequence processing.
6356 If in is specified and it is not an lvalue (see Expressions in awk (on page 2370)), the
6357 behavior is undefined. If in is omitted, awk shall use the current record ($0) in its
6358 place.

Shell and Utilities, Issue 6 2381

awk Utilities

6359 substr(s, m[, n])
6360 Return the at most n-character substring of s that begins at position m, numbering
6361 from 1. If n is missing, or if n specifies more characters than are left in the string,
6362 the length of the substring shall be limited by the length of the string s.

6363 tolower(s) Return a string based on the string s. Each character in s that is an uppercase letter
6364 specified to have a tolower mapping by the LC_CTYPE category of the current
6365 locale shall be replaced in the returned string by the lowercase letter specified by
6366 the mapping. Other characters in s shall be unchanged in the returned string.

6367 toupper(s) Return a string based on the string s. Each character in s that is a lowercase letter
6368 specified to have a toupper mapping by the LC_CTYPE category of the current
6369 locale is replaced in the returned string by the uppercase letter specified by the
6370 mapping. Other characters in s are unchanged in the returned string.

6371 All of the preceding functions that take ERE as a parameter expect a pattern or a string valued
6372 expression that is a regular expression as defined in Regular Expressions (on page 2375).

6373 Input/Output and General Functions

6374 The input/output and general functions are:

6375 close(expression)
6376 Close the file or pipe opened by a print or printf statement or a call to getline with
6377 the same string-valued expression. The limit on the number of open expression |
6378 arguments is implementation-defined. If the close was successful, the function |
6379 shall return zero; otherwise, it shall return non-zero.

6380 expression | getline [var]
6381 Read a record of input from a stream piped from the output of a command. The
6382 stream shall be created if no stream is currently open with the value of expression as
6383 its command name. The stream created shall be equivalent to one created by a call
6384 to the popen() function with the value of expression as the command argument and a
6385 value of r as the mode argument. As long as the stream remains open, subsequent
6386 calls in which expression evaluates to the same string value shall read subsequent
6387 records from the stream. The stream shall remain open until the close function is
6388 called with an expression that evaluates to the same string value. At that time, the
6389 stream shall be closed as if by a call to the pclose() function. If var is missing, $0 and
6390 NF shall be set; otherwise, var shall be set and, if appropriate, it shall be considered
6391 a numeric string (see Expressions in awk (on page 2370)).

6392 The getline operator can form ambiguous constructs when there are
6393 unparenthesized operators (including concatenate) to the left of the ’|’ (to the
6394 beginning of the expression containing getline). In the context of the ’$’
6395 operator, ’|’ shall behave as if it had a lower precedence than ’$’ . The result of
6396 evaluating other operators is unspecified, and portable applications shall
6397 parenthesize properly all such usages.

6398 getline Set $0 to the next input record from the current input file. This form of getline shall
6399 set the NF, NR, and FNR variables.

6400 getline var Set variable var to the next input record from the current input file and, if
6401 appropriate, var shall be considered a numeric string (see Expressions in awk (on
6402 page 2370)). This form of getline shall set the FNR and NR variables.

6403 getline [var] < expression
6404 Read the next record of input from a named file. The expression shall be evaluated

2382 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6405 to produce a string that is used as a path name. If the file of that name is not
6406 currently open, it shall be opened. As long as the stream remains open, subsequent
6407 calls in which expression evaluates to the same string value shall read subsequent
6408 records from the file. The file shall remain open until the close function is called
6409 with an expression that evaluates to the same string value. If var is missing, $0 and
6410 NF shall be set; otherwise, var shall be set and, if appropriate, it shall be considered
6411 a numeric string (see Expressions in awk (on page 2370)).

6412 The getline operator can form ambiguous constructs when there are
6413 unparenthesized binary operators (including concatenate) to the right of the ’<’
6414 (up to the end of the expression containing the getline). The result of evaluating
6415 such a construct is unspecified, and portable applications shall parenthesize
6416 properly all such usages.

6417 system(expression)
6418 Execute the command given by expression in a manner equivalent to the system()
6419 function defined in the System Interfaces volume of IEEE Std. 1003.1-200x and
6420 return the exit status of the command.

6421 All forms of getline shall return 1 for successful input, zero for end-of-file, and −1 for an error.

6422 Where strings are used as the name of a file or pipeline, the application shall ensure that the
6423 strings are textually identical. The terminology ‘‘same string value’’ implies that ‘‘equivalent
6424 strings’’, even those that differ only by <space> characters, represent different files.

6425 User-Defined Functions

6426 The awk language also provides user-defined functions. Such functions can be defined as:

6427 function name([parameter , ...]) { statements }

6428 A function can be referred to anywhere in an awk program; in particular, its use can precede its
6429 definition. The scope of a function is global.

6430 Function parameters, if present, can be either scalars or arrays; the behavior is undefined if an
6431 array name is passed as a parameter that the function uses as a scalar, or if a scalar expression is
6432 passed as a parameter that the function uses as an array. Function parameters shall be passed by
6433 value if scalar and by reference if array name.

6434 The number of parameters in the function definition need not match the number of parameters
6435 in the function call. Excess formal parameters can be used as local variables. If fewer arguments
6436 are supplied in a function call than are in the function definition, the extra parameters that are
6437 used in the function body as scalars shall evaluate to the uninitialized value until they are
6438 otherwise initialized, and the extra parameters that are used in the function body as arrays shall
6439 be treated as uninitialized arrays where each element evaluates to the uninitialized value until
6440 otherwise initialized.

6441 When invoking a function, no white space can be placed between the function name and the
6442 opening parenthesis. Function calls can be nested and recursive calls can be made upon
6443 functions. Upon return from any nested or recursive function call, the values of all of the calling
6444 function’s parameters shall be unchanged, except for array parameters passed by reference. The
6445 return statement can be used to return a value. If a return statement appears outside of a
6446 function definition, the behavior is undefined.

6447 In the function definition, <newline> characters shall be optional before the opening brace and
6448 after the closing brace. Function definitions can appear anywhere in the program where a
6449 pattern-action pair is allowed.

Shell and Utilities, Issue 6 2383

awk Utilities

6450 Grammar

6451 The grammar in this section and the lexical conventions in the following section shall together
6452 describe the syntax for awk programs. The general conventions for this style of grammar are
6453 described in Section 1.10 (on page 2223). A valid program can be represented as the non-
6454 terminal symbol program in the grammar. This formal syntax shall take precedence over the
6455 preceding text syntax description.

6456 %token NAME NUMBER STRING ERE
6457 %token FUNC_NAME /* Name followed by ’(’ without white space. */

6458 /* Keywords */
6459 %token Begin End
6460 /* ’BEGIN’ ’END’ */

6461 %token Break Continue Delete Do Else
6462 /* ’break’ ’continue’ ’delete’ ’do’ ’else’ */

6463 %token Exit For Function If In
6464 /* ’exit’ ’for’ ’function’ ’if’ ’in’ */

6465 %token Next Print Printf Return While
6466 /* ’next’ ’print’ ’printf’ ’return’ ’while’ */

6467 /* Reserved function names */
6468 %token BUILTIN_FUNC_NAME
6469 /* One token for the following:
6470 * atan2 cos sin exp log sqrt int rand srand
6471 * gsub index length match split sprintf sub
6472 * substr tolower toupper close system
6473 */
6474 %token GETLINE
6475 /* Syntactically different from other built-ins. */

6476 /* Two-character tokens. */
6477 %token ADD_ASSIGN SUB_ASSIGN MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN POW_ASSIGN
6478 /* ’+=’ ’ −=’ ’*=’ ’/=’ ’%=’ ’ˆ=’ */

6479 %token OR AND NO_MATCH EQ LE GE NE INCR DECR APPEND
6480 /* ’||’ ’&&’ ’!˜’ ’==’ ’<=’ ’>=’ ’!=’ ’++’ ’ −−’ ’>>’ */

6481 /* One-character tokens. */
6482 %token ’{’ ’}’ ’(’ ’)’ ’[’ ’]’ ’,’ ’;’ NEWLINE
6483 %token ’+’ ’ −’ ’*’ ’%’ ’ˆ’ ’!’ ’>’ ’<’ ’|’ ’?’ ’:’ ’˜’ ’$’ ’=’

6484 %start program
6485 %%

6486 program : item_list
6487 | actionless_item_list
6488 ;

6489 item_list : newline_opt
6490 | actionless_item_list item terminator
6491 | item_list item terminator
6492 | item_list action terminator
6493 ;

2384 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6494 actionless_item_list : item_list pattern terminator
6495 | actionless_item_list pattern terminator
6496 ;

6497 item : pattern action
6498 | Function NAME ’(’ param_list_opt ’)’
6499 newline_opt action
6500 | Function FUNC_NAME ’(’ param_list_opt ’)’
6501 newline_opt action
6502 ;

6503 param_list_opt : /* empty */
6504 | param_list
6505 ;

6506 param_list : NAME
6507 | param_list ’,’ NAME
6508 ;

6509 pattern : Begin
6510 | End
6511 | expr
6512 | expr ’,’ newline_opt expr
6513 ;

6514 action : ’{’ newline_opt ’}’
6515 | ’{’ newline_opt terminated_statement_list ’}’
6516 | ’{’ newline_opt unterminated_statement_list ’}’
6517 ;

6518 terminator : terminator ’;’
6519 | terminator NEWLINE
6520 | ’;’
6521 | NEWLINE
6522 ;

6523 terminated_statement_list : terminated_statement
6524 | terminated_statement_list terminated_statement
6525 ;

6526 unterminated_statement_list : unterminated_statement
6527 | terminated_statement_list unterminated_statement
6528 ;

6529 terminated_statement : action newline_opt
6530 | If ’(’ expr ’)’ newline_opt terminated_statement
6531 | If ’(’ expr ’)’ newline_opt terminated_statement
6532 Else newline_opt terminated_statement
6533 | While ’(’ expr ’)’ newline_opt terminated_statement
6534 | For ’(’ simple_statement_opt ’;’
6535 expr_opt ’;’ simple_statement_opt ’)’ newline_opt
6536 terminated_statement
6537 | For ’(’ NAME In NAME ’)’ newline_opt
6538 terminated_statement
6539 | ’;’ newline_opt
6540 | terminatable_statement NEWLINE newline_opt
6541 | terminatable_statement ’;’ newline_opt

Shell and Utilities, Issue 6 2385

awk Utilities

6542 ;

6543 unterminated_statement : terminatable_statement
6544 | If ’(’ expr ’)’ newline_opt unterminated_statement
6545 | If ’(’ expr ’)’ newline_opt terminated_statement
6546 Else newline_opt unterminated_statement
6547 | While ’(’ expr ’)’ newline_opt unterminated_statement
6548 | For ’(’ simple_statement_opt ’;’
6549 expr_opt ’;’ simple_statement_opt ’)’ newline_opt
6550 unterminated_statement
6551 | For ’(’ NAME In NAME ’)’ newline_opt
6552 unterminated_statement
6553 ;

6554 terminatable_statement : simple_statement
6555 | Break
6556 | Continue
6557 | Next
6558 | Exit expr_opt
6559 | Return expr_opt
6560 | Do newline_opt terminated_statement While ’(’ expr ’)’
6561 ;

6562 simple_statement_opt : /* empty */
6563 | simple_statement
6564 ;

6565 simple_statement : Delete NAME ’[’ expr_list ’]’
6566 | expr
6567 | print_statement
6568 ;

6569 print_statement : simple_print_statement
6570 | simple_print_statement output_redirection
6571 ;

6572 simple_print_statement : Print print_expr_list_opt
6573 | Print ’(’ multiple_expr_list ’)’
6574 | Printf print_expr_list
6575 | Printf ’(’ multiple_expr_list ’)’
6576 ;

6577 output_redirection : ’>’ expr
6578 | APPEND expr
6579 | ’|’ expr
6580 ;

6581 expr_list_opt : /* empty */
6582 | expr_list
6583 ;

6584 expr_list : expr
6585 | multiple_expr_list
6586 ;

6587 multiple_expr_list : expr ’,’ newline_opt expr
6588 | multiple_expr_list ’,’ newline_opt expr

2386 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6589 ;

6590 expr_opt : /* empty */
6591 | expr
6592 ;

6593 expr : unary_expr
6594 | non_unary_expr
6595 ;

6596 unary_expr : ’+’ expr
6597 | ’ −’ expr
6598 | unary_expr ’ˆ’ expr
6599 | unary_expr ’*’ expr
6600 | unary_expr ’/’ expr
6601 | unary_expr ’%’ expr
6602 | unary_expr ’+’ expr
6603 | unary_expr ’ −’ expr
6604 | unary_expr non_unary_expr
6605 | unary_expr ’<’ expr
6606 | unary_expr LE expr
6607 | unary_expr NE expr
6608 | unary_expr EQ expr
6609 | unary_expr ’>’ expr
6610 | unary_expr GE expr
6611 | unary_expr ’˜’ expr
6612 | unary_expr NO_MATCH expr
6613 | unary_expr In NAME
6614 | unary_expr AND newline_opt expr
6615 | unary_expr OR newline_opt expr
6616 | unary_expr ’?’ expr ’:’ expr
6617 | unary_input_function
6618 ;

6619 non_unary_expr : ’(’ expr ’)’
6620 | ’!’ expr
6621 | non_unary_expr ’ˆ’ expr
6622 | non_unary_expr ’*’ expr
6623 | non_unary_expr ’/’ expr
6624 | non_unary_expr ’%’ expr
6625 | non_unary_expr ’+’ expr
6626 | non_unary_expr ’ −’ expr
6627 | non_unary_expr non_unary_expr
6628 | non_unary_expr ’<’ expr
6629 | non_unary_expr LE expr
6630 | non_unary_expr NE expr
6631 | non_unary_expr EQ expr
6632 | non_unary_expr ’>’ expr
6633 | non_unary_expr GE expr
6634 | non_unary_expr ’˜’ expr
6635 | non_unary_expr NO_MATCH expr
6636 | non_unary_expr In NAME
6637 | ’(’ multiple_expr_list ’)’ In NAME
6638 | non_unary_expr AND newline_opt expr

Shell and Utilities, Issue 6 2387

awk Utilities

6639 | non_unary_expr OR newline_opt expr
6640 | non_unary_expr ’?’ expr ’:’ expr
6641 | NUMBER
6642 | STRING
6643 | lvalue
6644 | ERE
6645 | lvalue INCR
6646 | lvalue DECR
6647 | INCR lvalue
6648 | DECR lvalue
6649 | lvalue POW_ASSIGN expr
6650 | lvalue MOD_ASSIGN expr
6651 | lvalue MUL_ASSIGN expr
6652 | lvalue DIV_ASSIGN expr
6653 | lvalue ADD_ASSIGN expr
6654 | lvalue SUB_ASSIGN expr
6655 | lvalue ’=’ expr
6656 | FUNC_NAME ’(’ expr_list_opt ’)’
6657 /* no white space allowed before ’(’ */
6658 | BUILTIN_FUNC_NAME ’(’ expr_list_opt ’)’
6659 | BUILTIN_FUNC_NAME
6660 | non_unary_input_function
6661 ;

6662 print_expr_list_opt : /* empty */
6663 | print_expr_list
6664 ;

6665 print_expr_list : print_expr
6666 | print_expr_list ’,’ newline_opt print_expr
6667 ;

6668 print_expr : unary_print_expr
6669 | non_unary_print_expr
6670 ;

6671 unary_print_expr : ’+’ print_expr
6672 | ’ −’ print_expr
6673 | unary_print_expr ’ˆ’ print_expr
6674 | unary_print_expr ’*’ print_expr
6675 | unary_print_expr ’/’ print_expr
6676 | unary_print_expr ’%’ print_expr
6677 | unary_print_expr ’+’ print_expr
6678 | unary_print_expr ’ −’ print_expr
6679 | unary_print_expr non_unary_print_expr
6680 | unary_print_expr ’˜’ print_expr
6681 | unary_print_expr NO_MATCH print_expr
6682 | unary_print_expr In NAME
6683 | unary_print_expr AND newline_opt print_expr
6684 | unary_print_expr OR newline_opt print_expr
6685 | unary_print_expr ’?’ print_expr ’:’ print_expr
6686 ;

6687 non_unary_print_expr : ’(’ expr ’)’
6688 | ’!’ print_expr

2388 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6689 | non_unary_print_expr ’ˆ’ print_expr
6690 | non_unary_print_expr ’*’ print_expr
6691 | non_unary_print_expr ’/’ print_expr
6692 | non_unary_print_expr ’%’ print_expr
6693 | non_unary_print_expr ’+’ print_expr
6694 | non_unary_print_expr ’ −’ print_expr
6695 | non_unary_print_expr non_unary_print_expr
6696 | non_unary_print_expr ’˜’ print_expr
6697 | non_unary_print_expr NO_MATCH print_expr
6698 | non_unary_print_expr In NAME
6699 | ’(’ multiple_expr_list ’)’ In NAME
6700 | non_unary_print_expr AND newline_opt print_expr
6701 | non_unary_print_expr OR newline_opt print_expr
6702 | non_unary_print_expr ’?’ print_expr ’:’ print_expr
6703 | NUMBER
6704 | STRING
6705 | lvalue
6706 | ERE
6707 | lvalue INCR
6708 | lvalue DECR
6709 | INCR lvalue
6710 | DECR lvalue
6711 | lvalue POW_ASSIGN print_expr
6712 | lvalue MOD_ASSIGN print_expr
6713 | lvalue MUL_ASSIGN print_expr
6714 | lvalue DIV_ASSIGN print_expr
6715 | lvalue ADD_ASSIGN print_expr
6716 | lvalue SUB_ASSIGN print_expr
6717 | lvalue ’=’ print_expr
6718 | FUNC_NAME ’(’ expr_list_opt ’)’
6719 /* no white space allowed before ’(’ */
6720 | BUILTIN_FUNC_NAME ’(’ expr_list_opt ’)’
6721 | BUILTIN_FUNC_NAME
6722 ;

6723 lvalue : NAME
6724 | NAME ’[’ expr_list ’]’
6725 | ’$’ expr
6726 ;

6727 non_unary_input_function : simple_get
6728 | simple_get ’<’ expr
6729 | non_unary_expr ’|’ simple_get
6730 ;

6731 unary_input_function : unary_expr ’|’ simple_get
6732 ;

6733 simple_get : GETLINE
6734 | GETLINE lvalue
6735 ;

6736 newline_opt : /* empty */
6737 | newline_opt NEWLINE
6738 ;

Shell and Utilities, Issue 6 2389

awk Utilities

6739 This grammar has several ambiguities that shall be resolved as follows:

6740 • Operator precedence and associativity shall be as described in Table 4-1 (on page 2370).

6741 • In case of ambiguity, an else shall be associated with the most immediately preceding if that
6742 would satisfy the grammar.

6743 • In some contexts, a slash (’/’) that is used to surround an ERE could also be the division
6744 operator. This shall be resolved in such a way that wherever the division operator could
6745 appear, a slash is assumed to be the division operator. (There is no unary division operator.)

6746 One convention that might not be obvious from the formal grammar is where <newline>
6747 characters are acceptable. There are several obvious placements such as terminating a statement,
6748 and a backslash can be used to escape <newline> characters between any lexical tokens. In
6749 addition, <newline> characters without backslashes can follow a comma, an open brace, logical
6750 AND operator ("&&"), logical OR operator ("||"), the do keyword, the else keyword, and the
6751 closing parenthesis of an if, for, or while statement. For example:

6752 { print $1,
6753 $2 }

6754 Lexical Conventions

6755 The lexical conventions for awk programs, with respect to the preceding grammar, shall be as
6756 follows:

6757 1. Except as noted, awk shall recognize the longest possible token or delimiter beginning at a
6758 given point.

6759 2. A comment shall consist of any characters beginning with the number sign character and
6760 terminated by, but excluding the next occurrence of, a <newline> character. Comments
6761 shall have no effect, except to delimit lexical tokens.

6762 3. The <newline> character shall be recognized as the token NEWLINE.

6763 4. A backslash character immediately followed by a <newline> character shall have no effect.

6764 5. The token STRING shall represent a string constant. A string constant shall begin with the
6765 character ’"’ . Within a string constant, a backslash character shall be considered to begin |
6766 an escape sequence as specified in the table in the Base Definitions volume of |
6767 IEEE Std. 1003.1-200x, Chapter 5, File Format Notation (’\\’ , ’\a’ , ’\b’ , ’\f’ , ’\n’ , |
6768 ’\r’ , ’\t’ , ’\v’). In addition, the escape sequences in Table 4-2 (on page 2376) shall be
6769 recognized. A <newline> character shall not occur within a string constant. A string
6770 constant shall be terminated by the first unescaped occurrence of the character ’"’ after
6771 the one that begins the string constant. The value of the string shall be the sequence of all
6772 unescaped characters and values of escape sequences between, but not including, the two
6773 delimiting ’"’ characters.

6774 6. The token ERE represents an extended regular expression constant. An ERE constant shall
6775 begin with the slash character. Within an ERE constant, a backslash character shall be
6776 considered to begin an escape sequence as specified in the table in the Base Definitions |
6777 volume of IEEE Std. 1003.1-200x, Chapter 5, File Format Notation. In addition, the escape |
6778 sequences in Table 4-2 (on page 2376) shall be recognized. The application shall ensure that |
6779 a <newline> character does not occur within an ERE constant. An ERE constant shall be
6780 terminated by the first unescaped occurrence of the slash character after the one that
6781 begins the ERE constant. The extended regular expression represented by the ERE constant
6782 shall be the sequence of all unescaped characters and values of escape sequences between,
6783 but not including, the two delimiting slash characters.

2390 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6784 7. A <blank> character shall have no effect, except to delimit lexical tokens or within
6785 STRING or ERE tokens.

6786 8. The token NUMBER shall represent a numeric constant. Its form and numeric value shall
6787 be equivalent to either of the tokens floating-constant or integer-constant as specified by
6788 the ISO C standard, with the following exceptions:

6789 a. An integer constant cannot begin with 0x or include the hexadecimal digits ’a’ , ’b’ ,
6790 ’c’ , ’d’ , ’e’ , ’f’ , ’A’ , ’B’ , ’C’ , ’D’ , ’E’ , or ’F’ .

6791 b. The value of an integer constant beginning with 0 shall be taken in decimal rather
6792 than octal.

6793 c. An integer constant cannot include a suffix (’u’ , ’U’ , ’l’ , or ’L’).

6794 d. A floating constant cannot include a suffix (’f’ , ’F’ , ’l’ , or ’L’).

6795 If the value is too large or too small to be representable, the behavior is undefined.

6796 9. A sequence of underscores, digits, and alphabetics from the portable character set (see the |
6797 Base Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set), |
6798 beginning with an underscore or alphabetic, shall be considered a word. |

6799 10. The following words are keywords that shall be recognized as individual tokens; the name
6800 of the token is the same as the keyword:

6801 BEGIN
6802 break
6803 continue

delete
do
else

END
exit
for

function
getline
if

in
next
print

printf
return
while

6804 11. The following words are names of built-in functions and shall be recognized as the token
6805 BUILTIN_FUNC_NAME:

6806 atan2
6807 close
6808 cos
6809 exp

gsub
index
int
length

log
match
rand
sin

split
sprintf
sqrt
srand

sub
substr
system
tolower

toupper

6810 The above-listed keywords and names of built-in functions are considered reserved words.

6811 12. The token NAME shall consist of a word that is not a keyword or a name of a built-in
6812 function and is not followed immediately (without any delimiters) by the ’(’ character.

6813 13. The token FUNC_NAME shall consist of a word that is not a keyword or a name of a
6814 built-in function, followed immediately (without any delimiters) by the ’(’ character. The
6815 ’(’ character shall not be included as part of the token.

6816 14. The following two-character sequences shall be recognized as the named tokens:

6817 Token Name Sequence Token Name Sequence___
6818 ADD_ASSIGN += NO_MATCH !˜
6819 SUB_ASSIGN −= EQ ==
6820 MUL_ASSIGN *= LE <=
6821 DIV_ASSIGN /= GE >=
6822 MOD_ASSIGN %= NE !=
6823 POW_ASSIGN ^= INCR ++
6824 OR || DECR −−
6825 AND && APPEND >>___LL

L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

Shell and Utilities, Issue 6 2391

awk Utilities

6826 15. The following single characters shall be recognized as tokens whose names are the
6827 character:

6828 <newline > { } () [] , ; + − * % ˆ ! > < | ? : ˜ $ =

6829 There is a lexical ambiguity between the token ERE and the tokens ’/’ and DIV_ASSIGN.
6830 When an input sequence begins with a slash character in any syntactic context where the token
6831 ’/’ or DIV_ASSIGN could appear as the next token in a valid program, the longer of those two
6832 tokens that can be recognized shall be recognized. In any other syntactic context where the token
6833 ERE could appear as the next token in a valid program, the token ERE shall be recognized.

6834 EXIT STATUS
6835 The following exit values shall be returned:

6836 0 All input files were processed successfully.

6837 >0 An error occurred.

6838 The exit status can be altered within the program by using an exit expression.

6839 CONSEQUENCES OF ERRORS
6840 If any file operand is specified and the named file cannot be accessed, awk shall write a
6841 diagnostic message to standard error and terminate without any further action.

6842 If the program specified by either the program operand or a progfile operand is not a valid awk
6843 program (as specified in the EXTENDED DESCRIPTION section), the behavior is undefined.

6844 APPLICATION USAGE
6845 The index, length, match, and substr functions should not be confused with similar functions in
6846 the ISO C standard; the awk versions deal with characters, while the ISO C standard deals with
6847 bytes.

6848 Because the concatenation operation is represented by adjacent expressions rather than an
6849 explicit operator, it is often necessary to use parentheses to enforce the proper evaluation
6850 precedence.

6851 EXAMPLES
6852 The awk program specified in the command line is most easily specified within single-quotes (for
6853 example, ’program’) for applications using sh, because awk programs commonly contain
6854 characters that are special to the shell, including double-quotes. In the cases where an awk
6855 program contains single-quote characters, it is usually easiest to specify most of the program as
6856 strings within single-quotes concatenated by the shell with quoted single-quote characters. For
6857 example:

6858 awk ’/’\’’/ { print "quote:", $0 }’

6859 prints all lines from the standard input containing a single-quote character, prefixed with quote:.

6860 The following are examples of simple awk programs:

6861 1. Write to the standard output all input lines for which field 3 is greater than 5:

6862 $3 > 5

6863 2. Write every tenth line:

6864 (NR % 10) == 0

6865 3. Write any line with a substring matching the regular expression:

6866 /(G|D)(2[0 −9][[:alpha:]]*)/

2392 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6867 4. Print any line with a substring containing a ’G’ or ’D’ , followed by a sequence of digits
6868 and characters. This example uses character classes digit and alpha to match language-
6869 independent digit and alphabetic characters respectively:

6870 /(G|D)([[:digit:][:alpha:]]*)/

6871 5. Write any line in which the second field matches the regular expression and the fourth
6872 field does not:

6873 $2 ˜ /xyz/ && $4 !˜ /xyz/

6874 6. Write any line in which the second field contains a backslash:

6875 $2 ˜ /\\/

6876 7. Write any line in which the second field contains a backslash. Note that backslash escapes
6877 are interpreted twice, once in lexical processing of the string and once in processing the
6878 regular expression:

6879 $2 ˜ "\\\\"

6880 8. Write the second to the last and the last field in each line. Separate the fields by a colon:

6881 {OFS=":";print $(NF −1), $NF}

6882 9. Write the line number and number of fields in each line. The three strings representing the
6883 line number, the colon, and the number of fields are concatenated and that string is written
6884 to standard output:

6885 {print NR ":" NF}

6886 10. Write lines longer than 72 characters:

6887 length($0) > 72

6888 11. Write first two fields in opposite order separated by the OFS:

6889 { print $2, $1 }

6890 12. Same, with input fields separated by comma or <space> and <tab> characters, or both:

6891 BEGIN { FS = ",[\t]*|[\t]+" }
6892 { print $2, $1 }

6893 13. Add up first column, print sum, and average:

6894 {s += $1 }
6895 END {print "sum is ", s, " average is", s/NR}

6896 14. Write fields in reverse order, one per line (many lines out for each line in):

6897 { for (i = NF; i > 0; −−i) print $i }

6898 15. Write all lines between occurrences of the strings start and stop:

6899 /start/, /stop/

6900 16. Write all lines whose first field is different from the previous one:

6901 $1 != prev { print; prev = $1 }

6902 17. Simulate echo:

6903 BEGIN {
6904 for (i = 1; i < ARGC; ++i)
6905 printf("%s%s", ARGV[i], i==ARGC −1?"\n":" ")

Shell and Utilities, Issue 6 2393

awk Utilities

6906 }

6907 18. Write the path prefixes contained in the PATH environment variable, one per line:

6908 BEGIN {
6909 n = split (ENVIRON["PATH"], path, ":")
6910 for (i = 1; i <= n; ++i)
6911 print path[i]
6912 }

6913 19. If there is a file named input containing page headers of the form:

6914 Page #

6915 and a file named program that contains:

6916 /Page/ { $2 = n++; }
6917 { print }

6918 then the command line:

6919 awk −f program n=5 input

6920 prints the file input, filling in page numbers starting at 5.

6921 RATIONALE
6922 The ISO POSIX-2 standard description is based on the new awk, ‘‘nawk’’, (see the referenced The |
6923 AWK Programming Language), which introduced a number of new features to the historical awk:

6924 1. New keywords: delete, do, functin, return

6925 2. New built-in functions: atan2, close, cos, gsub, match, rand, sin, srand, sub, system

6926 3. New predefined variables: FNR, ARGC, ARGV, RSTART, RLENGTH, SUBSEP

6927 4. New expression operators: ?, :, ,, ˆ

6928 5. The FS variable and the third argument to split, now treated as extended regular
6929 expressions.

6930 6. The operator precedence, changed to more closely match the C language. Two examples
6931 of code that operate differently are:

6932 whil e (n /= 10 > 1) ...
6933 if (!"wk" ˜ /bwk/) ...

6934 Several features have been added based on newer implementations of awk:

6935 • Multiple instances of −f progfile are permitted

6936 • The new option −v assignment

6937 • The new predefined variable ENVIRON

6938 • New built-in functions toupper, and tolower

6939 • More formatting capabilities are added to printf to match the ISO C standard

6940 The overall awk syntax has always been based on the C language, with a few features from the
6941 shell command language and other sources. Because of this, it is not completely compatible with
6942 any other language, which has caused confusion for some users. It is not the intent of the
6943 standard developers to address such issues. IEEE Std. 1003.1-200x has made a few relatively
6944 minor changes toward making the language more compatible with the C language as specified
6945 by the ISO C standard; most of these changes are based on similar changes in recent

2394 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

6946 implementations, as described above. There remain several C-language conventions that are not
6947 in awk. One of the notable ones is the comma operator, which is commonly used to specify
6948 multiple expressions in the C language for statement. Also, there are various places where awk is
6949 more restrictive than the C language regarding the type of expression that can be used in a given
6950 context. These limitations are due to the different features that the awk language does provide.

6951 Regular expressions in awk have been extended somewhat from historical implementations to
6952 make them a pure superset of extended regular expressions, as defined by IEEE Std. 1003.1-200x |
6953 (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 9.4, Extended Regular |
6954 Expressions). The main extensions are internationalization features and interval expressions. |
6955 Historical implementations of awk have long supported backslash escape sequences as an
6956 extension to extended regular expressions, and this extension has been retained despite
6957 inconsistency with other utilities. The number of escape sequences recognized in both extended
6958 regular expressions and strings has varied (generally increasing with time) among
6959 implementations. The set specified by IEEE Std. 1003.1-200x includes most sequences known to
6960 be supported by popular implementations and by the ISO C standard. One sequence that is not
6961 supported is hexadecimal value escapes beginning with ’\x’ . This would allow values
6962 expressed in more than 9 bits to be used within awk as in the ISO C standard. However, because
6963 this syntax has a non-deterministic length, it does not permit the subsequent character to be a
6964 hexadecimal digit. This limitation can be dealt with in the C language by the use of lexical string
6965 concatenation. In the awk language, concatenation could also be a solution for strings, but not for
6966 extended regular expressions (either lexical ERE tokens or strings used dynamically as regular
6967 expressions). Because of this limitation, the feature has not been added to IEEE Std. 1003.1-200x.

6968 When a string variable is used in a context where an extended regular expression normally
6969 appears (where the lexical token ERE is used in the grammar) the string does not contain the
6970 literal slashes.

6971 Some versions of awk allow the form:

6972 func name(args, .. .) { statements }

6973 This has been deprecated by the authors of the language, who asked that it not be included in
6974 IEEE Std. 1003.1-200x.

6975 Historical implementations of awk produce an error if a next statement is executed in a BEGIN
6976 action, and cause awk to terminate if a next statement is executed in an END action. This
6977 behavior has not been documented, and it was not believed that it was necessary to standardize
6978 it.

6979 The specification of conversions between string and numeric values is much more detailed than
6980 in the documentation of historical implementations or in the referenced The AWK Programming
6981 Language. Although most of the behavior is designed to be intuitive, the details are necessary to
6982 ensure compatible behavior from different implementations. This is especially important in
6983 relational expressions since the types of the operands determine whether a string or numeric
6984 comparison is performed. From the perspective of an application writer, it is usually sufficient to
6985 expect intuitive behavior and to force conversions (by adding zero or concatenating a null
6986 string) when the type of an expression does not obviously match what is needed. The intent has
6987 been to specify historical practice in almost all cases. The one exception is that, in historical
6988 implementations, variables and constants maintain both string and numeric values after their
6989 original value is converted by any use. This means that referencing a variable or constant can
6990 have unexpected side effects. For example, with historical implementations the following
6991 program:

6992 {
6993 a = "+2"

Shell and Utilities, Issue 6 2395

awk Utilities

6994 b = 2
6995 if (NR % 2)
6996 c = a + b
6997 if (a == b)
6998 print "numeric comparison"
6999 else
7000 print "string comparison"
7001 }

7002 would perform a numeric comparison (and output numeric comparison) for each odd-
7003 numbered line, but perform a string comparison (and output string comparison) for each even-
7004 numbered line. IEEE Std. 1003.1-200x ensures that comparisons will be numeric if necessary.
7005 With historical implementations, the following program:

7006 BEGIN {
7007 OFMT = "%e"
7008 print 3.14
7009 OFMT = "%f"
7010 print 3.14
7011 }

7012 would output "3.140000e+00" twice, because in the second print statement the constant
7013 "3.14" would have a string value from the previous conversion. IEEE Std. 1003.1-200x requires
7014 that the output of the second print statement be "3.140000" . The behavior of historical
7015 implementations was seen as too unintuitive and unpredictable.

7016 It was pointed out that with the rules contained in early drafts, the following script would print
7017 nothing:

7018 BEGIN {
7019 y[1.5] = 1
7020 OFMT = "%e"
7021 print y[1.5]
7022 }

7023 Therefore, a new variable, CONVFMT, was introduced. The OFMT variable is now restricted to
7024 affecting output conversions of numbers to strings and CONVFMT is used for internal
7025 conversions, such as comparisons or array indexing. The default value is the same as that for
7026 OFMT, so unless a program changes CONVFMT (which no historical program would do), it
7027 will receive the historical behavior associated with internal string conversions.

7028 The POSIX awk lexical and syntactic conventions are specified more formally than in other
7029 sources. Again the intent has been to specify historical practice. One convention that may not be
7030 obvious from the formal grammar as in other verbal descriptions is where <newline> characters
7031 are acceptable. There are several obvious placements such as terminating a statement, and a
7032 backslash can be used to escape <newline> characters between any lexical tokens. In addition,
7033 <newline> characters without backslashes can follow a comma, an open brace, a logical AND
7034 operator ("&&"), a logical OR operator ("||"), the do keyword, the else keyword, and the
7035 closing parenthesis of an if, for, or while statement. For example:

7036 { print $1,
7037 $2 }

7038 The requirement that awk add a trailing <newline> character to the program argument text is to
7039 simplify the grammar, making it match a text file in form. There is no way for an application or
7040 test suite to determine whether a literal <newline> is added or whether awk simply acts as if it
7041 did.

2396 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

7042 IEEE Std. 1003.1-200x requires several changes from historical implementations in order to
7043 support internationalization. Probably the most subtle of these is the use of the decimal-point
7044 character, defined by the LC_NUMERIC category of the locale, in representations of floating-
7045 point numbers. This locale-specific character is used in recognizing numeric input, in converting
7046 between strings and numeric values, and in formatting output. However, regardless of locale,
7047 the period character (the decimal-point character of the POSIX locale) is the decimal-point
7048 character recognized in processing awk programs (including assignments in command line
7049 arguments). This is essentially the same convention as the one used in the ISO C standard. The
7050 difference is that the C language includes the setlocale () function, which permits an application
7051 to modify its locale. Because of this capability, a C application begins executing with its locale
7052 set to the C locale, and only executes in the environment-specified locale after an explicit call to
7053 setlocale (). However, adding such an elaborate new feature to the awk language was seen as
7054 inappropriate for IEEE Std. 1003.1-200x. It is possible to execute an awk program explicitly in any
7055 desired locale by setting the environment in the shell.

7056 The undefined behavior resulting from NULs in extended regular expressions allows future
7057 extensions for the GNU gawk program to process binary data.

7058 The behavior in the case of invalid awk programs (including lexical, syntactic, and semantic
7059 errors) is undefined because it was considered overly limiting on implementations to specify. In
7060 most cases such errors can be expected to produce a diagnostic and a non-zero exit status.
7061 However, some implementations may choose to extend the language in ways that make use of
7062 certain invalid constructs. Other invalid constructs might be deemed worthy of a warning, but
7063 otherwise cause some reasonable behavior. Still other constructs may be very difficult to detect
7064 in some implementations. Also, different implementations might detect a given error during an
7065 initial parsing of the program (before reading any input files) while others might detect it when
7066 executing the program after reading some input. Implementors should be aware that diagnosing
7067 errors as early as possible and producing useful diagnostics can ease debugging of applications,
7068 and thus make an implementation more usable.

7069 The unspecified behavior from using multi-character RS values is to allow possible future
7070 extensions based on extended regular expressions used for record separators. Historical
7071 implementations take the first character of the string and ignore the others.

7072 Unspecified behavior when split(string,array ,<null>) is used is to allow a proposed future
7073 extension that would split up a string into an array of individual characters.

7074 In the context of the getline function, equally good arguments for different precedences of the | |
7075 and < operators can be made. Historical practice has been that:

7076 getline < "a" "b"

7077 is parsed as:

7078 (getline < "a") "b"

7079 although many would argue that the intent was that the file ab should be read. However:

7080 getline < "x" + 1

7081 parses as:

7082 getlin e < ("x" + 1)

7083 Similar problems occur with the | version of getline, particularly in combination with $. For
7084 example:

7085 $"echo hi" | getline

Shell and Utilities, Issue 6 2397

awk Utilities

7086 (This situation is particularly problematic when used in a print statement, where the |getline
7087 part might be a redirection of the print.)

7088 Since in most cases such constructs are not (or at least should not) be used (because they have a
7089 natural ambiguity for which there is no conventional parsing), the meaning of these constructs
7090 has been made explicitly unspecified. (The effect is that a portable application that runs into the
7091 problem must parenthesize to resolve the ambiguity.) There appeared to be few if any actual
7092 uses of such constructs.

7093 Grammars can be written that would cause an error under these circumstances. Where
7094 backwards compatibility is not a large consideration, implementors may wish to use such
7095 grammars.

7096 Some historical implementations have allowed some built-in functions to be called without an
7097 argument list, the result being a default argument list chosen in some ‘‘reasonable’’ way. Use of
7098 length as a synonym for length($0) is the only one of these forms that is thought to be widely
7099 known or widely used; this particular form is documented in various places (for example, most
7100 historical awk reference pages, although not in the referenced The AWK Programming Language)
7101 as legitimate practice. With this exception, default argument lists have always been
7102 undocumented and vaguely defined, and it is not at all clear how (or if) they should be
7103 generalized to user-defined functions. They add no useful functionality and preclude possible
7104 future extensions that might need to name functions without calling them. Not standardizing
7105 them seems the simplest course. The standard developers considered that length merited special
7106 treatment, however, since it has been documented in the past and sees possibly substantial use
7107 in historical programs. Accordingly, this usage has been made legitimate, but Issue 5 removed |
7108 the obsolescent marking for XSI-conforming implementations and many otherwise conforming |
7109 applications depend on this feature. |

7110 In sub and gsub, if repl is a string literal (the lexical token STRING), then two consecutive
7111 backslash characters should be used in the string to ensure a single backslash will precede the
7112 ampersand when the resultant string is passed to the function. (For example, to specify one
7113 literal ampersand in the replacement string, use gsub(ERE, "\\&").)

7114 Historically the only special character in the repl argument of sub and gsub string functions was
7115 the ampersand (’&’) character and preceding it with the backslash character was used to turn
7116 off its special meaning.

7117 The description in the ISO POSIX-2: 1993 standard introduced behavior such that the backslash
7118 character was another special character and it was unspecified whether there were any other
7119 special characters. This description introduced several portability problems, some of which are
7120 described below, and so it has been replaced with the more historical description. Some of the
7121 problems include:

7122 • Historically, to create the replacement string, a script could use gsub(ERE, "\\&"), but with
7123 the ISO POSIX-2: 1993 standard wording, it was necessary to use gsub(ERE, "\\\\&").
7124 Backslash characters are doubled here because all string literals are subject to lexical analysis,
7125 which would reduce each pair of backslash characters to a single backslash before being
7126 passed to gsub.

7127 • Since it was unspecified what the special characters were, for portable scripts to guarantee
7128 that characters are printed literally, each character had to be preceded with a backslash. (For
7129 example, a portable script had to use gsub(ERE, "\\h\\i") to produce a replacement string
7130 of "hi" .)

7131 The description for comparisons in the ISO POSIX-2: 1993 standard did not properly describe
7132 historical practice because of the way numeric strings are compared as numbers. The current
7133 rules cause the following code:

2398 Technical Standard (2000) (Draft July 31, 2000)

Utilities awk

7134 if (0 == "000")
7135 print "strange, but true"
7136 else
7137 print "not true"

7138 to do a numeric comparison, causing the if to succeed. It should be intuitively obvious that this
7139 is incorrect behavior, and indeed, no historical implementation of awk actually behaves this way.

7140 To fix this problem, the definition of numeric string was enhanced to include only those values
7141 obtained from specific circumstances (mostly external sources) where it is not possible to
7142 determine unambiguously whether the value is intended to be a string or a numeric.

7143 Variables that are assigned to a numeric string shall also be treated as a numeric string. (For
7144 example, the notion of a numeric string can be propagated across assignments.) In comparisons,
7145 all variables having the uninitialized value are to be treated as a numeric operand evaluating to
7146 the numeric value zero.

7147 Uninitialized variables include all types of variables including scalars, array elements, and fields.
7148 The definition of an uninitialized value in Variables and Special Variables (on page 2373) is
7149 necessary to describe the value placed on uninitialized variables and on fields that are valid (for
7150 example, < $NF) but have no characters in them and to describe how these variables are to be
7151 used in comparisons. A valid field, such as $1, that has no characters in it can be obtained by
7152 from an input line of "\t\t" when FS=’\t’ . Historically, the comparison ($1<10) was done
7153 numerically after evaluating $1 to the value zero.

7154 The phrase ‘‘. . . also shall have the numeric value of the numeric string’’ was removed from
7155 several sections of the ISO POSIX-2: 1993 standard because is specifies an unnecessary
7156 implementation detail. It is not necessary for IEEE Std. 1003.1-200x to specify that these objects
7157 be assigned two different values. It is only necessary to specify that these objects may evaluate
7158 to two different values depending on context.

7159 The description of numeric string processing is based on the behavior of the atof () function in
7160 the ISO C standard. While it is not a requirement for an implementation to use this function,
7161 many historical implementations of awk do. In the ISO C standard, floating-point constants use a
7162 period as a decimal point character for the language itself, independent of the current locale, but
7163 the atof () function and the associated strtod() function use the decimal point character of the
7164 current locale when converting strings to numeric values. Similarly in awk, floating point
7165 constants in an awk script use a period independent of the locale, but input strings use the
7166 decimal point character of the locale.

7167 FUTURE DIRECTIONS
7168 None.

7169 SEE ALSO
7170 grep, lex , sed, the System Interfaces volume of IEEE Std. 1003.1-200x, atof (), setlocale (), strtod()

7171 CHANGE HISTORY
7172 First released in Issue 2.

7173 Issue 4
7174 Aligned with the ISO/IEC 9945-2: 1993 standard.

7175 Issue 4, Version 2
7176 The EXAMPLES section is corrected as follows:

7177 • In Example 10, the braces are removed.

7178 • In Example 17, the invocation of printf is corrected.

Shell and Utilities, Issue 6 2399

awk Utilities

7179 Issue 5
7180 FUTURE DIRECTIONS section added.

7181 Issue 6
7182 The awk utility is aligned with the IEEE P1003.2b draft standard.

7183 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2400 Technical Standard (2000) (Draft July 31, 2000)

Utilities basename

7184 NAME
7185 basename — return non-directory portion of a path name

7186 SYNOPSIS
7187 basename string [suffix]

7188 DESCRIPTION
7189 The string operand shall be treated as a path name, as defined in the Base Definitions volume of |
7190 IEEE Std. 1003.1-200x, Section 3.268, Path Name. The string string shall be converted to the file |
7191 name corresponding to the last path name component in string and then the suffix string suffix , if
7192 present, shall be removed. This shall be done by performing actions equivalent to the following
7193 steps in order:

7194 1. If string is a null string, it is unspecified whether the resulting string is ’.’ or a null string.
7195 In either case, skip steps 2 through 6.

7196 2. If string is "//" , it is implementation-defined whether steps 3 to 6 are skipped or |
7197 processed.

7198 3. If string consists entirely of slash characters, string shall be set to a single slash character. In
7199 this case, skip steps 4 to 6.

7200 4. If there are any trailing slash characters in string, they shall be removed.

7201 5. If there are any slash characters remaining in string, the prefix of string up to and including
7202 the last slash character in string shall be removed.

7203 6. If the suffix operand is present, is not identical to the characters remaining in string, and is
7204 identical to a suffix of the characters remaining in string, the suffix suffix shall be removed
7205 from string. Otherwise, string is modified by this step. It shall not be considered an error if
7206 suffix is not found in string.

7207 The resulting string shall be written to standard output.

7208 OPTIONS
7209 None.

7210 OPERANDS
7211 The following operands shall be supported:

7212 string A string.

7213 suffix A string.

7214 STDIN
7215 Not used.

7216 INPUT FILES
7217 None.

7218 ENVIRONMENT VARIABLES
7219 The following environment variables shall affect the execution of basename:

7220 LANG Provide a default value for the internationalization variables that are unset or null.
7221 If LANG is unset or null, the corresponding value from the implementation- |
7222 defined default locale shall be used. If any of the internationalization variables |
7223 contains an invalid setting, the utility shall behave as if none of the variables had
7224 been defined.

7225 LC_ALL If set to a non-empty string value, override the values of all the other
7226 internationalization variables.

Shell and Utilities, Issue 6 2401

basename Utilities

7227 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
7228 characters (for example, single-byte as opposed to multi-byte characters in
7229 arguments).

7230 LC_MESSAGES
7231 Determine the locale that should be used to affect the format and contents of
7232 diagnostic messages written to standard error.

7233 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

7234 ASYNCHRONOUS EVENTS
7235 Default.

7236 STDOUT
7237 The basename utility shall write a line to the standard output in the following format:

7238 "%s\n", < resulting string >

7239 STDERR
7240 Used only for diagnostic messages.

7241 OUTPUT FILES
7242 None.

7243 EXTENDED DESCRIPTION
7244 None.

7245 EXIT STATUS
7246 The following exit values shall be returned:

7247 0 Successful completion.

7248 >0 An error occurred.

7249 CONSEQUENCES OF ERRORS
7250 Default.

7251 APPLICATION USAGE
7252 The definition of pathname specifies implementation-defined behavior for path names starting |
7253 with two slash characters. Therefore, applications shall not arbitrarily add slashes to the |
7254 beginning of a path name unless they can ensure that there are more or less than two or are
7255 prepared to deal with the implementation-defined consequences. |

7256 EXAMPLES
7257 If the string string is a valid path name:

7258 $(basename " string ")

7259 produces a file name that could be used to open the file named by string in the directory
7260 returned by:

7261 $(dirname " string ")

7262 If the string string is not a valid path name, the same algorithm is used, but the result need not be
7263 a valid file name. The basename utility is not expected to make any judgements about the validity
7264 of string as a path name; it just follows the specified algorithm to produce a result string.

7265 The following shell script compiles /usr/src/cmd/cat.c and moves the output to a file named cat
7266 in the current directory when invoked with the argument /usr/src/cmd/cat or with the argument
7267 /usr/src/cmd/cat.c:

2402 Technical Standard (2000) (Draft July 31, 2000)

Utilities basename

7268 c99 $(dirname "$1")/$(basename "$1" .c).c
7269 mv a.out $(basename "$1" .c)

7270 RATIONALE
7271 The behaviors of basename and dirname have been coordinated so that when string is a valid path
7272 name:

7273 $(basename " string ")

7274 would be a valid file name for the file in the directory:

7275 $(dirname " string ")

7276 This would not work for the early proposal versions of these utilities due to the way it specified
7277 handling of trailing slashes.

7278 Since the definition of pathname specifies implementation-defined behavior for path names |
7279 starting with two slash characters, this volume of IEEE Std. 1003.1-200x specifies similar |
7280 implementation-defined behavior for the basename and dirname utilities. |

7281 FUTURE DIRECTIONS
7282 None.

7283 SEE ALSO
7284 dirname, Section 2.5 (on page 2241)

7285 CHANGE HISTORY
7286 First released in Issue 2.

7287 Issue 4
7288 Aligned with the ISO/IEC 9945-2: 1993 standard.

7289 Issue 6
7290 IEEE PASC Interpretation 1003.2 #164 has been applied. |

7291 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2403

batch Utilities

7292 NAME
7293 batch — schedule commands to be executed in a batch queue

7294 SYNOPSIS
7295 UP batch
7296

7297 DESCRIPTION
7298 The batch utility shall read commands from standard input and schedule them for execution in a
7299 batch queue. It shall be the equivalent of the command:

7300 at −q b −m now

7301 where queue b is a special at queue, specifically for batch jobs. Batch jobs shall be submitted to
7302 the batch queue with no time constraints and shall be run by the system using algorithms, based
7303 on unspecified factors, that may vary with each invocation of batch.

7304 XSI Users are permitted to use batch if their name appears in the file /usr/lib/cron/at.allow. If that file
7305 does not exist, the file /usr/lib/cron/at.deny is checked to determine whether the user should be
7306 denied access to batch. If neither file exists, only a process with the appropriate privileges is
7307 allowed to submit a job. If only at.deny exists and is empty, global usage is permitted. The
7308 at.allow and at.deny files consist of one user name per line.

7309 OPTIONS
7310 None.

7311 OPERANDS
7312 None.

7313 STDIN
7314 The standard input shall be a text file consisting of commands acceptable to the shell command
7315 language described in Chapter 2 (on page 2235).

7316 INPUT FILES
7317 XSI The text files /usr/lib/cron/at.allow and /usr/lib/cron/at.deny contain user names, one per line, of
7318 users who are, respectively, authorized or denied access to the at and batch utilities.

7319 ENVIRONMENT VARIABLES
7320 The following environment variables shall affect the execution of batch:

7321 LANG Provide a default value for the internationalization variables that are unset or null.
7322 If LANG is unset or null, the corresponding value from the implementation- |
7323 defined default locale shall be used. If any of the internationalization variables |
7324 contains an invalid setting, the utility shall behave as if none of the variables had
7325 been defined.

7326 LC_ALL If set to a non-empty string value, override the values of all the other
7327 internationalization variables.

7328 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
7329 characters (for example, single-byte as opposed to multi-byte characters in
7330 arguments and input files).

7331 LC_MESSAGES
7332 Determine the locale that should be used to affect the format and contents of
7333 diagnostic messages written to standard error and informative messages written to
7334 standard output.

7335 LC_TIME Determine the format and contents for date and time strings written by batch.

2404 Technical Standard (2000) (Draft July 31, 2000)

Utilities batch

7336 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

7337 SHELL Determine the name of a command interpreter to be used to invoke the at-job. If
7338 the variable is unset or null, sh shall be used. If it is set to a value other than a name
7339 for sh, the implementation shall do one of the following: use that shell; use sh; use
7340 the login shell from the user database; any of the preceding accompanied by a
7341 warning diagnostic about which was chosen.

7342 TZ Determine the timezone. The job shall be submitted for execution at the time
7343 specified by timespec or −t time relative to the timezone specified by the TZ
7344 variable. If timespec specifies a timezone, it overrides TZ. If timespec does not
7345 specify a timezone and TZ is unset or null, an unspecified default timezone shall
7346 be used.

7347 ASYNCHRONOUS EVENTS
7348 Default.

7349 STDOUT
7350 When standard input is a terminal, prompts of unspecified format for each line of the user input
7351 described in the STDIN section may be written to standard output.

7352 STDERR
7353 The following shall be written to standard error when a job has been successfully submitted:

7354 "job %s at %s\n", at_job_id , < date >

7355 where date shall be equivalent in format to the output of:

7356 date +"%a %b %e %T %Y"

7357 The date and time written shall be adjusted so that they appear in the timezone of the user (as
7358 determined by the TZ variable).

7359 Neither this, nor warning messages concerning the selection of the command interpreter, are
7360 considered a diagnostic that changes the exit status.

7361 Diagnostic messages, if any, shall be written to standard error.

7362 OUTPUT FILES
7363 None.

7364 EXTENDED DESCRIPTION
7365 None.

7366 EXIT STATUS
7367 The following exit values shall be returned:

7368 0 Successful completion.

7369 >0 An error occurred.

7370 CONSEQUENCES OF ERRORS
7371 The job shall not be scheduled.

Shell and Utilities, Issue 6 2405

batch Utilities

7372 APPLICATION USAGE
7373 It may be useful to redirect standard output within the specified commands. |

7374 EXAMPLES

7375 1. This sequence can be used at a terminal:

7376 batch
7377 sort < file >outfile
7378 EOT

7379 2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
7380 command procedure (the sequence of output redirection specifications is significant):

7381 batch <<! diff file1 file2 2>&1 >outfile | mailx mygroup !

7382 RATIONALE
7383 Early proposals described batch in a manner totally separated from at, even though the historical
7384 model treated it almost as a synonym for at −qb. A number of features were added to list and
7385 control batch work separately from those in at. Upon further reflection, it was decided that the
7386 benefit of this did not merit the change to the historical interface.

7387 The −m option was included on the equivalent at command because it is historical practice to
7388 mail results to the submitter, even if all job-produced output is redirected. As explained in the
7389 RATIONALE for at, the now keyword submits the job for immediate execution (after scheduling
7390 delays), despite some historical systems where at now would have been considered an error.

7391 FUTURE DIRECTIONS
7392 None.

7393 SEE ALSO
7394 at

7395 CHANGE HISTORY
7396 First released in Issue 2.

7397 Issue 4
7398 Format reorganized and separated from the at description.

7399 Aligned with the ISO/IEC 9945-2: 1993 standard.

7400 Issue 6
7401 This utility is now marked as part of the User Portability Utilities option.

7402 The NAME is changed to align with the IEEE P1003.2b draft standard.

7403 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2406 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7404 NAME
7405 bc — arbitrary-precision arithmetic language

7406 SYNOPSIS
7407 bc [−l] [file ...]

7408 DESCRIPTION
7409 The bc utility shall implement an arbitrary precision calculator. It shall take input from any files
7410 given, then read from the standard input. If the standard input and standard output to bc are
7411 attached to a terminal, the invocation of bc shall be considered to be interactive , causing
7412 behavioral constraints described in the following sections.

7413 OPTIONS
7414 The bc utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
7415 Utility Syntax Guidelines. |

7416 The following option shall be supported:

7417 −l (The letter ell.) Define the math functions and initialize scale to 20, instead of the
7418 default zero; see the EXTENDED DESCRIPTION section.

7419 OPERANDS
7420 The following operand shall be supported:

7421 file A path name of a text file containing bc program statements. After all files have
7422 been read, bc shall read the standard input.

7423 STDIN
7424 See the INPUT FILES section.

7425 INPUT FILES
7426 Input files shall be text files containing a sequence of comments, statements, and function
7427 definitions that shall be executed as they are read.

7428 ENVIRONMENT VARIABLES
7429 The following environment variables shall affect the execution of bc:

7430 LANG Provide a default value for the internationalization variables that are unset or null.
7431 If LANG is unset or null, the corresponding value from the implementation- |
7432 defined default locale shall be used. If any of the internationalization variables |
7433 contains an invalid setting, the utility shall behave as if none of the variables had
7434 been defined.

7435 LC_ALL If set to a non-empty string value, override the values of all the other
7436 internationalization variables.

7437 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
7438 characters (for example, single-byte as opposed to multi-byte characters in
7439 arguments and input files).

7440 LC_MESSAGES
7441 Determine the locale that should be used to affect the format and contents of
7442 diagnostic messages written to standard error.

7443 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

7444 ASYNCHRONOUS EVENTS
7445 Default.

Shell and Utilities, Issue 6 2407

bc Utilities

7446 STDOUT
7447 The output of the bc utility shall be controlled by the program read, and consist of zero or more
7448 lines containing the value of all executed expressions without assignments. The radix and
7449 precision of the output shall be controlled by the values of the obase and scale variables; see the
7450 EXTENDED DESCRIPTION section.

7451 STDERR
7452 Used only for diagnostic messages.

7453 OUTPUT FILES
7454 None.

7455 EXTENDED DESCRIPTION

7456 Grammar

7457 The grammar in this section and the lexical conventions in the following section shall together
7458 describe the syntax for bc programs. The general conventions for this style of grammar are
7459 described in Section 1.10 (on page 2223). A valid program can be represented as the non-
7460 terminal symbol program in the grammar. This formal syntax shall take precedence over the text
7461 syntax description.

7462 %token EOF NEWLINE STRING LETTER NUMBER

7463 %token MUL_OP
7464 /* ’*’, ’/’, ’%’ */

7465 %token ASSIGN_OP
7466 /* ’=’, ’+=’, ’ −=’, ’*=’, ’/=’, ’%=’, ’ˆ=’ */

7467 %token REL_OP
7468 /* ’==’, ’<=’, ’>=’, ’!=’, ’<’, ’>’ */

7469 %token INCR_DECR
7470 /* ’++’, ’ −−’ */

7471 %token Define Break Quit Length
7472 /* ’define’, ’break’, ’quit’, ’length’ */

7473 %token Return For If While Sqrt
7474 /* ’return’, ’for’, ’if’, ’while’, ’sqrt’ */

7475 %token Scale Ibase Obase Auto
7476 /* ’scale’, ’ibase’, ’obase’, ’auto’ */

7477 %start program

7478 %%

7479 program : EOF
7480 | input_item program
7481 ;

7482 input_item : semicolon_list NEWLINE
7483 | function
7484 ;

7485 semicolon_list : /* empty */
7486 | statement
7487 | semicolon_list ’;’ statement
7488 | semicolon_list ’;’

2408 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7489 ;

7490 statement_list : /* empty */
7491 | statement
7492 | statement_list NEWLINE
7493 | statement_list NEWLINE statement
7494 | statement_list ’;’
7495 | statement_list ’;’ statement
7496 ;

7497 statement : expression
7498 | STRING
7499 | Break
7500 | Quit
7501 | Return
7502 | Return ’(’ return_expression ’)’
7503 | For ’(’ expression ’;’
7504 relational_expression ’;’
7505 expression ’)’ statement
7506 | If ’(’ relational_expression ’)’ statement
7507 | While ’(’ relational_expression ’)’ statement
7508 | ’{’ statement_list ’}’
7509 ;

7510 function : Define LETTER ’(’ opt_parameter_list ’)’
7511 ’{’ NEWLINE opt_auto_define_list
7512 statement_list ’}’
7513 ;

7514 opt_parameter_list : /* empty */
7515 | parameter_list
7516 ;

7517 parameter_list : LETTER
7518 | define_list ’,’ LETTER
7519 ;

7520 opt_auto_define_list : /* empty */
7521 | Auto define_list NEWLINE
7522 | Auto define_list ’;’
7523 ;

7524 define_list : LETTER
7525 | LETTER ’[’ ’]’
7526 | define_list ’,’ LETTER
7527 | define_list ’,’ LETTER ’[’ ’]’
7528 ;

7529 opt_argument_list : /* empty */
7530 | argument_list
7531 ;

7532 argument_list : expression
7533 | LETTER ’[’ ’]’ ’,’ argument_list"
7534 ;

Shell and Utilities, Issue 6 2409

bc Utilities

7535 relational_expression : expression
7536 | expression REL_OP expression
7537 ;

7538 return_expression : /* empty */
7539 | expression
7540 ;

7541 expression : named_expression
7542 | NUMBER
7543 | ’(’ expression ’)’
7544 | LETTER ’(’ opt_argument_list ’)’
7545 | ’ −’ expression
7546 | expression ’+’ expression
7547 | expression ’ −’ expression
7548 | expression MUL_OP expression
7549 | expression ’ˆ’ expression
7550 | INCR_DECR named_expression
7551 | named_expression INCR_DECR
7552 | named_expression ASSIGN_OP expression
7553 | Length ’(’ expression ’)’
7554 | Sqrt ’(’ expression ’)’
7555 | Scale ’(’ expression ’)’
7556 ;

7557 named_expression : LETTER
7558 | LETTER ’[’ expression ’]’
7559 | Scale
7560 | Ibase
7561 | Obase
7562 ;

7563 Lexical Conventions in bc

7564 The lexical conventions for bc programs, with respect to the preceding grammar, shall be as
7565 follows:

7566 1. Except as noted, bc shall recognize the longest possible token or delimiter beginning at a
7567 given point.

7568 2. A comment shall consist of any characters beginning with the two adjacent characters
7569 "/*" and terminated by the next occurrence of the two adjacent characters "*/" .
7570 Comments shall have no effect except to delimit lexical tokens.

7571 3. The <newline> character shall be recognized as the token NEWLINE.

7572 4. The token STRING shall represent a string constant; it shall consist of any characters
7573 beginning with the double-quote character (’"’) and terminated by another occurrence of
7574 the double-quote character. The value of the string is the sequence of all characters
7575 between, but not including, the two double-quote characters. All characters shall be taken
7576 literally from the input, and there is no way to specify a string containing a double-quote
7577 character. The length of the value of each string shall be limited to {BC_STRING_MAX}
7578 bytes.

7579 5. A <blank> character shall have no effect except as an ordinary character if it appears
7580 within a STRING token, or to delimit a lexical token other than STRING.

2410 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7581 6. The combination of a backslash character immediately followed by a <newline> character
7582 shall have no effect other than to delimit lexical tokens with the following exceptions:

7583 • It shall be interpreted as the character sequence "\<newline>" in STRING tokens.

7584 • It shall be ignored as part of a multi-line NUMBER token.

7585 7. The token NUMBER shall represent a numeric constant. It shall be recognized by the
7586 following grammar:

7587 NUMBER : integer
7588 | ’.’ integer
7589 | integer ’.’
7590 | integer ’.’ integer
7591 ;

7592 integer : digit
7593 | integer digit
7594 ;

7595 digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
7596 | 8 | 9 | A | B | C | D | E | F
7597 ;

7598 8. The value of a NUMBER token shall be interpreted as a numeral in the base specified by
7599 the value of the internal register ibase (described below). Each of the digit characters shall
7600 have the value from 0 to 15 in the order listed here, and the period character shall represent
7601 the radix point. The behavior is undefined if digits greater than or equal to the value of
7602 ibase appear in the token. However, note the exception for single-digit values being
7603 assigned to ibase and obase themselves, in Operations in bc (on page 2412).

7604 9. The following keywords shall be recognized as tokens:

7605 auto
7606 break
7607 define

ibase
if
for

length
obase
quit

return
scale
sqrt

while

7608 10. Any of the following characters occurring anywhere except within a keyword shall be
7609 recognized as the token LETTER:

7610 a b c d e f g h i j k l m n o p q r s t u v w x y z

7611 11. The following single-character and two-character sequences shall be recognized as the
7612 token ASSIGN_OP:

7613 = += −= *= /= %= ^=

7614 12. If an ’=’ character, as the beginning of a token, is followed by a ’ −’ character with no
7615 intervening delimiter, the behavior is undefined.

7616 13. The following single-characters shall be recognized as the token MUL_OP:

7617 * / %

7618 14. The following single-character and two-character sequences shall be recognized as the
7619 token REL_OP:

7620 == <= >= != < >

7621 15. The following two-character sequences shall be recognized as the token INCR_DECR:

Shell and Utilities, Issue 6 2411

bc Utilities

7622 ++ −−

7623 16. The following single characters shall be recognized as tokens whose names are the
7624 character:

7625 <newline > () , + − ; [] ˆ { }

7626 17. The token EOF is returned when the end of input is reached.

7627 Operations in bc

7628 There are three kinds of identifiers: ordinary identifiers, array identifiers, and function
7629 identifiers. All three types consist of single lowercase letters. Array identifiers shall be followed
7630 by square brackets ("[]"). An array subscript is required except in an argument or auto list.
7631 Arrays are singly dimensioned and can contain up to {BC_DIM_MAX} elements. Indexing shall
7632 begin at zero so an array is indexed from 0 to {BC_DIM_MAX}−1. Subscripts shall be truncated
7633 to integers. The application shall ensure that function identifiers are followed by parentheses,
7634 possibly enclosing arguments. The three types of identifiers do not conflict.

7635 The following table summarizes the rules for precedence and associativity of all operators.
7636 Operators on the same line shall have the same precedence; rows are in order of decreasing
7637 precedence.

7638 Table 4-3 Operators in bc

7639 Operator Associativity___
7640 ++, −− N/A
7641 unary − N/A
7642 ^ Right to left
7643 *, /, % Left to right
7644 +, binary − Left to right
7645 =, +=, −=, *=, /=, %=, ˆ= Right to left
7646 ==, <=, >=, !=, <, > None___L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

7647 Each expression or named expression has a scale , which is the number of decimal digits that
7648 shall be maintained as the fractional portion of the expression.

7649 Named expressions are places where values are stored. Named expressions shall be valid on the
7650 left side of an assignment. The value of a named expression shall be the value stored in the place
7651 named. Simple identifiers and array elements are named expressions; they have an initial value
7652 of zero and an initial scale of zero.

7653 The internal registers scale, ibase, and obase are all named expressions. The scale of an
7654 expression consisting of the name of one of these registers shall be zero; values assigned to any
7655 of these registers are truncated to integers. The scale register shall contain a global value used in
7656 computing the scale of expressions (as described below). The value of the register scale is
7657 limited to 0 ≤ scale ≤ {BC_SCALE_MAX} and shall have a default value of zero. The ibase and
7658 obase registers are the input and output number radix, respectively. The value of ibase shall be
7659 limited to:

7660 2 ≤ ibase ≤ 16

7661 The value of obase shall be limited to:

7662 2 ≤ obase ≤ {BC_BASE_MAX}

7663 When either ibase or obase is assigned a single digit value from the list in Lexical Conventions
7664 in bc (on page 2410), the value shall be assumed in hexadecimal. (For example, ibase=A sets to

2412 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7665 base ten, regardless of the current ibase value.) Otherwise, the behavior is undefined when
7666 digits greater than or equal to the value of ibase appear in the input. Both ibase and obase shall
7667 have initial values of 10.

7668 Internal computations shall be conducted as if in decimal, regardless of the input and output
7669 bases, to the specified number of decimal digits. When an exact result is not achieved, (for
7670 example, scale=0; 3.2/1) the result shall be truncated.

7671 For all values of obase specified by this volume of IEEE Std. 1003.1-200x, bc shall output numeric
7672 values by performing each of the following steps in order:

7673 1. If the value is less than zero, a hyphen (’ −’) character shall be output.

7674 2. One of the following is output, depending on the numerical value:

7675 • If the absolute value of the numerical value is greater than or equal to one, the integer
7676 portion of the value shall be output as a series of digits appropriate to obase (as
7677 described below) most significant digit first. The most significant non-zero digit shall
7678 be output next, followed by each successively less significant digit.

7679 • If the absolute value of the numerical value is less than one but greater than zero and
7680 the scale of the numerical value is greater than zero, it is unspecified whether the
7681 character 0 is output.

7682 • If the numerical value is zero, the character 0 shall be output.

7683 3. If the scale of the value is greater than zero and the numeric value is not zero, a period
7684 character shall be output, followed by a series of digits appropriate to obase (as described
7685 below) representing the most significant portion of the fractional part of the value. If s
7686 represents the scale of the value being output, the number of digits output shall be s if
7687 obase is 10, less than or equal to s if obase is greater than 10, or greater than or equal to s if
7688 obase is less than 10. For obase values other than 10, this should be the number of digits
7689 needed to represent a precision of 10s.

7690 For obase values from 2 to 16, valid digits are the first obase of the single characters:

7691 0 1 2 3 4 5 6 7 8 9 A B C D E F

7692 which represent the values zero to 15, inclusive, respectively.

7693 For bases greater than 16, each digit shall be written as a separate multi-digit decimal number.
7694 Each digit except the most significant fractional digit shall be preceded by a single <space>
7695 character. For bases from 17 to 100, bc shall write two-digit decimal numbers; for bases from 101
7696 to 1 000, three-digit decimal strings, and so on. For example, the decimal number 1 024 in base 25
7697 would be written as:

7698 ∆01∆15∆24

7699 in base 125, as:

7700 ∆008∆024

7701 Very large numbers shall be split across lines with 70 characters per line in the POSIX locale;
7702 other locales may split at different character boundaries. Lines that are continued shall end with
7703 a backslash (’\’).

7704 A function call shall consist of a function name followed by parentheses containing a comma-
7705 separated list of expressions, which are the function arguments. A whole array passed as an
7706 argument shall be specified by the array name followed by empty square brackets. All function
7707 arguments shall be passed by value. As a result, changes made to the formal parameters shall
7708 have no effect on the actual arguments. If the function terminates by executing a return

Shell and Utilities, Issue 6 2413

bc Utilities

7709 statement, the value of the function shall be the value of the expression in the parentheses of the
7710 return statement or shall be zero if no expression is provided or if there is no return statement.

7711 The result of sqrt(expression) shall be the square root of the expression. The result shall be
7712 truncated in the least significant decimal place. The scale of the result shall be the scale of the
7713 expression or the value of scale, whichever is larger.

7714 The result of length(expression) shall be the total number of significant decimal digits in the
7715 expression. The scale of the result shall be zero.

7716 The result of scale(expression) shall be the scale of the expression. The scale of the result shall be
7717 zero.

7718 A numeric constant shall be an expression. The scale shall be the number of digits that follow the
7719 radix point in the input representing the constant, or zero if no radix point appears.

7720 The sequence (expression) shall be an expression with the same value and scale as expression.
7721 The parentheses can be used to alter the normal precedence.

7722 The semantics of the unary and binary operators are as follows:

7723 −expression
7724 The result shall be the negative of the expression. The scale of the result shall be the scale of
7725 expression.

7726 The unary increment and decrement operators shall not modify the scale of the named
7727 expression upon which they operate. The scale of the result shall be the scale of that named
7728 expression.

7729 ++named-expression
7730 The named expression shall be incremented by one. The result shall be the value of the
7731 named expression after incrementing.

7732 − −named-expression
7733 The named expression shall be decremented by one. The result shall be the value of the
7734 named expression after decrementing.

7735 named-expression++
7736 The named expression shall be incremented by one. The result shall be the value of the
7737 named expression before incrementing.

7738 named-expression− −
7739 The named expression shall be decremented by one. The result shall be the value of the
7740 named expression before decrementing.

7741 The exponentiation operator, circumflex (’ˆ’), shall bind right to left.

7742 expressionˆexpression
7743 The result shall be the first expression raised to the power of the second expression. If the
7744 second expression is not an integer, the behavior is undefined. If a is the scale of the left
7745 expression and b is the absolute value of the right expression, the scale of the result shall be:

7746 if b >= 0 min(a * b, max(scale, a)) i f b < 0 scale

7747 The multiplicative operators (’*’ , ’/’ , ’%’) shall bind left to right.

7748 expression*expression
7749 The result shall be the product of the two expressions. If a and b are the scales of the two
7750 expressions, then the scale of the result shall be:

2414 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7751 min(a+b,max(scale,a,b))

7752 expression/expression
7753 The result shall be the quotient of the two expressions. The scale of the result shall be the
7754 value of scale.

7755 expression%expression
7756 For expressions a and b, a%b shall be evaluated equivalent to the steps:

7757 1. Compute a/b to current scale.

7758 2. Use the result to compute:

7759 a − (a / b) * b

7760 to scale:

7761 max(scale + scale(b), scale(a))

7762 The scale of the result shall be:

7763 max(scale + scale(b), scale(a))

7764 When scale is zero, the ’%’ operator is the mathematical remainder operator.

7765 The additive operators (’+’ , ’ −’) shall bind left to right.

7766 expression+expression
7767 The result shall be the sum of the two expressions. The scale of the result shall be the
7768 maximum of the scales of the expressions.

7769 expression−expression
7770 The result shall be the difference of the two expressions. The scale of the result shall be the
7771 maximum of the scales of the expressions.

7772 The assignment operators (’=’ , "+=" , " −=" , "*=" , "/=" , "%=" , "ˆ=") shall bind right to left.

7773 named-expression=expression
7774 This expression results in assigning the value of the expression on the right to the named
7775 expression on the left. The scale of both the named expression and the result shall be the
7776 scale of expression.

7777 The compound assignment forms:

7778 named-expression <operator >= expression

7779 shall be equivalent to:

7780 named-expression =named-expression <operator > expression

7781 except that the named-expression shall be evaluated only once.

7782 Unlike all other operators, the relational operators (’<’ , ’>’ , "<=" , ">=" , "==" , "!=") shall be
7783 only valid as the object of an if, while, or inside a for statement.

7784 expression1<expression2
7785 The relation shall be true if the value of expression1 is strictly less than the value of
7786 expression2 .

7787 expression1>expression2
7788 The relation shall be true if the value of expression1 is strictly greater than the value of
7789 expression2 .

Shell and Utilities, Issue 6 2415

bc Utilities

7790 expression1<=expression2
7791 The relation shall be true if the value of expression1 is less than or equal to the value of
7792 expression2 .

7793 expression1>=expression2
7794 The relation shall be true if the value of expression1 is greater than or equal to the value of
7795 expression2 .

7796 expression1= =expression2
7797 The relation shall be true if the values of expression1 and expression2 are equal.

7798 expression1!=expression2
7799 The relation shall be true if the values of expression1 and expression2 are unequal.

7800 There are only two storage classes in bc, global and automatic (local). Only identifiers that are
7801 local to a function need be declared with the auto command. The arguments to a function shall
7802 be local to the function. All other identifiers are assumed to be global and available to all
7803 functions. All identifiers, global and local, have initial values of zero. Identifiers declared as auto
7804 shall be allocated on entry to the function and released on returning from the function. They
7805 therefore do not retain values between function calls. Auto arrays shall be specified by the array
7806 name followed by empty square brackets. On entry to a function, the old values of the names
7807 that appear as parameters and as automatic variables shall be pushed onto a stack. Until the
7808 function returns, reference to these names shall refer only to the new values.

7809 References to any of these names from other functions that are called from this function also
7810 refer to the new value until one of those functions uses the same name for a local variable.

7811 When a statement is an expression, unless the main operator is an assignment, execution of the
7812 statement shall write the value of the expression followed by a <newline> character.

7813 When a statement is a string, execution of the statement shall write the value of the string.

7814 Statements separated by semicolons or <newline> characters shall be executed sequentially. In
7815 an interactive invocation of bc, each time a <newline> character is read that satisfies the
7816 grammatical production:

7817 input_item : semicolon_list NEWLINE

7818 the sequential list of statements making up the semicolon_list shall be executed immediately
7819 and any output produced by that execution shall be written without any delay due to buffering.

7820 In an if statement (if(relation) statement), the statement shall be executed if the relation is true.

7821 The while statement (while(relation) statement) implements a loop in which the relation is tested;
7822 each time the relation is true, the statement shall be executed and the relation retested. When the
7823 relation is false, execution shall resume after statement.

7824 A for statement(for(expression; relation ; expression) statement) shall be the same as:

7825 first-expression
7826 while (relation) {
7827 statement
7828 last-expression
7829 }

7830 The application shall ensure that all three expressions are present.

7831 The break statement shall cause termination of a for or while statement.

7832 The auto statement (auto identifier [,identifier] . . .) shall cause the values of the identifiers to be
7833 pushed down. The identifiers can be ordinary identifiers or array identifiers. Array identifiers

2416 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7834 shall be specified by following the array name by empty square brackets. The application shall
7835 ensure that the auto statement is the first statement in a function definition.

7836 A define statement:

7837 define LETTER (opt_parameter_list) {
7838 opt_auto_define_list
7839 statement_list
7840 }

7841 defines a function named LETTER. If a function named LETTER was previously defined, the
7842 define statement shall replace the previous definition. The expression:

7843 LETTER (opt_argument_list)

7844 shall invoke the function named LETTER. The behavior is undefined if the number of
7845 arguments in the invocation does not match the number of parameters in the definition.
7846 Functions shall be defined before they are invoked. A function shall be considered to be defined
7847 within its own body, so recursive calls are valid. The values of numeric constants within a
7848 function shall be interpreted in the base specified by the value of the ibase register when the
7849 function is invoked.

7850 The return statements (return and return(expression)) shall cause termination of a function,
7851 popping of its auto variables, and specification of the result of the function. The first form shall
7852 be equivalent to return(0). The value and scale of the result returned by the function shall be the
7853 value and scale of the expression returned.

7854 The quit statement (quit) shall stop execution of a bc program at the point where the statement
7855 occurs in the input, even if it occurs in a function definition, or in an if, for, or while statement.

7856 The following functions shall be defined when the −l option is specified:

7857 s(expression)
7858 Sine of argument in radians.

7859 c(expression)
7860 Cosine of argument in radians.

7861 a(expression)
7862 Arctangent of argument.

7863 l(expression)
7864 Natural logarithm of argument.

7865 e(expression)
7866 Exponential function of argument.

7867 j(expression, expression)
7868 Bessel function of integer order.

7869 The scale of the result returned by these functions shall be the value of the scale register at the
7870 time the function is invoked. The value of the scale register after these functions have completed
7871 their execution shall be the same value it had upon invocation. The behavior is undefined if any
7872 of these functions is invoked with an argument outside the domain of the mathematical
7873 function.

7874 EXIT STATUS
7875 The following exit values shall be returned:

7876 0 All input files were processed successfully.

Shell and Utilities, Issue 6 2417

bc Utilities

7877 unspecified An error occurred.

7878 CONSEQUENCES OF ERRORS
7879 If any file operand is specified and the named file cannot be accessed, bc shall write a diagnostic
7880 message to standard error and terminate without any further action.

7881 In an interactive invocation of bc, the utility should print an error message and recover following
7882 any error in the input. In a non-interactive invocation of bc, invalid input causes undefined
7883 behavior.

7884 APPLICATION USAGE
7885 Automatic variables in bc do not work in exactly the same way as in either C or PL/1.

7886 For historical reasons, the exit status from bc cannot be relied upon to indicate that an error has
7887 occurred. Returning zero after an error is possible. Therefore, bc should be used primarily by
7888 interactive users (who can react to error messages) or by application programs that can
7889 somehow validate the answers returned as not including error messages.

7890 The bc utility always uses the period (’.’) character to represent a radix point, regardless of any
7891 decimal-point character specified as part of the current locale. In languages like C or awk, the
7892 period character is used in program source, so it can be portable and unambiguous, while the
7893 locale-specific character is used in input and output. Because there is no distinction between
7894 source and input in bc, this arrangement would not be possible. Using the locale-specific
7895 character in bc’s input would introduce ambiguities into the language; consider the following
7896 example in a locale with a comma as the decimal-point character:

7897 define f(a,b) {
7898 ...
7899 }
7900 ...

7901 f(1,2,3)

7902 Because of such ambiguities, the period character is used in input. Having input follow different
7903 conventions from output would be confusing in either pipeline usage or interactive usage, so the
7904 period is also used in output.

7905 EXAMPLES
7906 In the shell, the following assigns an approximation of the first ten digits of ’ π’ to the variable
7907 x :

7908 x=$(printf "%s\n" ’scale = 10; 104348/33215’ | bc)

7909 The following bc program prints the same approximation of ’ π’ , with a label, to standard
7910 output:

7911 scale = 10
7912 "pi equals "
7913 104348 / 33215

7914 The following defines a function to compute an approximate value of the exponential function
7915 (note that such a function is predefined if the −l option is specified):

7916 scale = 20
7917 define e(x){
7918 auto a, b, c, i, s
7919 a = 1
7920 b = 1
7921 s = 1

2418 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

7922 for (i = 1; 1 == 1; i++){
7923 a = a*x
7924 b = b*i
7925 c = a/b
7926 if (c == 0) {
7927 return(s)
7928 }
7929 s = s+c
7930 }
7931 }

7932 The following prints approximate values of the exponential function of the first ten integers:

7933 for (i = 1; i <= 10; ++i) {
7934 e(i)
7935 }

7936 RATIONALE
7937 The bc utility is implemented historically as a front-end processor for dc; dc was not selected to
7938 be part of this volume of IEEE Std. 1003.1-200x because bc was thought to have a more intuitive
7939 programmatic interface. Current implementations that implement bc using dc are expected to be
7940 compliant.

7941 The exit status for error conditions has been left unspecified for several reasons:

7942 • The bc utility is used in both interactive and non-interactive situations. Different exit codes
7943 may be appropriate for the two uses.

7944 • It is unclear when a non-zero exit should be given; divide-by-zero, undefined functions, and
7945 syntax errors are all possibilities.

7946 • It is not clear what utility the exit status has.

7947 • In the 4.3 BSD, System V, and Ninth Edition implementations, bc works in conjunction with
7948 dc. The dc utility is the parent, bc is the child. This was done to cleanly terminate bc if dc
7949 aborted.

7950 The decision to have bc exit upon encountering an inaccessible input file is based on the belief
7951 that bc file1 file2 is used most often when at least file1 contains data/function
7952 declarations/initializations. Having bc continue with prerequisite files missing is probably not
7953 useful. There is no implication in the CONSEQUENCES OF ERRORS section that bc must check
7954 all its files for accessibility before opening any of them.

7955 There was considerable debate on the appropriateness of the language accepted by bc. Several
7956 reviewers preferred to see either a pure subset of the C language or some changes to make the
7957 language more compatible with C. While the bc language has some obvious similarities to C, it
7958 has never claimed to be compatible with any version of C. An interpreter for a subset of C might
7959 be a very worthwhile utility, and it could potentially make bc obsolete. However, no such utility
7960 is known in historical practice, and it was not within the scope of this volume of
7961 IEEE Std. 1003.1-200x to define such a language and utility. If and when they are defined, it may
7962 be appropriate to include them in a future version of this volume of IEEE Std. 1003.1-200x. This
7963 left the following alternatives:

7964 1. Exclude any calculator language from this volume of IEEE Std. 1003.1-200x.

7965 The consensus of the standard developers was that a simple programmatic calculator
7966 language is very useful for both applications and interactive users. The only arguments for
7967 excluding any calculator were that it would become obsolete if and when a C-compatible

Shell and Utilities, Issue 6 2419

bc Utilities

7968 one emerged, or that the absence would encourage the development of such a C-
7969 compatible one. These arguments did not sufficiently address the needs of current
7970 application writers.

7971 2. Standardize the historical dc, possibly with minor modifications.

7972 The consensus of the standard developers was that dc is a fundamentally less usable
7973 language and that that would be far too severe a penalty for avoiding the issue of being
7974 similar to but incompatible with C.

7975 3. Standardize the historical bc, possibly with minor modifications.

7976 This was the approach taken. Most of the proponents of changing the language would not
7977 have been satisfied until most or all of the incompatibilities with C were resolved. Since
7978 most of the changes considered most desirable would break historical applications and
7979 require significant modification to historical implementations, almost no modifications
7980 were made. The one significant modification that was made was the replacement of the
7981 historical bc assignment operators "=+" , and so on, with the more modern "+=" , and so
7982 on. The older versions are considered to be fundamentally flawed because of the lexical
7983 ambiguity in uses like a=−1.

7984 In order to permit implementations to deal with backwards compatibility as they see fit,
7985 the behavior of this one ambiguous construct was made undefined. (At least three
7986 implementations have been known to support this change already, so the degree of change
7987 involved should not be great.)

7988 The ’%’ operator is the mathematical remainder operator when scale is zero. The behavior of
7989 this operator for other values of scale is from historical implementations of bc, and has been
7990 maintained for the sake of historical applications despite its non-intuitive nature.

7991 Historical implementations permit setting ibase and obase to a broader range of values. This
7992 includes values less than 2, which were not seen as sufficiently useful to standardize. These
7993 implementations do not interpret input properly for values of ibase that are greater than 16. This
7994 is because numeric constants are recognized syntactically, rather than lexically, as described in
7995 this volume of IEEE Std. 1003.1-200x. They are built from lexical tokens of single hexadecimal
7996 digits and periods. Since <blank>s between tokens are not visible at the syntactic level, it is not
7997 possible to recognize the multi-digit ‘‘digits’’ used in the higher bases properly. The ability to
7998 recognize input in these bases was not considered useful enough to require modifying these
7999 implementations. Note that the recognition of numeric constants at the syntactic level is not a
8000 problem with conformance to this volume of IEEE Std. 1003.1-200x, as it does not impact the
8001 behavior of portable applications (and correct bc programs). Historical implementations also
8002 accept input with all of the digits ’0’ −’9’ and ’A’ −’F’ regardless of the value of ibase; since
8003 digits with value greater than or equal to ibase are not really appropriate, the behavior when
8004 they appear is undefined, except for the common case of:

8005 ibase=8;
8006 /* Process in octal base. */
8007 ...
8008 ibase=A
8009 /* Restore decimal base. */

8010 In some historical implementations, if the expression to be written is an uninitialized array
8011 element, a leading <space> character and/or up to four leading 0 characters may be output
8012 before the character zero. This behavior is considered a bug; it is unlikely that any currently
8013 portable application relies on:

2420 Technical Standard (2000) (Draft July 31, 2000)

Utilities bc

8014 echo ’b[3]’ | bc

8015 returning 00000 rather than 0.

8016 Exact calculation of the number of fractional digits to output for a given value in a base other
8017 than 10 can be computationally expensive. Historical implementations use a faster
8018 approximation, and this is permitted. Note that the requirements apply only to values of obase
8019 that this volume of IEEE Std. 1003.1-200x requires implementations to support (in particular, not
8020 to 1, 0, or negative bases, if an implementation supports them as an extension).

8021 Historical implementations of bc did not allow array parameters to be passed as the last
8022 parameter to a function. New implementations are encouraged to remove this restriction even
8023 though it is not required by the grammar.

8024 FUTURE DIRECTIONS
8025 None.

8026 SEE ALSO
8027 awk

8028 CHANGE HISTORY
8029 First released in Issue 4.

8030 Issue 5
8031 FUTURE DIRECTIONS section added.

8032 Issue 6
8033 Updated to align with the IEEE P1003.2b draft standard, which included resolution of several
8034 interpretations of the ISO POSIX-2: 1993 standard.

8035 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2421

bg Utilities

8036 NAME
8037 bg — run jobs in the background

8038 SYNOPSIS
8039 UP bg [job_id ...]
8040

8041 DESCRIPTION
8042 If job control is enabled (see the description of set −m), the bg utility shall resume suspended jobs
8043 from the current environment (see Section 2.13 (on page 2273)) by running them as background
8044 jobs. If the job specified by job_id is already a running background job, the bg utility shall have no
8045 effect and shall exit successfully.

8046 Using bg to place a job into the background shall cause its process ID to become ‘‘known in the
8047 current shell execution environment’’, as if it had been started as an asynchronous list; see
8048 Section 2.9.3.1 (on page 2259).

8049 OPTIONS
8050 None.

8051 OPERANDS
8052 The following operand shall be supported:

8053 job_id Specify the job to be resumed as a background job. If no job_id operand is given,
8054 the most recently suspended job shall be used. The format of job_id is described in |
8055 the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.205, Job Control |
8056 Job ID. |

8057 STDIN
8058 Not used.

8059 INPUT FILES
8060 None.

8061 ENVIRONMENT VARIABLES
8062 The following environment variables shall affect the execution of bg:

8063 LANG Provide a default value for the internationalization variables that are unset or null.
8064 If LANG is unset or null, the corresponding value from the implementation- |
8065 defined default locale shall be used. If any of the internationalization variables |
8066 contains an invalid setting, the utility shall behave as if none of the variables had
8067 been defined.

8068 LC_ALL If set to a non-empty string value, override the values of all the other
8069 internationalization variables.

8070 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
8071 characters (for example, single-byte as opposed to multi-byte characters in
8072 arguments).

8073 LC_MESSAGES
8074 Determine the locale that should be used to affect the format and contents of
8075 diagnostic messages written to standard error.

8076 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

2422 Technical Standard (2000) (Draft July 31, 2000)

Utilities bg

8077 ASYNCHRONOUS EVENTS
8078 Default.

8079 STDOUT
8080 The output of bg shall consist of a line in the format:

8081 "[%d] %s\n", < job-number >, < command>

8082 where the fields are as follows:

8083 <job-number> A number that can be used to identify the job to the wait, fg, and kill utilities. Using
8084 these utilities, the job can be identified by prefixing the job number with ’%’ .

8085 <command> The associated command that was given to the shell.

8086 STDERR
8087 Used only for diagnostic messages.

8088 OUTPUT FILES
8089 None.

8090 EXTENDED DESCRIPTION
8091 None.

8092 EXIT STATUS
8093 The following exit values shall be returned:

8094 0 Successful completion.

8095 >0 An error occurred.

8096 CONSEQUENCES OF ERRORS
8097 If job control is disabled, the bg utility shall exit with an error and no job shall be placed in the
8098 background.

8099 APPLICATION USAGE
8100 A job is generally suspended by typing the SUSP character (<control>-Z on most systems); see |
8101 the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. At |
8102 that point, bg can put the job into the background. This is most effective when the job is |
8103 expecting no terminal input and its output has been redirected to non-terminal files. A
8104 background job can be forced to stop when it has terminal output by issuing the command:

8105 stty tostop

8106 A background job can be stopped with the command:

8107 kill −s stop job ID

8108 The bg utility does not work as expected when it is operating in its own utility execution
8109 environment because that environment has no suspended jobs. In the following examples:

8110 ... | xargs bg
8111 (bg)

8112 each bg operates in a different environment and does not share its parent shell’s understanding
8113 of jobs. For this reason, bg is generally implemented as a shell regular built-in. |

8114 EXAMPLES
8115 None.

Shell and Utilities, Issue 6 2423

bg Utilities

8116 RATIONALE
8117 The extensions to the shell specified in this volume of IEEE Std. 1003.1-200x have mostly been
8118 based on features provided by the KornShell. The job control features provided by bg, fg, and jobs
8119 are also based on the KornShell. The standard developers examined the characteristics of the C
8120 shell versions of these utilities and found that differences exist. Despite widespread use of the C
8121 shell, the KornShell versions were selected for this volume of IEEE Std. 1003.1-200x to maintain a
8122 degree of uniformity with the rest of the KornShell features selected (such as the very popular
8123 command line editing features).

8124 The bg utility is expected to wrap its output if the output exceeds the number of display
8125 columns.

8126 FUTURE DIRECTIONS
8127 None.

8128 SEE ALSO
8129 fg , kill , jobs , wait

8130 CHANGE HISTORY
8131 First released in Issue 4.

8132 Issue 6
8133 This utility is now marked as part of the User Portability Utilities option.

8134 The JC margin marker on the SYNOPSIS is removed since support for Job Control is mandatory
8135 in this issue. This is a FIPS requirement.

|

2424 Technical Standard (2000) (Draft July 31, 2000)

Utilities c99

8136 NAME |
8137 c99 — compile standard C programs |

8138 SYNOPSIS
8139 CD c99 [−c][−D name[=value]] ... [−E][−g][−I directory] ... [−L directory] |
8140 ... [−o outfile][−O][−s][−U name] ... operand ... |
8141

8142 DESCRIPTION
8143 The c99 utility is an interface to the standard C compilation system; it shall accept source code |
8144 conforming to the ISO C standard. The system conceptually consists of a compiler and link
8145 editor. The files referenced by operands shall be compiled and linked to produce an executable
8146 file. (It is unspecified whether the linking occurs entirely within the operation of c99; some |
8147 systems may produce objects that are not fully resolved until the file is executed.)

8148 If the −c option is specified, for all path name operands of the form file .c, the files:

8149 $(basename pathname .c).o

8150 shall be created as the result of successful compilation. If the −c option is not specified, it is
8151 unspecified whether such .o files are created or deleted for the file .c operands.

8152 If there are no options that prevent link editing (such as −c or −E), and all operands compile and
8153 link without error, the resulting executable file shall be written according to the −o outfile option
8154 (if present) or to the file a.out.

8155 The executable file shall be created as specified in Section 1.7.1.4 (on page 2209), except that the
8156 file permission bits shall be set to:

8157 S_IRWXO | S_IRWXG | S_IRWXU

8158 and the bits specified by the umask of the process shall be cleared.

8159 OPTIONS
8160 The c99 utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
8161 12.2, Utility Syntax Guidelines, except that: |

8162 • The −l library operands have the format of options, but their position within a list of
8163 operands affects the order in which libraries are searched.

8164 • The order of specifying the −I and −L options is significant.

8165 • Portable applications shall specify each option separately; that is, grouping option letters (for
8166 example, −cO) need not be recognized by all implementations.

8167 The following options shall be supported:

8168 −c Suppress the link-edit phase of the compilation, and do not remove any object files
8169 that are produced.

8170 −g Produce symbolic information in the object or executable files; the nature of this
8171 information is unspecified, and may be modified by implementation-defined |
8172 interactions with other options. |

8173 −s Produce object or executable files, or both, from which symbolic and other
8174 information not required for proper execution using the exec family defined in the
8175 System Interfaces volume of IEEE Std. 1003.1-200x, has been removed (stripped). If
8176 both −g and −s options are present, the action taken is unspecified.

8177 −o outfile Use the path name outfile , instead of the default a.out, for the executable file
8178 produced. If the −o option is present with −c or −E, the result is unspecified.

Shell and Utilities, Issue 6 2425

c99 Utilities

8179 −D name[=value]
8180 Define name as if by a C-language #define directive. If no =value is given, a value of
8181 1 shall be used. The −D option has lower precedence than the −U option. That is, if
8182 name is used in both a −U and a −D option, name shall be undefined regardless of
8183 the order of the options. Additional implementation-defined names may be |
8184 provided by the compiler. Implementations shall support at least 2 048 bytes of −D
8185 definitions and 256 names.

8186 −E Copy C-language source files to standard output, expanding all preprocessor
8187 directives; no compilation shall be performed. If any operand is not a text file, the
8188 effects are unspecified.

8189 −I directory Change the algorithm for searching for headers whose names are not absolute path
8190 names to look in the directory named by the directory path name before looking in
8191 the usual places. Thus, headers whose names are enclosed in double-quotes (" ")
8192 shall be searched for first in the directory of the file with the #include line, then in
8193 directories named in −I options, and last in the usual places. For headers whose
8194 names are enclosed in angle brackets ("< >"), the header shall be searched for only
8195 in directories named in −I options and then in the usual places. Directories named
8196 in −I options shall be searched in the order specified. Implementations shall
8197 support at least ten instances of this option in a single c99 command invocation. |

8198 −L directory Change the algorithm of searching for the libraries named in the −l objects to look
8199 in the directory named by the directory path name before looking in the usual
8200 places. Directories named in −L options shall be searched in the order specified.
8201 Implementations shall support at least ten instances of this option in a single c99 |
8202 command invocation. If a directory specified by a −L option contains files named
8203 libc.a, libm.a, libl.a, or liby.a, the results are unspecified.

8204 −O Optimize. The nature of the optimization is unspecified.

8205 −U name Remove any initial definition of name.

8206 Multiple instances of the −D, −I, −U, and −L options can be specified.

8207 OPERANDS
8208 An operand is either in the form of a path name or the form −l library . The application shall
8209 ensure that at least one operand of the path name form is specified. The following operands shall
8210 be supported:

8211 file.c A C-language source file to be compiled and optionally linked. The application
8212 shall ensure that the operand is of this form if the −c option is used.

8213 file.a A library of object files typically produced by the ar utility, and passed directly to
8214 the link editor. Implementations may recognize implementation-defined suffixes |
8215 other than .a as denoting object file libraries. |

8216 file.o An object file produced by c99 −c and passed directly to the link editor. |
8217 Implementations may recognize implementation-defined suffixes other than .o as |
8218 denoting object files.

8219 The processing of other files is implementation-defined. |

8220 −l library (The letter ell.) Search the library named:

8221 lib library .a

8222 A library shall be searched when its name is encountered, so the placement of a −l
8223 operand is significant. Several standard libraries can be specified in this manner, as

2426 Technical Standard (2000) (Draft July 31, 2000)

Utilities c99

8224 described in the EXTENDED DESCRIPTION section. Implementations may |
8225 recognize implementation-defined suffixes other than .a as denoting libraries. |

8226 STDIN
8227 Not used.

8228 INPUT FILES
8229 The input file shall be one of the following: a text file containing a C-language source program,
8230 an object file in the format produced by c99 −c, or a library of object files, in the format produced |
8231 by archiving zero or more object files, using ar. Implementations may supply additional utilities
8232 that produce files in these formats. Additional input file formats are implementation-defined. |

8233 ENVIRONMENT VARIABLES
8234 The following environment variables shall affect the execution of c99: |

8235 LANG Provide a default value for the internationalization variables that are unset or null.
8236 If LANG is unset or null, the corresponding value from the implementation- |
8237 defined default locale shall be used. If any of the internationalization variables |
8238 contains an invalid setting, the utility shall behave as if none of the variables had
8239 been defined.

8240 LC_ALL If set to a non-empty string value, override the values of all the other
8241 internationalization variables.

8242 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
8243 characters (for example, single-byte as opposed to multi-byte characters in
8244 arguments and input files).

8245 LC_MESSAGES
8246 Determine the locale that should be used to affect the format and contents of
8247 diagnostic messages written to standard error.

8248 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

8249 TMPDIR Provide a path name that should override the default directory for temporary files,
8250 XSI if any. On XSI-conforming systems, provide a path name that shall override the
8251 default directory for temporary files, if any.

8252 ASYNCHRONOUS EVENTS
8253 Default.

8254 STDOUT
8255 If more than one file operand ending in .c (or possibly other unspecified suffixes) is given, for |
8256 each such file:

8257 "%s:\n", < file >

8258 may be written. These messages, if written, shall precede the processing of each input file; they
8259 shall not be written to the standard output if they are written to the standard error, as described
8260 in the STDERR section.

8261 If the −E option is specified, the standard output shall be a text file that represents the results of
8262 the preprocessing stage of the language; it may contain extra information appropriate for
8263 subsequent compilation passes.

8264 STDERR
8265 Used only for diagnostic messages. If more than one file operand ending in .c (or possibly other |
8266 unspecified suffixes) is given, for each such file:

Shell and Utilities, Issue 6 2427

c99 Utilities

8267 "%s:\n", < file >

8268 may be written to allow identification of the diagnostic and warning messages with the
8269 appropriate input file. These messages, if written, shall precede the processing of each input file;
8270 they shall not be written to the standard error if they are written to the standard output, as
8271 described in the STDOUT section.

8272 This utility may produce warning messages about certain conditions that do not warrant
8273 returning an error (non-zero) exit value.

8274 OUTPUT FILES
8275 Object files or executable files or both are produced in unspecified formats.

8276 EXTENDED DESCRIPTION

8277 Standard Libraries

8278 The c99 utility shall recognize the following −l operands for standard libraries: |

8279 −l c This operand shall make visible all library functions referenced in the System
8280 Interfaces volume of IEEE Std. 1003.1-200x, with the possible exception of those
8281 functions listed as residing in <aio.h>, <arpa/inet.h>, <math.h>, <mqueue.h>,
8282 <netdb.h>, <netinet/in.h>, <pthread.h>, <sched.h>, <semaphore.h>,
8283 <sys/socket.h>, pthread_atfork() in <unistd.h>, and those functions marked as an
8284 RT extension in <sys/mman.h> and <time.h>. This operand shall not be required
8285 to be present to cause a search of this library.

8286 −l l This operand shall make visible all functions required by the C-language output of
8287 lex that are not made available through the −l c operand.

8288 −l pthread This operand shall make visible all functions referenced in <pthread.h> and
8289 pthread_atfork() referenced in <unistd.h>. An implementation may search this
8290 library in the absence of this operand.

8291 −l m This operand shall make visible all functions referenced in <math.h>. An
8292 implementation may search this library in the absence of this operand. |

8293 −l rt This operand shall make visible all functions referenced in <aio.h>, <mqueue.h>, |
8294 <sched.h>, and <semaphore.h>, and those functions marked as an RT extension in
8295 <sys/mman.h> and <time.h>. An implementation may search this library in the
8296 absence of this operand. |

8297 −l xnet This operand makes visible all functions referenced in <arpa/inet.h>, <netdb.h>,
8298 <netinet/in.h>, and <sys/socket.h>. An implementation may search this library in
8299 the absence of this operand.

8300 −l y This operand shall make visible all functions required by the C-language output of
8301 yacc that are not made available through the −l c operand.

8302 In the absence of options that inhibit invocation of the link editor, such as −c or −E, the c99 utility |
8303 shall cause the equivalent of a −l c operand to be passed to the link editor as the last −l operand,
8304 causing it to be searched after all other object files and libraries are loaded.

8305 It is unspecified whether the libraries libc.a, libm.a, librt.a, libpthread.a, libl.a, liby.a, or libxnet
8306 exist as regular files. The implementation may accept as −l operands names of objects that do
8307 not exist as regular files.

2428 Technical Standard (2000) (Draft July 31, 2000)

Utilities c99

8308 External Symbols

8309 The C compiler and link editor shall support the significance of external symbols up to a length
8310 of at least 31 bytes; the action taken upon encountering symbols exceeding the implementation- |
8311 defined maximum symbol length is unspecified. |

8312 The compiler and link editor shall support a minimum of 511 external symbols per source or
8313 object file, and a minimum of 4 095 external symbols in total. A diagnostic message shall be
8314 written to the standard output if the implementation-defined limit is exceeded; other actions are |
8315 unspecified.

8316 Programming Environments

8317 All implementations shall support one of the following programming environments as a default. |
8318 Implementations may support more than one of the following programming environments.
8319 Applications can use sysconf() or getconf to determine which programming environments are
8320 supported.

8321 Table 4-4 Programming Environments: Type Sizes
__

8322 Programming Environment Bits in Bits in Bits in Bits in
8323 getconf Name int long pointer off_t__
8324 _POSIX_V6_ILP32_OFF32 32 32 32 32
8325 _POSIX_V6_ILP32_OFFBIG 32 32 32 ≥64
8326 _POSIX_V6_LP64_OFF64 32 64 64 64
8327 _POSIX_V6_LPBIG_OFFBIG ≥32 ≥64 ≥64 ≥64__LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

8328 Notes to Reviewers |
8329 This section with side shading will not appear in the final copy. - Ed.

8330 The names of the macros above may be changed. This has been added to the issues list.

8331 Implementations provide configuration strings for C compiler flags, linker/loader flags, and |
8332 libraries for each supported environment. When an application needs to use a specific
8333 programming environment rather than the implementation default programming environment
8334 while compiling, the application shall first verify that the implementation supports the desired
8335 environment. If the desired programming environment is supported, the application shall then
8336 invoke c99 with the appropriate C compiler flags as the first options for the compile, the |
8337 appropriate linker/loader flags after any other options but before any operands, and the
8338 appropriate libraries at the end of the operands.

8339 Portable applications shall not attempt to link together object files compiled for different
8340 programming models. Applications shall also be aware that binary data placed in shared
8341 memory or in files might not be recognized by applications built for other programming models.

Shell and Utilities, Issue 6 2429

c99 Utilities

8342 Table 4-5 Programming Environments: c99 and cc Arguments |
__ |

8343 Programming Environment c99 and cc Arguments
8344 getconf Name Use getconf Name__
8345 _POSIX_V6_ILP32_OFF32 C Compiler Flags POSIX_V6_ILP32_OFF32_CFLAGS
8346 Linker/Loader Flags POSIX_V6_ILP32_OFF32_LDFLAGS
8347 Libraries POSIX_V6_ILP32_OFF32_LIBS__
8348 _POSIX_V6_ILP32_OFFBIG C Compiler Flags POSIX_V6_ILP32_OFFBIG_CFLAGS
8349 Linker/Loader Flags POSIX_V6_ILP32_OFFBIG_LDFLAGS
8350 Libraries POSIX_V6_ILP32_OFFBIG_LIBS__
8351 _POSIX_V6_LP64_OFF64 C Compiler Flags POSIX_V6_LP64_OFF64_CFLAGS
8352 Linker/Loader Flags POSIX_V6_LP64_OFF64_LDFLAGS
8353 Libraries POSIX_V6_LP64_OFF64_LIBS__
8354 _POSIX_V6_LPBIG_OFFBIG C Compiler Flags POSIX_V6_LPBIG_OFFBIG_CFLAGS
8355 Linker/Loader Flags POSIX_V6_LPBIG_OFFBIG_LDFLAGS
8356 Libraries POSIX_V6_LPBIG_OFFBIG_LIBS__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

8357 Notes to Reviewers |
8358 This section with side shading will not appear in the final copy. - Ed.

8359 The names of the macros above may be changed. This has been added to the issues list.

8360 EXIT STATUS
8361 The following exit values shall be returned:

8362 0 Successful compilation or link edit.

8363 >0 An error occurred.

8364 CONSEQUENCES OF ERRORS
8365 When c99 encounters a compilation error that causes an object file not to be created, it shall write |
8366 a diagnostic to standard error and continue to compile other source code operands, but it shall
8367 not perform the link phase and return a non-zero exit status. If the link edit is unsuccessful, a
8368 diagnostic message shall be written to standard error and c99 exits with a non-zero status. A |
8369 portable application shall rely on the exit status of c99, rather than on the existence or mode of |
8370 the executable file.

8371 APPLICATION USAGE
8372 Since the c99 utility usually creates files in the current directory during the compilation process, |
8373 it is typically necessary to run the c99 utility in a directory in which a file can be created. |

8374 On systems providing POSIX Conformance (see the Base Definitions volume of |
8375 IEEE Std. 1003.1-200x, Chapter 2, Conformance), c99 is required only with the the C-Language |
8376 Development option; XSI-conformant systems always provide c99. |

8377 Some historical implementations have created .o files when −c is not specified and more than
8378 one source file is given. Since this area is left unspecified, the application cannot rely on .o files
8379 being created, but it also must be prepared for any related .o files that already exist being deleted
8380 at the completion of the link edit.

8381 Some historical implementations have permitted −L options to be interspersed with −l operands
8382 on the command line. For an application to compile consistently on systems that do not behave
8383 like this, it is necessary for a portable application to supply all −L options before any of the −l
8384 options.

2430 Technical Standard (2000) (Draft July 31, 2000)

Utilities c99

8385 There is the possible implication that if a user supplies versions of the standard library functions
8386 (before they would be encountered by an implicit −l c or explicit −l m), that those versions
8387 would be used in place of the standard versions. There are various reasons this might not be
8388 true (functions defined as macros, manipulations for clean name space, and so on), so the
8389 existence of files named in the same manner as the standard libraries within the −L directories is
8390 explicitly stated to produce unspecified behavior.

8391 All of the functions specified in the System Interfaces volume of IEEE Std. 1003.1-200x may be
8392 made visible by implementations when the Standard C Library is searched. Portable applications
8393 must explicitly request searching the other standard libraries when functions made visible by
8394 those libraries are used.

8395 EXAMPLES

8396 1. The following usage example compiles foo.c and creates the executable file foo:

8397 c99 −o foo foo.c

8398 The following usage example compiles foo.c and creates the object file foo.o:

8399 c99 −c foo.c

8400 The following usage example compiles foo.c and creates the executable file a.out:

8401 c99 foo.c

8402 The following usage example compiles foo.c, links it with bar.o, and creates the executable
8403 file a.out. It also creates and leaves foo.o:

8404 c99 foo.c bar.o

8405 2. The following example shows how an application using threads interfaces can test for
8406 support of and use a programming environment supporting 32-bit int, long, and pointer
8407 types and an off_t type using at least 64 bits:

8408 if [$(getconf _POSIX_V6_ILP32_OFFBIG) != " −1"]
8409 then
8410 c99 $(getconf POSIX_V6_ILP32_OFFBIG_CFLAGS) −D_XOPEN_SOURCE=600 \
8411 $(getconf POSIX_V6_ILP32_OFFBIG_LDFLAGS) foo.c −o foo \
8412 $(getconf POSIX_V6_ILP32_OFFBIG_LIBS) −l pthread
8413 else
8414 echo ILP32_OFFBIG programming environment not supported
8415 exit 1
8416 fi

8417 Notes to Reviewers
8418 This section with side shading will not appear in the final copy. - Ed.

8419 The names of the macros above may be changed. This has been added to the issues list.

Shell and Utilities, Issue 6 2431

c99 Utilities

8420 3. The following examples clarify the use and interactions of −L options and −l operands.

8421 Consider the case in which module a.c calls function f() in library libQ.a, and module b.c
8422 calls function g() in library libp.a. Assume that both libraries reside in /a/b/c. The
8423 command line to compile and link in the desired way is:

8424 c99 −L /a/b/c main.o a.c −l Q b.c −l p

8425 In this case the −l Q operand need only precede the first −l p operand, since both libQ.a
8426 and libp.a reside in the same directory.

8427 Multiple −L operands can be used when library name collisions occur. Building on the
8428 previous example, suppose that the user wants to use a new libp.a, in /a/a/a, but still wants
8429 f() from /a/b/c/libQ.a:

8430 c99 −L /a/a/a −L /a/b/c main.o a.c −l Q b.c −l p

8431 In this example, the linker searches the −L options in the order specified, and finds
8432 /a/a/a/libp.a before /a/b/c/libp.a when resolving references for b.c. The order of the −l
8433 operands is still important, however.

8434 RATIONALE
8435 The c99 utility is based on the c89 utility originally introduced in the ISO POSIX-2: 1993 standard. |

8436 FUTURE DIRECTIONS
8437 None.

8438 SEE ALSO
8439 ar , getconf , make , nm, strip , umask , the System Interfaces volume of IEEE Std. 1003.1-200x,
8440 sysconf()

8441 CHANGE HISTORY
8442 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard. |

2432 Technical Standard (2000) (Draft July 31, 2000)

Utilities cal

8443 NAME
8444 cal — print a calendar

8445 SYNOPSIS
8446 XSI cal [[month] year]
8447

8448 DESCRIPTION
8449 The cal utility shall write a calendar to standard output using the Julian calendar for dates from |
8450 January 1, 1 through September 2, 1752 and the Gregorian calendar for dates from September 14, |
8451 1752 through December 31, 9999 as though the Gregorian calendar had been adopted on |
8452 September 14, 1752. |

8453 OPTIONS
8454 None.

8455 OPERANDS
8456 The following operands shall be supported:

8457 month Specify the month to be displayed, represented as a decimal integer from 1
8458 (January) to 12 (December). The default shall be the current month.

8459 year Specify the year for which the calendar is displayed, represented as a decimal
8460 integer from 1 to 9999. The default shall be the current year.

8461 STDIN
8462 Not used.

8463 INPUT FILES
8464 None.

8465 ENVIRONMENT VARIABLES
8466 The following environment variables shall affect the execution of cal:

8467 LANG Provide a default value for the internationalization variables that are unset or null.
8468 If LANG is unset or null, the corresponding value from the implementation- |
8469 defined default locale shall be used. If any of the internationalization variables |
8470 contains an invalid setting, the utility shall behave as if none of the variables had
8471 been defined.

8472 LC_ALL If set to a non-empty string value, override the values of all the other
8473 internationalization variables.

8474 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
8475 characters (for example, single-byte as opposed to multi-byte characters in
8476 arguments).

8477 LC_MESSAGES
8478 Determine the locale that should be used to affect the format and contents of
8479 diagnostic messages written to standard error, and informative messages written
8480 to standard output.

8481 LC_TIME Determine the format and contents of the calendar.

8482 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

8483 TZ Determine the timezone used to calculate the value of the current month.

Shell and Utilities, Issue 6 2433

cal Utilities

8484 ASYNCHRONOUS EVENTS
8485 Default.

8486 STDOUT
8487 The standard output shall be used to display the calendar, in an unspecified format.

8488 STDERR
8489 Used only for diagnostic messages.

8490 OUTPUT FILES
8491 None.

8492 EXTENDED DESCRIPTION
8493 None.

8494 EXIT STATUS
8495 The following exit values shall be returned:

8496 0 Successful completion.

8497 >0 An error occurred.

8498 CONSEQUENCES OF ERRORS
8499 Default.

8500 APPLICATION USAGE
8501 Note that:

8502 cal 83

8503 refers to A.D. 83, not 1983.

8504 EXAMPLES
8505 None.

8506 RATIONALE
8507 None.

8508 FUTURE DIRECTIONS
8509 A future revision of IEEE Std. 1003.1-200x may support locale-specific recognition of the date of |
8510 adoption of the Gregorian calendar. |

8511 SEE ALSO
8512 None.

8513 CHANGE HISTORY
8514 First released in Issue 2.

8515 Issue 4
8516 Format reorganized.

8517 Internationalized environment variable support mandated. |

8518 Issue 6 |
8519 The DESCRIPTION is updated to allow for traditional behavior for years before the adoption of |
8520 the Gregorian calendar. |

2434 Technical Standard (2000) (Draft July 31, 2000)

Utilities cat

8521 NAME
8522 cat — concatenate and print files

8523 SYNOPSIS
8524 cat [−u][file ...]

8525 DESCRIPTION
8526 The cat utility reads files in sequence and writes their contents to the standard output in the
8527 same sequence.

8528 OPTIONS
8529 The cat utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
8530 12.2, Utility Syntax Guidelines. |

8531 The following option shall be supported:

8532 −u Write bytes from the input file to the standard output without delay as each is
8533 read.

8534 OPERANDS
8535 The following operand shall be supported:

8536 file A path name of an input file. If no file operands are specified, the standard input is
8537 used. If a file is ’ −’ , the cat utility shall read from the standard input at that point
8538 in the sequence. The cat utility shall not close and reopen standard input when it is
8539 referenced in this way, but shall accept multiple occurrences of ’ −’ as a file
8540 operand.

8541 STDIN
8542 The standard input is used only if no file operands are specified, or if a file operand is ’ −’ . See
8543 the INPUT FILES section.

8544 INPUT FILES
8545 The input files can be any file type.

8546 ENVIRONMENT VARIABLES
8547 The following environment variables shall affect the execution of cat:

8548 LANG Provide a default value for the internationalization variables that are unset or null.
8549 If LANG is unset or null, the corresponding value from the implementation- |
8550 defined default locale shall be used. If any of the internationalization variables |
8551 contains an invalid setting, the utility shall behave as if none of the variables had
8552 been defined.

8553 LC_ALL If set to a non-empty string value, override the values of all the other
8554 internationalization variables.

8555 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
8556 characters (for example, single-byte as opposed to multi-byte characters in
8557 arguments).

8558 LC_MESSAGES
8559 Determine the locale that should be used to affect the format and contents of
8560 diagnostic messages written to standard error.

8561 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Shell and Utilities, Issue 6 2435

cat Utilities

8562 ASYNCHRONOUS EVENTS
8563 Default.

8564 STDOUT
8565 The standard output shall contain the sequence of bytes read from the input files. Nothing else
8566 shall be written to the standard output.

8567 STDERR
8568 Used only for diagnostic messages.

8569 OUTPUT FILES
8570 None.

8571 EXTENDED DESCRIPTION
8572 None.

8573 EXIT STATUS
8574 The following exit values shall be returned:

8575 0 All input files were output successfully.

8576 >0 An error occurred.

8577 CONSEQUENCES OF ERRORS
8578 Default.

8579 APPLICATION USAGE
8580 The −u option has value in prototyping non-blocking reads from FIFOs. The intent is to support
8581 the following sequence:

8582 mkfifo foo
8583 cat −u foo > /dev/tty13 &
8584 cat −u > foo

8585 It is unspecified whether standard output is or is not buffered in the default case. This is
8586 sometimes of interest when standard output is associated with a terminal, since buffering may
8587 delay the output. The presence of the −u option guarantees that unbuffered I/O is available. It is |
8588 implementation-defined whether the cat utility buffers output if the −u option is not specified. |
8589 Traditionally, the −u option is implemented using the equivalent of the setvbuf() function
8590 defined in the System Interfaces volume of IEEE Std. 1003.1-200x.

8591 EXAMPLES
8592 The following command:

8593 cat myfile

8594 writes the contents of the file myfile to standard output.

8595 The following command:

8596 cat doc1 doc2 > doc.all

8597 concatenates the files doc1 and doc2 and writes the result to doc.all.

8598 Because of the shell language mechanism used to perform output redirection, a command such
8599 as this:

8600 cat doc doc.end > doc

8601 causes the original data in doc to be lost.

8602 The command:

2436 Technical Standard (2000) (Draft July 31, 2000)

Utilities cat

8603 cat start − middle − end > file

8604 when standard input is a terminal, gets two arbitrary pieces of input from the terminal with a
8605 single invocation of cat. Note, however, that if standard input is a regular file, this would be
8606 equivalent to the command:

8607 cat start − middle /dev/null end > file

8608 because the entire contents of the file would be consumed by cat the first time ’ −’ was used as a
8609 file operand and an end-of-file condition would be detected immediately when ’ −’ was
8610 referenced the second time.

8611 RATIONALE
8612 Historical versions of the cat utility include the options −e, −t, and −v, which permit the ends of
8613 lines, <tab>s, and invisible characters, respectively, to be rendered visible in the output. The
8614 standard developers omitted these options because they provide too fine a degree of control
8615 over what is made visible, and similar output can be obtained using a command such as:

8616 sed −n −e ’s/$/$/’ −e l pathname

8617 The −s option was omitted because it corresponds to different functions in BSD and System V-
8618 based systems. The BSD −s option to squeeze blank lines can be accomplished by the shell script
8619 shown in following example:

8620 sed −n ’
8621 # Write non-empty lines.
8622 /./ {
8623 p
8624 d
8625 }
8626 # Write a single empty line, then look for more empty lines.
8627 /ˆ$/ p
8628 # Get next line, discard the held <newline> (empty line),
8629 # and look for more empty lines.
8630 :Empty
8631 /ˆ$/ {
8632 N
8633 s/.//
8634 b Empty
8635 }
8636 # Write the non-empty line before going back to search
8637 # for the first in a set of empty lines.
8638 p
8639 ’

8640 The System V −s option to silence error messages can be accomplished by redirecting the
8641 standard error. Note that the BSD documentation for cat uses the term ‘‘blank line’’ to mean the
8642 same as the POSIX ‘‘empty line’’: a line consisting only of a <newline>.

8643 The BSD −n option was omitted because similar functionality can be obtained from the −n
8644 option of the pr utility.

8645 FUTURE DIRECTIONS
8646 None.

Shell and Utilities, Issue 6 2437

cat Utilities

8647 SEE ALSO
8648 more

8649 CHANGE HISTORY
8650 First released in Issue 2.

8651 Issue 4
8652 Aligned with the ISO/IEC 9945-2: 1993 standard.

2438 Technical Standard (2000) (Draft July 31, 2000)

Utilities cd

8653 NAME
8654 cd — change the working directory

8655 SYNOPSIS
8656 cd [−L] [−P] [directory]

8657 cd − |

8658 DESCRIPTION |
8659 The cd utility shall change the working directory of the current shell execution environment (see
8660 Section 2.13 (on page 2273)) by executing the following steps in sequence. (In the following
8661 steps, the symbol curpath represents an intermediate value used to simplify the description of
8662 the algorithm used by cd. There is no requirement that curpath be made visible to the
8663 application.)

8664 1. If no directory operand is given and the HOME environment variable is empty or
8665 undefined, the default behavior is implementation-defined and no further steps shall be |
8666 taken. |

8667 2. If no directory operand is given and the HOME environment variable is set to a non-empty
8668 value, the cd utility shall behave as if the directory named in the HOME environment
8669 variable was specified as the directory operand.

8670 3. If the directory operand begins with a slash character, set curpath to the operand and |
8671 proceed to step 7. |

8672 4. If the first component of the directory operand is dot or dot-dot, proceed to step 6. |

8673 5. Starting with the first path name in the colon-separated path names of CDPATH (see the |
8674 ENVIRONMENT VARIABLES section) if the path name is non-null, test if the |
8675 concatenation of that path name, a slash character, and the directory operand names a |
8676 directory. If the path name is null, test if the concatenation of dot, a slash character, and the |
8677 operand names a directory. In either case, if the resulting string names an existing
8678 directory, set curpath to that string and proceed to step 7. Otherwise, repeat this step with |
8679 the next path name in CDPATH until all path names have been tested.

8680 6. Set curpath to the string formed by the concatenation of the value of PWD a slash |
8681 character, and the operand. |

8682 7. If the −P option is in effect, the cd utility shall perform actions equivalent to the chdir() |
8683 function, called with curpath as the path argument. If these actions succeed, the PWD
8684 environment variable shall be set to an absolute path name for the current working
8685 directory and shall not contain file name components that, in the context of path name
8686 resolution, refer to a file of type symbolic link. If there is insufficient permission on the new
8687 directory, or on any parent of that directory, to determine the current working directory,
8688 the value of the PWD environment variable is unspecified. If the actions equivalent to
8689 chdir() fail for any reason, the cd utility shall display an appropriate error message and not
8690 alter the PWD environment variable. Whether the actions equivalent to chdir() succeed or
8691 fail, no further steps shall be taken.

8692 8. The curpath value shall then be converted to canonical form as follows, considering each
8693 component from beginning to end, in sequence:

8694 a. Dot components and any slashes that separate them from the next component shall
8695 be deleted.

8696 b. For each dot-dot component, if there is a preceding component and it is neither root
8697 nor dot-dot, the preceding component, all slashes separating the preceding
8698 component from dot-dot, dot-dot, and all slashes separating dot-dot from the

Shell and Utilities, Issue 6 2439

cd Utilities

8699 following component shall be deleted.

8700 c. An implementation may further simplify curpath by removing any trailing slash
8701 characters that are not also leading slashes, replacing multiple non-leading
8702 consecutive slashes with a single slash, and replacing three or or more leading
8703 slashes with a single slash. If, as a result of this canonicalization, the curpath variable
8704 is null, no further steps shall be taken.

8705 9. The cd utility shall then perform actions equivalent to the chdir() function called with
8706 curpath as the path argument. If these actions failed for any reason, the cd utility shall
8707 display an appropriate error message and no further steps shall be taken. The PWD
8708 environment variable shall be set to curpath.

8709 If, during the execution of the above steps, the PWD environment variable is changed, the |
8710 OLDPWD environment variable shall also be changed to the value of the old working directory
8711 (that is the current working directory immediately prior to the call to cd). |

8712 OPTIONS
8713 The cd utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
8714 Utility Syntax Guidelines. |

8715 The following options shall be supported by the implementation:

8716 −L Handle the operand dot-dot logically; symbolic link components shall not be
8717 resolved before dot-dot components are processed (see steps 5. and 6. in the
8718 DESCRIPTION).

8719 −P Handle the operand dot-dot physically; symbolic link components shall be
8720 resolved before dot-dot components are processed (see step 4. in the
8721 DESCRIPTION).

8722 If both −L and −P options are specified, the last of these options shall be used and all others
8723 ignored. If neither −L nor −P is specified, the operand shall be handled dot-dot logically; see the
8724 DESCRIPTION.

8725 OPERANDS
8726 The following operands shall be supported:

8727 directory An absolute or relative path name of the directory that shall become the new
8728 working directory. The interpretation of a relative path name by cd depends on the
8729 −L option and the CDPATH and PWD environment variables. If directory is an
8730 empty string, the results are unspecified. |

8731 − When a hyphen is used as the operand, this is equivalent to the command: |

8732 cd "$OLDPWD" && pwd

8733 which changes to the previous working directory and then writes its name. |

8734 STDIN
8735 Not used.

8736 INPUT FILES
8737 None.

8738 ENVIRONMENT VARIABLES
8739 The following environment variables shall affect the execution of cd:

8740 CDPATH A colon-separated list of path names that refer to directories. The cd utility shall
8741 use this list in its attempt to change the directory, as described in the
8742 DESCRIPTION. An empty string in place of a directory path name represents the

2440 Technical Standard (2000) (Draft July 31, 2000)

Utilities cd

8743 current directory. If CDPATH is not set, it shall be treated as if it were an empty
8744 string.

8745 HOME The name of the directory, used when no directory operand is specified.

8746 LANG Provide a default value for the internationalization variables that are unset or null.
8747 If LANG is unset or null, the corresponding value from the implementation- |
8748 defined default locale shall be used. If any of the internationalization variables |
8749 contains an invalid setting, the utility shall behave as if none of the variables had
8750 been defined.

8751 LC_ALL If set to a non-empty string value, override the values of all the other
8752 internationalization variables.

8753 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
8754 characters (for example, single-byte as opposed to multi-byte characters in
8755 arguments).

8756 LC_MESSAGES
8757 Determine the locale that should be used to affect the format and contents of
8758 diagnostic messages written to standard error.

8759 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

8760 OLDPWD A path name of the previous working directory, used by cd −. |

8761 PWD This variable shall be set as specified in the DESCRIPTION. If an application sets
8762 or unsets the value of PWD, the behavior of cd is unspecified.

8763 ASYNCHRONOUS EVENTS
8764 Default.

8765 STDOUT
8766 If a non-empty directory name from CDPATH is used, or if cd − is used, an absolute path name of |
8767 the new working directory shall be written to the standard output as follows: |

8768 "%s\n", < new directory >

8769 Otherwise, there shall be no output.

8770 STDERR
8771 Used only for diagnostic messages.

8772 OUTPUT FILES
8773 None.

8774 EXTENDED DESCRIPTION
8775 None.

8776 EXIT STATUS
8777 The following exit values shall be returned:

8778 0 The directory was successfully changed.

8779 >0 An error occurred.

8780 CONSEQUENCES OF ERRORS
8781 The working directory shall remain unchanged.

Shell and Utilities, Issue 6 2441

cd Utilities

8782 APPLICATION USAGE
8783 Since cd affects the current shell execution environment, it is always provided as a shell regular
8784 built-in. If it is called in a subshell or separate utility execution environment, such as one of the
8785 following:

8786 (cd /tmp)
8787 nohup cd
8788 find . −exec cd {} \;

8789 it does not affect the working directory of the caller’s environment.

8790 The user must have execute (search) permission in directory in order to change to it.

8791 EXAMPLES
8792 None.

8793 RATIONALE
8794 The use of the CDPATH was introduced in the System V shell. Its use is analogous to the use of
8795 the PATH variable in the shell. The BSD C shell used a shell parameter cdpath for this purpose.

8796 A common extension when HOME is undefined is to get the login directory from the user
8797 database for the invoking user. This does not occur on System V implementations.

8798 Some historical shells, such as the KornShell, took special actions when the directory name
8799 contained a dot-dot component, selecting the logical parent of the directory, rather than the
8800 actual parent directory; that is, it moved up one level toward the ’/’ in the path name,
8801 remembering what the user typed, rather than performing the equivalent of:

8802 chdir("..");

8803 In such a shell, the following commands would not necessarily produce equivalent output for all
8804 directories:

8805 cd .. && ls ls ..

8806 This behavior is not permitted by default because it is not consistent with the definition of dot-
8807 dot in most historical practice; that is, while this behavior has been optionally available in the
8808 KornShell, other shells have historically not supported this functionality. The logical path name
8809 is stored in the PWD environment variable when the cd utility completes and this value is used
8810 to construct the next directory name if cd is invoked with the −L option.

8811 FUTURE DIRECTIONS
8812 None.

8813 SEE ALSO
8814 pwd , the System Interfaces volume of IEEE Std. 1003.1-200x, chdir()

8815 CHANGE HISTORY
8816 First released in Issue 2.

8817 Issue 4
8818 Aligned with the ISO/IEC 9945-2: 1993 standard.

8819 Extensions added for cd −, PWD, and OLDPWD.

8820 Issue 6
8821 The following new requirements on POSIX implementations derive from alignment with the
8822 Single UNIX Specification:

8823 • The cd −, PWD, and OLDPWD are added.

2442 Technical Standard (2000) (Draft July 31, 2000)

Utilities cd

8824 The −L and −P options are added to align with the IEEE P1003.2b draft standard. This also
8825 includes the introduction of a new description to include the effect of these options.

Shell and Utilities, Issue 6 2443

cflow Utilities

8826 NAME
8827 cflow — generate a C-language flowgraph (DEVELOPMENT)

8828 SYNOPSIS
8829 XSI cflow [−r][−d num][−D name[=def]] ... [−i incl][−I dir] ...
8830 [−U dir] ... file ...
8831

8832 DESCRIPTION
8833 The cflow utility shall analyse a collection of object files or assembler, C-language, lex or yacc
8834 source files, and attempt to build a graph, written to standard output, charting the external
8835 references.

8836 OPTIONS
8837 The cflow utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
8838 12.2, Utility Syntax Guidelines, except that the order of the −D, −I, and −U options (which are |
8839 identical to their interpretation by c99) is significant. |

8840 The following options shall be supported:

8841 −d num Indicate the depth at which the flowgraph is cut off. The application shall ensure
8842 that the argument num is a decimal integer. By default this is a very large number
8843 (typically greater than 32 000). Attempts to set the cut-off depth to a non-positive
8844 integer are ignored.

8845 −i incl Increase the number of included symbols. The incl option-argument is one of the
8846 following characters:

8847 x Include external and static data symbols. The default shall be to include only
8848 functions in the flowgraph.

8849 _ (Underscore) Include names that begin with an underscore. The default shall
8850 be to exclude these functions (and data if −i x is used).

8851 −r Reverse the caller:callee relationship, producing an inverted listing showing the
8852 callers of each function. The listing is also sorted in lexicographical order by callee.

8853 OPERANDS
8854 The following operand is supported:

8855 file The path name of a file for which a graph is to be generated. Files suffixed in .l, .y,
8856 .c, and .i shall be processed by lex and yacc and preprocessed by the c99 |
8857 preprocessor phase (bypassed for .i files) as appropriate, and then run through the
8858 first pass of lint. Files suffixed with .s shall be assembled and information shall be
8859 extracted (as in .o files) from the symbol table.

8860 STDIN
8861 Not used.

8862 INPUT FILES
8863 The input files shall be object files or assembler, C-language, lex or yacc source files.

8864 ENVIRONMENT VARIABLES
8865 The following environment variables shall affect the execution of cflow:

8866 LANG Provide a default value for the internationalization variables that are unset or null.
8867 If LANG is unset or null, the corresponding value from the implementation- |
8868 defined default locale shall be used. If any of the internationalization variables |
8869 contains an invalid setting, the utility shall behave as if none of the variables had
8870 been defined.

2444 Technical Standard (2000) (Draft July 31, 2000)

Utilities cflow

8871 LC_ALL If set to a non-empty string value, override the values of all the other
8872 internationalization variables.

8873 LC_COLLATE
8874 Determine the locale for the ordering of the output when the −r option is used.

8875 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
8876 characters (for example, single-byte as opposed to multi-byte characters in
8877 arguments and input files).

8878 LC_MESSAGES
8879 Determine the locale that should be used to affect the format and contents of
8880 diagnostic messages written to standard error.

8881 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

8882 ASYNCHRONOUS EVENTS
8883 Default.

8884 STDOUT
8885 The flowgraph written to standard output shall be formatted as follows:

8886 "%d %s:%s\n", < reference number >, < global >, < definition >

8887 Each line of output begins with a reference (that is, line) number, followed by indentation of at
8888 least one column position per level. This is followed by the name of the global, a colon, and its
8889 definition. Normally globals are only functions not defined as an external or beginning with an
8890 underscore; see the OPTIONS section for the −i inclusion option. For information extracted from
8891 C-language source, the definition consists of an abstract type declaration (for example, char*)
8892 and, delimited by angle brackets, the name of the source file and the line number where the
8893 definition was found. Definitions extracted from object files indicate the file name and location
8894 counter under which the symbol appeared (for example, text).

8895 Once a definition of a name has been written, subsequent references to that name contain only
8896 the reference number of the line where the definition can be found. For undefined references,
8897 only "< >" shall be written.

8898 STDERR
8899 Used only for diagnostic messages.

8900 OUTPUT FILES
8901 None.

8902 EXTENDED DESCRIPTION
8903 None.

8904 EXIT STATUS
8905 The following exit values shall be returned:

8906 0 Successful completion.

8907 >0 An error occurred.

8908 CONSEQUENCES OF ERRORS
8909 Default.

Shell and Utilities, Issue 6 2445

cflow Utilities

8910 APPLICATION USAGE
8911 Files produced by lex and yacc cause the reordering of line number declarations, and this can
8912 confuse cflow. To obtain proper results, the input of yacc or lex must be directed to cflow.

8913 EXAMPLES
8914 Given the following in file.c:

8915 int i;
8916 main()
8917 {
8918 f();
8919 g();
8920 f();
8921 }
8922 f()
8923 {
8924 i = h();
8925 }

8926 The command:

8927 cflow −i x file.c

8928 produces the output:

8929 1 main: int(), <file.c 2>
8930 2 f: int(), <file.c 8>
8931 3 h: <>
8932 4 i: int, <file.c 1>
8933 5 g: <>

8934 RATIONALE
8935 None.

8936 FUTURE DIRECTIONS
8937 None.

8938 SEE ALSO
8939 c99 , lex , yacc |

8940 CHANGE HISTORY
8941 First released in Issue 2.

8942 Issue 4
8943 Format reorganized.

8944 Internationalized environment variable support mandated.

8945 Issue 6
8946 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2446 Technical Standard (2000) (Draft July 31, 2000)

Utilities chgrp

8947 NAME
8948 chgrp — change the file group ownership

8949 SYNOPSIS
8950 chgrp −hR group file ...

8951 chgrp −R [−H | −L | −P] group file ...

8952 DESCRIPTION
8953 The chgrp utility shall set the group ID of the file named by each file operand to the group ID
8954 specified by the group operand.

8955 For each file operand, it shall perform actions equivalent to the chown() function defined in the
8956 System Interfaces volume of IEEE Std. 1003.1-200x, called with the following arguments:

8957 • The file operand shall be used as the path argument.

8958 • The user ID of the file shall be used as the owner argument.

8959 • The specified group ID shall be used as the group argument.

8960 Unless chgrp is invoked by a process with appropriate privileges, the set-user-ID and set-group-
8961 ID bits of a regular file shall be cleared upon successful completion; the set-user-ID and set-
8962 group-ID bits of other file types may be cleared.

8963 OPTIONS
8964 The chgrp utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
8965 12.2, Utility Syntax Guidelines. |

8966 The following options shall be supported by the implementation:

8967 −h If the system supports group IDs for symbolic links, for each file operand that
8968 names a file of type symbolic link, chgrp shall attempt to set the group ID of the
8969 symbolic link instead of the file referenced by the symbolic link. If the system does
8970 not support group IDs for symbolic links, for each file operand that names a file of
8971 type symbolic link, chgrp shall do nothing more with the current file and shall go
8972 on to any remaining files.

8973 −H If the −R option is specified and a symbolic link referencing a file of type directory
8974 is specified on the command line, chgrp shall change the group of the directory
8975 referenced by the symbolic link and all files in the file hierarchy below it.

8976 −L If the −R option is specified and a symbolic link referencing a file of type directory
8977 is specified on the command line or encountered during the traversal of a file
8978 hierarchy, chgrp shall change the group of the directory referenced by the symbolic
8979 link and all files in the file hierarchy below it.

8980 −P If the −R option is specified and a symbolic link is specified on the command line
8981 or encountered during the traversal of a file hierarchy, chgrp shall change the
8982 group ID of the symbolic link if the system supports this operation. The chgrp
8983 utility shall not follow the symbolic link to any other part of the file hierarchy.

8984 −R Recursively change file group IDs. For each file operand that names a directory,
8985 chgrp shall change the group of the directory and all files in the file hierarchy below
8986 it. Unless a −H, −L, or −P option is specified, it is unspecified which of these
8987 options will be used as the default.

8988 Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be
8989 considered an error. The last option specified shall determine the behavior of the utility.

Shell and Utilities, Issue 6 2447

chgrp Utilities

8990 OPERANDS
8991 The following operands shall be supported:

8992 group A group name from the group database or a numeric group ID. Either specifies a
8993 group ID to be given to each file named by one of the file operands. If a numeric
8994 group operand exists in the group database as a group name, the group ID number
8995 associated with that group name is used as the group ID.

8996 file A path name of a file whose group ID is to be modified.

8997 STDIN
8998 Not used.

8999 INPUT FILES
9000 None.

9001 ENVIRONMENT VARIABLES
9002 The following environment variables shall affect the execution of chgrp:

9003 LANG Provide a default value for the internationalization variables that are unset or null.
9004 If LANG is unset or null, the corresponding value from the implementation- |
9005 defined default locale shall be used. If any of the internationalization variables |
9006 contains an invalid setting, the utility shall behave as if none of the variables had
9007 been defined.

9008 LC_ALL If set to a non-empty string value, override the values of all the other
9009 internationalization variables.

9010 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
9011 characters (for example, single-byte as opposed to multi-byte characters in
9012 arguments).

9013 LC_MESSAGES
9014 Determine the locale that should be used to affect the format and contents of
9015 diagnostic messages written to standard error.

9016 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

9017 ASYNCHRONOUS EVENTS
9018 Default.

9019 STDOUT
9020 Not used.

9021 STDERR
9022 Used only for diagnostic messages.

9023 OUTPUT FILES
9024 None.

9025 EXTENDED DESCRIPTION
9026 None.

9027 EXIT STATUS
9028 The following exit values shall be returned:

9029 0 The utility executed successfully and all requested changes were made.

9030 >0 An error occurred.

2448 Technical Standard (2000) (Draft July 31, 2000)

Utilities chgrp

9031 CONSEQUENCES OF ERRORS
9032 Default. |

9033 APPLICATION USAGE
9034 Only the owner of a file or the user with appropriate privileges may change the owner or group
9035 of a file.

9036 Some systems restrict the use of chgrp to a user with appropriate privileges when the group
9037 specified is not the effective group ID or one of the supplementary group IDs of the calling
9038 process.

9039 EXAMPLES
9040 None.

9041 RATIONALE
9042 The System V and BSD versions use different exit status codes. Some implementations used the
9043 exit status as a count of the number of errors that occurred; this practice is unworkable since it
9044 can overflow the range of valid exit status values. The standard developers chose to mask these
9045 by specifying only 0 and >0 as exit values.

9046 The functionality of chgrp is described substantially through references to chown(). In this way,
9047 there is no duplication of effort required for describing the interactions of permissions, multiple
9048 groups, and so on.

9049 FUTURE DIRECTIONS
9050 None.

9051 SEE ALSO
9052 chmod , chown , the System Interfaces volume of IEEE Std. 1003.1-200x, chown()

9053 CHANGE HISTORY
9054 First released in Issue 2.

9055 Issue 4
9056 Aligned with the ISO/IEC 9945-2: 1993 standard.

9057 Issue 6
9058 New options −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
9059 options affect the processing of symbolic links. |

9060 IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS |
9061 section to ‘‘Default.’’. |

Shell and Utilities, Issue 6 2449

chmod Utilities

9062 NAME
9063 chmod — change the file modes

9064 SYNOPSIS
9065 chmod [−R] mode file ...

9066 DESCRIPTION
9067 The chmod utility shall change any or all of the file mode bits of the file named by each file
9068 operand in the way specified by the mode operand.

9069 It is implementation-defined whether and how the chmod utility affects any alternate or |
9070 additional file access control mechanism (see the Base Definitions volume of |
9071 IEEE Std. 1003.1-200x, Section 4.1, File Access Permissions) being used for the specified file. |

9072 Only a process whose effective user ID matches the user ID of the file, or a process with the
9073 appropriate privileges, shall be permitted to change the file mode bits of a file.

9074 OPTIONS
9075 The chmod utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
9076 12.2, Utility Syntax Guidelines. |

9077 The following option shall be supported:

9078 −R Recursively change file mode bits. For each file operand that names a directory,
9079 chmod shall change the file mode bits of the directory and all files in the file
9080 hierarchy below it.

9081 OPERANDS
9082 The following operands shall be supported:

9083 mode Represents the change to be made to the file mode bits of each file named by one of
9084 the file operands; see the EXTENDED DESCRIPTION section.

9085 file A path name of a file whose file mode bits shall be modified.

9086 STDIN
9087 Not used.

9088 INPUT FILES
9089 None.

9090 ENVIRONMENT VARIABLES
9091 The following environment variables shall affect the execution of chmod:

9092 LANG Provide a default value for the internationalization variables that are unset or null.
9093 If LANG is unset or null, the corresponding value from the implementation- |
9094 defined default locale shall be used. If any of the internationalization variables |
9095 contains an invalid setting, the utility shall behave as if none of the variables had
9096 been defined.

9097 LC_ALL If set to a non-empty string value, override the values of all the other
9098 internationalization variables.

9099 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
9100 characters (for example, single-byte as opposed to multi-byte characters in
9101 arguments).

9102 LC_MESSAGES
9103 Determine the locale that should be used to affect the format and contents of
9104 diagnostic messages written to standard error.

2450 Technical Standard (2000) (Draft July 31, 2000)

Utilities chmod

9105 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

9106 ASYNCHRONOUS EVENTS
9107 Default.

9108 STDOUT
9109 Not used.

9110 STDERR
9111 Used only for diagnostic messages.

9112 OUTPUT FILES
9113 None.

9114 EXTENDED DESCRIPTION
9115 The mode operand shall be either a symbolic_mode expression or a non-negative octal integer. The |
9116 symbolic_mode form is described by the grammar later in this section.

9117 Each clause shall specify an operation to be performed on the current file mode bits of each file . |
9118 The operations shall be performed on each file in the order in which the clauses are specified.

9119 The who symbols u, g, and o shall specify the user, group , and other parts of the file mode bits, |
9120 respectively. A who consisting of the symbol a shall be equivalent to ugo. |

9121 The perm symbols r, w, and x represent the read , write, and execute/search portions of file mode |
9122 bits, respectively. The perm symbol s shall represent the set-user-ID-on-execution (when who |
9123 contains or implies u) and set-group-ID-on-execution (when who contains or implies g) bits. |

9124 The perm symbol X shall represent the execute/search portion of the file mode bits if the file is a |
9125 directory or if the current (unmodified) file mode bits have at least one of the execute bits
9126 (S_IXUSR, S_IXGRP, or S_IXOTH) set. It shall be ignored if the file is not a directory and none of
9127 the execute bits are set in the current file mode bits.

9128 The permcopy symbols u, g, and o shall represent the current permissions associated with the |
9129 user, group, and other parts of the file mode bits, respectively. For the remainder of this section,
9130 perm refers to the non-terminals perm and permcopy in the grammar.

9131 If multiple actionlists are grouped with a single wholist in the grammar, each actionlist shall be
9132 applied in the order specified with that wholist. The op symbols shall represent the operation
9133 performed, as follows:

9134 + If perm is not specified, the ’+’ operation shall not change the file mode bits.

9135 If who is not specified, the file mode bits represented by perm for the owner, group, and
9136 other permissions, except for those with corresponding bits in the file mode creation mask
9137 of the invoking process, shall be set.

9138 Otherwise, the file mode bits represented by the specified who and perm values shall be set.

9139 − If perm is not specified, the ’ −’ operation shall not change the file mode bits.

9140 If who is not specified, the file mode bits represented by perm for the owner, group, and
9141 other permissions, except for those with corresponding bits in the file mode creation mask
9142 of the invoking process, shall be cleared.

9143 Otherwise, the file mode bits represented by the specified who and perm values shall be
9144 cleared.

9145 = Clear the file mode bits specified by the who value, or, if no who value is specified, all of the
9146 file mode bits specified in this volume of IEEE Std. 1003.1-200x.

Shell and Utilities, Issue 6 2451

chmod Utilities

9147 If perm is not specified, the ’=’ operation shall make no further modifications to the file
9148 mode bits.

9149 If who is not specified, the file mode bits represented by perm for the owner, group, and
9150 other permissions, except for those with corresponding bits in the file mode creation mask
9151 of the invoking process, shall be set.

9152 Otherwise, the file mode bits represented by the specified who and perm values shall be set.

9153 When using the symbolic mode form on a regular file, it is implementation-defined whether or |
9154 not: |

9155 • Requests to set the set-user-ID-on-execution or set-group-ID-on-execution bit when all
9156 execute bits are currently clear and none are being set are ignored.

9157 • Requests to clear all execute bits also clear the set-user-ID-on-execution and set-group-ID-
9158 on-execution bits.

9159 • Requests to clear the set-user-ID-on-execution or set-group-ID-on-execution bits when all
9160 execute bits are currently clear are ignored. However, if the command ls −l file writes an s in
9161 the position indicating that the set-user-ID-on-execution or set-group-ID-on-execution is set,
9162 the commands chmod u−s file or chmod g−s file , respectively, shall not be ignored.

9163 When using the symbolic mode form on other file types, it is implementation-defined whether |
9164 or not requests to set or clear the set-user-ID-on-execution or set-group-ID-on-execution bits are |
9165 honored.

9166 If the who symbol o is used in conjunction with the perm symbol s with no other who symbols |
9167 being specified, the set-user-ID-on-execution and set-group-ID-on-execution bits shall not be
9168 modified. It shall not be an error to specify the who symbol o in conjunction with the perm |
9169 symbol s. |

9170 For an octal integer mode operand, the file mode bits shall be set absolutely. |

9171 For each bit set in the octal number, the corresponding file permission bit shown in the following
9172 table shall be set; all other file permission bits shall be cleared. For regular files, for each bit set in
9173 the octal number corresponding to the set-user-ID-on-execution or the set-group-ID-on-
9174 execution, bits shown in the following table shall be set; if these bits are not set in the octal
9175 number, they are cleared. For other file types, it is implementation-defined whether or not |
9176 requests to set or clear the set-user-ID-on-execution or set-group-ID-on-execution bits are
9177 honored.

__
9178 Octal Mode Bit Octal Mode Bit Octal Mode Bit Octal Mode Bit__
9179 4000 S_ISUID 0400 S_IRUSR 0040 S_IRGRP 0004 S_IROTH__
9180 2000 S_ISGID 0200 S_IWUSR 0020 S_IWGRP 0002 S_IWOTH__
9181 0100 S_IXUSR 0010 S_IXGRP 0001 S_IXOTH__LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

9182 When bits are set in the octal number other than those listed in the table above, the behavior is
9183 unspecified. |

2452 Technical Standard (2000) (Draft July 31, 2000)

Utilities chmod

9184 Grammar for chmod

9185 The grammar and lexical conventions in this section describe the syntax for the symbolic_mode
9186 operand. The general conventions for this style of grammar are described in Section 1.10 (on
9187 page 2223). A valid symbolic_mode can be represented as the non-terminal symbol symbolic_mode
9188 in the grammar. This formal syntax shall take precedence over the preceding text syntax
9189 description.

9190 The lexical processing is based entirely on single characters. Implementations need not allow
9191 blank characters within the single argument being processed.

9192 %start symbolic_mode
9193 %%

9194 symbolic_mode : section
9195 | symbolic_mode ’,’ clause
9196 ;

9197 clause : actionlist
9198 | wholist actionlist
9199 ;

9200 wholist : who
9201 | wholist who
9202 ;

9203 who : ’u’ | ’g’ | ’o’ | ’a’
9204 ;

9205 actionlist : action
9206 | actionlist action
9207 ;

9208 action : op
9209 | op permlist
9210 | op permcopy
9211 ;

9212 permcopy : ’u’ | ’g’ | ’o’
9213 ;

9214 op : ’+’ | ’ −’ | ’=’
9215 ;

9216 permlist : perm
9217 | perm permlist
9218 ;

9219 perm : ’r’ | ’w’ | ’x’ | ’X’ | ’s’
9220 ;

9221 EXIT STATUS
9222 The following exit values shall be returned:

9223 0 The utility executed successfully and all requested changes were made.

9224 >0 An error occurred.

Shell and Utilities, Issue 6 2453

chmod Utilities

9225 CONSEQUENCES OF ERRORS
9226 Default. |

9227 APPLICATION USAGE
9228 Some implementations of the chmod utility change the mode of a directory before the files in the
9229 directory when performing a recursive (−R option) change; others change the directory mode
9230 after the files in the directory. If an application tries to remove read or search permission for a
9231 file hierarchy, the removal attempt fails if the directory is changed first; on the other hand, trying
9232 to re-enable permissions to a restricted hierarchy fails if directories are changed last. Users
9233 should not try to make a hierarchy inaccessible to themselves.

9234 Some implementations of chmod never used the process’ umask when changing modes; systems
9235 conformant with this volume of IEEE Std. 1003.1-200x do so when who is not specified. Note the
9236 difference between:

9237 chmod a−w file

9238 which removes all write permissions, and:

9239 chmod −− −w file

9240 which removes write permissions that would be allowed if file was created with the same
9241 umask.

9242 Portable applications should never assume that they know how the set-user-ID and set-group-
9243 ID bits on directories are interpreted.

9244 EXAMPLES
__

9245 Mode Results__
9246 Equivalent to a+,a=; clears all file mode bits.a+=
9247 Equivalent to go+,go−w; clears group and other
9248 write bits.

go+−w

9249 Equivalent to g=o ,g−w; sets group bit to match
9250 other bits and then clears group write bit.

g=o−w

9251 Equivalent to g−r,g+w; clears group read bit and
9252 sets group write bit.

g−r+w

9253 Sets owner bits to match group bits and sets
9254 other bits to match group bits.

=g

__LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

9255 RATIONALE
9256 The functionality of chmod is described substantially through references to concepts defined in |
9257 the System Interfaces volume of IEEE Std. 1003.1-200x. In this way, there is less duplication of |
9258 effort required for describing the interactions of permissions. However, the behavior of this |
9259 utility is not described in terms of the chmod() function from the System Interfaces volume of |
9260 IEEE Std. 1003.1-200x because that specification requires certain side effects upon alternate file
9261 access control mechanisms that might not be appropriate, depending on the implementation.

9262 Implementations that support mandatory file and record locking as specified by the 1984
9263 /usr/group standard historically used the combination of set-group-ID bit set and group
9264 execute bit clear to indicate mandatory locking. This condition is usually set or cleared with the
9265 symbolic mode perm symbol l instead of the perm symbols s and x so that the mandatory |
9266 locking mode is not changed without explicit indication that that was what the user intended.
9267 Therefore, the details on how the implementation treats these conditions must be defined in the
9268 documentation. This volume of IEEE Std. 1003.1-200x does not require mandatory locking (nor
9269 does the System Interfaces volume of IEEE Std. 1003.1-200x), but does allow it as an extension.
9270 However, this volume of IEEE Std. 1003.1-200x does require that the ls and chmod utilities work

2454 Technical Standard (2000) (Draft July 31, 2000)

Utilities chmod

9271 consistently in this area. If ls −l file indicates that the set-group-ID bit is set, chmod g−s file must
9272 clear it (assuming appropriate privileges exist to change modes).

9273 The System V and BSD versions use different exit status codes. Some implementations used the
9274 exit status as a count of the number of errors that occurred; this practice is unworkable since it
9275 can overflow the range of valid exit status values. This problem is avoided here by specifying
9276 only 0 and >0 as exit values.

9277 The System Interfaces volume of IEEE Std. 1003.1-200x indicates that implementation-defined |
9278 restrictions may cause the S_ISUID and S_ISGID bits to be ignored. This volume of |
9279 IEEE Std. 1003.1-200x allows the chmod utility to choose to modify these bits before calling
9280 chmod() (or some function providing equivalent capabilities) for non-regular files. Among other
9281 things, this allows implementations that use the set-user-ID and set-group-ID bits on directories
9282 to enable extended features to handle these extensions in an intelligent manner.

9283 The X perm symbol was adopted from BSD-based systems because it provides commonly |
9284 desired functionality when doing recursive (−R option) modifications. Similar functionality is
9285 not provided by the find utility. Historical BSD versions of chmod, however, only supported X
9286 with op+; it has been extended in this volume of IEEE Std. 1003.1-200x because it is also useful
9287 with op=. (It has also been added for op− even though it duplicates x, in this case, because it is
9288 intuitive and easier to explain.)

9289 The grammar was extended with the permcopy non-terminal to allow historical-practice forms of
9290 symbolic modes like o=u −g (that is, set the ‘‘other’’ permissions to the permissions of ‘‘owner’’ |
9291 minus the permissions of ‘‘group’’).

9292 FUTURE DIRECTIONS
9293 None.

9294 SEE ALSO
9295 ls , umask , the System Interfaces volume of IEEE Std. 1003.1-200x, chmod()

9296 CHANGE HISTORY
9297 First released in Issue 2.

9298 Issue 4
9299 Aligned with the ISO/IEC 9945-2: 1993 standard.

9300 Issue 6
9301 The following new requirements on POSIX implementations derive from alignment with the
9302 Single UNIX Specification:

9303 • Octal modes have been kept and made mandatory despite being marked obsolescent in the
9304 previous version of this volume of IEEE Std. 1003.1-200x.

9305 IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS |
9306 section to ‘‘Default.’’. |

Shell and Utilities, Issue 6 2455

chown Utilities

9307 NAME
9308 chown — change the file ownership

9309 SYNOPSIS
9310 chown −hR owner [: group] file ...

9311 chown −R [−H | −L | −P] owner [: group] file ...

9312 DESCRIPTION
9313 The chown utility shall set the user ID of the file named by each file operand to the user ID
9314 specified by the owner operand.

9315 For each file operand, it shall perform actions equivalent to the chown() function defined in the
9316 System Interfaces volume of IEEE Std. 1003.1-200x, called with the following arguments:

9317 1. The file operand shall be used as the path argument.

9318 2. The user ID indicated by the owner portion of the first operand shall be used as the owner
9319 argument.

9320 3. If the group portion of the first operand is given, the group ID indicated by it shall be used
9321 as the group argument; otherwise, the group ID of the file shall be used as the group
9322 argument.

9323 Unless chown is invoked by a process with appropriate privileges, the set-user-ID and set-
9324 group-ID bits of a regular file shall be cleared upon successful completion; the set-user-ID and
9325 set-group-ID bits of other file types may be cleared.

9326 OPTIONS
9327 The chown utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
9328 12.2, Utility Syntax Guidelines. |

9329 The following options shall be supported by the implementation:

9330 −h If the system supports user IDs for symbolic links, for each file operand that names
9331 a file of type symbolic link, chown shall attempt to set the user ID of the symbolic
9332 link. If the system supports group IDs for symbolic links, and a group ID was
9333 specified, for each file operand that names a file of type symbolic link, chown shall
9334 attempt to set the group ID of the symbolic link. If the system does not support
9335 user or group IDs for symbolic links, for each file operand that names a file of type
9336 symbolic link, chown shall do nothing more with the current file and shall go on to
9337 any remaining files.

9338 −H If the −R option is specified and a symbolic link referencing a file of type directory
9339 is specified on the command line, chown shall change the user ID (and group ID, if
9340 specified) of the directory referenced by the symbolic link and all files in the file
9341 hierarchy below it.

9342 −L If the −R option is specified and a symbolic link referencing a file of type directory
9343 is specified on the command line or encountered during the traversal of a file
9344 hierarchy, chown shall change the user ID (and group ID, if specified) of the
9345 directory referenced by the symbolic link and all files in the file hierarchy below it.

9346 −P If the −R option is specified and a symbolic link is specified on the command line
9347 or encountered during the traversal of a file hierarchy, chown shall change the
9348 owner ID (and group ID, if specified) of the symbolic link if the system supports
9349 this operation. The chown utility shall not follow the symbolic link to any other
9350 part of the file hierarchy.

2456 Technical Standard (2000) (Draft July 31, 2000)

Utilities chown

9351 −R Recursively change file user and group IDs. For each file operand that names a
9352 directory, chown shall change the user ID (and group ID, if specified) of the
9353 directory and all files in the file hierarchy below it. Unless a −H, −L, or −P option is
9354 specified, it is unspecified which of these options will be used as the default.

9355 Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be
9356 considered an error. The last option specified shall determine the behavior of the utility.

9357 OPERANDS
9358 The following operands shall be supported:

9359 owner[:group] A user ID and optional group ID to be assigned to file . The application shall
9360 ensure that the owner portion of this operand is a user name from the user database
9361 or a numeric user ID. Either specifies a user ID to be given to each file named by
9362 one of the file operands. If a numeric owner operand exists in the user database as a
9363 user name, the user ID number associated with that user name is used as the user
9364 ID. Similarly, if the group portion of this operand is present, it shall be a group
9365 name from the group database or a numeric group ID. Either specifies a group ID
9366 to be given to each file. If a numeric group operand exists in the group database as
9367 a group name, the group ID number associated with that group name shall be used
9368 as the group ID.

9369 file A path name of a file whose user ID is to be modified.

9370 STDIN
9371 Not used.

9372 INPUT FILES
9373 None.

9374 ENVIRONMENT VARIABLES
9375 The following environment variables shall affect the execution of chown:

9376 LANG Provide a default value for the internationalization variables that are unset or null.
9377 If LANG is unset or null, the corresponding value from the implementation- |
9378 defined default locale shall be used. If any of the internationalization variables |
9379 contains an invalid setting, the utility shall behave as if none of the variables had
9380 been defined.

9381 LC_ALL If set to a non-empty string value, override the values of all the other
9382 internationalization variables.

9383 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
9384 characters (for example, single-byte as opposed to multi-byte characters in
9385 arguments).

9386 LC_MESSAGES
9387 Determine the locale that should be used to affect the format and contents of
9388 diagnostic messages written to standard error.

9389 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

9390 ASYNCHRONOUS EVENTS
9391 Default.

9392 STDOUT
9393 Not used.

Shell and Utilities, Issue 6 2457

chown Utilities

9394 STDERR
9395 Used only for diagnostic messages.

9396 OUTPUT FILES
9397 None.

9398 EXTENDED DESCRIPTION
9399 None.

9400 EXIT STATUS
9401 The following exit values shall be returned:

9402 0 The utility executed successfully and all requested changes were made.

9403 >0 An error occurred.

9404 CONSEQUENCES OF ERRORS
9405 Default. |

9406 APPLICATION USAGE
9407 Only the owner of a file or the user with appropriate privileges may change the owner or group
9408 of a file.

9409 Some systems restrict the use of chown to a user with appropriate privileges.

9410 EXAMPLES
9411 None.

9412 RATIONALE
9413 The System V and BSD versions use different exit status codes. Some implementations used the
9414 exit status as a count of the number of errors that occurred; this practice is unworkable since it
9415 can overflow the range of valid exit status values. These are masked by specifying only 0 and >0
9416 as exit values.

9417 The functionality of chown is described substantially through references to functions in the
9418 System Interfaces volume of IEEE Std. 1003.1-200x. In this way, there is no duplication of effort
9419 required for describing the interactions of permissions, multiple groups, and so on.

9420 The 4.3 BSD method of specifying both owner and group was included in this volume of
9421 IEEE Std. 1003.1-200x because:

9422 • There are cases where the desired end condition could not be achieved using the chgrp and
9423 chown (that only changed the user ID) utilities. (If the current owner is not a member of the
9424 desired group and the desired owner is not a member of the current group, the chown()
9425 function could fail unless both owner and group are changed at the same time.)

9426 • Even if they could be changed independently, in cases where both are being changed, there is
9427 a 100% performance penalty caused by being forced to invoke both utilities.

9428 The BSD syntax user[.group] was changed to user[:group] in this volume of IEEE Std. 1003.1-200x
9429 because the period is a valid character in login names (as specified by the Base Definitions |
9430 volume of IEEE Std. 1003.1-200x, login names consist of characters in the portable file name |
9431 character set). The colon character was chosen as the replacement for the period character
9432 because it would never be allowed as a character in a user name or group name on historical
9433 implementations.

9434 The −R option is considered by some observers as an undesirable departure from the historical
9435 UNIX system tools approach; since a tool, find, already exists to recurse over directories, there
9436 seemed to be no good reason to require other tools to have to duplicate that functionality.
9437 However, the −R option was deemed an important user convenience, is far more efficient than

2458 Technical Standard (2000) (Draft July 31, 2000)

Utilities chown

9438 forking a separate process for each element of the directory hierarchy, and is in widespread
9439 historical use.

9440 FUTURE DIRECTIONS
9441 None.

9442 SEE ALSO
9443 chmod , chgrp , the System Interfaces volume of IEEE Std. 1003.1-200x, chown()

9444 CHANGE HISTORY
9445 First released in Issue 2.

9446 Issue 4
9447 Aligned with the ISO/IEC 9945-2: 1993 standard.

9448 Issue 6
9449 New options −h, −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
9450 options affect the processing of symbolic links.

9451 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

9452 IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS |
9453 section is changed to ‘‘Default.’’. |

Shell and Utilities, Issue 6 2459

cksum Utilities

9454 NAME
9455 cksum — write file checksums and sizes

9456 SYNOPSIS
9457 cksum [file ...]

9458 DESCRIPTION
9459 The cksum utility shall calculate and write to standard output a cyclic redundancy check (CRC)
9460 for each input file, and also write to standard output the number of octets in each file. The CRC
9461 used is based on the polynomial used for CRC error checking in the ISO/IEC 8802-3: 1996
9462 standard (Ethernet).

9463 The encoding for the CRC checksum is defined by the generating polynomial:

9464 G(x)= x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

9465 Mathematically, the CRC value corresponding to a given file shall be defined by the following
9466 procedure:

9467 1. The n bits to be evaluated are considered to be the coefficients of a mod 2 polynomial M(x)
9468 of degree n−1. These n bits are the bits from the file, with the most significant bit being the
9469 most significant bit of the first octet of the file and the last bit being the least significant bit
9470 of the last octet, padded with zero bits (if necessary) to achieve an integral number of
9471 octets, followed by one or more octets representing the length of the file as a binary value,
9472 least significant octet first. The smallest number of octets capable of representing this
9473 integer shall be used.

9474 2. M(x) is multiplied by x32 (that is, shifted left 32 bits) and divided by G(x) using mod 2
9475 division, producing a remainder R(x) of degree ≤ 31.

9476 3. The coefficients of R(x) are considered to be a 32-bit sequence.

9477 4. The bit sequence is complemented and the result is the CRC.

9478 OPTIONS
9479 None.

9480 OPERANDS
9481 The following operand shall be supported:

9482 file A path name of a file to be checked. If no file operands are specified, the standard
9483 input is used.

9484 STDIN
9485 The standard input is used only if no file operands are specified. See the INPUT FILES section.

9486 INPUT FILES
9487 The input files can be any file type.

9488 ENVIRONMENT VARIABLES
9489 The following environment variables shall affect the execution of cksum:

9490 LANG Provide a default value for the internationalization variables that are unset or null.
9491 If LANG is unset or null, the corresponding value from the implementation- |
9492 defined default locale shall be used. If any of the internationalization variables |
9493 contains an invalid setting, the utility shall behave as if none of the variables had
9494 been defined.

9495 LC_ALL If set to a non-empty string value, override the values of all the other
9496 internationalization variables.

2460 Technical Standard (2000) (Draft July 31, 2000)

Utilities cksum

9497 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
9498 characters (for example, single-byte as opposed to multi-byte characters in
9499 arguments).

9500 LC_MESSAGES
9501 Determine the locale that should be used to affect the format and contents of
9502 diagnostic messages written to standard error.

9503 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

9504 ASYNCHRONOUS EVENTS
9505 Default.

9506 STDOUT
9507 For each file processed successfully, the cksum utility shall write in the following format:

9508 "%u %d %s\n", < checksum >, < # of octets >, < pathname >

9509 If no file operand was specified, the path name and its leading <space> shall be omitted.

9510 STDERR
9511 Used only for diagnostic messages.

9512 OUTPUT FILES
9513 None.

9514 EXTENDED DESCRIPTION
9515 None.

9516 EXIT STATUS
9517 The following exit values shall be returned:

9518 0 All files were processed successfully.

9519 >0 An error occurred.

9520 CONSEQUENCES OF ERRORS
9521 Default.

9522 APPLICATION USAGE
9523 The cksum utility is typically used to quickly compare a suspect file against a trusted version of
9524 the same, such as to ensure that files transmitted over noisy media arrive intact. However, this
9525 comparison cannot be considered cryptographically secure. The chances of a damaged file
9526 producing the same CRC as the original are small; deliberate deception is difficult, but probably
9527 not impossible.

9528 Although input files to cksum can be any type, the results need not be what would be expected
9529 on character special device files or on file types not described by the System Interfaces volume of
9530 IEEE Std. 1003.1-200x. Since this volume of IEEE Std. 1003.1-200x does not specify the block size
9531 used when doing input, checksums of character special files need not process all of the data in
9532 those files.

9533 The algorithm is expressed in terms of a bitstream divided into octets. If a file is transmitted
9534 between two systems and undergoes any data transformation (such as moving 8-bit characters
9535 into 9-bit bytes or changing little-endian byte ordering to big-endian), identical CRC values
9536 cannot be expected. Implementations performing such transformations may extend cksum to
9537 handle such situations.

Shell and Utilities, Issue 6 2461

cksum Utilities

9538 EXAMPLES
9539 None.

9540 RATIONALE
9541 The following C-language program can be used as a model to describe the algorithm. It assumes
9542 that a char is one octet. It also assumes that the entire file is available for one pass through the
9543 function. This was done for simplicity in demonstrating the algorithm, rather than as an
9544 implementation model.

9545 static unsigned long crctab[] = {
9546 0x00000000,
9547 0x04c11db7, 0x09823b6e, 0x0d4326d9, 0x130476dc, 0x17c56b6b,
9548 0x1a864db2, 0x1e475005, 0x2608edb8, 0x22c9f00f, 0x2f8ad6d6,
9549 0x2b4bcb61, 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd,
9550 0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9, 0x5f15adac,
9551 0x5bd4b01b, 0x569796c2, 0x52568b75, 0x6a1936c8, 0x6ed82b7f,
9552 0x639b0da6, 0x675a1011, 0x791d4014, 0x7ddc5da3, 0x709f7b7a,
9553 0x745e66cd, 0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039,
9554 0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5, 0xbe2b5b58,
9555 0xbaea46ef, 0xb7a96036, 0xb3687d81, 0xad2f2d84, 0xa9ee3033,
9556 0xa4ad16ea, 0xa06c0b5d, 0xd4326d90, 0xd0f37027, 0xddb056fe,
9557 0xd9714b49, 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95,
9558 0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1, 0xe13ef6f4,
9559 0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d, 0x34867077, 0x30476dc0,
9560 0x3d044b19, 0x39c556ae, 0x278206ab, 0x23431b1c, 0x2e003dc5,
9561 0x2ac12072, 0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16,
9562 0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca, 0x7897ab07,
9563 0x7c56b6b0, 0x71159069, 0x75d48dde, 0x6b93dddb, 0x6f52c06c,
9564 0x6211e6b5, 0x66d0fb02, 0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1,
9565 0x53dc6066, 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba,
9566 0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e, 0xbfa1b04b,
9567 0xbb60adfc, 0xb6238b25, 0xb2e29692, 0x8aad2b2f, 0x8e6c3698,
9568 0x832f1041, 0x87ee0df6, 0x99a95df3, 0x9d684044, 0x902b669d,
9569 0x94ea7b2a, 0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e,
9570 0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2, 0xc6bcf05f,
9571 0xc27dede8, 0xcf3ecb31, 0xcbffd686, 0xd5b88683, 0xd1799b34,
9572 0xdc3abded, 0xd8fba05a, 0x690ce0ee, 0x6dcdfd59, 0x608edb80,
9573 0x644fc637, 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb,
9574 0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f, 0x5c007b8a,
9575 0x58c1663d, 0x558240e4, 0x51435d53, 0x251d3b9e, 0x21dc2629,
9576 0x2c9f00f0, 0x285e1d47, 0x36194d42, 0x32d850f5, 0x3f9b762c,
9577 0x3b5a6b9b, 0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff,
9578 0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623, 0xf12f560e,
9579 0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7, 0xe22b20d2, 0xe6ea3d65,
9580 0xeba91bbc, 0xef68060b, 0xd727bbb6, 0xd3e6a601, 0xdea580d8,
9581 0xda649d6f, 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3,
9582 0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7, 0xae3afba2,
9583 0xaafbe615, 0xa7b8c0cc, 0xa379dd7b, 0x9b3660c6, 0x9ff77d71,
9584 0x92b45ba8, 0x9675461f, 0x8832161a, 0x8cf30bad, 0x81b02d74,
9585 0x857130c3, 0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640,
9586 0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c, 0x7b827d21,
9587 0x7f436096, 0x7200464f, 0x76c15bf8, 0x68860bfd, 0x6c47164a,
9588 0x61043093, 0x65c52d24, 0x119b4be9, 0x155a565e, 0x18197087,

2462 Technical Standard (2000) (Draft July 31, 2000)

Utilities cksum

9589 0x1cd86d30, 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec,
9590 0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088, 0x2497d08d,
9591 0x2056cd3a, 0x2d15ebe3, 0x29d4f654, 0xc5a92679, 0xc1683bce,
9592 0xcc2b1d17, 0xc8ea00a0, 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb,
9593 0xdbee767c, 0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18,
9594 0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4, 0x89b8fd09,
9595 0x8d79e0be, 0x803ac667, 0x84fbdbd0, 0x9abc8bd5, 0x9e7d9662,
9596 0x933eb0bb, 0x97ffad0c, 0xafb010b1, 0xab710d06, 0xa6322bdf,
9597 0xa2f33668, 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4
9598 };

9599 unsigned long memcrc(const unsigned char *b, size_t n)
9600 {
9601 /* Input arguments:
9602 * const char* b == byte sequence to checksum
9603 * size_t n == length of sequence
9604 */

9605 register unsigned i, c , s = 0;

9606 for (i = n; i > 0; −−i) {
9607 c = (unsigned)(*b++);
9608 s = (s << 8) ˆ crctab[(s >> 24) ˆ c];
9609 }

9610 /* Extend with the length of the string. */
9611 while (n != 0) {
9612 c = n & 0377;
9613 n >>= 8;
9614 s = (s << 8) ˆ crctab[(s >> 24) ˆ c];
9615 }

9616 return ˜s;
9617 }

9618 The historical practice of writing the number of ‘‘blocks’’ has been changed to writing the
9619 number of octets, since the latter is not only more useful, but also since historical
9620 implementations have not been consistent in defining what a ‘‘block’’ meant. Octets are used
9621 instead of bytes because bytes can differ in size between systems.

9622 The algorithm used was selected to increase the operational robustness of cksum. Neither the
9623 System V nor BSD sum algorithm was selected. Since each of these was different and each was
9624 the default behavior on those systems, no realistic compromise was available if either were
9625 selected—some set of historical applications would break. Therefore, the name was changed to
9626 cksum. Although the historical sum commands will probably continue to be provided for many
9627 years, programs designed for portability across systems should use the new name.

9628 The algorithm selected is based on that used by the ISO/IEC 8802-3: 1996 standard (Ethernet) for
9629 the frame check sequence field. The algorithm used does not match the technical definition of a
9630 checksum; the term is used for historical reasons. The length of the file is included in the CRC
9631 calculation because this parallels inclusion of a length field by Ethernet in its CRC, but also
9632 because it guards against inadvertent collisions between files that begin with different series of
9633 zero octets. The chance that two different files produce identical CRCs is much greater when
9634 their lengths are not considered. Keeping the length and the checksum of the file itself separate
9635 would yield a slightly more robust algorithm, but historical usage has always been that a single
9636 number (the checksum as printed) represents the signature of the file. It was decided that

Shell and Utilities, Issue 6 2463

cksum Utilities

9637 historical usage was the more important consideration.

9638 Early proposals contained modifications to the Ethernet algorithm that involved extracting table
9639 values whenever an intermediate result became zero. This was demonstrated to be less robust
9640 than the current method and mathematically difficult to describe or justify.

9641 The calculation used is identical to that given in pseudo-code in the referenced Sarwate article. |
9642 The pseudo-code rendition is: |

9643 X <− 0; Y < − 0;
9644 for i < − m −1 step −1 until 0 do
9645 begin
9646 T <− X(1) ˆ A[i];
9647 X(1) < − X(0); X(0) < − Y(1); Y(1) < − Y(0); Y(0) < − 0;
9648 comment: f[T] and f’[T] denote the T-th words in the
9649 table f and f’ ;
9650 X <− X ˆ f[T]; Y < − Y ˆ f’[T];
9651 end

9652 The pseudo-code is reproduced exactly as given; however, note that in the case of cksum, A[i]
9653 represents a byte of the file, the words X and Y are treated as a single 32-bit value, and the tables
9654 f and f’ are a single table containing 32-bit values.

9655 The referenced Sarwate article also discusses generating the table. |

9656 FUTURE DIRECTIONS
9657 None.

9658 SEE ALSO
9659 None.

9660 CHANGE HISTORY
9661 First released in Issue 4.

2464 Technical Standard (2000) (Draft July 31, 2000)

Utilities cmp

9662 NAME
9663 cmp — compare two files

9664 SYNOPSIS
9665 cmp [−l | −s] file1 file2

9666 DESCRIPTION
9667 The cmp utility shall compare two files. The cmp utility writes no output if the files are the same.
9668 Under default options, if they differ, it shall write to standard output the byte and line number at
9669 which the first difference occurred. Bytes and lines shall be numbered beginning with 1.

9670 OPTIONS
9671 The cmp utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
9672 12.2, Utility Syntax Guidelines. |

9673 The following options shall be supported:

9674 −l (Lowercase ell.) Write the byte number (decimal) and the differing bytes (octal) for
9675 each difference.

9676 −s Write nothing for differing files; return exit status only.

9677 OPERANDS
9678 The following operands shall be supported:

9679 file1 A path name of the first file to be compared. If file1 is ’ −’ , the standard input shall
9680 be used.

9681 file2 A path name of the second file to be compared. If file2 is ’ −’ , the standard input
9682 shall be used.

9683 If both file1 and file2 refer to standard input or refer to the same FIFO special, block special, or
9684 character special file, the results are undefined.

9685 STDIN
9686 The standard input shall be used only if the file1 or file2 operand refers to standard input. See the
9687 INPUT FILES section.

9688 INPUT FILES
9689 The input files can be any file type.

9690 ENVIRONMENT VARIABLES
9691 The following environment variables shall affect the execution of cmp:

9692 LANG Provide a default value for the internationalization variables that are unset or null.
9693 If LANG is unset or null, the corresponding value from the implementation- |
9694 defined default locale shall be used. If any of the internationalization variables |
9695 contains an invalid setting, the utility shall behave as if none of the variables had
9696 been defined.

9697 LC_ALL If set to a non-empty string value, override the values of all the other
9698 internationalization variables.

9699 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
9700 characters (for example, single-byte as opposed to multi-byte characters in
9701 arguments).

9702 LC_MESSAGES
9703 Determine the locale that should be used to affect the format and contents of
9704 diagnostic messages written to standard error and informative messages written to
9705 standard output.

Shell and Utilities, Issue 6 2465

cmp Utilities

9706 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

9707 ASYNCHRONOUS EVENTS
9708 Default.

9709 STDOUT
9710 In the POSIX locale, results of the comparison shall be written to standard output. When no
9711 options are used, the format shall be:

9712 "%s %s differ: char %d, line %d\n", file1 , file2 ,
9713 <byte number >, < line number >

9714 When the −l option is used, the format shall be:

9715 "%d %o %o\n", < byte number >, < differing byte >,
9716 <differing byte >

9717 for each byte that differs. The first <differing byte> number is from file1 while the second is from
9718 file2 . In both cases, <byte number> shall be relative to the beginning of the file, beginning with 1.

9719 No output shall be written to standard output when the −s option is used.

9720 STDERR
9721 Used only for diagnostic messages. If file1 and file2 are identical for the entire length of the
9722 shorter file, in the POSIX locale the following diagnostic message shall be written, unless the −s
9723 option is specified:

9724 "cmp: EOF on %s%s\n", < name of shorter file >, < additional info >

9725 The <additional info> field shall either be null or a string that starts with a <blank> character and
9726 contains no <newline> characters. Some systems report on the number of lines in this case.

9727 OUTPUT FILES
9728 None.

9729 EXTENDED DESCRIPTION
9730 None.

9731 EXIT STATUS
9732 The following exit values shall be returned:

9733 0 The files are identical.

9734 1 The files are different; this includes the case where one file is identical to the first part of the
9735 other.

9736 >1 An error occurred.

9737 CONSEQUENCES OF ERRORS
9738 Default.

9739 APPLICATION USAGE
9740 Although input files to cmp can be any type, the results might not be what would be expected on
9741 character special device files or on file types not described by the System Interfaces volume of
9742 IEEE Std. 1003.1-200x. Since this volume of IEEE Std. 1003.1-200x does not specify the block size
9743 used when doing input, comparisons of character special files need not compare all of the data
9744 in those files.

9745 For files which are not text files, line numbers simply reflect the presence of a <newline>
9746 character, without any implication that the file is organized into lines.

2466 Technical Standard (2000) (Draft July 31, 2000)

Utilities cmp

9747 EXAMPLES
9748 None.

9749 RATIONALE
9750 The global language in Section 1.11 (on page 2224) indicates that using two mutually-exclusive
9751 options together produces unspecified results. Some System V implementations consider the
9752 option usage:

9753 cmp −l −s ...

9754 to be an error. They also treat:

9755 cmp −s −l ...

9756 as if no options were specified. Both of these behaviors are considered bugs, but are allowed.

9757 The word char in the standard output format comes from historical usage, even though it is
9758 actually a byte number. When cmp is supported in other locales, implementations are
9759 encouraged to use the word byte or its equivalent in another language. Users should not
9760 interpret this difference to indicate that the functionality of the utility changed between locales.

9761 Some systems report on the number of lines in the identical-but-shorter file case. This is allowed
9762 by the inclusion of the <additional info> fields in the output format. The restriction on having a
9763 leading <blank> and no <newline>s is to make parsing for the file name easier. It is recognized
9764 that some file names containing white-space characters make parsing difficult anyway, but the
9765 restriction does aid programs used on systems where the names are predominantly well
9766 behaved.

9767 FUTURE DIRECTIONS
9768 None.

9769 SEE ALSO
9770 comm, diff

9771 CHANGE HISTORY
9772 First released in Issue 2.

9773 Issue 4
9774 Aligned with the ISO/IEC 9945-2: 1993 standard.

Shell and Utilities, Issue 6 2467

comm Utilities

9775 NAME
9776 comm — select or reject lines common to two files

9777 SYNOPSIS
9778 comm [−123] file1 file2

9779 DESCRIPTION
9780 The comm utility shall read file1 and file2 , which should be ordered in the current collating
9781 sequence, and produce three text columns as output: lines only in file1 , lines only in file2 , and
9782 lines in both files.

9783 If the lines in both files are not ordered according to the collating sequence of the current locale,
9784 the results are unspecified.

9785 OPTIONS
9786 The comm utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
9787 12.2, Utility Syntax Guidelines. |

9788 The following options shall be supported:

9789 −1 Suppress the output column of lines unique to file1 .

9790 −2 Suppress the output column of lines unique to file2 .

9791 −3 Suppress the output column of lines duplicated in file1 and file2 .

9792 OPERANDS
9793 The following operands shall be supported:

9794 file1 A path name of the first file to be compared. If file1 is ’ −’ , the standard input is
9795 used.

9796 file2 A path name of the second file to be compared. If file2 is ’ −’ , the standard input is
9797 used.

9798 If both file1 and file2 refer to standard input or to the same FIFO special, block special, or
9799 character special file, the results are undefined.

9800 STDIN
9801 The standard input shall be used only if one of the file1 or file2 operands refers to standard input.
9802 See the INPUT FILES section.

9803 INPUT FILES
9804 The input files shall be text files.

9805 ENVIRONMENT VARIABLES
9806 The following environment variables shall affect the execution of comm:

9807 LANG Provide a default value for the internationalization variables that are unset or null.
9808 If LANG is unset or null, the corresponding value from the implementation- |
9809 defined default locale shall be used. If any of the internationalization variables |
9810 contains an invalid setting, the utility shall behave as if none of the variables had
9811 been defined.

9812 LC_ALL If set to a non-empty string value, override the values of all the other
9813 internationalization variables.

9814 LC_COLLATE
9815 Determine the locale for the collating sequence comm expects to have been used
9816 when the input files were sorted.

2468 Technical Standard (2000) (Draft July 31, 2000)

Utilities comm

9817 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
9818 characters (for example, single-byte as opposed to multi-byte characters in
9819 arguments and input files).

9820 LC_MESSAGES
9821 Determine the locale that should be used to affect the format and contents of
9822 diagnostic messages written to standard error.

9823 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

9824 ASYNCHRONOUS EVENTS
9825 Default.

9826 STDOUT
9827 The comm utility shall produce output depending on the options selected. If the −1, −2, and −3
9828 options are all selected, comm shall write nothing to standard output.

9829 If the −1 option is not selected, lines contained only in file1 shall be written using the format:

9830 "%s\n", < line in file1 >

9831 If the −2 option is not selected, lines contained only in file2 are written using the format:

9832 "%s%s\n", < lead >, < line in file2 >

9833 where the string <lead> is as follows:

9834 <tab> The −1 option is not selected.

9835 null string The −1 option is selected.

9836 If the −3 option is not selected, lines contained in both files shall be written using the format:

9837 "%s%s\n", < lead >, < line in both >

9838 where the string <lead> is as follows:

9839 <tab><tab> Neither the −1 nor the −2 option is selected.

9840 <tab> Exactly one of the −1 and −2 options is selected.

9841 null string Both the −1 and −2 options are selected.

9842 If the input files were ordered according to the collating sequence of the current locale, the lines
9843 written shall be in the collating sequence of the original lines.

9844 STDERR
9845 Used only for diagnostic messages.

9846 OUTPUT FILES
9847 None.

9848 EXTENDED DESCRIPTION
9849 None.

9850 EXIT STATUS
9851 The following exit values shall be returned:

9852 0 All input files were successfully output as specified.

9853 >0 An error occurred.

Shell and Utilities, Issue 6 2469

comm Utilities

9854 CONSEQUENCES OF ERRORS
9855 Default.

9856 APPLICATION USAGE
9857 If the input files are not properly presorted, the output of comm might not be useful.

9858 EXAMPLES
9859 If a file named xcu contains a sorted list of the utilities in this volume of IEEE Std. 1003.1-200x, a
9860 file named xpg3 contains a sorted list of the utilities specified in the X/Open Portability Guide,
9861 Issue 3, and a file named svid89 contains a sorted list of the utilities in the System V Interface
9862 Definition Third Edition:

9863 comm −23 xcu xpg3 | comm −23 − svid89

9864 would print a list of utilities in this volume of IEEE Std. 1003.1-200x not specified by either of the
9865 other documents:

9866 comm −12 xcu xpg3 | comm −12 − svid89

9867 would print a list of utilities specified by all three documents, and:

9868 comm −12 xpg3 svid89 | comm −23 − xcu

9869 would print a list of utilities specified by both XPG3 and the SVID, but not specified in this
9870 volume of IEEE Std. 1003.1-200x.

9871 RATIONALE
9872 None.

9873 FUTURE DIRECTIONS
9874 None.

9875 SEE ALSO
9876 cmp, diff , sort , uniq

9877 CHANGE HISTORY
9878 First released in Issue 2.

9879 Issue 4
9880 Aligned with the ISO/IEC 9945-2: 1993 standard.

9881 Issue 6
9882 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2470 Technical Standard (2000) (Draft July 31, 2000)

Utilities command

9883 NAME
9884 command — execute a simple command

9885 SYNOPSIS
9886 command [−p] command_name [argument ...]

9887 UP command [−v | −V] command_name
9888

9889 DESCRIPTION
9890 The command utility shall cause the shell to treat the arguments as a simple command,
9891 suppressing the shell function lookup that is described in Section 2.9.1.1 (on page 2257), item 1b.

9892 If the command_name is the same as the name of one of the special built-in utilities, the special
9893 properties in the enumerated list at the beginning of Section 2.15 (on page 2276) shall not occur.
9894 In every other respect, if command_name is not the name of a function, the effect of command shall
9895 be the same as omitting command.

9896 On systems supporting the User Portability Utilities option, the command utility also shall
9897 provide information concerning how a command name is interpreted by the shell; see −v and
9898 −V.

9899 OPTIONS
9900 The command utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, |
9901 Section 12.2, Utility Syntax Guidelines. |

9902 The following options shall be supported:

9903 −p Perform the command search using a default value for PATH that is guaranteed to
9904 find all of the standard utilities.

9905 −v (On systems supporting the User Portability Utilities option.) Write a string to
9906 standard output that indicates the path name or command that will be used by the
9907 shell, in the current shell execution environment (see Section 2.13 (on page 2273)),
9908 to invoke command_name.

9909 • Utilities, regular built-in utilities, command_names including a slash character, |
9910 and any implementation-defined functions that are found using the PATH |
9911 variable (as described in Section 2.9.1.1 (on page 2257)), shall be written as
9912 absolute path names.

9913 • Shell functions, special built-in utilities, regular built-in utilities not associated
9914 with a PATH search, and shell reserved words shall be written as just their
9915 names.

9916 • An alias shall be written as a command line that represents its alias definition.

9917 • Otherwise, no output shall be written and the exit status shall reflect that the
9918 name was not found.

9919 −V (On systems supporting the User Portability Utilities option.) Write a string to
9920 standard output that indicates how the name given in the command_name operand
9921 will be interpreted by the shell, in the current shell execution environment (see
9922 Section 2.13 (on page 2273)). Although the format of this string is unspecified, it
9923 shall indicate in which of the following categories command_name falls and shall
9924 include the information stated:

9925 • Utilities, regular built-in utilities, and any implementation-defined functions |
9926 that are found using the PATH variable (as described in Section 2.9.1.1 (on page
9927 2257)), shall be identified as such and include the absolute path name in the

Shell and Utilities, Issue 6 2471

command Utilities

9928 string.

9929 • Other shell functions shall be identified as functions.

9930 • Aliases shall be identified as aliases and their definitions included in the string.

9931 • Special built-in utilities shall be identified as special built-in utilities.

9932 • Regular built-in utilities not associated with a PATH search shall be identified
9933 as regular built-in utilities. (The term ‘‘regular’’ need not be used.)

9934 • Shell reserved words shall be identified as reserved words.

9935 OPERANDS
9936 The following operands shall be supported:

9937 argument One of the strings treated as an argument to command_name.

9938 command_name
9939 The name of a utility or a special built-in utility.

9940 STDIN
9941 Not used.

9942 INPUT FILES
9943 None.

9944 ENVIRONMENT VARIABLES
9945 The following environment variables shall affect the execution of command:

9946 LANG Provide a default value for the internationalization variables that are unset or null.
9947 If LANG is unset or null, the corresponding value from the implementation- |
9948 defined default locale shall be used. If any of the internationalization variables |
9949 contains an invalid setting, the utility shall behave as if none of the variables had
9950 been defined.

9951 LC_ALL If set to a non-empty string value, override the values of all the other
9952 internationalization variables.

9953 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
9954 characters (for example, single-byte as opposed to multi-byte characters in
9955 arguments).

9956 LC_MESSAGES
9957 Determine the locale that should be used to affect the format and contents of
9958 diagnostic messages written to standard error and informative messages written to
9959 standard output.

9960 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

9961 PATH Determine the search path used during the command search described in Section
9962 2.9.1.1 (on page 2257), except as described under the −p option.

9963 ASYNCHRONOUS EVENTS
9964 Default.

9965 STDOUT
9966 When the −v option is specified, standard output shall be formatted as:

9967 "%s\n", < pathname or command >

9968 When the −V option is specified, standard output shall be formatted as:

2472 Technical Standard (2000) (Draft July 31, 2000)

Utilities command

9969 "%s\n", < unspecified >

9970 STDERR
9971 Used only for diagnostic messages.

9972 OUTPUT FILES
9973 None.

9974 EXTENDED DESCRIPTION
9975 None.

9976 EXIT STATUS
9977 When the −v or −V options are specified, the following exit values shall be returned:

9978 0 Successful completion.

9979 >0 The command_name could not be found or an error occurred.

9980 Otherwise, the following exit values shall be returned:

9981 126 The utility specified by command_name was found but could not be invoked.

9982 127 An error occurred in the command utility or the utility specified by command_name could not
9983 be found.

9984 Otherwise, the exit status of command shall be that of the simple command specified by the
9985 arguments to command.

9986 CONSEQUENCES OF ERRORS
9987 Default.

9988 APPLICATION USAGE
9989 The order for command search allows functions to override regular built-ins and path searches.
9990 This utility is necessary to allow functions that have the same name as a utility to call the utility
9991 (instead of a recursive call to the function).

9992 The system default path is available using getconf; however, since getconf may need to have the
9993 PATH set up before it can be called itself, the following can be used:

9994 command −p getconf _CS_PATH

9995 There are some advantages to suppressing the special characteristics of special built-ins on
9996 occasion. For example:

9997 command exec > unwritable-file

9998 does not cause a non-interactive script to abort, so that the output status can be checked by the
9999 script.

10000 The command, env, nohup, time, and xargs utilities have been specified to use exit code 127 if an
10001 error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked utility
10002 exited with an error indication’’. The value 127 was chosen because it is not commonly used for
10003 other meanings; most utilities use small values for ‘‘normal error conditions’’ and the values
10004 above 128 can be confused with termination due to receipt of a signal. The value 126 was chosen
10005 in a similar manner to indicate that the utility could be found, but not invoked. Some scripts
10006 produce meaningful error messages differentiating the 126 and 127 cases. The distinction
10007 between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
10008 exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
10009 any other reason.

10010 Since the −v and −V options of command produce output in relation to the current shell execution
10011 environment, command is generally provided as a shell regular built-in. If it is called in a subshell

Shell and Utilities, Issue 6 2473

command Utilities

10012 or separate utility execution environment, such as one of the following:

10013 (PATH=foo command −v)
10014 nohup command −v

10015 it does not necessarily produce correct results. For example, when called with nohup or an exec
10016 function, in a separate utility execution environment, most implementations are not able to
10017 identify aliases, functions, or special built-ins.

10018 Two types of regular built-ins could be encountered on a system and these are described
10019 separately by command. The description of command search in Section 2.9.1.1 (on page 2257)
10020 allows for a standard utility to be implemented as a regular built-in as long as it is found in the
10021 appropriate place in a PATH search. So, for example, command −v true might yield /bin/true or |
10022 some similar path name. Other implementation-defined utilities that are not defined by this |
10023 volume of IEEE Std. 1003.1-200x might exist only as built-ins and have no path name associated
10024 with them. These produce output identified as (regular) built-ins. Applications encountering
10025 these are not able to count on execing them, using them with nohup, overriding them with a
10026 different PATH, and so on.

10027 EXAMPLES

10028 1. Make a version of cd that always prints out the new working directory exactly once:

10029 cd() {
10030 command cd "$@" >/dev/null
10031 pwd
10032 }

10033 2. Start off a ‘‘secure shell script’’ in which the script avoids being spoofed by its parent:

10034 IFS=’
10035 ’
10036 # The preceding value should be <space><tab><newline>.
10037 # Set IFS to its default value.

10038 \unalias −a
10039 # Unset all possible aliases.
10040 # Note that unalias is escaped to prevent an alias
10041 # being used for unalias.

10042 unset −f command
10043 # Ensure command is not a user function.

10044 PATH="$(command −p getconf _CS_PATH):$PATH"
10045 # Put on a reliable PATH prefix.

10046 # ...

10047 At this point, given correct permissions on the directories called by PATH, the script has
10048 the ability to ensure that any utility it calls is the intended one. It is being very cautious
10049 because it assumes that implementation extensions may be present that would allow user
10050 functions to exist when it is invoked; this capability is not specified by this volume of
10051 IEEE Std. 1003.1-200x, but it is not prohibited as an extension. For example, the ENV
10052 variable precedes the invocation of the script with a user start-up script. Such a script
10053 could define functions to spoof the application.

2474 Technical Standard (2000) (Draft July 31, 2000)

Utilities command

10054 RATIONALE
10055 Since command is a regular built-in utility it is always found prior to the PATH search.

10056 There is nothing in the description of command that implies the command line is parsed any
10057 differently from that of any other simple command. For example:

10058 command a | b ; c

10059 is not parsed in any special way that causes ’|’ or ’;’ to be treated other than a pipe operator
10060 or semicolon or that prevents function lookup on b or c.

10061 The command utility is somewhat similar to the Eighth Edition shell builtin command, but since
10062 command also goes to the file system to search for utilities, the name builtin would not be
10063 intuitive.

10064 The command utility is most likely to be provided as a regular built-in. It is not listed as a special
10065 built-in for the following reasons:

10066 • The removal of exportable functions made the special precedence of a special built-in
10067 unnecessary.

10068 • A special built-in has special properties (see Section 2.15 (on page 2276)) that were
10069 inappropriate for invoking other utilities. For example, two commands such as:

10070 date > unwritable-file

10071 command date > unwritable-file

10072 would have entirely different results; in a non-interactive script, the former would continue
10073 to execute the next command, the latter would abort. Introducing this semantic difference
10074 along with suppressing functions was seen to be non-intuitive.

10075 The −p option is present because it is useful to be able to ensure a safe path search that finds all
10076 the POSIX Shell and Utilities standard utilities. This search might not be identical to the one that
10077 occurs through one of the POSIX System Interfaces exec functions when PATH is unset. At the
10078 very least, this feature is required to allow the script to access the correct version of getconf so
10079 that the value of the default path can be accurately retrieved.

10080 The command −v and −V options were added to satisfy requirements from users that are
10081 currently accomplished by three different historical utilities: type in the System V shell, whence in
10082 the KornShell, and which in the C shell. Since there is no historical agreement on how and what
10083 to accomplish here, the POSIX command utility was enhanced and the historical utilities were left
10084 unmodified. The C shell which merely conducts a path search. The KornShell whence is more
10085 elaborate—in addition to the categories required by POSIX, it also reports on tracked aliases,
10086 exported aliases, and undefined functions.

10087 The output format of −V was left mostly unspecified because human users are its only audience.
10088 Applications should not be written to care about this information; they can use the output of −v
10089 to differentiate between various types of commands, but the additional information that may be
10090 emitted by the more verbose −V is not needed and should not be arbitrarily constrained in its
10091 verbosity or localization for application parsing reasons.

10092 FUTURE DIRECTIONS
10093 None.

10094 SEE ALSO
10095 sh, type

Shell and Utilities, Issue 6 2475

command Utilities

10096 CHANGE HISTORY
10097 First released in Issue 4.

2476 Technical Standard (2000) (Draft July 31, 2000)

Utilities compress

10098 NAME
10099 compress — compress data

10100 SYNOPSIS
10101 XSI compress [−fv][−b bits][file ...]

10102 compress [−cfv][−b bits][file]
10103

10104 DESCRIPTION

10105 Notes to Reviewers |
10106 This section with side shading will not appear in the final copy. - Ed. |

10107 We need to cite the patent number for Lempel-Ziv coding; if anyone knows what it is, please let |
10108 us know. |
10109 The compress utility shall attempt to reduce the size of the named files by using adaptive |
10110 Lempel-Ziv coding algorithm. On systems not supporting adaptive Lempel-Ziv coding |
10111 algorithm, the input files shall not be changed and an error value greater than two shall be |
10112 returned. Except when the output is to the standard output, each file shall be replaced by one |
10113 with the extension .Z. If the invoking process has appropriate privileges, the ownership, modes, |
10114 access time, and modification time of the original file are preserved. If appending the .Z to the
10115 file name would make the name exceed {NAME_MAX} bytes, the command shall fail. If no files
10116 are specified, the standard input shall be compressed to the standard output.

10117 OPTIONS
10118 The compress utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, |
10119 Section 12.2, Utility Syntax Guidelines. |

10120 The following options shall be supported:

10121 −b bits Specify the maximum number of bits to use in a code. For a portable application,
10122 the bits argument shall be:

10123 9 <= bits <= 14

10124 The implementation may allow bits values of greater than 14. The default is 14, 15,
10125 or 16.

10126 −c Cause compress to write to the standard output; the input file is not changed, and
10127 no .Z files are created.

10128 −f Force compression of file , even if it does not actually reduce the size of the file, or if
10129 the corresponding file .Z file already exists. If the −f option is not given, and the
10130 process is not running in the background, the user is prompted as to whether an
10131 existing file .Z file should be overwritten.

10132 −v Write the percentage reduction of each file to standard error.

10133 OPERANDS
10134 The following operand shall be supported:

10135 file A path name of a file to be compressed.

10136 STDIN
10137 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ .

Shell and Utilities, Issue 6 2477

compress Utilities

10138 INPUT FILES
10139 If file operands are specified, the input files contain the data to be compressed.

10140 ENVIRONMENT VARIABLES
10141 The following environment variables shall affect the execution of compress:

10142 LANG Provide a default value for the internationalization variables that are unset or null.
10143 If LANG is unset or null, the corresponding value from the implementation- |
10144 defined default locale shall be used. If any of the internationalization variables |
10145 contains an invalid setting, the utility shall behave as if none of the variables had
10146 been defined.

10147 LC_ALL If set to a non-empty string value, override the values of all the other
10148 internationalization variables.

10149 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
10150 characters (for example, single-byte as opposed to multi-byte characters in
10151 arguments).

10152 LC_MESSAGES
10153 Determine the locale that should be used to affect the format and contents of
10154 diagnostic messages written to standard error.

10155 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

10156 ASYNCHRONOUS EVENTS
10157 Default.

10158 STDOUT
10159 If no file operands are specified, or if a file operand is ’ −’ , or if the −c option is specified, the
10160 standard output contains the compressed output.

10161 STDERR
10162 Used for all diagnostic and prompt messages and the output from −v.

10163 OUTPUT FILES
10164 The output files shall contain the compressed output. The format of compressed files is |
10165 unspecified and interchange of such files between implementations (including access via |
10166 unspecified file sharing mechanisms) is not required by IEEE Std. 1003.1-200x. |

10167 EXTENDED DESCRIPTION
10168 None.

10169 EXIT STATUS
10170 The following exit values shall be returned:

10171 0 Successful completion.

10172 1 An error occurred.

10173 2 One or more files were not compressed because they would have increased in size (and the
10174 −f option was not specified).

10175 >2 An error occurred.

10176 CONSEQUENCES OF ERRORS
10177 The input file shall remain unmodified.

2478 Technical Standard (2000) (Draft July 31, 2000)

Utilities compress

10178 APPLICATION USAGE
10179 The amount of compression obtained depends on the size of the input, the number of bits per
10180 code, and the distribution of common substrings. Typically, text such as source code or English
10181 is reduced by 50-60%. Compression is generally much better than that achieved by Huffman
10182 coding or adaptive Huffman coding (compact), and takes less time to compute.

10183 Although compress strictly follows the default actions upon receipt of a signal or when an error
10184 occurs, some unexpected results may occur. In some implementations it is likely that a partially
10185 compressed file is left in place, alongside its uncompressed input file. Since the general
10186 operation of compress is to delete the uncompressed file only after the .Z file has been
10187 successfully filled, an application should always carefully check the exit status of compress before
10188 arbitrarily deleting files that have like-named neighbors with .Z suffixes.

10189 The limit of 14 on the bits option-argument is to achieve portability to all systems (within the |
10190 restrictions imposed by the lack of an explicit published file format). Some systems based on
10191 16-bit architectures cannot support 15 or 16-bit uncompression.

10192 EXAMPLES
10193 None.

10194 RATIONALE
10195 None.

10196 FUTURE DIRECTIONS
10197 None.

10198 SEE ALSO
10199 uncompress, zcat

10200 CHANGE HISTORY
10201 First released in Issue 4.

10202 Issue 4, Version 2
10203 The DESCRIPTION section is clarified to state that the ownership, modes, access time, and
10204 modification time of the original file are preserved if the invoking process has appropriate
10205 privileges.

10206 The STDOUT section includes the case where a file operand is ’ −’ .

10207 Issue 6
10208 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

10209 An error case is added for systems not supporting adaptive Lempel-Ziv coding. |

Shell and Utilities, Issue 6 2479

cp Utilities

10210 NAME
10211 cp — copy files

10212 SYNOPSIS
10213 cp [−fip] source_file target_file

10214 cp [−fip] source_file ... target

10215 cp −R [−H | −L | −P][−fip] source_file ... target

10216 OB cp −r [−H | −L | −P][−fip] source_file ... target |

10217 DESCRIPTION |
10218 The first synopsis form is denoted by two operands, neither of which are existing files of type
10219 directory. The cp utility shall copy the contents of source_file (or, if source_file is a file of type
10220 symbolic link, the contents of the file referenced by source_file) to the destination path named by
10221 target_file.

10222 The second synopsis form is denoted by two or more operands where the −R or −r options are
10223 not specified and the first synopsis form is not applicable. It shall be an error if any source_file is a
10224 file of type directory, if target does not exist, or if target is a file of a type defined by the System
10225 Interfaces volume of IEEE Std. 1003.1-200x, but is not a file of type directory. The cp utility shall
10226 copy the contents of each source_file (or, if source_file is a file of type symbolic link, the contents
10227 of the file referenced by source_file) to the destination path named by the concatenation of target ,
10228 a slash character, and the last component of source_file .

10229 The third and fourth synopsis forms are denoted by two or more operands where the −R or −r
10230 options are specified. The cp utility shall copy each file in the file hierarchy rooted in each
10231 source_file to a destination path named as follows.

10232 If target exists and is a file of type directory, the name of the corresponding destination path for
10233 each file in the file hierarchy shall be the concatenation of target , a slash character, and the path
10234 name of the file relative to the directory containing source_file .

10235 If target does not exist and two operands are specified, the name of the corresponding
10236 destination path for source_file shall be target ; the name of the corresponding destination path for
10237 all other files in the file hierarchy shall be the concatenation of target , a slash character, and the
10238 path name of the file relative to source_file .

10239 It shall be an error if target does not exist and more than two operands are specified, or if target
10240 exists and is a file of a type defined by the System Interfaces volume of IEEE Std. 1003.1-200x,
10241 but is not a file of type directory.

10242 In the following description, the term dest_file refers to the file named by the destination path.
10243 The term source_file refers to the file that is being copied, whether specified as an operand or a
10244 file in a file hierarchy rooted in a source_file operand. If source_file is a file of type symbolic link:

10245 • If neither the −R nor −r options were specified, cp shall take actions based on the type and
10246 contents of the file referenced by the symbolic link, and not by the symbolic link itself.

10247 • If the −R option was specified:

10248 — If none of the options −H, −L, nor −P were specified, it is unspecified which of −H, −L, or
10249 −P will be used as a default.

10250 — If the −H option was specified, cp shall take actions based on the type and contents of the
10251 file referenced by any symbolic link specified as a source_file operand.

10252 — If the −L option was specified, cp shall take actions based on the type and contents of the
10253 file referenced by any symbolic link specified as a source_file operand or any symbolic

2480 Technical Standard (2000) (Draft July 31, 2000)

Utilities cp

10254 links encountered during traversal of a file hierarchy.

10255 — If the −P option was specified, cp shall copy any symbolic link specified as a source_file
10256 operand and any symbolic links encountered during traversal of a file hierarchy, and shall
10257 not follow any symbolic links.

10258 • If the −r option was specified, the behavior is implementation-defined. |

10259 For each source_file , the following steps shall be taken:

10260 1. If source_file references the same file as dest_file , cp may write a diagnostic message to
10261 standard error; it shall do nothing more with source_file and shall go on to any remaining
10262 files.

10263 2. If source_file is of type directory, the following steps shall be taken:

10264 a. If neither the −R or −r options were specified, cp shall write a diagnostic message to
10265 standard error, do nothing more with source_file , and go on to any remaining files.

10266 b. If source_file was not specified as an operand and source_file is dot or dot-dot, cp shall
10267 do nothing more with source_file and go on to any remaining files.

10268 c. If dest_file exists and it is a file type not specified by the System Interfaces volume of
10269 IEEE Std. 1003.1-200x, the behavior is implementation-defined. |

10270 d. If dest_file exists and it is not of type directory, cp shall write a diagnostic message to
10271 standard error, do nothing more with source_file or any files below source_file in the
10272 file hierarchy, and go on to any remaining files.

10273 e. If the directory dest_file does not exist, it shall be created with file permission bits set
10274 to the same value as those of source_file , modified by the file creation mask of the
10275 user if the −p option was not specified, and then bitwise-inclusively OR’ed with
10276 S_IRWXU. If dest_file cannot be created, cp shall write a diagnostic message to
10277 standard error, do nothing more with source_file , and go on to any remaining files. It
10278 is unspecified if cp attempts to copy files in the file hierarchy rooted in source_file .

10279 f. The files in the directory source_file shall be copied to the directory dest_file , taking
10280 the four steps [1-4] listed here with the files as source_files.

10281 g. If dest_file was created, its file permission bits shall be changed (if necessary) to be the
10282 same as those of source_file , modified by the file creation mask of the user if the −p
10283 option was not specified.

10284 h. The cp utility shall do nothing more with source_file and go on to any remaining files.

10285 3. If source_file is of type regular file, the following steps shall be taken:

10286 a. If dest_file exists, the following steps shall be taken:

10287 i. If the −i option is in effect, the cp utility shall write a prompt to the standard
10288 error and read a line from the standard input. If the response is not affirmative,
10289 cp shall do nothing more with source_file and go on to any remaining files.

10290 ii. A file descriptor for dest_file shall be obtained by performing actions equivalent
10291 to the open() function defined in the System Interfaces volume of
10292 IEEE Std. 1003.1-200x called using dest_file as the path argument, and the
10293 bitwise-inclusive OR of O_WRONLY and O_TRUNC as the oflag argument.

10294 iii. If the attempt to obtain a file descriptor fails and the −f option is in effect, cp
10295 shall attempt to remove the file by performing actions equivalent to the
10296 unlink() function defined in the System Interfaces volume of

Shell and Utilities, Issue 6 2481

cp Utilities

10297 IEEE Std. 1003.1-200x called using dest_file as the path argument. If this attempt
10298 succeeds, cp shall continue with step 3b.

10299 b. If dest_file does not exist, a file descriptor shall be obtained by performing actions
10300 equivalent to the open() function defined in the System Interfaces volume of
10301 IEEE Std. 1003.1-200x called using dest_file as the path argument, and the bitwise-
10302 inclusive OR of O_WRONLY and O_CREAT as the oflag argument. The file
10303 permission bits of source_file shall be the mode argument.

10304 c. If the attempt to obtain a file descriptor fails, cp shall write a diagnostic message to
10305 standard error, do nothing more with source_file , and go on to any remaining files.

10306 d. The contents of source_file shall be written to the file descriptor. Any write errors
10307 shall cause cp to write a diagnostic message to standard error and continue to step 3e.

10308 e. The file descriptor shall be closed.

10309 f. The cp utility shall do nothing more with source_file . If a write error occurred in step
10310 3d, it is unspecified if cp continues with any remaining files. If no write error
10311 occurred in step 3d, cp shall go on to any remaining files.

10312 4. Otherwise, the following steps shall be taken:

10313 a. If the −r option was specified, the behavior is implementation-defined. |

10314 b. If the −R option was specified, the following steps shall be taken:

10315 i. The dest_file shall be created with the same file type as source_file .

10316 ii. If source_file is a file of type FIFO, the file permission bits shall be the same as
10317 those of source_file, modified by the file creation mask of the user if the −p
10318 option was not specified. Otherwise, the permissions, owner ID, and group ID
10319 of dest_file are implementation-defined. |

10320 If this creation fails for any reason, cp shall write a diagnostic message to
10321 standard error, do nothing more with source_file , and go on to any remaining
10322 files.

10323 iii. If source_file is a file of type symbolic link, the path name contained in dest_file
10324 shall be the same as the path name contained in source_file .

10325 If this fails for any reason, cp shall write a diagnostic message to standard error,
10326 do nothing more with source_file , and go on to any remaining files.

10327 If the implementation provides additional or alternate access control mechanisms (see the Base |
10328 Definitions volume of IEEE Std. 1003.1-200x, Section 4.1, File Access Permissions), their effect on |
10329 copies of files is implementation-defined. |

10330 OPTIONS
10331 The cp utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
10332 Utility Syntax Guidelines. |

10333 The following options shall be supported:

10334 −f If a file descriptor for a destination file cannot be obtained, as described in step
10335 3.a.ii., attempt to unlink the destination file and proceed.

10336 −H Take actions based on the type and contents of the file referenced by any symbolic
10337 link specified as a source_file operand.

10338 −i Write a prompt to standard error before copying to any existing destination file. If
10339 the response from the standard input is affirmative, the copy shall be attempted;

2482 Technical Standard (2000) (Draft July 31, 2000)

Utilities cp

10340 otherwise, it shall not.

10341 −L Take actions based on the type and contents of the file referenced by any symbolic
10342 link specified as a source_file operand or any symbolic links encountered during
10343 traversal of a file hierarchy.

10344 Notes to Reviewers
10345 This section with side shading will not appear in the final copy. - Ed.

10346 A description of the −P option is needed. This is not in the IEEE P1003.2b draft
10347 standard.

10348 −p Duplicate the following characteristics of each source file in the corresponding
10349 destination file:

10350 1. The time of last data modification and time of last access. If this duplication
10351 fails for any reason, cp shall write a diagnostic message to standard error.

10352 2. The user ID and group ID. If this duplication fails for any reason, it is
10353 unspecified whether cp writes a diagnostic message to standard error.

10354 3. The file permission bits and the S_ISUID and S_ISGID bits. Other, |
10355 implementation-defined, bits may be duplicated as well. If this duplication |
10356 fails for any reason, cp shall write a diagnostic message to standard error.

10357 If the user ID or the group ID cannot be duplicated, the file permission bits
10358 S_ISUID and S_ISGID shall be cleared. If these bits are present in the source file but
10359 are not duplicated in the destination file, it is unspecified whether cp writes a
10360 diagnostic message to standard error.

10361 The order in which the preceding characteristics are duplicated is unspecified. The
10362 dest_file shall not be deleted if these characteristics cannot be preserved.

10363 −R Copy file hierarchies.

10364 OB −r Copy file hierarchies. The treatment of special files is implementation-defined. |

10365 Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be
10366 considered an error. The last option specified shall determine the behavior of the utility.

10367 OPERANDS
10368 The following operands shall be supported:

10369 source_file A path name of a file to be copied.

10370 target_file A path name of an existing or nonexistent file, used for the output when a single
10371 file is copied.

10372 target A path name of a directory to contain the copied files.

10373 STDIN
10374 Used to read an input line in response to each prompt specified in the STDERR section.
10375 Otherwise, the standard input shall not be used.

10376 INPUT FILES
10377 The input files specified as operands may be of any file type.

Shell and Utilities, Issue 6 2483

cp Utilities

10378 ENVIRONMENT VARIABLES
10379 The following environment variables shall affect the execution of cp:

10380 LANG Provide a default value for the internationalization variables that are unset or null.
10381 If LANG is unset or null, the corresponding value from the implementation- |
10382 defined default locale shall be used. If any of the internationalization variables |
10383 contains an invalid setting, the utility shall behave as if none of the variables had
10384 been defined.

10385 LC_ALL If set to a non-empty string value, override the values of all the other
10386 internationalization variables.

10387 LC_COLLATE
10388 Determine the locale for the behavior of ranges, equivalence classes, and multi-
10389 character collating elements used in the extended regular expression defined for
10390 the yesexpr locale keyword in the LC_MESSAGES category.

10391 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
10392 characters (for example, single-byte as opposed to multi-byte characters in
10393 arguments and input files) and the behavior of character classes used in the
10394 extended regular expression defined for the yesexpr locale keyword in the
10395 LC_MESSAGES category.

10396 LC_MESSAGES
10397 Determine the locale for the processing of affirmative responses that should be
10398 used to affect the format and contents of diagnostic messages written to standard
10399 error.

10400 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

10401 ASYNCHRONOUS EVENTS
10402 Default.

10403 STDOUT
10404 Not used.

10405 STDERR
10406 A prompt shall be written to standard error under the conditions specified in the DESCRIPTION
10407 section. The prompt shall contain the destination path name, but its format is otherwise
10408 unspecified. Otherwise, the standard error shall be used only for diagnostic messages.

10409 OUTPUT FILES
10410 The output files may be of any type.

10411 EXTENDED DESCRIPTION
10412 None.

10413 EXIT STATUS
10414 The following exit values shall be returned:

10415 0 All files were copied successfully.

10416 >0 An error occurred.

10417 CONSEQUENCES OF ERRORS
10418 If cp is prematurely terminated by a signal or error, files or file hierarchies may be only partially
10419 copied and files and directories may have incorrect permissions or access and modification
10420 times.

2484 Technical Standard (2000) (Draft July 31, 2000)

Utilities cp

10421 APPLICATION USAGE
10422 The difference between −R and −r is in the treatment by cp of file types other than regular and
10423 directory. The original −r flag, for historic reasons, does not handle special files any differently
10424 from regular files, but always reads the file and copies its contents. This has obvious problems in
10425 the presence of special file types; for example, character devices, FIFOs, and sockets. The −R
10426 option is intended to recreate the file hierarchy and the −r option supports historical practice. It
10427 was anticipated that a future version of this volume of IEEE Std. 1003.1-200x would deprecate
10428 the −r option, and for that reason, there has been no attempt to fix its behavior with respect to
10429 FIFOs or other file types where copying the file is clearly wrong. However, some systems
10430 support −r with the same abilities as the −R defined in this volume of IEEE Std. 1003.1-200x. To
10431 accommodate them as well as systems that do not, the differences between −r and −R are |
10432 implementation-defined. Implementations may make them identical. The −r option is now |
10433 marked obsolescent.

10434 The set-user-ID and set-group-ID bits are explicitly cleared when files are created. This is to
10435 prevent users from creating programs that are set-user-ID or set-group-ID to them when
10436 copying files or to make set-user-ID or set-group-ID files accessible to new groups of users. For
10437 example, if a file is set-user-ID and the copy has a different group ID than the source, a new
10438 group of users has execute permission to a set-user-ID program than did previously. In
10439 particular, this is a problem for superusers copying users’ trees.

10440 EXAMPLES
10441 None.

10442 RATIONALE
10443 The −i option exists on BSD systems, giving applications and users a way to avoid accidentally
10444 removing files when copying. Although the 4.3 BSD version does not prompt if the standard
10445 input is not a terminal, the standard developers decided that use of −i is a request for interaction,
10446 so when the destination path exists, the utility takes instructions from whatever responds on
10447 standard input.

10448 The exact format of the interactive prompts is unspecified. Only the general nature of the
10449 contents of prompts are specified because implementations may desire more descriptive
10450 prompts than those used on historical implementations. Therefore, an application using the −i
10451 option relies on the system to provide the most suitable dialog directly with the user, based on
10452 the behavior specified.

10453 The −p option is historical practice on BSD systems, duplicating the time of last data
10454 modification and time of last access. This volume of IEEE Std. 1003.1-200x extends it to preserve
10455 the user and group IDs, as well as the file permissions. This requirement has obvious problems
10456 in that the directories are almost certainly modified after being copied. This volume of
10457 IEEE Std. 1003.1-200x requires that the modification times be preserved. The statement that the
10458 order in which the characteristics are duplicated is unspecified is to permit implementations to
10459 provide the maximum amount of security for the user. Implementations should take into
10460 account the obvious security issues involved in setting the owner, group, and mode in the
10461 wrong order or creating files with an owner, group, or mode different from the final value.

10462 It is unspecified whether cp writes diagnostic messages when the user and group IDs cannot be
10463 set due to the widespread practice of users using −p to duplicate some portion of the file
10464 characteristics, indifferent to the duplication of others. Historic implementations only write
10465 diagnostic messages on errors other than [EPERM].

10466 The −r option is historical practice on BSD and BSD-derived systems, copying file hierarchies as
10467 opposed to single files. This functionality is used heavily in historical applications, and its loss
10468 would significantly decrease consensus. The −R option was added as a close synonym to the −r
10469 option, selected for consistency with all other options in this volume of IEEE Std. 1003.1-200x

Shell and Utilities, Issue 6 2485

cp Utilities

10470 that do recursive directory descent.

10471 When a failure occurs during the copying of a file hierarchy, cp is required to attempt to copy
10472 files that are on the same level in the hierarchy or above the file where the failure occurred. It is
10473 unspecified if cp shall attempt to copy files below the file where the failure occurred (which
10474 cannot succeed in any case).

10475 Permissions, owners, and groups of created special file types have been deliberately left as |
10476 implementation-defined. This is to allow systems to satisfy special requirements (for example, |
10477 allowing users to create character special devices, but requiring them to be owned by a certain
10478 group). In general, it is strongly suggested that the permissions, owner, and group be the same
10479 as if the user had run the historical mknod, ln, or other utility to create the file. It is also probable
10480 that additional privileges are required to create block, character, or other implementation- |
10481 defined special file types. |

10482 Additionally, the −p option explicitly requires that all set-user-ID and set-group-ID permissions
10483 be discarded if any of the owner or group IDs cannot be set. This is to keep users from
10484 unintentionally giving away special privilege when copying programs.

10485 When creating regular files, historical versions of cp use the mode of the source file as modified
10486 by the file mode creation mask. Other choices would have been to use the mode of the source file
10487 unmodified by the creation mask or to use the same mode as would be given to a new file
10488 created by the user (plus the execution bits of the source file) and then modify it by the file mode
10489 creation mask. In the absence of any strong reason to change historic practice, it was in large part
10490 retained.

10491 When creating directories, historical versions of cp use the mode of the source directory, plus
10492 read, write, and search bits for the owner, as modified by the file mode creation mask. This is
10493 done so that cp can copy trees where the user has read permission, but the owner does not. A
10494 side effect is that if the file creation mask denies the owner permissions, cp fails. Also, once the
10495 copy is done, historical versions of cp set the permissions on the created directory to be the same
10496 as the source directory, unmodified by the file creation mask.

10497 This behavior has been modified so that cp is always able to create the contents of the directory,
10498 regardless of the file creation mask. After the copy is done, the permissions are set to be the same
10499 as the source directory, as modified by the file creation mask. This latter change from historical
10500 behavior is to prevent users from accidentally creating directories with permissions beyond
10501 those they would normally set and for consistency with the behavior of cp in creating files.

10502 It is not a requirement that cp detect attempts to copy a file to itself; however, implementations
10503 are strongly encouraged to do so. Historical implementations have detected the attempt in most
10504 cases.

10505 There are two methods of copying subtrees in this volume of IEEE Std. 1003.1-200x. The other
10506 method is described as part of the pax utility (see pax (on page 2910)). Both methods are
10507 historical practice. The cp utility provides a simpler, more intuitive interface, while pax offers a
10508 finer granularity of control. Each provides additional functionality to the other; in particular, pax
10509 maintains the hard-link structure of the hierarchy, while cp does not. It is the intention of the
10510 standard developers that the results be similar (using appropriate option combinations in both
10511 utilities). The results are not required to be identical; there seemed insufficient gain to
10512 applications to balance the difficulty of implementations having to guarantee that the results
10513 would be exactly identical.

10514 The wording allowing cp to copy a directory to implementation-defined file types not specified |
10515 by the System Interfaces volume of IEEE Std. 1003.1-200x is provided so that implementations
10516 supporting symbolic links are not required to prohibit copying directories to symbolic links.
10517 Other extensions to the System Interfaces volume of IEEE Std. 1003.1-200x file types may need to

2486 Technical Standard (2000) (Draft July 31, 2000)

Utilities cp

10518 use this loophole as well.

10519 FUTURE DIRECTIONS
10520 The −r option may be removed; use −R instead.

10521 SEE ALSO
10522 mv, find , ln , pax

10523 CHANGE HISTORY
10524 First released in Issue 2.

10525 Issue 4
10526 Aligned with the ISO/IEC 9945-2: 1993 standard.

10527 Issue 6
10528 The −r option is marked obsolescent.

10529 The new options −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
10530 options affect the processing of symbolic links.

Shell and Utilities, Issue 6 2487

crontab Utilities

10531 NAME
10532 crontab — schedule periodic background work

10533 SYNOPSIS
10534 UP crontab [file]

10535 crontab [−e | −l | −r]
10536

10537 DESCRIPTION
10538 The crontab utility shall create, replace, or edit a user’s crontab entry; a crontab entry is a list of
10539 commands and the times at which they shall be executed. The new crontab entry can be input by
10540 specifying file or input from standard input if no file operand is specified, or by using an editor, if
10541 −e is specified.

10542 Upon execution of a command from a crontab entry, the implementation shall supply a default
10543 environment, defining at least the following environment variables:

10544 HOME A path name of the user’s home directory.

10545 LOGNAME The user’s login name.

10546 PATH A string representing a search path guaranteed to find all of the standard utilities.

10547 SHELL A path name of the command interpreter. When crontab is invoked as specified by
10548 this volume of IEEE Std. 1003.1-200x, the value shall be a path name for sh.

10549 The values of these variables when crontab is invoked as specified by this volume of
10550 IEEE Std. 1003.1-200x shall not affect the default values provided when the scheduled command
10551 is run.

10552 If standard output and standard error are not redirected by commands executed from the
10553 crontab entry, any generated output or errors shall be mailed, via an implementation-defined |
10554 method, to the user. |

10555 XSI Users are permitted to use crontab if their names appear in the file /usr/lib/cron/cron.allow. If
10556 that file does not exist, the file /usr/lib/cron/cron.deny is checked to determine whether the user
10557 should be denied access to crontab. If neither file exists, only a process with appropriate
10558 privileges is allowed to submit a job. If only cron.deny exists and is empty, global usage is
10559 permitted. The cron.allow and cron.deny files consist of one user name per line.

10560 OPTIONS
10561 The crontab utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
10562 12.2, Utility Syntax Guidelines. |

10563 The following options shall be supported:

10564 −e Edit a copy of the invoking user’s crontab entry, or create an empty entry to edit if
10565 the crontab entry does not exist. When editing is complete, the entry shall be
10566 installed as the user’s crontab entry.

10567 −l (The letter ell.) List the invoking user’s crontab entry.

10568 −r Remove the invoking user’s crontab entry.

10569 OPERANDS
10570 The following operand shall be supported:

10571 file The path name of a file that contains specifications, in the format defined in the
10572 INPUT FILES section, for crontab entries.

2488 Technical Standard (2000) (Draft July 31, 2000)

Utilities crontab

10573 STDIN
10574 See the INPUT FILES section.

10575 INPUT FILES
10576 In the POSIX locale, the user or application shall ensure that a crontab entry is a text file
10577 consisting of lines of six fields each. The fields shall be separated by <blank> characters. The first
10578 five fields shall be integer patterns that specify the following:

10579 1. Minute (0-59)

10580 2. Hour (0-23)

10581 3. Day of the month (1-31)

10582 4. Month of the year (1-12)

10583 5. Day of the week (0-6 with 0=Sunday)

10584 Each of these patterns can be either an asterisk (meaning all valid values), an element, or a list of
10585 elements separated by commas. An element shall be either a number or two numbers separated
10586 by a hyphen (meaning an inclusive range). The specification of days can be made by two fields
10587 (day of the month and day of the week). If month, day of month, and day of week are all
10588 asterisks, every day shall be matched. If either the month or day of month is specified as an
10589 element or list, but the day of week is an asterisk, the month and day of month fields shall
10590 specify the days that match. If both month and day of month are specified as asterisk, but day of
10591 week is an element or list, then only the specified days of the week match. Finally, if either the
10592 month or day of month is specified as an element or list, and the day of week is also specified as
10593 an element or list, then any day matching either the month and day of month, or the day of
10594 week, shall be matched.

10595 The sixth field of a line in a crontab entry is a string that shall be executed by sh at the specified
10596 times. A percent sign character in this field shall be translated to a <newline> character. Any
10597 character preceded by a backslash (including the ’%’) shall cause that character to be treated
10598 literally. Only the first line (up to a ’%’ or end-of-line) of the command field shall be executed
10599 by the command interpreter. The other lines shall be made available to the command as
10600 standard input.

10601 Blank lines and those whose first non-<blank> character is ’#’ shall be ignored.

10602 XSI The text files /usr/lib/cron/cron.allow and /usr/lib/cron/cron.deny contain user names, one per
10603 line, of users who are, respectively, authorized or denied access to the service underlying the
10604 crontab utility.

10605 ENVIRONMENT VARIABLES
10606 The following environment variables shall affect the execution of crontab:

10607 EDITOR Determine the editor to be invoked when the −e option is specified. The default
10608 editor shall be vi.

10609 LANG Provide a default value for the internationalization variables that are unset or null.
10610 If LANG is unset or null, the corresponding value from the implementation- |
10611 defined default locale shall be used. If any of the internationalization variables |
10612 contains an invalid setting, the utility shall behave as if none of the variables had
10613 been defined.

10614 LC_ALL If set to a non-empty string value, override the values of all the other
10615 internationalization variables.

10616 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
10617 characters (for example, single-byte as opposed to multi-byte characters in

Shell and Utilities, Issue 6 2489

crontab Utilities

10618 arguments and input files).

10619 LC_MESSAGES
10620 Determine the locale that should be used to affect the format and contents of
10621 diagnostic messages written to standard error.

10622 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

10623 ASYNCHRONOUS EVENTS
10624 Default.

10625 STDOUT
10626 If the −l option is specified, the crontab entry shall be written to the standard output.

10627 STDERR
10628 Used only for diagnostic messages.

10629 OUTPUT FILES
10630 None.

10631 EXTENDED DESCRIPTION
10632 None.

10633 EXIT STATUS
10634 The following exit values shall be returned:

10635 0 Successful completion.

10636 >0 An error occurred.

10637 CONSEQUENCES OF ERRORS
10638 The user’s crontab entry is not submitted, removed, edited, or listed.

10639 APPLICATION USAGE
10640 The format of the crontab entry shown here is guaranteed only for the POSIX locale. Other
10641 cultures may be supported with substantially different interfaces, although implementations are
10642 encouraged to provide comparable levels of functionality.

10643 The default settings of the HOME, LOGNAME, PATH, and SHELL variables that are given to the
10644 scheduled job are not affected by the settings of those variables when crontab is run; as stated,
10645 they are defaults. The text about ‘‘invoked as specified by this volume of IEEE Std. 1003.1-200x’’
10646 means that the implementation may provide extensions that allow these variables to be affected
10647 at runtime, but that the user has to take explicit action in order to access the extension, such as
10648 give a new option flag or modify the format of the crontab entry.

10649 A typical user error is to type only crontab; this causes the system to wait for the new crontab
10650 entry on standard input. If end-of-file is typed (generally <control>-D), the crontab entry is
10651 replaced by an empty file. In this case, the user should type the interrupt character, which
10652 prevents the crontab entry from being replaced. |

10653 EXAMPLES

10654 1. Clean up core files every weekday morning at 3:15 am:

10655 15 3 * * 1-5 find $HOME −name core 2>/dev/null | xargs rm −f

10656 2. Mail a birthday greeting:

10657 0 12 14 2 * mailx john%Happy Birthday!%Time for lunch.

10658 3. As an example of specifying the two types of days:

2490 Technical Standard (2000) (Draft July 31, 2000)

Utilities crontab

10659 0 0 1,15 * 1

10660 would run a command on the first and fifteenth of each month, as well as on every
10661 Monday. To specify days by only one field, the other field should be set to ’*’ ; for
10662 example:

10663 0 0 * * 1

10664 would run a command only on Mondays.

10665 RATIONALE
10666 All references to a cron daemon and to cron files have been omitted. Although historical
10667 implementations have used this arrangement, there is no reason to limit future implementations.

10668 This description of crontab is designed to support only users with normal privileges. The format
10669 of the input is based on the System V crontab; however, there is no requirement here that the
10670 actual system database used by the cron daemon (or a similar mechanism) use this format
10671 internally. For example, systems derived from BSD are likely to have an additional field
10672 appended that indicates the user identity to be used when the job is submitted.

10673 The −e option was adopted from the SVID as a user convenience, although it does not exist in all
10674 historical implementations.

10675 FUTURE DIRECTIONS
10676 None.

10677 SEE ALSO
10678 at

10679 CHANGE HISTORY
10680 First released in Issue 2.

10681 Issue 4
10682 Aligned with the ISO/IEC 9945-2: 1993 standard.

10683 Issue 6
10684 This utility is now marked as part of the User Portability Utilities option.

10685 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2491

csplit Utilities

10686 NAME
10687 csplit — split files based on context

10688 SYNOPSIS
10689 UP csplit [−ks][−f prefix][−n number] file arg1 ... argn
10690

10691 DESCRIPTION
10692 The csplit utility shall read the file named by the file operand, write all or part of that file into
10693 other files as directed by the arg operands, and write the sizes of the files.

10694 OPTIONS
10695 The csplit utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
10696 12.2, Utility Syntax Guidelines. |

10697 The following options shall be supported:

10698 −f prefix Name the created files prefix00, prefix01, . . ., prefixn . The default is xx00 . . . xxn. If
10699 the prefix argument would create a file name exceeding {NAME_MAX} bytes, an
10700 error shall result, csplit shall exit with a diagnostic message and no files shall be
10701 created.

10702 −k Leave previously created files intact. By default, csplit shall remove created files if
10703 an error occurs.

10704 −n number Use number decimal digits to form file names for the file pieces. The default shall be
10705 2.

10706 −s Suppress the output of file size messages.

10707 OPERANDS
10708 The following operands shall be supported:

10709 file The path name of a text file to be split. If file is ’ −’ , the standard input shall be
10710 used.

10711 The operands arg1 . . . argn can be a combination of the following:

10712 /rexp/[offset]
10713 A file shall be created using the content of the lines from the current line up to, but
10714 not including, the line that results from the evaluation of the regular expression
10715 with offset , if any, applied. The regular expression rexp shall follow the rules for
10716 basic regular expressions described in the Base Definitions volume of |
10717 IEEE Std. 1003.1-200x, Section 9.3, Basic Regular Expressions. The application shall |
10718 use the sequence "\/" to specify a slash character within the rexp. The optional |
10719 offset shall be a positive or negative integer value representing a number of lines.
10720 A positive integer value can be preceded by ’+’ . If the selection of lines from an
10721 offset expression of this type would create a file with zero lines, or one with greater
10722 than the number of lines left in the input file, the results are unspecified. After the
10723 section is created, the current line shall be set to the line that results from the
10724 evaluation of the regular expression with any offset applied. If the current line is
10725 the first line in the file and a regular expression operation has not yet been
10726 performed, the pattern match of rexp shall be applied from the current line to the
10727 end of the file. Otherwise, the pattern match of rexp shall be applied from the line
10728 following the current line to the end of the file.

10729 %rexp%[offset]
10730 Equivalent to /rexp/[offset], except that no file shall be created for the selected
10731 section of the input file. The application shall use the sequence "\%" to specify a

2492 Technical Standard (2000) (Draft July 31, 2000)

Utilities csplit

10732 percent-sign character within the rexp.

10733 line_no Create a file from the current line up to (but not including) the line number line_no .
10734 Lines in the file shall be numbered starting at one. The current line becomes
10735 line_no .

10736 {num} Repeat operand. This operand can follow any of the operands described
10737 previously. If it follows a rexp type operand, that operand shall be applied num
10738 more times. If it follows a line_no operand, the file shall be split every line_no lines,
10739 num times, from that point.

10740 An error shall be reported if an operand does not reference a line between the current position
10741 and the end of the file.

10742 STDIN
10743 See the INPUT FILES section.

10744 INPUT FILES
10745 The input file shall be a text file.

10746 ENVIRONMENT VARIABLES
10747 The following environment variables shall affect the execution of csplit:

10748 LANG Provide a default value for the internationalization variables that are unset or null.
10749 If LANG is unset or null, the corresponding value from the implementation- |
10750 defined default locale shall be used. If any of the internationalization variables |
10751 contains an invalid setting, the utility shall behave as if none of the variables had
10752 been defined.

10753 LC_ALL If set to a non-empty string value, override the values of all the other
10754 internationalization variables.

10755 LC_COLLATE
10756 Determine the locale for the behavior of ranges, equivalence classes, and multi-
10757 character collating elements within regular expressions.

10758 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
10759 characters (for example, single-byte as opposed to multi-byte characters in
10760 arguments and input files) and the behavior of character classes within regular
10761 expressions.

10762 LC_MESSAGES
10763 Determine the locale that should be used to affect the format and contents of
10764 diagnostic messages written to standard error.

10765 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

10766 ASYNCHRONOUS EVENTS
10767 If the −k option is specified, created files shall be retained. Otherwise, the default action occurs.

10768 STDOUT
10769 Unless the −s option is used, the standard output shall consist of one line per file created, with a
10770 format as follows:

10771 "%d\n", < file size in bytes >

Shell and Utilities, Issue 6 2493

csplit Utilities

10772 STDERR
10773 Used only for diagnostic messages.

10774 OUTPUT FILES
10775 The output files shall contain portions of the original input file; otherwise, unchanged.

10776 EXTENDED DESCRIPTION
10777 None.

10778 EXIT STATUS
10779 The following exit values shall be returned:

10780 0 Successful completion.

10781 >0 An error occurred.

10782 CONSEQUENCES OF ERRORS
10783 By default, created files shall be removed if an error occurs. When the −k option is specified,
10784 created files shall not be removed if an error occurs.

10785 APPLICATION USAGE
10786 None. |

10787 EXAMPLES

10788 1. This example creates four files, cobol00 . . . cobol03:

10789 csplit −f cobol file ’/procedure division/’ /par5./ /par16./

10790 After editing the split files, they can be recombined as follows:

10791 cat cobol0[0 −3] > file

10792 Note that this example overwrites the original file.

10793 2. This example would split the file after the first 99 lines, and every 100 lines thereafter, up
10794 to 9 999 lines; this is because lines in the file are numbered from 1 rather than zero, for
10795 historical reasons:

10796 csplit −k file 100 {99}

10797 3. Assuming that prog.c follows the C-language coding convention of ending routines with a
10798 ’}’ at the beginning of the line, this example creates a file containing each separate C
10799 routine (up to 21) in prog.c:

10800 csplit −k prog.c ’%main(%’ ’/ˆ}/+1’ {20}

10801 RATIONALE
10802 The −n option was added to extend the range of file names that could be handled.

10803 Consideration was given to adding a −a flag to use the alphabetic file name generation used by
10804 the historical split utility, but the functionality added by the −n option was deemed to make
10805 alphabetic naming unnecessary.

10806 FUTURE DIRECTIONS
10807 None.

10808 SEE ALSO
10809 sed, split

2494 Technical Standard (2000) (Draft July 31, 2000)

Utilities csplit

10810 CHANGE HISTORY
10811 First released in Issue 2.

10812 Issue 4
10813 Aligned with the ISO/IEC 9945-2: 1993 standard.

10814 Issue 5
10815 FUTURE DIRECTIONS section added.

10816 Issue 6
10817 This utility is now marked as part of the User Portability Utilities option.

10818 The APPLICATION USAGE section is added.

10819 The description of regular expression operands is changed to align with the IEEE P1003.2b draft
10820 standard.

10821 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2495

ctags Utilities

10822 NAME
10823 ctags — create a tags file (DEVELOPMENT, FORTRAN)

10824 SYNOPSIS
10825 UP ctags [−a][−f tagsfile] pathname ...

10826 ctags −x pathname ...
10827

10828 DESCRIPTION
10829 The ctags utility shall be provided on systems that support the User Portability Utilities option,
10830 the Software Development Utilities option, and either or both of the C-Language Development
10831 Utilities option and FORTRAN Development Utilities option. On other systems, it is optional.

10832 The ctags utility shall write a tags file or an index of objects from C-language or FORTRAN |
10833 source files specified by the pathname operands. The tags file shall list the locators of language-
10834 specific objects within the source files. A locator consists of a name, path name, and either a
10835 search pattern or a line number that can be used in searching for the object definition. The
10836 objects that shall be recognized are specified in the EXTENDED DESCRIPTION section.

10837 OPTIONS
10838 The ctags utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
10839 12.2, Utility Syntax Guidelines. |

10840 The following options shall be supported:

10841 −a Append to tags file.

10842 −f tagsfile Write the object locator lists into tagsfile instead of the default file named tags in
10843 the current directory.

10844 −x Produce a list of object names, the line number, and file name in which each is
10845 defined, as well as the text of that line, and write this to the standard output. A
10846 tags file shall not be created when −x is specified.

10847 OPERANDS
10848 The following pathname operands are supported:

10849 file.c Files with basenames ending with the .c suffix shall be treated as C-language
10850 source code. Such files that are not valid input to c99 produce unspecified results. |

10851 file.h Files with basenames ending with the .h suffix shall be treated as C-language
10852 source code. Such files that are not valid input to c99 produce unspecified results. |

10853 file.f Files with basenames ending with the .f suffix shall be treated as FORTRAN-
10854 language source code. Such files that are not valid input to fort77 produce
10855 unspecified results.

10856 The handling of other files is implementation-defined. |

10857 STDIN
10858 See the INPUT FILES section.

10859 INPUT FILES
10860 The input files shall be text files containing source code in the language indicated by the operand
10861 file name suffixes.

2496 Technical Standard (2000) (Draft July 31, 2000)

Utilities ctags

10862 ENVIRONMENT VARIABLES
10863 The following environment variables shall affect the execution of ctags:

10864 LANG Provide a default value for the internationalization variables that are unset or null.
10865 If LANG is unset or null, the corresponding value from the implementation- |
10866 defined default locale shall be used. If any of the internationalization variables |
10867 contains an invalid setting, the utility shall behave as if none of the variables had
10868 been defined.

10869 LC_ALL If set to a non-empty string value, override the values of all the other
10870 internationalization variables.

10871 LC_COLLATE
10872 Determine the order in which output is sorted for the −x option. The POSIX locale
10873 determines the order in which the tags file is written.

10874 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
10875 characters (for example, single-byte as opposed to multi-byte characters in
10876 arguments and input files). When processing C-language source code, if the locale
10877 is not compatible with the C locale described by the ISO C standard, the results are
10878 unspecified.

10879 LC_MESSAGES
10880 Determine the locale that should be used to affect the format and contents of
10881 diagnostic messages written to standard error.

10882 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

10883 ASYNCHRONOUS EVENTS
10884 Default.

10885 STDOUT
10886 The list of object name information produced by the −x option shall be written to standard
10887 output in the following format:

10888 "%s %d %s %s", <object-name >, < line-number >, < filename >,
10889 <text >

10890 where <text> is the text of line <line-number> of file <filename>.

10891 STDERR
10892 Used only for diagnostic messages.

10893 OUTPUT FILES
10894 When the −x option is not specified, the format of the output file shall be:

10895 "%s\t%s\t/%s/\n", < identifier >, < filename >, < pattern >

10896 where <pattern> is a search pattern that could be used by an editor to find the defining instance
10897 of <identifier> in <filename> (where defining instance is indicated by the declarations listed in the
10898 EXTENDED DESCRIPTION).

10899 An optional circumflex (’ˆ’) can be added as a prefix to <pattern>, and an optional dollar sign
10900 can be appended to <pattern> to indicate that the pattern is anchored to the beginning (end) of a
10901 line of text. Any slash or backslash characters in <pattern> shall be preceded by a backslash
10902 character. The anchoring circumflex, dollar sign, and escaping backslash characters shall not be
10903 considered part of the search pattern. All other characters in the search pattern shall be
10904 considered literal characters.

Shell and Utilities, Issue 6 2497

ctags Utilities

10905 An alternative format is:

10906 "%s\t%s\t?%s?\n", < identifier >, < filename >, < pattern >

10907 which is identical to the first format except that slashes in <pattern> shall not be preceded by
10908 escaping backslash characters, and question mark characters in <pattern> shall be preceded by
10909 backslash characters.

10910 A second alternative format is:

10911 "%s\t%s\t%d\n", < identifier >, < filename >, < lineno >

10912 where <lineno> is a decimal line number that could be used by an editor to find <identifier> in
10913 <filename>.

10914 Neither alternative format shall be produced by ctags when it is used as described by
10915 IEEE Std. 1003.1-200x, but the standard utilities that process tags files shall be able to process
10916 those formats as well as the first format.

10917 In any of these formats, the file shall be sorted by identifier, based on the collation sequence in
10918 the POSIX locale.

10919 EXTENDED DESCRIPTION
10920 If the operand identifies C-language source, the ctags utility shall attempt to produce an output
10921 line for each of the following objects:

10922 • Function definitions

10923 • Type definitions

10924 • Macros with arguments

10925 It may also produce output for any of the following objects:

10926 • Function prototypes

10927 • Structures

10928 • Unions

10929 • Global variable definitions

10930 • Enumeration types

10931 • Macros without arguments

10932 • #define statements

10933 • #line statements

10934 Any #if and #ifdef statements shall produce no output. The tag main is treated specially in C
10935 programs. The tag formed shall be created by prefixing M to the name of the file, with the
10936 trailing .c, and leading path name components (if any) removed.

10937 On systems that do not support the C-Language Development Utilities option, ctags produces
10938 undefined results for C-language source code files.

10939 If the operand identifies FORTRAN source, the ctags utility shall produce an output line for each
10940 function definition. It may also produce output for any of the following objects:

10941 • Subroutine definitions

10942 • COMMON statements

2498 Technical Standard (2000) (Draft July 31, 2000)

Utilities ctags

10943 • PARAMETER statements

10944 • DATA and BLOCK DATA statements

10945 • Statement numbers

10946 On systems that do not support the FORTRAN Development Utilities option, ctags produces
10947 unspecified results for FORTRAN source code files. It should write to standard error a message
10948 identifying this condition and cause a non-zero exit status to be produced.

10949 It is implementation-defined what other objects (including duplicate identifiers) produce output. |

10950 EXIT STATUS
10951 The following exit values shall be returned:

10952 0 Successful completion.

10953 >0 An error occurred.

10954 CONSEQUENCES OF ERRORS
10955 Default.

10956 APPLICATION USAGE
10957 The output with −x is meant to be a simple index that can be written out as an off-line readable
10958 function index. If the input files to ctags (such as .c files) were not created using the same locales
10959 as those in effect when ctags −x is run, results might not be as expected.

10960 The description of C-language processing says ‘‘attempts to’’ because the C language can be
10961 greatly confused, especially through the use of #defines, and this utility would be of no use if
10962 the real C preprocessor were run to identify them. The output from ctags may be fooled and
10963 incorrect for various constructs. |

10964 EXAMPLES
10965 None.

10966 RATIONALE
10967 The option list was significantly reduced from that provided by historical implementations. The
10968 −F option was omitted as redundant, since it is the default. The −B option was omitted as being
10969 of very limited usefulness. The −t option was omitted since the recognition of typedefs is now
10970 required for C source files. The −u option was omitted because the update function was judged
10971 to be not only inefficient, but also rarely needed.

10972 An early proposal included a −w option to suppress warning diagnostics. Since the types of such
10973 diagnostics could not be described, the option was omitted as being not useful.

10974 The text for LC_CTYPE about compatibility with the C locale acknowledges that the ISO C
10975 standard imposes requirements on the locale used to process C source. This could easily be a
10976 superset of that known as ‘‘the C locale’’ by way of implementation extensions, or one of a few
10977 alternative locales for systems supporting different codesets. No statement is made for
10978 FORTRAN because the ANSI X3.9-1978 standard (FORTRAN 77) does not (yet) define a similar
10979 locale concept. However, a general rule in this volume of IEEE Std. 1003.1-200x is that any time
10980 that locales do not match (preparing a file for one locale and processing it in another), the results
10981 are suspect.

10982 The collation sequence of the tags file is not affected by LC_COLLATE because it is typically not
10983 used by human readers, but only by programs such as vi to locate the tag within the source files.
10984 Using the POSIX locale eliminates some of the problems of coordinating locales between the
10985 ctags file creator and the vi file reader.

Shell and Utilities, Issue 6 2499

ctags Utilities

10986 Historically, the tags file has been used only by ex and vi. However, the format of the tags file
10987 has been published to encourage other programs to use the tags in new ways. The format allows
10988 either patrerns or line numbers to find the identifiers because the historical vi recognizes either. |
10989 The ctags utility does not produce the format using line numbers because it is not useful
10990 following any source file changes that add or delete lines. The documented search patterns
10991 match historical practice. It should be noted that literal leading circumflex or trailing dollar-sign
10992 characters in the search pattern will only behave correctly if anchored to the beginning of the
10993 line or end of the line by an additional circumflex or dollar-sign character.

10994 Historical implementations also understand the objects used by the languages Pascal and
10995 sometimes LISP, and they understand the C source output by lex and yacc. The ctags utility is
10996 not required to accommodate these languages, although implementors are encouraged to do so.

10997 The following historical option was not specified, as vgrind is not included in this volume of
10998 IEEE Std. 1003.1-200x:

10999 −v If the −v flag is given, an index of the form expected by vgrind is produced on the
11000 standard output. This listing contains the function name, file name, and page
11001 number (assuming 64-line pages). Since the output is sorted into lexicographic
11002 order, it may be desired to run the output through sort −f. Sample use:

11003 ctags −v files | sort −f > index vgrind −x index

11004 The special treatment of the tag main makes the use of ctags practical in directories with more
11005 than one program.

11006 FUTURE DIRECTIONS
11007 None.

11008 SEE ALSO
11009 c99 , fort77 , vi |

11010 CHANGE HISTORY
11011 First released in Issue 4.

11012 Issue 5
11013 FUTURE DIRECTIONS section added.

11014 Issue 6
11015 This utility is now marked as part of the User Portability Utilities option.

11016 The OUTPUT FILES section is changed to align with the IEEE P1003.2b draft standard.

11017 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

11018 IEEE PASC Interpretation 1003.2 #168 is applied, changing ‘‘create’’ to ‘‘write’’ in the |
11019 DESCRIPTION. |

2500 Technical Standard (2000) (Draft July 31, 2000)

Utilities cut

11020 NAME
11021 cut — cut out selected fields of each line of a file

11022 SYNOPSIS
11023 cut −b list [−n] [file ...]

11024 cut −c list [file ...]

11025 cut −f list [−d delim][−s][file ...]

11026 DESCRIPTION
11027 The cut utility shall cut out bytes (−b option), characters (−c option) or character-delimited fields
11028 (−f option) from each line in one or more files, concatenate them, and write them to standard
11029 output.

11030 OPTIONS
11031 The cut utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
11032 12.2, Utility Syntax Guidelines. |

11033 The application shall ensure that the option-argument list (see options −b, −c, and −f below) is a
11034 comma-separated list or <blank> character-separated list of positive numbers and ranges.
11035 Ranges can be in three forms. The first is two positive numbers separated by a hyphen
11036 (low−high), which represents all fields from the first number to the second number. The second is
11037 a positive number preceded by a hyphen (−high), which represents all fields from field number 1
11038 to that number. The third is a positive number followed by a hyphen (low−), which represents
11039 that number to the last field, inclusive. The elements in list can be repeated, can overlap, and can
11040 be specified in any order, but the bytes, characters, or fields selected shall be written in the order
11041 of the input data. If an element appears in the selection list more than once, it shall be written
11042 exactly once.

11043 The following options shall be supported:

11044 −b list Cut based on a list of bytes. Each selected byte shall be output unless the −n option
11045 is also specified. It shall not be an error to select bytes not present in the input line.

11046 −c list Cut based on a list of characters. Each selected character shall be output. It shall
11047 not be an error to select characters not present in the input line.

11048 −d delim Set the field delimiter to the character delim . The default is the <tab> character.

11049 −f list Cut based on a list of fields, assumed to be separated in the file by a delimiter
11050 character (see −d). Each selected field shall be output. Output fields shall be
11051 separated by a single occurrence of the field delimiter character. Lines with no field
11052 delimiters shall be passed through intact, unless −s is specified. It shall not be an
11053 error to select fields not present in the input line.

11054 −n Do not split characters. When specified with the −b option, each element in list of
11055 the form low−high (hyphen-separated numbers) shall be modified as follows:

11056 • If the byte selected by low is not the first byte of a character, low shall be
11057 decremented to select the first byte of the character originally selected by low .
11058 If the byte selected by high is not the last byte of a character, high shall be
11059 decremented to select the last byte of the character prior to the character
11060 originally selected by high , or zero if there is no prior character. If the resulting
11061 range element has high equal to zero or low greater than high , the list element
11062 shall be dropped from list for that input line without causing an error.

11063 Each element in list of the form low− shall be treated as above with high set to the
11064 number of bytes in the current line, not including the terminating <newline>

Shell and Utilities, Issue 6 2501

cut Utilities

11065 character. Each element in list of the form −high shall be treated as above with low
11066 set to 1. Each element in list of the form num (a single number) shall be treated as
11067 above with low set to num and high set to num.

11068 −s Suppress lines with no delimiter characters, when used with the −f option. Unless
11069 specified, lines with no delimiters shall be passed through untouched.

11070 OPERANDS
11071 The following operand shall be supported:

11072 file A path name of an input file. If no file operands are specified, or if a file operand is
11073 ’ −’ , the standard input shall be used.

11074 STDIN
11075 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ .
11076 See the INPUT FILES section.

11077 INPUT FILES
11078 The input files shall be text files, except that line lengths shall be unlimited.

11079 ENVIRONMENT VARIABLES
11080 The following environment variables shall affect the execution of cut:

11081 LANG Provide a default value for the internationalization variables that are unset or null.
11082 If LANG is unset or null, the corresponding value from the implementation- |
11083 defined default locale shall be used. If any of the internationalization variables |
11084 contains an invalid setting, the utility shall behave as if none of the variables had
11085 been defined.

11086 LC_ALL If set to a non-empty string value, override the values of all the other
11087 internationalization variables.

11088 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
11089 characters (for example, single-byte as opposed to multi-byte characters in
11090 arguments and input files).

11091 LC_MESSAGES
11092 Determine the locale that should be used to affect the format and contents of
11093 diagnostic messages written to standard error.

11094 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

11095 ASYNCHRONOUS EVENTS
11096 Default.

11097 STDOUT
11098 The cut utility output shall be a concatenation of the selected bytes, characters, or fields (one of
11099 the following):

11100 "%s\n", < concatenation of bytes >

11101 "%s\n", < concatenation of characters >

11102 "%s\n", < concatenation of fields and field delimiters >

11103 STDERR
11104 Used only for diagnostic messages.

2502 Technical Standard (2000) (Draft July 31, 2000)

Utilities cut

11105 OUTPUT FILES
11106 None.

11107 EXTENDED DESCRIPTION
11108 None.

11109 EXIT STATUS
11110 The following exit values shall be returned:

11111 0 All input files were output successfully.

11112 >0 An error occurred.

11113 CONSEQUENCES OF ERRORS
11114 Default.

11115 APPLICATION USAGE
11116 Earlier versions of the cut utility worked in an environment where bytes and characters were
11117 considered equivalent (modulo <backspace> and <tab> character processing in some
11118 implementations). In the extended world of multi-byte characters, the new −b option has been
11119 added. The −n option (used with −b) allows it to be used to act on bytes rounded to character
11120 boundaries. The algorithm specified for −n guarantees that:

11121 cut −b 1−500 −n file > file1
11122 cut −b 501 − −n file > file2

11123 ends up with all the characters in file appearing exactly once in file1 or file2. (There is,
11124 however, a <newline> character in both file1 and file2 for each <newline> character in file.)

11125 EXAMPLES
11126 Examples of the option qualifier list:

11127 1,4,7 Select the first, fourth, and seventh bytes, characters, or fields and field delimiters.

11128 1−3,8 Equivalent to 1,2,3,8.

11129 −5,10 Equivalent to 1,2,3,4,5,10.

11130 3− Equivalent to third to last, inclusive.

11131 The low−high forms are not always equivalent when used with −b and −n and multi-byte
11132 characters; see the description of −n.

11133 The following command:

11134 cut −d : −f 1,6 /etc/passwd

11135 reads the System V password file (user database) and produces lines of the form:

11136 <user ID >:< home directory >

11137 Most utilities in this volume of IEEE Std. 1003.1-200x work on text files. The cut utility can be
11138 used to turn files with arbitrary line lengths into a set of text files containing the same data. The
11139 paste utility can be used to create (or recreate) files with arbitrary line lengths. For example, if file
11140 contains long lines:

11141 cut −b 1−500 −n file > file1
11142 cut −b 501 − −n file > file2

11143 creates file1 (a text file) with lines no longer than 500 bytes (plus the <newline> character) and
11144 file2 that contains the remainder of the data from file. (Note that file2 is not a text file if there
11145 are lines in file that are longer than 500 + {LINE_MAX} bytes.) The original file can be recreated
11146 from file1 and file2 using the command:

Shell and Utilities, Issue 6 2503

cut Utilities

11147 paste −d "\0" file1 file2 > file

11148 RATIONALE
11149 Some historical implementations do not count <backspace> characters in determining character
11150 counts with the −c option. This may be useful for using cut for processing nroff output. It was
11151 deliberately decided not to have the −c option treat either <backspace> or <tab> characters in
11152 any special fashion. The fold utility does treat these characters specially.

11153 Unlike other utilities, some historical implementations of cut exit after not finding an input file,
11154 rather than continuing to process the remaining file operands. This behavior is prohibited by this
11155 volume of IEEE Std. 1003.1-200x, where only the exit status is affected by this problem.

11156 The behavior of cut when provided with either mutually-exclusive options or options that do
11157 not work logically together has been deliberately left unspecified in favor of global wording in
11158 Section 1.11 (on page 2224).

11159 The OPTIONS section was changed in response to P1003.2-N149. The change represents
11160 historical practice on all known systems. The original standard was ambiguous on the nature of
11161 the output.

11162 The list option-arguments are historically used to select the portions of the line to be written, but
11163 do not affect the order of the data. For example:

11164 echo abcdefghi | cut −c6,2,4 −7,1

11165 yields "abdefg" .

11166 A proposal to enhance cut with the following option:

11167 −o Preserve the selected field order. When this option is specified, each byte, character, or field
11168 (or ranges of such) shall be written in the order specified by the list option-argument, even if
11169 this requires multiple outputs of the same bytes, characters, or fields.

11170 was rejected because this type of enhancement is outside the scope of the IEEE P1003.2b draft
11171 standard.

11172 FUTURE DIRECTIONS
11173 None.

11174 SEE ALSO
11175 grep, paste , Section 2.5 (on page 2241)

11176 CHANGE HISTORY
11177 First released in Issue 2.

11178 Issue 4
11179 Aligned with the ISO/IEC 9945-2: 1993 standard.

11180 Issue 6
11181 The OPTIONS section is changed to align with the IEEE P1003.2b draft standard.

11182 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2504 Technical Standard (2000) (Draft July 31, 2000)

Utilities cxref

11183 NAME
11184 cxref — generate a C-language program cross-reference table (DEVELOPMENT)

11185 SYNOPSIS
11186 XSI cxref [−cs][−o file][−w num] [−D name[=def]] ... [−I dir] ...
11187 [−U name] ... file ...
11188

11189 DESCRIPTION
11190 The cxref utility shall analyze a collection of C-language files and attempt to build a cross-
11191 reference table. Information from #define lines is included in the symbol table. A sorted listing
11192 shall be written to standard output of all symbols (auto, static, and global) in each file separately,
11193 or with the −c option, in combination. Each symbol contains an asterisk before the declaring
11194 reference.

11195 OPTIONS
11196 The cxref utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
11197 12.2, Utility Syntax Guidelines, except that the order of the −D, −I, and −U options (which are |
11198 identical to their interpretation by c99) is significant. The following options shall be supported: |

11199 −c Write a combined cross-reference of all input files.

11200 −w num Format output no wider than num (decimal) columns. This option defaults to 80 if
11201 num is not specified or is less than 51.

11202 −o file Direct output to named file .

11203 −s Operate silently; do not print input file names.

11204 OPERANDS
11205 The following operand shall be supported:

11206 file A path name of a C-language source file.

11207 STDIN
11208 Not used.

11209 INPUT FILES
11210 The input files are C-language source files.

11211 ENVIRONMENT VARIABLES
11212 The following environment variables shall affect the execution of cxref:

11213 LANG Provide a default value for the internationalization variables that are unset or null.
11214 If LANG is unset or null, the corresponding value from the implementation- |
11215 defined default locale shall be used. If any of the internationalization variables |
11216 contains an invalid setting, the utility shall behave as if none of the variables had
11217 been defined.

11218 LC_ALL If set to a non-empty string value, override the values of all the other
11219 internationalization variables.

11220 LC_COLLATE
11221 Determine the locale for the ordering of the output.

11222 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
11223 characters (for example, single-byte as opposed to multi-byte characters in
11224 arguments and input files).

11225 LC_MESSAGES
11226 Determine the locale that should be used to affect the format and contents of

Shell and Utilities, Issue 6 2505

cxref Utilities

11227 diagnostic messages written to standard error.

11228 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

11229 ASYNCHRONOUS EVENTS
11230 Default.

11231 STDOUT
11232 The standard output shall be used for the cross-reference listing, unless the −o option is used to
11233 select a different output file.

11234 The format of standard output is unspecified, except that the following information shall be
11235 included:

11236 • If the −c option is not specified, each portion of the listing starts with the name of the input
11237 file on a separate line.

11238 • The name line is followed by a sorted list of symbols, each with its associated location path
11239 name, the name of the function in which it appears (if it is not a function name itself), and
11240 line number references.

11241 • Each line number may be preceded by an asterisk (’*’) flag, meaning that this is the
11242 declaring reference. Other single-character flags, with implementation-defined meanings, |
11243 may be included. |

11244 STDERR
11245 Used only for diagnostic messages.

11246 OUTPUT FILES
11247 The output file named by the −o option shall be used instead of standard output.

11248 EXTENDED DESCRIPTION
11249 None.

11250 EXIT STATUS
11251 The following exit values shall be returned:

11252 0 Successful completion.

11253 >0 An error occurred.

11254 CONSEQUENCES OF ERRORS
11255 Default.

11256 APPLICATION USAGE
11257 None. |

11258 EXAMPLES
11259 None.

11260 RATIONALE
11261 None.

11262 FUTURE DIRECTIONS
11263 None.

11264 SEE ALSO
11265 c99 |

2506 Technical Standard (2000) (Draft July 31, 2000)

Utilities cxref

11266 CHANGE HISTORY
11267 First released in Issue 2.

11268 Issue 4
11269 Format reorganized.

11270 Utility Syntax Guidelines support mandated.

11271 Internationalized environment variable support mandated.

11272 Issue 5
11273 In the SYNOPSIS, [−U dir]ischangedto[−U name].

11274 Issue 6
11275 The APPLICATION USAGE section is added.

Shell and Utilities, Issue 6 2507

date Utilities

11276 NAME
11277 date — write the date and time

11278 SYNOPSIS
11279 date [−u] [+format]

11280 XSI date [−u] mmddhhmm[[cc] yy]
11281

11282 DESCRIPTION
11283 XSI The date utility shall write the date and time to standard output or attempt to set the system date
11284 and time. By default, the current date and time shall be written. If an operand beginning with
11285 ’+’ is specified, the output format of date shall be controlled by the field descriptors and other
11286 text in the operand.

11287 OPTIONS
11288 The date utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
11289 12.2, Utility Syntax Guidelines. |

11290 The following option shall be supported:

11291 −u Perform operations as if the TZ environment variable was set to the string "UTC0" ,
11292 or its equivalent historical value of "GMT0" . Otherwise, date shall use the
11293 timezone indicated by the TZ environment variable or the system default if that
11294 variable is not set.

11295 OPERANDS
11296 The following operands shall be supported:

11297 +format When the format is specified, each field descriptor shall be replaced in the
11298 standard output by its corresponding value. All other characters shall be copied to
11299 the output without change. The output always shall be terminated with a
11300 <newline> character. |

11301 Field Descriptors

11302 %a Locale’s abbreviated weekday name.

11303 %A Locale’s full weekday name.

11304 %b Locale’s abbreviated month name.

11305 %B Locale’s full month name.

11306 %c Locale’s appropriate date and time representation.

11307 %C Century (a year divided by 100 and truncated to an integer) as a decimal
11308 number [00-99].

11309 %d Day of the month as a decimal number [01-31].

11310 %D Date in the format mm/dd/yy.

11311 %e Day of the month as a decimal number [1-31] in a two-digit field with
11312 leading space character fill.

11313 %h A synonym for %b.

11314 %H Hour (24-hour clock) as a decimal number [00-23].

11315 %I Hour (12-hour clock) as a decimal number [01-12].

2508 Technical Standard (2000) (Draft July 31, 2000)

Utilities date

11316 %j Day of the year as a decimal number [001-366].

11317 %m Month as a decimal number [01-12].

11318 %M Minute as a decimal number [00-59].

11319 %n A <newline> character.

11320 %p Locale’s equivalent of either AM or PM.

11321 %r 12-hour clock time [01-12] using the AM/PM notation; in the POSIX
11322 locale, this is equivalent to %I:%M:%S% p.

11323 %S Seconds as a decimal number [00-61].

11324 %t A <tab> character.

11325 %T 24-hour clock time [00-23] in the format HH:MM:SS.

11326 %u Weekday as a decimal number [1 (Monday)-7].

11327 %U Week of the year (Sunday as the first day of the week) as a decimal
11328 number [00-53]. All days in a new year preceding the first Sunday shall be
11329 considered to be in week 0.

11330 %V Week of the year (Monday as the first day of the week) as a decimal
11331 number [01-53]. If the week containing January 1 has four or more days in
11332 the new year, then it shall be considered week 1; otherwise, it shall be the
11333 last week of the previous year, and the next week shall be week 1.

11334 %w Weekday as a decimal number [0 (Sunday)-6].

11335 %W Week of the year (Monday as the first day of the week) as a decimal
11336 number [00-53]. All days in a new year preceding the first Monday shall
11337 be considered to be in week 0.

11338 %x Locale’s appropriate date representation.

11339 %X Locale’s appropriate time representation.

11340 %y Year within century [00-99].

11341 %Y Year with century as a decimal number.

11342 %Z Timezone name, or no characters if no timezone is determinable.

11343 %% A percent sign character.

11344 See the Base Definitions volume of IEEE Std. 1003.1-200x, Section 7.3.5, LC_TIME |
11345 for the field descriptor values in the POSIX locale. |

11346 Modified Field Descriptors

11347 Some field descriptors can be modified by the E and O modifier characters to
11348 indicate a different format or specification as specified in the LC_TIME locale |
11349 description (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 7.3.5, |
11350 LC_TIME). If the corresponding keyword (see era, era_year, era_d_fmt, and |
11351 alt_digits in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 7.3.5, |
11352 LC_TIME) is not specified or not supported for the current locale, the unmodified |
11353 field descriptor value shall be used.

11354 %Ec Locale’s alternative appropriate date and time representation.

Shell and Utilities, Issue 6 2509

date Utilities

11355 %EC The name of the base year (period) in the locale’s alternative
11356 representation.

11357 %Ex Locale’s alternative date representation.

11358 %EX Locale’s alternative time representation.

11359 %Ey Offset from %EC (year only) in the locale’s alternative representation.

11360 %EY Full alternative year representation.

11361 %Od Day of month using the locale’s alternative numeric symbols.

11362 %Oe Day of month using the locale’s alternative numeric symbols.

11363 %OH Hour (24-hour clock) using the locale’s alternative numeric symbols.

11364 %OI Hour (12-hour clock) using the locale’s alternative numeric symbols.

11365 %Om Month using the locale’s alternative numeric symbols.

11366 %OM Minutes using the locale’s alternative numeric symbols.

11367 %OS Seconds using the locale’s alternative numeric symbols.

11368 %Ou Weekday as a number in the locale’s alternative representation (Monday
11369 = 1).

11370 %OU Week number of the year (Sunday as the first day of the week) using the
11371 locale’s alternative numeric symbols.

11372 %OV Week number of the year (Monday as the first day of the week, rules
11373 corresponding to %V), using the locale’s alternative numeric symbols.

11374 %Ow Weekday as a number in the locale’s alternative representation (Sunday =
11375 0).

11376 %OW Week number of the year (Monday as the first day of the week) using the
11377 locale’s alternative numeric symbols.

11378 %Oy Year (offset from %C) in alternative representation.

11379 XSI mmddhhmm[[cc]yy]
11380 Attempt to set the system date and time from the value given in the operand. This
11381 is only possible if the user has appropriate privileges and the system permits the
11382 setting of the system date and time. The first mm is the month (number); dd is the
11383 day (number); hh is the hour (number, 24-hour system); the second mm is the
11384 minute (number); cc is the century and is the first two digits of the year (this is
11385 optional); yy is the last two digits of the year and is optional. If century is not
11386 specified, then values in the range [69-99] shall refer to years 1969 to 1999
11387 inclusive, and values in the range [00-68] shall refer to years 2000 to 2068 inclusive.

11388 STDIN
11389 Not used.

11390 INPUT FILES
11391 None.

11392 ENVIRONMENT VARIABLES
11393 The following environment variables shall affect the execution of date:

11394 LANG Provide a default value for the internationalization variables that are unset or null.
11395 If LANG is unset or null, the corresponding value from the implementation- |

2510 Technical Standard (2000) (Draft July 31, 2000)

Utilities date

11396 defined default locale shall be used. If any of the internationalization variables |
11397 contains an invalid setting, the utility shall behave as if none of the variables had
11398 been defined.

11399 LC_ALL If set to a non-empty string value, override the values of all the other
11400 internationalization variables.

11401 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
11402 characters (for example, single-byte as opposed to multi-byte characters in
11403 arguments).

11404 LC_MESSAGES
11405 Determine the locale that should be used to affect the format and contents of
11406 diagnostic messages written to standard error.

11407 LC_TIME Determine the format and contents of date and time strings written by date.

11408 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

11409 TZ Determine the timezone in which the time and date are written, unless the −u
11410 option is specified. If the TZ variable is not set and the −u is not specified, an
11411 unspecified system default timezone is used.

11412 ASYNCHRONOUS EVENTS
11413 Default.

11414 STDOUT
11415 When no formatting operand is specified, the output in the POSIX locale shall be equivalent to
11416 specifying:

11417 date "+%a %b %e %H:%M:%S %Z %Y"

11418 STDERR
11419 Used only for diagnostic messages.

11420 OUTPUT FILES
11421 None.

11422 EXTENDED DESCRIPTION
11423 None.

11424 EXIT STATUS
11425 The following exit values shall be returned:

11426 0 The date was written successfully.

11427 >0 An error occurred.

11428 CONSEQUENCES OF ERRORS
11429 Default.

11430 APPLICATION USAGE
11431 Field descriptors are of unspecified format when not in the POSIX locale. Some of them can
11432 contain <newline> characters in some locales, so it may be difficult to use the format shown in
11433 standard output for parsing the output of date in those locales.

11434 The range of values for %S extends from 0 to 61 seconds to accommodate the occasional leap
11435 second or double leap second.

11436 Although certain of the field descriptors in the POSIX locale (such as the name of the month) are
11437 shown with initial capital letters, this need not be the case in other locales. Programs using these
11438 fields may need to adjust the capitalization if the output is going to be used at the beginning of a

Shell and Utilities, Issue 6 2511

date Utilities

11439 sentence.

11440 The date string formatting capabilities are intended for use in Gregorian-style calendars,
11441 possibly with a different starting year (or years). The %x and %c field descriptors, however, are
11442 intended for local representation; these may be based on a different, non-Gregorian calendar.

11443 The %C field descriptor was introduced to allow a fallback for the %EC (alternative year format
11444 base year); it can be viewed as the base of the current subdivision in the Gregorian calendar. A |
11445 century is not calculated as an ordinal number; IEEE Std. 1003.1-200x was published in century |
11446 20, not the twenty-first. Both the %Ey and %y can then be viewed as the offset from %EC and |
11447 %C, respectively. |

11448 The E and O modifiers modify the traditional field descriptors, so that they can always be used,
11449 even if the implementation (or the current locale) does not support the modifier.

11450 The E modifier supports alternative date formats, such as the Japanese Emperor’s Era, as long as
11451 these are based on the Gregorian calendar system. Extending the E modifiers to other date
11452 elements may provide an implementation-defined extension capable of supporting other |
11453 calendar systems, especially in combination with the O modifier. |

11454 The O modifier supports time and date formats using the locale’s alternative numerical symbols,
11455 such as Kanji or Hindi digits or ordinal number representation.

11456 Non-European locales, whether they use Latin digits in computational items or not, often have
11457 local forms of the digits for use in date formats. This is not totally unknown even in Europe; a
11458 variant of dates uses Roman numerals for the months: the third day of September 1991 would be
11459 written as 3.IX.1991. In Japan, Kanji digits are regularly used for dates; in Arabic-speaking
11460 countries, Hindi digits are used. The %d, %e, %H, %I, %m, %S, %U, %w, %W, and %y field
11461 descriptors always return the date and time field in Latin digits (that is, 0 to 9). The %O modifier
11462 was introduced to support the use for display purposes of non-Latin digits. In the LC_TIME
11463 category in localedef, the optional alt_digits keyword is intended for this purpose. As an
11464 example, assume the following (partial) localedef source:

11465 alt_digits "";"I";"II";"III";"IV";"V";"VI";"VII";"VIII" \
11466 "IX";"X";"XI";"XII"
11467 d_fmt "%e.%Om.%Y"

11468 With the above date, the command:

11469 date "+%x"

11470 would yield 3.IX.1991. With the same d_fmt, but without the alt_digits, the command would
11471 yield 3.9.1991.

11472 EXAMPLES

11473 1. The following are input/output examples of date used at arbitrary times in the POSIX
11474 locale:

11475 $ date
11476 Tue Jun 26 09:58:10 PDT 1990

11477 $ date "+DATE: %m/%d/%y%nTIME: %H:%M:%S"
11478 DATE: 11/02/91
11479 TIME: 13:36:16

11480 $ date "+TIME: %r"
11481 TIME: 01:36:32 PM

2512 Technical Standard (2000) (Draft July 31, 2000)

Utilities date

11482 2. Examples for Denmark, where the default date and time format is %a %d %b %Y %T %Z:

11483 $ LANG=da_DK.iso_8859 −1 date
11484 ons 02 okt 1991 15:03:32 CET

11485 $ LANG=da_DK.iso_8859 −1 date "+DATO: %A den %e. %B %Y%nKLOKKEN: %H:%M:%S"
11486 DATO: onsdag den 2. oktober 1991
11487 KLOKKEN: 15:03:56

11488 3. Examples for Germany, where the default date and time format is %a %d.%h.%Y, %T %Z:

11489 $ LANG=De_DE.88591 date
11490 Mi 02.Okt.1991, 15:01:21 MEZ

11491 $ LANG=De_DE.88591 date "+DATUM: %A, %d. %B %Y%nZEIT: %H:%M:%S"
11492 DATUM: Mittwoch, 02. Oktober 1991
11493 ZEIT: 15:02:02

11494 4. Examples for France, where the default date and time format is %a %d %h %Y %Z %T:

11495 $ LANG=Fr_FR.88591 date
11496 Mer 02 oct 1991 MET 15:03:32

11497 $ LANG=Fr_FR.88591 date "+JOUR: %A %d %B %Y%nHEURE: %H:%M:%S"
11498 JOUR: Mercredi 02 octobre 1991
11499 HEURE: 15:03:56

11500 RATIONALE
11501 Some of the new options for formatting are from the ISO C standard. The −u option was
11502 introduced to allow portable access to Coordinated Universal Time (UTC). The string "GMT0" is
11503 allowed as an equivalent TZ value to be compatible with all of the systems using the BSD
11504 implementation, where this option originated.

11505 The %e format field descriptor (adopted from System V) was added because the ISO C standard
11506 descriptors did not provide any way to produce the historical default date output during the first
11507 nine days of any month.

11508 There are two varieties of day and week numbering supported (in addition to any others created
11509 with the locale-dependent %E and %O modifier characters):

11510 • The historical variety in which Sunday is the first day of the week and the weekdays
11511 preceding the first Sunday of the year are considered week 0. These are represented by %w
11512 and %U. A variant of this is %W, using Monday as the first day of the week, but still referring
11513 to week 0. This view of the calendar was retained because so many historical applications
11514 depend on it and the ISO C standard strftime() function, on which many date
11515 implementations are based, was defined in this way.

11516 • The international standard, based on the ISO 8601: 1988 standard where Monday is the first
11517 weekday and the algorithm for the first week number is more complex: If the week (Monday
11518 to Sunday) containing January 1 has four or more days in the new year, then it is week 1;
11519 otherwise, it is week 53 of the previous year, and the next week is week 1. These are
11520 represented by the new field descriptors %u and %V, added as a result of international
11521 comments.

11522 The %C field descriptor was introduced to allow a fallback for the %EC (alternate year format
11523 base year); it can be viewed as the base of the current subdivision in the Gregorian calendar. A
11524 century is not calculated as an ordinal number. The original version of this volume of
11525 IEEE Std. 1003.1-200x was approved in century 19, not the twentieth. Both the %Ey and %y can
11526 then be viewed as the offset from %EC and %C, respectively.

Shell and Utilities, Issue 6 2513

date Utilities

11527 FUTURE DIRECTIONS
11528 None.

11529 SEE ALSO
11530 The System Interfaces volume of IEEE Std. 1003.1-200x, ctime(), printf()

11531 CHANGE HISTORY
11532 First released in Issue 2.

11533 Issue 4
11534 Aligned with the ISO/IEC 9945-2: 1993 standard.

11535 Issue 5
11536 Changes are made for Year 2000 alignment.

11537 Issue 6
11538 The following new requirements on POSIX implementations derive from alignment with the
11539 Single UNIX Specification:

11540 • The setting of system date and time is described, including how to interpret two-digit year
11541 values if a century is not given.

11542 • The %EX modified field descriptor is added.

11543 The Open Group corrigenda item U048/2 has been applied, correcting the examples. |

2514 Technical Standard (2000) (Draft July 31, 2000)

Utilities dd

11544 NAME
11545 dd — convert and copy a file

11546 SYNOPSIS
11547 dd [operand ...]

11548 DESCRIPTION
11549 The dd utility shall copy the specified input file to the specified output file with possible
11550 conversions using specific input and output block sizes. It shall read the input one block at a
11551 time, using the specified input block size; it shall then process the block of data actually
11552 returned, which could be smaller than the requested block size. It shall apply any conversions
11553 that have been specified and write the resulting data to the output in blocks of the specified
11554 output block size. If the bs=expr operand is specified and no conversions other than sync,
11555 noerror, or notrunc are requested, the data returned from each input block shall be written as a
11556 separate output block; if the read returns less than a full block and the sync conversion is not
11557 specified, the resulting output block shall be the same size as the input block. If the bs=expr
11558 operand is not specified, or a conversion other than sync, noerror, or notrunc is requested, the
11559 input shall be processed and collected into full-sized output blocks until the end of the input is
11560 reached.

11561 The processing order shall be as follows:

11562 1. An input block is read.

11563 2. If the input block is shorter than the specified input block size and the sync conversion is
11564 specified, null bytes shall be appended to the input data up to the specified size. (If either
11565 block or unblock is also specified, <space> characters shall be appended instead of null
11566 bytes.) The remaining conversions and output shall include the pad characters as if they
11567 had been read from the input.

11568 3. If the bs=expr operand is specified and no conversion other than sync or noerror is
11569 requested, the resulting data shall be written to the output as a single block, and the
11570 remaining steps are omitted.

11571 4. If the swab conversion is specified, each pair of input data bytes shall be swapped. If there
11572 is an odd number of bytes in the input block, the last byte in the input record shall not be
11573 swapped.

11574 5. Any remaining conversions (block, unblock, lcase, and ucase) shall be performed. These
11575 conversions shall operate on the input data independently of the input blocking; an input
11576 or output fixed-length record may span block boundaries.

11577 6. The data resulting from input or conversion or both shall be aggregated into output blocks
11578 of the specified size. After the end of input is reached, any remaining output shall be
11579 written as a block without padding if conv=sync is not specified; thus, the final output
11580 block may be shorter than the output block size.

11581 OPTIONS
11582 None.

11583 OPERANDS
11584 All of the operands shall be processed before any input is read. The following operands shall be
11585 supported:

11586 if=file Specify the input path name; the default is standard input.

11587 of=file Specify the output path name; the default is standard output. If the seek=expr
11588 conversion is not also specified, the output file shall be truncated before the copy
11589 begins, unless conv=notrunc is specified. If seek=expr is specified, but

Shell and Utilities, Issue 6 2515

dd Utilities

11590 conv=notrunc is not, the effect of the copy shall be to preserve the blocks in the
11591 output file over which dd seeks, but no other portion of the output file shall be
11592 preserved. (If the size of the seek plus the size of the input file is less than the
11593 previous size of the output file, the output file shall be shortened by the copy.)

11594 ibs=expr Specify the input block size, in bytes, by expr (default is 512).

11595 obs=expr Specify the output block size, in bytes, by expr (default is 512).

11596 bs=expr Set both input and output block sizes to expr bytes, superseding ibs= and obs=. If
11597 no conversion other than sync, noerror, and notrunc is specified, each input block
11598 shall be copied to the output as a single block without aggregating short blocks.

11599 cbs=expr Specify the conversion block size for block and unblock in bytes by expr (default is
11600 zero). If cbs= is omitted or given a value of zero, using block or unblock produces
11601 unspecified results.

11602 XSI The application shall ensure that this operand is also specified if the conv=
11603 operand is specified with a value of ascii, ebcdic, or ibm. For a conv= operand
11604 with an ascii value, the input is handled as described for the unblock value, except
11605 that characters are converted to ASCII before any trailing <space> characters are
11606 deleted. For conv= operands with ebcdic or ibm values, the input is handled as
11607 described for the block value except that the characters are converted to EBCDIC
11608 or IBM EBCDIC, respectively, after any trailing <space> characters are added.

11609 skip=n Skip n input blocks (using the specified input block size) before starting to copy.
11610 On seekable files, the implementation shall read the blocks or seek past them; on
11611 non-seekable files, the blocks shall be read and the data shall be discarded.

11612 seek=n Skip n blocks (using the specified output block size) from beginning of the output
11613 file before copying. On non-seekable files, existing blocks shall be read and space
11614 from the current end-of-file to the specified offset, if any, filled with null bytes; on
11615 seekable files, the implementation shall seek to the specified offset or read the
11616 blocks as described for non-seekable files.

11617 count=n Copy only n input blocks.

11618 conv=value[,value . . .]
11619 Where values are comma-separated symbols from the following list:

11620 XSI ascii Convert EBCDIC to ASCII; see Table 4-6 (on page 2518).

11621 XSI ebcdic Convert ASCII to EBCDIC; see Table 4-6 (on page 2518).

11622 XSI ibm Convert ASCII to a different EBCDIC set; see Table 4-7 (on page
11623 2518).

11624 The ascii, ebcdic, and ibm values are mutually-exclusive.

11625 block Treat the input as a sequence of <newline> character-terminated or
11626 end-of-file-terminated variable-length records independent of the
11627 input block boundaries. Each record shall be converted to a record
11628 with a fixed length specified by the conversion block size. Any
11629 <newline> character shall be removed from the input line; <space>
11630 characters shall be appended to lines that are shorter than their
11631 conversion block size to fill the block. Lines that are longer than the
11632 conversion block size shall be truncated to the largest number of
11633 characters that fit into that size; the number of truncated lines shall
11634 be reported (see the STDERR section).

2516 Technical Standard (2000) (Draft July 31, 2000)

Utilities dd

11635 The block and unblock values are mutually-exclusive.

11636 unblock Convert fixed-length records to variable length. Read a number of
11637 bytes equal to the conversion block size (or the number of bytes
11638 remaining in the input, if less than the conversion block size), delete
11639 all trailing <space> characters, and append a <newline> character.

11640 lcase Map uppercase characters specified by the LC_CTYPE keyword
11641 tolower to the corresponding lowercase character. Characters for
11642 which no mapping is specified shall not be modified by this
11643 conversion.

11644 The lcase and ucase symbols are mutually-exclusive.

11645 ucase Map lowercase characters specified by the LC_CTYPE keyword
11646 toupper to the corresponding uppercase character. Characters for
11647 which no mapping is specified shall not be modified by this
11648 conversion.

11649 swab Swap every pair of input bytes.

11650 noerror Do not stop processing on an input error. When an input error
11651 occurs, a diagnostic message shall be written on standard error,
11652 followed by the current input and output block counts in the same
11653 format as used at completion (see the STDERR section). If the sync
11654 conversion is specified, the missing input shall be replaced with null
11655 bytes and processed normally; otherwise, the input block shall be
11656 omitted from the output.

11657 notrunc Do not truncate the output file. Preserve blocks in the output file not
11658 explicitly written by this invocation of the dd utility. (See also the
11659 preceding of=file operand.)

11660 sync Pad every input block to the size of the ibs= buffer, appending null
11661 bytes. (If either block or unblock is also specified, append <space>
11662 characters, rather than null bytes.)

11663 The behavior is unspecified if operands other than conv= are specified more than once.

11664 For the bs=, cbs=, ibs=, and obs= operands, the application shall supply an expression
11665 specifying a size in bytes. The expression, expr, can be:

11666 1. A positive decimal number

11667 2. A positive decimal number followed by k , specifying multiplication by 1 024

11668 3. A positive decimal number followed by b, specifying multiplication by 512

11669 4. Two or more positive decimal numbers (with or without k or b) separated by x , specifying
11670 the product of the indicated values

11671 All of the operands are processed before any input is read.

11672 XSI The following two tables display the octal number character values used for the ascii and ebcdic
11673 conversions (first table) and for the ibm conversion (second table). In both tables, the ASCII
11674 values are the row and column headers and the EBCDIC values are found at their intersections.
11675 For example, ASCII 0012 (LF) is the second row, third column, yielding 0045 in EBCDIC. The
11676 inverted tables (for EBCDIC to ASCII conversion) are not shown, but are in one-to-one
11677 correspondence with these tables. The differences between the two tables are highlighted by
11678 small boxes drawn around five entries.

Shell and Utilities, Issue 6 2517

dd Utilities

11679 Notes to Reviewers
11680 This section with side shading will not appear in the final copy. - Ed.

11681 The following 2 tables are commented out of this draft to make document handling easier
11682 (ability to print 2-up). There are no changes to them. These diagrams are available from the
11683 Austin Group web site as a separate PDF file.

11684 Table 4-6 ASCII to EBCDIC Conversion

11685 Table 4-7 ASCII to IBM EBCDIC Conversion

11686 STDIN
11687 If no if= operand is specified, the standard input shall be used. See the INPUT FILES section.

11688 INPUT FILES
11689 The input file can be any file type.

11690 ENVIRONMENT VARIABLES
11691 The following environment variables shall affect the execution of dd:

11692 LANG Provide a default value for the internationalization variables that are unset or null.
11693 If LANG is unset or null, the corresponding value from the implementation- |
11694 defined default locale shall be used. If any of the internationalization variables |
11695 contains an invalid setting, the utility shall behave as if none of the variables had
11696 been defined.

11697 LC_ALL If set to a non-empty string value, override the values of all the other
11698 internationalization variables.

11699 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
11700 characters (for example, single-byte as opposed to multi-byte characters in
11701 arguments and input files), the classification of characters as uppercase or
11702 lowercase, and the mapping of characters from one case to the other.

11703 LC_MESSAGES
11704 Determine the locale that should be used to affect the format and contents of
11705 diagnostic messages written to standard error and informative messages written to
11706 standard output.

11707 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

11708 ASYNCHRONOUS EVENTS
11709 For SIGINT, the dd utility shall interrupt its current processing, write status information to
11710 standard error, and exit as though terminated by SIGINT. It shall take the standard action for all
11711 other signals; see the ASYNCHRONOUS EVENTS section in Section 1.11 (on page 2224).

11712 STDOUT
11713 If no of= operand is specified, the standard output shall be used. The nature of the output
11714 depends on the operands selected.

11715 STDERR
11716 On completion, dd shall write the number of input and output blocks to standard error. In the
11717 POSIX locale the following formats shall be used:

11718 "%u+%u records in\n", < number of whole input blocks >,
11719 <number of partial input blocks >

11720 "%u+%u records out\n", < number of whole output blocks >,
11721 <number of partial output blocks >

2518 Technical Standard (2000) (Draft July 31, 2000)

Utilities dd

11722 A partial input block is one for which read() returned less than the input block size. A partial
11723 output block is one that was written with fewer bytes than specified by the output block size.

11724 In addition, when there is at least one truncated block, the number of truncated blocks shall be
11725 written to standard error. In the POSIX locale, the format shall be:

11726 "%u truncated %s\n", < number of truncated blocks >, "record" (if
11727 <number of truncated blocks > is one) "records" (otherwise)

11728 Diagnostic messages may also be written to standard error.

11729 OUTPUT FILES
11730 If the of= operand is used, the output shall be the same as described in the STDOUT section.

11731 EXTENDED DESCRIPTION
11732 None.

11733 EXIT STATUS
11734 The following exit values shall be returned:

11735 0 The input file was copied successfully.

11736 >0 An error occurred.

11737 CONSEQUENCES OF ERRORS
11738 If an input error is detected and the noerror conversion has not been specified, any partial
11739 output block shall be written to the output file, a diagnostic message shall be written, and the
11740 copy operation shall be discontinued. If some other error is detected, a diagnostic message shall
11741 be written and the copy operation shall be discontinued.

11742 APPLICATION USAGE
11743 The input and output block size can be specified to take advantage of raw physical I/O.

11744 There are many different versions of the EBCDIC codesets. The ASCII and EBCDIC conversions
11745 specified for the dd utility perform conversions for the version specified by the tables.

11746 EXAMPLES
11747 The following command:

11748 dd if=/dev/rmt0h of=/dev/rmt1h

11749 copies from tape drive 0 to tape drive 1, using a common historical device naming convention.

11750 The following command:

11751 dd ibs=10 skip=1

11752 strips the first 10 bytes from standard input.

11753 This example reads an EBCDIC tape blocked ten 80-byte EBCDIC card images per block into the
11754 ASCII file x:

11755 dd if=/dev/tape of=x ibs=800 cbs=80 conv=ascii,lcase

11756 RATIONALE
11757 The OPTIONS section is listed as ‘‘None’’ because there are no options recognized by historical
11758 dd utilities. Certainly, many of the operands could have been designed to use the Utility Syntax
11759 Guidelines, which would have resulted in the classic hyphenated option letters. In this version
11760 of this volume of IEEE Std. 1003.1-200x, dd retains its curious JCL-like syntax due to the large
11761 number of applications that depend on the historical implementation.

11762 A suggested implementation technique for conv=noerror,sync is to zero (or <space>-fill, if
11763 blocking or unblocking) the input buffer before each read and to write the contents of the input

Shell and Utilities, Issue 6 2519

dd Utilities

11764 buffer to the output even after an error. In this manner, any data transferred to the input buffer
11765 before the error was detected is preserved. Another point is that a failed read on a regular file or
11766 a disk generally does not increment the file offset, and dd must then seek past the block on which
11767 the error occurred; otherwise, the input error occurs repetitively. When the input is a magnetic
11768 tape, however, the tape normally has passed the block containing the error when the error is
11769 reported, and thus no seek is necessary.

11770 The default ibs= and obs= sizes are specified as 512 bytes because there are historical (largely
11771 portable) scripts that assume these values. If they were left unspecified, unusual results could
11772 occur if an implementation chose an odd block size.

11773 Historical implementations of dd used creat() when processing of=file . This makes the seek=
11774 operand unusable except on special files. The conv=notrunc feature was added because more
11775 recent BSD-based implementations use open() (without O_TRUNC) instead of creat(), but they
11776 fail to delete output file contents after the data copied.

11777 The w multiplier (historically meaning word), is used in System V to mean 2 and in 4.2 BSD to
11778 mean 4. Since word is inherently non-portable, its use is not supported by this volume of
11779 IEEE Std. 1003.1-200x.

11780 Standard EBCDIC does not have the characters ’[’ and ’]’ . The values used in the table are
11781 taken from a common print train that does contain them. Other than those characters, the print
11782 train values are not filled in, but appear to provide some of the motivation for the historical
11783 choice of translations reflected here.

11784 The Standard EBCDIC table provides a 1:1 translation for all 256 bytes.

11785 The IBM EBCDIC table does not provide such a translation. The marked cells in the tables differ
11786 in such a way that:

11787 1. EBCDIC 0112 (’¢’) and 0152 (broken pipe) do not appear in the table.

11788 2. EBCDIC 0137 (’ ¬’) translates to/from ASCII 0236 (’ˆ’). In the standard table, EBCDIC
11789 0232 (no graphic) is used.

11790 3. EBCDIC 0241 (’˜’) translates to/from ASCII 0176 (’˜’). In the standard table, EBCDIC
11791 0137 (’ ¬’) is used.

11792 4. 0255 (’[’) and 0275 (’]’) appear twice, once in the same place as for the standard table
11793 and once in place of 0112 (’¢’) and 0241 (’˜’).

11794 In net result:

11795 EBCDIC 0275 (’]’) displaced EBCDIC 0241 (’˜’) in cell 0345.

11796 That displaced EBCDIC 0137 (’ ¬’) in cell 0176.

11797 That displaced EBCDIC 0232 (no graphic) in cell 0136.

11798 That replaced EBCDIC 0152 (broken pipe) in cell 0313.

11799 EBCDIC 0255 (’[’) replaced EBCDIC 0112 (’¢’).

11800 This translation, however, reflects historical practice that (ASCII) ’˜’ and ’ ¬’ were often
11801 mapped to each other, as were ’[’ and ’¢’ ; and ’]’ and (EBCDIC) ’˜’ .

11802 The cbs operand is required if any of the ascii, ebcdic, or ibm operands are specified. For the
11803 ascii operand, the input is handled as described for the unblock operand except that characters
11804 are converted to ASCII before the trailing <space>s are deleted. For the ebcdic and ibm
11805 operands, the input is handled as described for the block operand except that the characters are
11806 converted to EBCDIC or IBM EBCDIC after the trailing <space>s are added.

2520 Technical Standard (2000) (Draft July 31, 2000)

Utilities dd

11807 The block and unblock keywords are from historical BSD practice.

11808 The consistent use of the word record in standard error messages matches most historical
11809 practice. An earlier version of System V used block, but this has been updated in more recent
11810 releases.

11811 Early proposals only allowed two numbers separated by x to be used in a product when
11812 specifying bs=, cbs=, ibs=, and obs= sizes. This was changed to reflect the historical practice of
11813 allowing multiple numbers in the product as provided by Version 7 and all releases of System V
11814 and BSD.

11815 A change to the swab conversion is required to match historical practice and is the result of IEEE |
11816 PASC Interpretation 1003.2 #03 and #04, submitted for the ISO POSIX-2: 1993 standard. |

11817 A change to the handling of SIGINT is required to match historical practice and is the result of |
11818 IEEE PASC Interpretation 1003.2 #06 submitted for the ISO POSIX-2: 1993 standard. |

11819 FUTURE DIRECTIONS
11820 None.

11821 SEE ALSO
11822 sed, tr

11823 CHANGE HISTORY
11824 First released in Issue 2.

11825 Issue 4
11826 Aligned with the ISO/IEC 9945-2: 1993 standard.

11827 Issue 5
11828 The second paragraph of the cbs= description is reworded and marked EX.

11829 FUTURE DIRECTIONS section added.

11830 Issue 6
11831 Changes are made to swab conversion and SIGINT handling to align with the IEEE P1003.2b
11832 draft standard.

11833 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2521

delta Utilities

11834 NAME
11835 delta — make a delta (change) to an SCCS file (DEVELOPMENT)

11836 SYNOPSIS
11837 XSI delta [−nps][−g list][−m mrlist][−r SID][−y [comment]] file ...
11838

11839 DESCRIPTION
11840 The delta utility shall be used to permanently introduce into the named SCCS files changes that
11841 were made to the files retrieved by get (called the g-files , or generated files).

11842 OPTIONS
11843 The delta utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
11844 12.2, Utility Syntax Guidelines, except that the −y option has an optional option-argument. This |
11845 optional option-argument cannot be presented as a separate argument.

11846 The following options shall be supported:

11847 −r SID Uniquely identify which delta is to be made to the SCCS file. The use of this option
11848 is necessary only if two or more outstanding get commands for editing (get −e) on
11849 the same SCCS file were done by the same person (login name). The SID value
11850 specified with the −r option can be either the SID specified on the get command
11851 line or the SID to be made as reported by the get utility; see get (on page 2685).

11852 −s Suppress the report to standard output of the activity associated with each file .
11853 See the STDOUT section.

11854 −n Specify retention of the edited g-file (normally removed at completion of delta
11855 processing).

11856 −g list Specify a list , (see get (on page 2685) for the definition of list) of deltas that shall be
11857 ignored when the file is accessed at the change level (SID) created by this delta.

11858 −m mrlist Specify a modification request (MR) number that the application shall supply as
11859 the reason for creating the new delta. This is used if the SCCS file has the v flag set; |
11860 see admin (on page 2340).

11861 If −m is not used and the standard input is a terminal, the prompt described in the |
11862 STDOUT section shall be written to standard output before the standard input is |
11863 read; if the standard input is not a terminal, no prompt shall be issued. |

11864 MRs in a list shall be separated by <blank>s. An unescaped <newline> character |
11865 shall terminate the MR list. |

11866 If the v flag has a value, it shall be taken to be the name of a program which |
11867 validates the correctness of the MR numbers. If a non-zero exit status is returned |
11868 from the MR number validation program, the delta utility shall terminate. (It is |
11869 assumed that the MR numbers were not all valid.) |

11870 −y[comment] Describe the reason for making the delta. The comment shall be an arbitrary group |
11871 of lines that would meet the definition of a text file. Implementations shall support |
11872 comments from zero to 512 bytes and may support longer values. A null string
11873 (specified as either −y, −y" " , or in response to a prompt for a comment) is
11874 considered a valid comment.

11875 If −y is not specified and the standard input is a terminal, the prompt described in |
11876 the STDOUT section shall be written to standard output before the standard input |
11877 is read; if the standard input is not a terminal, no prompt shall be issued. An |
11878 unescaped <newline> character terminates the comment text. |

2522 Technical Standard (2000) (Draft July 31, 2000)

Utilities delta

11879 The −y option shall be required if the file operand is specified as ’ −’ . |

11880 −p Write (to standard output) the SCCS file differences before and after the delta is
11881 applied in diff format; see diff (on page 2529).

11882 OPERANDS
11883 The following operand shall be supported:

11884 file A path name of an existing SCCS file or a directory. If file is a directory, the delta |
11885 utility shall behave as though each file in the directory were specified as a named |
11886 file, except that non-SCCS files (last component of the path name does not begin |
11887 with s.) and unreadable files shall be silently ignored. |

11888 If a single instance file is specified as ’ −’ , the standard input shall be read; each |
11889 line of the standard input shall be taken to be the name of an SCCS file to be |
11890 processed. Non-SCCS files and unreadable files shall be silently ignored. |

11891 STDIN
11892 The standard input shall be a text file used only in the following cases: |

11893 • To read an mrlist or a command (see the −m and −y options).

11894 • A file operand is specified as ’ −’ .

11895 INPUT FILES
11896 Input files shall be text files whose data is to be included in the SCCS files. If the first character of |
11897 any line of an input file is SOH (binary 001), the results are unspecified. |

11898 ENVIRONMENT VARIABLES
11899 The following environment variables shall affect the execution of delta:

11900 LANG Provide a default value for the internationalization variables that are unset or null.
11901 If LANG is unset or null, the corresponding value from the implementation- |
11902 defined default locale shall be used. If any of the internationalization variables |
11903 contains an invalid setting, the utility shall behave as if none of the variables had
11904 been defined.

11905 LC_ALL If set to a non-empty string value, override the values of all the other
11906 internationalization variables.

11907 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
11908 characters (for example, single-byte as opposed to multi-byte characters in
11909 arguments and input files).

11910 LC_MESSAGES
11911 Determine the locale that should be used to affect the format and contents of
11912 diagnostic messages written to standard error, and informative messages written
11913 to standard output.

11914 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

11915 ASYNCHRONOUS EVENTS
11916 Default.

11917 STDOUT
11918 The standard output shall be used only for the following messages in the POSIX locale:

11919 • Prompts (see the −m and −y options) in the following formats:

11920 "MRs? "

Shell and Utilities, Issue 6 2523

delta Utilities

11921 "comments? "

11922 The MR prompt, if written, shall always precede the comments prompt. |

11923 • A report of each file ’s activities (unless the −s option is specified) in the following format:

11924 "%s\n%d inserted\n%d deleted\n%d unchanged\n", < New SID>,
11925 <number of lines inserted >, < number of lines deleted >,
11926 <number of lines unchanged >

11927 STDERR
11928 Used only for diagnostic messages.

11929 OUTPUT FILES
11930 Any SCCS files updated are files of an unspecified format.

11931 EXTENDED DESCRIPTION
11932 None.

11933 EXIT STATUS
11934 The following exit values shall be returned:

11935 0 Successful completion.

11936 >0 An error occurred.

11937 CONSEQUENCES OF ERRORS
11938 Default.

11939 APPLICATION USAGE
11940 None. |

11941 EXAMPLES
11942 None.

11943 RATIONALE
11944 None.

11945 FUTURE DIRECTIONS
11946 None. |

11947 SEE ALSO
11948 admin , diff , get, prs, rmdel

11949 CHANGE HISTORY
11950 First released in Issue 2.

11951 Issue 4
11952 Format reorganized.

11953 Exceptions to Utility Syntax Guidelines conformance noted.

11954 Internationalized environment variable support mandated.

11955 Issue 5
11956 The output format description in the STDOUT section is corrected.

11957 Issue 6
11958 The APPLICATION USAGE section is added.

11959 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

11960 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements. |

2524 Technical Standard (2000) (Draft July 31, 2000)

Utilities df

11961 NAME
11962 df — report free disk space

11963 SYNOPSIS
11964 UP XSI df [−k][−P| −t][file ...]
11965

11966 DESCRIPTION
11967 XSI The df utility shall write the amount of available space and file slots for file systems on which the
11968 invoking user has appropriate read access. File systems shall be specified by the file operands;
11969 when none are specified, information shall be written for all file systems. The format of the
11970 default output from df is unspecified, but all space figures are reported in 512-byte units, unless
11971 the −k option is specified. This output shall contain at least the file system names, amount of
11972 XSI available space on each of these file systems, and the number of free file slots, or inodes ,
11973 available; when −t is specified, the output contains the total allocated space as well.

11974 OPTIONS
11975 The df utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
11976 Utility Syntax Guidelines. |

11977 The following options shall be supported:

11978 −k Use 1 024-byte units, instead of the default 512-byte units, when writing space
11979 figures.

11980 −P Produce output in the format described in the STDOUT section.

11981 XSI −t Include total allocated-space figures in the output.

11982 OPERANDS
11983 The following operand shall be supported:

11984 file A path name of a file within the hierarchy of the desired file system. If a file other
11985 XSI than a FIFO, a regular file, a directory or a special file representing the device
11986 containing the file system (for example, /dev/dsk/0s1) is specified, the results are
11987 unspecified. Otherwise, df shall write the amount of free space in the file system
11988 containing the specified file operand.

11989 STDIN
11990 Not used.

11991 INPUT FILES
11992 None.

11993 ENVIRONMENT VARIABLES
11994 The following environment variables shall affect the execution of df:

11995 LANG Provide a default value for the internationalization variables that are unset or null.
11996 If LANG is unset or null, the corresponding value from the implementation- |
11997 defined default locale shall be used. If any of the internationalization variables |
11998 contains an invalid setting, the utility shall behave as if none of the variables had
11999 been defined.

12000 LC_ALL If set to a non-empty string value, override the values of all the other
12001 internationalization variables.

12002 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
12003 characters (for example, single-byte as opposed to multi-byte characters in
12004 arguments).

Shell and Utilities, Issue 6 2525

df Utilities

12005 LC_MESSAGES
12006 Determine the locale that should be used to affect the format and contents of
12007 diagnostic messages written to standard error and informative messages written to
12008 standard output.

12009 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

12010 ASYNCHRONOUS EVENTS
12011 Default.

12012 STDOUT
12013 When both the −k and −P options are specified, the following header line shall be written (in the
12014 POSIX locale):

12015 "Filesystem 1024-blocks Used Available Capacity Mounted on\n"

12016 When the −P option is specified without the −k option, the following header line shall be written
12017 (in the POSIX locale):

12018 "Filesystem 512-blocks Used Available Capacity Mounted on\n"

12019 The implementation may adjust the spacing of the header line and the individual data lines so
12020 that the information is presented in orderly columns.

12021 The remaining output with −P shall consist of one line of information for each specified file
12022 system. These lines shall be formatted as follows:

12023 "%s %d %d %d %d%% %s\n", <file system name >, < total space >,
12024 <space used >, < space free >, < percentage used >,
12025 <file system root >

12026 In the following list, all quantities expressed in 512-byte units (1 024-byte when −k is specified)
12027 shall be rounded up to the next higher unit. The fields are:

12028 <file system name>
12029 The name of the file system, in an implementation-defined format. |

12030 <total space> The total size of the file system in 512-byte units. The exact meaning of this figure |
12031 is implementation-defined, but should include <space used>, <space free>, plus any |
12032 space reserved by the system not normally available to a user.

12033 <space used> The total amount of space allocated to existing files in the file system, in 512-byte
12034 units.

12035 <space free> The total amount of space available within the file system for the creation of new
12036 files by unprivileged users, in 512-byte units. When this figure is less than or equal
12037 to zero, it shall not be possible to create any new files on the file system without
12038 first deleting others, unless the process has appropriate privileges. The figure
12039 written may be less than zero.

12040 <percentage used>
12041 The percentage of the normally available space that is currently allocated to all
12042 files on the file system. This shall be calculated using the fraction:

12043 <space used >/(< space used >+ <space free >)

12044 expressed as a percentage. This percentage may be greater than 100 if <space free>
12045 is less than zero. The percentage value shall be expressed as a positive integer,
12046 with any fractional result causing it to be rounded to the next highest integer.

2526 Technical Standard (2000) (Draft July 31, 2000)

Utilities df

12047 <file system root>
12048 The directory below which the file system hierarchy appears.

12049 XSI The output format is unspecified when −t is used.

12050 STDERR
12051 Used only for diagnostic messages.

12052 OUTPUT FILES
12053 None.

12054 EXTENDED DESCRIPTION
12055 None.

12056 EXIT STATUS
12057 The following exit values shall be returned:

12058 0 Successful completion.

12059 >0 An error occurred.

12060 CONSEQUENCES OF ERRORS
12061 Default.

12062 APPLICATION USAGE
12063 On most systems, the ‘‘name of the file system, in an implementation-defined format’’ is the |
12064 special file on which the file system is mounted. |

12065 On large file systems, the calculation specified for percentage used can create huge rounding
12066 errors. |

12067 EXAMPLES

12068 1. The following example writes portable information about the /usr file system:

12069 df −P /usr

12070 2. Assuming that /usr/src is part of the /usr file system, the following produces the same
12071 output as the previous example:

12072 df −P /usr/src

12073 RATIONALE
12074 The behavior of df with the −P option is the default action of the 4.2 BSD df utility. The uppercase
12075 −P was selected to avoid collision with a known industry extension using −p.

12076 Historical df implementations vary considerably in their default output. It was therefore
12077 necessary to describe the default output in a loose manner to accommodate all known historical
12078 implementations and to add a portable option (−P) to provide information in a portable format.

12079 The use of 512-byte units is historical practice and maintains compatibility with ls and other
12080 utilities in this volume of IEEE Std. 1003.1-200x. This does not mandate that the file system itself
12081 be based on 512-byte blocks. The −k option was added as a compromise measure. It was agreed
12082 by the standard developers that 512 bytes was the best default unit because of its complete
12083 historical consistency on System V (versus the mixed 512/1 024-byte usage on BSD systems), and
12084 that a −k option to switch to 1 024-byte units was a good compromise. Users who prefer the
12085 more logical 1 024-byte quantity can easily alias df to df −k without breaking many historical
12086 scripts relying on the 512-byte units.

12087 It was suggested that df and the various related utilities be modified to access a BLOCKSIZE
12088 environment variable to achieve consistency and user acceptance. Since this is not historical
12089 practice on any system, it is left as a possible area for system extensions and will be re-evaluated

Shell and Utilities, Issue 6 2527

df Utilities

12090 in a future version if it is widely implemented.

12091 FUTURE DIRECTIONS
12092 None.

12093 SEE ALSO
12094 find

12095 CHANGE HISTORY
12096 First released in Issue 2.

12097 Issue 4
12098 Aligned with the ISO/IEC 9945-2: 1993 standard.

12099 Issue 6
12100 This utility is now marked as part of the User Portability Utilities option.

2528 Technical Standard (2000) (Draft July 31, 2000)

Utilities diff

12101 NAME
12102 diff — compare two files

12103 SYNOPSIS
12104 diff [−c| −e| −f| −C n][−br] file1 file2 |

12105 DESCRIPTION |
12106 The diff utility shall compare the contents of file1 and file2 and write to standard output a list of
12107 changes necessary to convert file1 into file2 . This list should be minimal. No output shall be
12108 produced if the files are identical.

12109 OPTIONS
12110 The diff utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
12111 12.2, Utility Syntax Guidelines. |

12112 The following options shall be supported:

12113 −b Cause any amount of white space at the end of a line to be treated as a single
12114 <newline> character (that is, the white-space characters preceding the <newline>
12115 character are ignored) and other strings of white-space characters, not including
12116 <newline> characters, to compare equal.

12117 −c Produce output in a form that provides three lines of context.

12118 −C n Produce output in a form that provides n lines of context (where n shall be
12119 interpreted as a positive decimal integer).

12120 −e Produce output in a form suitable as input for the ed utility, which can then be
12121 used to convert file1 into file2 . |

12122 −f Produce output in an alternative form, similar in format to −e, but not intended to |
12123 be suitable as input for the ed utility, and in the opposite order. |

12124 −r Apply diff recursively to files and directories of the same name when file1 and file2
12125 are both directories.

12126 OPERANDS
12127 The following operands shall be supported:

12128 file1, file2 A path name of a file to be compared. If either the file1 or file2 operand is ’ −’ , the
12129 standard input shall be used in its place.

12130 If both file1 and file2 are directories, diff shall not compare block special files, character special
12131 files, or FIFO special files to any files and shall not compare regular files to directories. The
12132 system documentation shall specify the behavior of diff on implementation-defined file types not |
12133 specified by the System Interfaces volume of IEEE Std. 1003.1-200x when found in directories. |
12134 Further details are as specified in Diff Directory Comparison Format (on page 2530).

12135 If only one of file1 and file2 is a directory, diff shall be applied to the non-directory file and the file
12136 contained in the directory file with a file name that is the same as the last component of the non-
12137 directory file.

12138 STDIN
12139 The standard input shall be used only if one of the file1 or file2 operands references standard
12140 input. See the INPUT FILES section.

12141 INPUT FILES
12142 The input files shall be text files. |

Shell and Utilities, Issue 6 2529

diff Utilities

12143 Notes to Reviewers |
12144 This section with side shading will not appear in the final copy. - Ed. |

12145 D3, XCU, ERN 75 proposes adding the following text: "If a file which is not a text file is |
12146 encountered, a binary comparison shall be performed, and if they are not identical, an |
12147 unspecified message containing the two file names and the string "differ" shall be produced." The |
12148 reviewers agreed in principle; however, this change needs further cleanup such as the locale and |
12149 output formats specifying before it can be made. |

12150 ENVIRONMENT VARIABLES |
12151 The following environment variables shall affect the execution of diff:

12152 LANG Provide a default value for the internationalization variables that are unset or null.
12153 If LANG is unset or null, the corresponding value from the implementation- |
12154 defined default locale shall be used. If any of the internationalization variables |
12155 contains an invalid setting, the utility shall behave as if none of the variables had
12156 been defined.

12157 LC_ALL If set to a non-empty string value, override the values of all the other
12158 internationalization variables.

12159 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
12160 characters (for example, single-byte as opposed to multi-byte characters in
12161 arguments and input files).

12162 LC_MESSAGES
12163 Determine the locale that should be used to affect the format and contents of
12164 diagnostic messages written to standard error and informative messages written to
12165 standard output.

12166 LC_TIME Determine the locale for affecting the format of file timestamps written with the
12167 −C and −c options.

12168 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

12169 TZ Determine the locale for affecting the timezone used for calculating file
12170 timestamps written with the −C and −c options.

12171 ASYNCHRONOUS EVENTS
12172 Default.

12173 STDOUT

12174 Diff Directory Comparison Format

12175 If both file1 and file2 are directories, the following output formats shall be used.

12176 In the POSIX locale, each file that is present in only one directory shall be reported using the
12177 following format:

12178 "Only in %s: %s\n", < directory pathname >, < filename >

12179 In the POSIX locale, subdirectories that are common to the two directories may be reported with
12180 the following format:

12181 "Common subdirectories: %s and %s\n", < directory1 pathname >,
12182 <directory2 pathname >

12183 For each file common to the two directories if the two files are not to be compared, the following
12184 format shall be used in the POSIX locale:

2530 Technical Standard (2000) (Draft July 31, 2000)

Utilities diff

12185 "File %s is a %s while file %s is a %s\n", < directory1 pathname >,
12186 <file type of directory1 pathname >, < directory2 pathname >,
12187 <file type of directory2 pathname >

12188 For each file common to the two directories, if the files are compared and are identical, no output
12189 shall be written. If the two files differ, the following format is written:

12190 "diff %s %s %s\n", < diff_options >, < filename1 >, < filename2 >

12191 where <diff_options> are the options as specified on the command line. Depending on these
12192 options, one of the following output formats shall be used to write the differences.

12193 All directory path names listed in this section shall be relative to the original command line
12194 arguments. All other names of files listed in this section are file names (path name components).

12195 Diff Default Output Format

12196 The default (without −e, −f, −c, or −C options) diff utility output shall contain lines of these |
12197 forms:

12198 "%da%d\n", < num1>, < num2>

12199 "%da%d,%d\n", < num1>, < num2>, < num3>

12200 "%dd%d\n", < num1>, < num2>

12201 "%d,%dd%d\n", < num1>, < num2>, < num3>

12202 "%dc%d\n", < num1>, < num2>

12203 "%d,%dc%d\n", < num1>, < num2>, < num3>

12204 "%dc%d,%d\n", < num1>, < num2>, < num3>

12205 "%d,%dc%d,%d\n", < num1>, < num2>, < num3>, < num4>

12206 These lines resemble ed subcommands to convert file1 into file2 . The line numbers before the
12207 action letters shall pertain to file1 ; those after shall pertain to file2 . Thus, by exchanging a for d
12208 and reading the line in reverse order, one can also determine how to convert file2 into file1 . As in
12209 ed, identical pairs (where num1= num2) are abbreviated as a single number.

12210 Following each of these lines, diff shall write to standard output all lines affected in the first file
12211 using the format:

12212 "< ∆%s", < line >

12213 and all lines affected in the second file using the format:

12214 "> ∆%s", < line >

12215 If there are lines affected in both file1 and file2 (as with the c subcommand), the changes are
12216 separated with a line consisting of three hyphens:

12217 " −−−\n"

Shell and Utilities, Issue 6 2531

diff Utilities

12218 Diff −e Output Format

12219 With the −e option, a script shall be produced that shall, when provided as input to ed, along
12220 with an appended w (write) command, convert file1 into file2 . Only the a (append), c (change), d
12221 (delete), i (insert), and s (substitute) commands of ed shall be used in this script. Text lines,
12222 except those consisting of the single character period (’.’), shall be output as they appear in the
12223 file.

12224 Diff −f Output Format

12225 With the −f option, an alternative format of script shall be produced. It is similar to that |
12226 produced by −e, with the following differences:

12227 1. It is expressed in reverse sequence; the output of −e orders changes from the end of the file
12228 to the beginning; the −f from beginning to end.

12229 2. The command form <lines > <command-letter > used by −e is reversed. For example,
12230 10c with −e would be c10 with −f.

12231 3. The form used for ranges of line numbers is <space> character-separated, rather than
12232 comma-separated. |

12233 Diff −c or −C Output Format

12234 With the −c or −C option, the output format shall consist of affected lines along with
12235 surrounding lines of context. The affected lines shall show which ones need to be deleted or
12236 changed in file1 , and those added from file2 . With the −c option, three lines of context, if
12237 available, shall be written before and after the affected lines. With the −C option, the user can
12238 specify how many lines of context are written. The exact format follows.

12239 The name and last modification time of each file shall be output in the following format:

12240 "*** %s %s\n", file1 , < file1 timestamp >
12241 " −−− %s %s\n", file2 , < file2 timestamp >

12242 Each <file> field shall be the path name of the corresponding file being compared. The path
12243 name written for standard input is unspecified.

12244 In the POSIX locale, each <timestamp> field shall be equivalent to the output from the following
12245 command:

12246 date "+%a %b %e %T %Y"

12247 without the trailing <newline> character, executed at the time of last modification of the
12248 corresponding file (or the current time, if the file is standard input).

12249 Then, the following output formats shall be applied for every set of changes.

12250 First, a line shall be written in the following format:

12251 "***************\n"

12252 Next, the range of lines in file1 shall be written in the following format:

12253 "*** %d,%d ****\n", < beginning line number >, < ending line number >

12254 Next, the affected lines along with lines of context (unaffected lines) shall be written. Unaffected
12255 lines shall be written in the following format:

12256 " ∆∆%s", < unaffected_line >

2532 Technical Standard (2000) (Draft July 31, 2000)

Utilities diff

12257 Deleted lines shall be written as:

12258 " −∆%s", < deleted_line >

12259 Changed lines shall be written as:

12260 "! ∆%s", < changed_line >

12261 Next, the range of lines in file2 shall be written in the following format:

12262 " −−− %d,%d −−−−\n", < beginning line number >, < ending line number >

12263 Then, lines of context and changed lines shall be written as described in the previous formats.
12264 Lines added from file2 shall be written in the following format:

12265 "+ ∆%s", < added_line >

12266 STDERR
12267 Used only for diagnostic messages.

12268 OUTPUT FILES
12269 None.

12270 EXTENDED DESCRIPTION
12271 None.

12272 EXIT STATUS
12273 The following exit values shall be returned:

12274 0 No differences were found.

12275 1 Differences were found.

12276 >1 An error occurred.

12277 CONSEQUENCES OF ERRORS
12278 Default.

12279 APPLICATION USAGE
12280 If lines at the end of a file are changed and other lines are added, diff output may show this as a
12281 delete and add, as a change, or as a change and add; diff is not expected to know which
12282 happened and users should not care about the difference in output as long as it clearly shows the
12283 differences between the files.

12284 EXAMPLES
12285 If dir1 is a directory containing a directory named x, dir2 is a directory containing a directory
12286 named x, dir1/x and dir2/x both contain files named date.out, and dir2/x contains a file named y,
12287 the command:

12288 diff −r dir1 dir2

12289 could produce output similar to:

12290 Common subdirectories: dir1/x and dir2/x
12291 Only in dir2/x: y
12292 diff −r dir1/x/date.out dir2/x/date.out
12293 1c1
12294 < Mon Jul 2 13:12:16 PDT 1990
12295 −−−
12296 > Tue Jun 19 21:41:39 PDT 1990

Shell and Utilities, Issue 6 2533

diff Utilities

12297 RATIONALE
12298 The −h option was omitted because it was insufficiently specified and does not add to |
12299 applications portability. |

12300 Historical implementations employ algorithms that do not always produce a minimum list of
12301 differences; the current language about making every effort is the best this volume of
12302 IEEE Std. 1003.1-200x can do, as there is no metric that could be employed to judge the quality of
12303 implementations against any and all file contents. The statement ‘‘This list should be minimal’’
12304 clearly implies that implementations are not expected to provide the following output when
12305 comparing two 100-line files that differ in only one character on a single line:

12306 1,100c1,100
12307 all 100 lines from file1 preceded with "< "
12308 −−−
12309 all 100 lines from file2 preceded with "> "

12310 The ‘‘Only in’’ messages required when the −r option is specified are not used by most historical
12311 implementations if the −e option is also specified. It is required here because it provides useful
12312 information that must be provided to update a target directory hierarchy to match a source
12313 hierarchy. The ‘‘Common subdirectories’’ messages are written by System V and 4.3 BSD when
12314 the −r option is specified. They are allowed here but are not required because they are reporting
12315 on something that is the same, not reporting a difference, and are not needed to update a target
12316 hierarchy.

12317 The −c option, which writes output in a format using lines of context, has been included. The
12318 format is useful for a variety of reasons, among them being much improved readability and the
12319 ability to understand difference changes when the target file has line numbers that differ from
12320 another similar, but slightly different, copy. The patch utility is most valuable when working
12321 with difference listings using the context format. The BSD version of −c takes an optional
12322 argument specifying the amount of context. Rather than overloading −c and breaking the Utility
12323 Syntax Guidelines for diff, the standard developers decided to add a separate option for
12324 specifying a context diff with a specified amount of context (−C). Also, the format for context
12325 diffs was extended slightly in 4.3 BSD to allow multiple changes that are within context lines
12326 from each other to be merged together. The output format contains an additional four asterisks
12327 after the range of affected lines in the first file name. This was to provide a flag for old programs
12328 (like old versions of patch) that only understand the old context format. The version of context
12329 described here does not require that multiple changes within context lines be merged, but it does
12330 not prohibit it either. The extension is upward-compatible, so any vendors that wish to retain the
12331 old version of diff can do so by adding the extra four asterisks (that is, utilities that currently use
12332 diff and understand the new merged format will also understand the old unmerged format, but
12333 not vice versa).

12334 The substitute command was added as an additional format for the −e option. This was added to
12335 provide implementations a way to fix the classic ‘‘dot alone on a line’’ bug present in many
12336 versions of diff. Since many implementations have fixed this bug, the standard developers
12337 decided not to standardize broken behavior, but rather to provide the necessary tool for fixing
12338 the bug. One way to fix this bug is to output two periods whenever a lone period is needed, then
12339 terminate the append command with a period, and then use the substitute command to convert
12340 the two periods into one period.

12341 The BSD-derived −r option was added to provide a mechanism for using diff to compare two file
12342 system trees. This behavior is useful, is standard practice on all BSD-derived systems, and is not
12343 easily reproducible with the find utility.

12344 The requirement that diff not compare files in some circumstances, even though they have the
12345 same name, is based on the actual output of historical implementations. The message specified

2534 Technical Standard (2000) (Draft July 31, 2000)

Utilities diff

12346 here is already in use when a directory is being compared to a non-directory. It is extended here
12347 to preclude the problems arising from running into FIFOs and other files that would cause diff to
12348 hang waiting for input with no indication to the user that diff was hung. In most common usage,
12349 diff −r should indicate differences in the file hierarchies, not the difference of contents of devices
12350 pointed to by the hierarchies.

12351 Many early implementations of diff require seekable files. Since the System Interfaces volume of
12352 IEEE Std. 1003.1-200x supports named pipes, the standard developers decided that such a
12353 restriction was unreasonable. Note also that the allowed file name − almost always refers to a
12354 pipe.

12355 No directory search order is specified for diff. The historical ordering is, in fact, not optimal, in
12356 that it prints out all of the differences at the current level, including the statements about all
12357 common subdirectories before recursing into those subdirectories.

12358 The message:

12359 "diff %s %s %s\n", < diff_options >, < filename1 >, < filename2 >

12360 does not vary by locale because it is the representation of a command, not an English sentence.

12361 FUTURE DIRECTIONS
12362 None.

12363 SEE ALSO
12364 cmp, comm, ed

12365 CHANGE HISTORY
12366 First released in Issue 2.

12367 Issue 4
12368 Aligned with the ISO/IEC 9945-2: 1993 standard.

12369 Issue 5
12370 FUTURE DIRECTIONS section added.

12371 Issue 6
12372 The following new requirements on POSIX implementations derive from alignment with the
12373 Single UNIX Specification:

12374 • The −f option is added.

12375 The output format for −c or −C format is changed to align with changes to the IEEE P1003.2b
12376 draft standard resulting from IEEE PASC Interpretation 1003.2 #71. |

12377 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2535

dirname Utilities

12378 NAME
12379 dirname — return the directory portion of path name

12380 SYNOPSIS
12381 dirname string

12382 DESCRIPTION
12383 The string operand shall be treated as a path name, as defined in the Base Definitions volume of |
12384 IEEE Std. 1003.1-200x, Section 3.268, Path Name. The string string shall be converted to the name |
12385 of the directory containing the file name corresponding to the last path name component in
12386 string, performing actions equivalent to the following steps in order:

12387 1. If string is //, skip steps 2 to 5.

12388 2. If string consists entirely of slash characters, string shall be set to a single slash character. In
12389 this case, skip steps 3 to 8.

12390 3. If there are any trailing slash characters in string, they shall be removed.

12391 4. If there are no slash characters remaining in string, string shall be set to a single period
12392 character. In this case, skip steps 5 to 8.

12393 5. If there are any trailing non-slash characters in string, they shall be removed.

12394 6. If the remaining string is //, it is implementation-defined whether steps 7 and 8 are skipped |
12395 or processed. |

12396 7. If there are any trailing slash characters in string, they shall be removed.

12397 8. If the remaining string is empty, string shall be set to a single slash character.

12398 The resulting string shall be written to standard output.

12399 OPTIONS
12400 None.

12401 OPERANDS
12402 The following operand shall be supported:

12403 string A string.

12404 STDIN
12405 Not used.

12406 INPUT FILES
12407 None.

12408 ENVIRONMENT VARIABLES
12409 The following environment variables shall affect the execution of dirname:

12410 LANG Provide a default value for the internationalization variables that are unset or null.
12411 If LANG is unset or null, the corresponding value from the implementation- |
12412 defined default locale will be used. If any of the internationalization variables |
12413 contains an invalid setting, the utility shall behave as if none of the variables had
12414 been defined.

12415 LC_ALL If set to a non-empty string value, override the values of all the other
12416 internationalization variables.

12417 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
12418 characters (for example, single-byte as opposed to multi-byte characters in
12419 arguments).

2536 Technical Standard (2000) (Draft July 31, 2000)

Utilities dirname

12420 LC_MESSAGES
12421 Determine the locale that should be used to affect the format and contents of
12422 diagnostic messages written to standard error.

12423 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

12424 ASYNCHRONOUS EVENTS
12425 Default.

12426 STDOUT
12427 The dirname utility shall write a line to the standard output in the following format:

12428 "%s\n", < resulting string >

12429 STDERR
12430 Used only for diagnostic messages.

12431 OUTPUT FILES
12432 None.

12433 EXTENDED DESCRIPTION
12434 None.

12435 EXIT STATUS
12436 The following exit values shall be returned:

12437 0 Successful completion.

12438 >0 An error occurred.

12439 CONSEQUENCES OF ERRORS
12440 Default.

12441 APPLICATION USAGE
12442 The definition of pathname specifies implementation-defined behavior for path names starting |
12443 with two slash characters. Therefore, applications shall not arbitrarily add slashes to the |
12444 beginning of a path name unless they can ensure that there are more or less than two or are
12445 prepared to deal with the implementation-defined consequences. |

12446 EXAMPLES

12447 Command Results________________________________
12448 dirname / /
12449 dirname // / or //
12450 dirname /a/b/ /a
12451 dirname //a//b// //a
12452 dirname Unspecified
12453 dirname a . ($? = 0)
12454 dirname "" . ($? = 0)
12455 dirname /a /
12456 dirname /a/b /a
12457 dirname a/b a________________________________LL

L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

12458 RATIONALE
12459 The dirname utility originated in System III. It has evolved through the System V releases to a
12460 version that matches the requirements specified in this description in System V Release 3. 4.3
12461 BSD and earlier versions did not include dirname.

12462 The behaviors of basename and dirname in this volume of IEEE Std. 1003.1-200x have been
12463 coordinated so that when string is a valid path name:

Shell and Utilities, Issue 6 2537

dirname Utilities

12464 $(basename " string ")

12465 would be a valid file name for the file in the directory:

12466 $(dirname " string ")

12467 This would not work for the versions of these utilities in early proposals due to the way
12468 processing of trailing slashes was specified. Consideration was given to leaving processing
12469 unspecified if there were trailing slashes, but this cannot be done; the Base Definitions volume of |
12470 IEEE Std. 1003.1-200x, Section 3.268, Path Name allows trailing slashes. The basename and |
12471 dirname utilities have to specify consistent handling for all valid path names.

12472 FUTURE DIRECTIONS
12473 None.

12474 SEE ALSO
12475 basename, Section 2.5 (on page 2241)

12476 CHANGE HISTORY
12477 First released in Issue 2.

12478 Issue 4
12479 Aligned with the ISO/IEC 9945-2: 1993 standard.

2538 Technical Standard (2000) (Draft July 31, 2000)

Utilities du

12480 NAME
12481 du — estimate file space usage

12482 SYNOPSIS
12483 UP du [−a | −s][−kx][−H | −L][file ...]
12484

12485 DESCRIPTION
12486 By default, the du utility shall write to standard output the size of the file space allocated to, and
12487 the size of the file space allocated to each subdirectory of, the file hierarchy rooted in each of the
12488 specified files. By default, when a symbolic link is encountered on the command line or in the
12489 file hierarchy, du shall count the size of the symbolic link (rather than the file referenced by the
12490 link), and shall not follow the link to another portion of the file hierarchy. The size of the file
12491 space allocated to a file of type directory shall be defined as the sum total of space allocated to
12492 all files in the file hierarchy rooted in the directory plus the space allocated to the directory itself.

12493 When du cannot stat() files or stat() or read directories, it shall report an error condition and the
12494 final exit status is affected. Files with multiple links shall be counted and written for only one
12495 entry. The directory entry that is selected in the report is unspecified. By default, file sizes shall
12496 be written in 512-byte units, rounded up to the next 512-byte unit.

12497 OPTIONS
12498 The du utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
12499 12.2, Utility Syntax Guidelines. |

12500 The following options shall be supported:

12501 −a In addition to the default output, report the size of each file not of type directory in
12502 the file hierarchy rooted in the specified file. Regardless of the presence of the −a
12503 option, non-directories given as file operands shall always be listed.

12504 −H If a symbolic link is specified on the command line, du shall count the size of the
12505 file or file hierarchy referenced by the link.

12506 −k Write the files sizes in units of 1 024 bytes, rather than the default 512-byte units.

12507 −L If a symbolic link is specified on the command line or encountered during the
12508 traversal of a file hierarchy, du shall count the size of the file or file hierarchy
12509 referenced by the link.

12510 −s Instead of the default output, report only the total sum for each of the specified
12511 files.

12512 −x When evaluating file sizes, evaluate only those files that have the same device as
12513 the file specified by the file operand.

12514 Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
12515 an error. The last option specified shall determine the behavior of the utility.

12516 OPERANDS
12517 The following operand shall be supported:

12518 file The path name of a file whose size is to be written. If no file is specified, the current
12519 directory shall be used.

12520 STDIN
12521 Not used.

Shell and Utilities, Issue 6 2539

du Utilities

12522 INPUT FILES
12523 None.

12524 ENVIRONMENT VARIABLES
12525 The following environment variables shall affect the execution of du:

12526 LANG Provide a default value for the internationalization variables that are unset or null.
12527 If LANG is unset or null, the corresponding value from the implementation- |
12528 defined default locale shall be used. If any of the internationalization variables |
12529 contains an invalid setting, the utility shall behave as if none of the variables had
12530 been defined.

12531 LC_ALL If set to a non-empty string value, override the values of all the other
12532 internationalization variables.

12533 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
12534 characters (for example, single-byte as opposed to multi-byte characters in
12535 arguments).

12536 LC_MESSAGES
12537 Determine the locale that should be used to affect the format and contents of
12538 diagnostic messages written to standard error.

12539 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

12540 ASYNCHRONOUS EVENTS
12541 Default.

12542 STDOUT
12543 The output from du shall consist of the amount of the space allocated to a file and the name of
12544 the file, in the following format:

12545 "%d %s\n", < size >, < pathname >

12546 STDERR
12547 Used only for diagnostic messages.

12548 OUTPUT FILES
12549 None.

12550 EXTENDED DESCRIPTION
12551 None.

12552 EXIT STATUS
12553 The following exit values shall be returned:

12554 0 Successful completion.

12555 >0 An error occurred.

12556 CONSEQUENCES OF ERRORS
12557 Default.

2540 Technical Standard (2000) (Draft July 31, 2000)

Utilities du

12558 APPLICATION USAGE
12559 None. |

12560 EXAMPLES
12561 None.

12562 RATIONALE
12563 The use of 512-byte units is historical practice and maintains compatibility with ls and other
12564 utilities in this volume of IEEE Std. 1003.1-200x. This does not mandate that the file system itself
12565 be based on 512-byte blocks. The −k option was added as a compromise measure. It was agreed
12566 by the standard developers that 512 bytes was the best default unit because of its complete
12567 historical consistency on System V (versus the mixed 512/1 024-byte usage on BSD systems), and
12568 that a −k option to switch to 1 024-byte units was a good compromise. Users who prefer the
12569 1 024-byte quantity can easily alias du to du −k without breaking the many historical scripts
12570 relying on the 512-byte units.

12571 The −b option was added to an early proposal to provide a resolution to the situation where
12572 System V and BSD systems give figures for file sizes in blocks , which is an implementation- |
12573 defined concept. (In common usage, the block size is 512 bytes for System V and 1 024 bytes for |
12574 BSD systems.) However, −b was later deleted, since the default was eventually decided as 512-
12575 byte units.

12576 Historical file systems provided no way to obtain exact figures for the space allocation given to
12577 files. There are two known areas of inaccuracies in historical file systems: cases of indirect blocks
12578 being used by the file system or sparse files yielding incorrectly high values. An indirect block is
12579 space used by the file system in the storage of the file, but that need not be counted in the space
12580 allocated to the file. A sparse file is one in which an lseek() call has been made to a position
12581 beyond the end of the file and data has subsequently been written at that point. A file system
12582 need not allocate all the intervening zero-filled blocks to such a file. It is up to the
12583 implementation to define exactly how accurate its methods are.

12584 The −a and −s options were mutually-exclusive in the original version of du. The POSIX Shell
12585 and Utilities description is implied by the language in the SVID where −s is described as causing
12586 ‘‘only the grand total’’ to be reported. Some systems may produce output for −sa, but a Strictly
12587 Conforming POSIX Shell and Utilities Application cannot use that combination.

12588 The −a and −s options were adopted from the SVID except that the System V behavior of not
12589 listing non-directories explicitly given as operands, unless the −a option is specified, was
12590 considered a bug; the BSD-based behavior (report for all operands) is mandated. The default
12591 behavior of du in the SVID with regard to reporting the failure to read files (it produces no
12592 messages) was considered counter-intuitive, and thus it was specified that the POSIX Shell and
12593 Utilities default behavior shall be to produce such messages. These messages can be turned off
12594 with shell redirection to achieve the System V behavior.

12595 The −x option is historical practice on recent BSD systems. It has been adopted by this volume of
12596 IEEE Std. 1003.1-200x because there was no other historical method of limiting the du search to a
12597 single file hierarchy. This limitation of the search is necessary to make it possible to obtain file
12598 space usage information about a file system on which other file systems are mounted, without
12599 having to resort to a lengthy find and awk script.

12600 FUTURE DIRECTIONS
12601 None.

Shell and Utilities, Issue 6 2541

du Utilities

12602 SEE ALSO
12603 ls

12604 CHANGE HISTORY
12605 First released in Issue 2.

12606 Issue 4
12607 Aligned with the ISO/IEC 9945-2: 1993 standard.

12608 Issue 6
12609 This utility is now marked as part of the User Portability Utilities option.

12610 The APPLICATION USAGE section is added.

12611 This utility is reinstated, as the LEGACY marking was incorrect in Issue 5.

12612 The obsolescent −r option has been removed.

12613 The Open Group corrigenda item U025/3 has been applied. The du utility had incorrectly been
12614 marked LEGACY.

12615 The −H and −L options for symbolic links are added as described in the IEEE P1003.2b draft
12616 standard.

2542 Technical Standard (2000) (Draft July 31, 2000)

Utilities echo

12617 NAME
12618 echo — write arguments to standard output

12619 SYNOPSIS
12620 echo [string ...]

12621 DESCRIPTION
12622 The echo utility writes its arguments to standard output, followed by a <newline> character. If
12623 there are no arguments, only the <newline> character is written.

12624 OPTIONS
12625 The echo utility shall not recognize the " −−" argument in the manner specified by Guideline 10 |
12626 of the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, Utility Syntax Guidelines; |
12627 " −−" shall be recognized as a string operand.

12628 Implementations shall not support any options. |

12629 OPERANDS
12630 The following operands shall be supported:

12631 string A string to be written to standard output. If any operand is −n, it shall be treated as |
12632 a string, not an option. The following character sequences shall be recognized
12633 within any of the arguments:

12634 \a Write an <alert> character.

12635 \b Write a <backspace> character.

12636 \c Suppress the <newline> character that otherwise follows the final
12637 argument in the output. All characters following the ’\c’ in the
12638 arguments shall be ignored.

12639 \f Write a <form-feed> character.

12640 \n Write a <newline> character.

12641 \r Write a <carriage-return> character.

12642 \t Write a <tab> character.

12643 \v Write a <vertical-tab> character.

12644 \\ Write a backslash character.

12645 \0 num Write an 8-bit value that is the zero, one, two, or three-digit octal number
12646 num. |

12647 STDIN
12648 Not used.

12649 INPUT FILES
12650 None.

12651 ENVIRONMENT VARIABLES
12652 The following environment variables shall affect the execution of echo:

12653 LANG Provide a default value for the internationalization variables that are unset or null.
12654 If LANG is unset or null, the corresponding value from the implementation- |
12655 defined default locale shall be used. If any of the internationalization variables |
12656 contains an invalid setting, the utility shall behave as if none of the variables had
12657 been defined.

Shell and Utilities, Issue 6 2543

echo Utilities

12658 LC_ALL If set to a non-empty string value, override the values of all the other
12659 internationalization variables. |

12660 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as |
12661 characters (for example, single-byte as opposed to multi-byte characters in
12662 arguments). |

12663 LC_MESSAGES
12664 Determine the locale that should be used to affect the format and contents of
12665 diagnostic messages written to standard error.

12666 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

12667 ASYNCHRONOUS EVENTS
12668 Default.

12669 STDOUT
12670 The echo utility arguments shall be separated by single <space> characters and a <newline> |
12671 character follows the last argument. Output transformations shall occur based on the escape |
12672 sequences in the input. See the OPERANDS section. |

12673 STDERR
12674 Used only for diagnostic messages.

12675 OUTPUT FILES
12676 None.

12677 EXTENDED DESCRIPTION
12678 None.

12679 EXIT STATUS
12680 The following exit values shall be returned:

12681 0 Successful completion.

12682 >0 An error occurred.

12683 CONSEQUENCES OF ERRORS
12684 Default.

12685 APPLICATION USAGE
12686 In the ISO/IEC 9945-2: 1993 standard, it was not possible to use echo portably across all systems
12687 that were not XSI-conformant unless both −n (as the first argument) and escape sequences were
12688 omitted.

12689 The printf utility can be used portably to emulate any of the traditional behaviors of the echo
12690 utility as follows:

12691 • The historic System V echo and the current requirements in this volume of
12692 IEEE Std. 1003.1-200x are equivalent to:

12693 printf "%b\n" "$*"

12694 • The BSD echo is equivalent to:

12695 if ["X$1" = "X −n"]
12696 then
12697 shift
12698 printf "%s" "$*"
12699 else
12700 printf "%s\n" "$*"

2544 Technical Standard (2000) (Draft July 31, 2000)

Utilities echo

12701 fi

12702 New applications are encouraged to use printf instead of echo.

12703 EXAMPLES
12704 None.

12705 RATIONALE
12706 The echo utility has not been made obsolescent because of its extremely widespread use in
12707 historical applications. Portable applications that wish to do prompting without <newline>s or
12708 that could possibly be expecting to echo a −n, should use the new printf utility derived from the
12709 Ninth Edition system.

12710 As specified, echo writes its arguments in the simplest of ways. The two different historical
12711 versions of echo vary in fatally incompatible ways.

12712 The BSD echo checks the first argument for the string −n which causes it to suppress the
12713 <newline> character that would otherwise follow the final argument in the output.

12714 The System V echo does not support any options, but allows escape sequences within its
12715 operands, as described in the OPERANDS section.

12716 The echo utility does not support Utility Syntax Guideline 10 because historical applications
12717 depend on echo to echo all of its arguments, except for the −n option in the BSD version.

12718 FUTURE DIRECTIONS
12719 None.

12720 SEE ALSO
12721 printf

12722 CHANGE HISTORY
12723 First released in Issue 2.

12724 Issue 4
12725 Aligned with the ISO/IEC 9945-2: 1993 standard.

12726 Issue 5
12727 In the OPTIONS section, the last sentence is changed to indicate that implementations ‘‘do not’’
12728 support any options; in the previous issue this said ‘‘need not’’.

12729 Issue 6
12730 The following new requirements on POSIX implementations derive from alignment with the
12731 Single UNIX Specification:

12732 • A set of character sequences is defined as string operands.

12733 • LC_CTYPE is added to the list of environment variables affecting echo.

12734 • In the OPTIONS section, implementations shall not support any options.

Shell and Utilities, Issue 6 2545

ed Utilities

12735 NAME
12736 ed — edit text

12737 SYNOPSIS
12738 ed [−p string][−s][file]

12739 DESCRIPTION
12740 The ed utility is a line-oriented text editor that uses two modes: command mode and input mode.
12741 In command mode the input characters shall be interpreted as commands, and in input mode
12742 they shall be interpreted as text. See the EXTENDED DESCRIPTION section.

12743 OPTIONS
12744 The ed utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
12745 Utility Syntax Guidelines. |

12746 The following options shall be supported:

12747 −p string Use string as the prompt string when in command mode. By default, there shall be |
12748 no prompt string.

12749 −s Suppress the writing of byte counts by e, E, r, and w commands and of the ’!’
12750 prompt after a !command.

12751 OPERANDS
12752 The following operand shall be supported:

12753 file If the file argument is given, ed shall simulate an e command on the file named by
12754 the path name, file , before accepting commands from the standard input. If the file
12755 operand is ’ −’ , the results are unspecified.

12756 STDIN
12757 The standard input shall be a text file consisting of commands, as described in the EXTENDED
12758 DESCRIPTION section.

12759 INPUT FILES
12760 The input files shall be text files.

12761 ENVIRONMENT VARIABLES
12762 The following environment variables shall affect the execution of ed:

12763 HOME Determine the path name of the user’s home directory.

12764 LANG Provide a default value for the internationalization variables that are unset or null.
12765 If LANG is unset or null, the corresponding value from the implementation- |
12766 defined default locale shall be used. If any of the internationalization variables |
12767 contains an invalid setting, the utility shall behave as if none of the variables had
12768 been defined.

12769 LC_ALL If set to a non-empty string value, override the values of all the other
12770 internationalization variables.

12771 LC_COLLATE
12772 Determine the locale for the behavior of ranges, equivalence classes, and multi-
12773 character collating elements within regular expressions.

12774 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
12775 characters (for example, single-byte as opposed to multi-byte characters in
12776 arguments and input files) and the behavior of character classes within regular
12777 expressions.

2546 Technical Standard (2000) (Draft July 31, 2000)

Utilities ed

12778 LC_MESSAGES
12779 Determine the locale that should be used to affect the format and contents of
12780 diagnostic messages written to standard error and informative messages written to
12781 standard output.

12782 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

12783 ASYNCHRONOUS EVENTS
12784 The ed utility shall take the standard action for all signals (see the ASYNCHRONOUS EVENTS
12785 section in Section 1.11 (on page 2224)) with the following exceptions:

12786 SIGINT The ed utility shall interrupt its current activity, write the string "?\n" to standard
12787 output, and return to command mode (see the EXTENDED DESCRIPTION
12788 section).

12789 SIGHUP If the buffer is not empty and has changed since the last write, the ed utility shall
12790 attempt to write a copy of the buffer in a file. First, the file named ed.hup in the
12791 current directory shall be used; if that fails, the file named ed.hup in the directory
12792 named by the HOME environment variable shall be used. In any case, the ed utility
12793 shall exit without returning to command mode.

12794 SIGQUIT The ed utility shall ignore this event.

12795 STDOUT
12796 Various editing commands and the prompting feature (see −p) write to standard output, as
12797 described in the EXTENDED DESCRIPTION section.

12798 STDERR
12799 Used only for diagnostic messages.

12800 OUTPUT FILES
12801 The output files shall be text files whose formats are dependent on the editing commands given.

12802 EXTENDED DESCRIPTION
12803 The ed utility shall operate on a copy of the file it is editing; changes made to the copy shall have
12804 no effect on the file until a w (write) command is given. The copy of the text is called the buffer.

12805 Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
12806 single-character command , possibly followed by parameters to that command. These addresses
12807 specify one or more lines in the buffer. Every command that requires addresses has default
12808 addresses, so that the addresses very often can be omitted. If the −p option is specified, the
12809 prompt string shall be written to standard output before each command is read.

12810 In general, only one command can appear on a line. Certain commands allow text to be input.
12811 This text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be
12812 in input mode. In this mode, no commands shall be recognized; all input is merely collected.
12813 Input mode is terminated by entering a line consisting of two characters: a period (’.’)
12814 followed by a <newline> character. This line is not considered part of the input text.

12815 Regular Expressions in ed

12816 The ed utility shall support basic regular expressions, as described in the Base Definitions |
12817 volume of IEEE Std. 1003.1-200x, Section 9.3, Basic Regular Expressions. Since regular |
12818 expressions in ed are always matched against single lines, never against any larger section of |
12819 text, there is no way for a regular expression to match a <newline> character. A null RE shall be
12820 equivalent to the last RE encountered.

12821 Regular expressions are used in addresses to specify lines, and in some commands (for example,
12822 the s substitute command) to specify portions of a line to be substituted.

Shell and Utilities, Issue 6 2547

ed Utilities

12823 Addresses in ed

12824 Addressing in ed relates to the current line. Generally, the current line is the last line affected by a
12825 command. The current line number is the address of the current line. If the edit buffer is not
12826 empty, the initial value for the current line shall be the last line in the edit buffer; otherwise, zero.

12827 Addresses shall be constructed as follows:

12828 1. The period character (’.’) shall address the current line.

12829 2. The dollar sign character (’$’) shall address the last line of the edit buffer.

12830 3. The positive decimal number n shall address the nth line of the edit buffer.

12831 4. The apostrophe-x character pair ("’x") shall address the line marked with the mark name
12832 character x , which shall be a lowercase letter from the portable character set. It shall be an
12833 error if the character has not been set to mark a line or if the line that was marked is not
12834 currently present in the edit buffer.

12835 5. A BRE enclosed by slash characters (’/’) shall address the first line found by searching
12836 forwards from the line following the current line toward the end of the edit buffer and
12837 stopping at the first line containing a string matching the BRE. The BRE consisting of a null
12838 BRE delimited by a pair of slash characters shall address the next line containing the last
12839 BRE encountered. In addition, the second slash can be omitted at the end of a command
12840 line. Within the BRE, a backslash-slash pair ("\/") shall represent a literal slash instead of
12841 the BRE delimiter. If necessary, the search shall wrap around to the beginning of the buffer
12842 and continue up to and including the current line, so that the entire buffer is searched.

12843 6. A BRE enclosed by question-mark characters (’?’) shall address the first line found by
12844 searching backwards from the line preceding the current line toward the beginning of the
12845 edit buffer and stopping at the first line containing a string matching the BRE. The BRE
12846 consisting of a null BRE delimited by a pair of question-mark characters ("??") shall
12847 address the previous line containing the last BRE encountered. In addition, the second
12848 question-mark can be omitted at the end of a command line. Within the BRE, a backslash-
12849 question-mark pair ("\?") shall represent a literal question mark instead of the BRE
12850 delimiter. If necessary, the search shall wrap around to the end of the buffer and continue
12851 up to and including the current line, so that the entire buffer is searched.

12852 7. A plus-sign (’+’) or hyphen character (’ −’) followed by a decimal number shall address
12853 the current line plus or minus the number. A plus-sign or hyphen character not followed
12854 by a decimal number shall address the current line plus or minus 1.

12855 Addresses can be followed by zero or more address offsets, optionally <blank>-separated.
12856 Address offsets are constructed as follows:

12857 • A plus-sign or hyphen character followed by a decimal number shall add or subtract,
12858 respectively, the indicated number of lines to or from the address. A plus-sign or hyphen
12859 character not followed by a decimal number shall add or subtract 1 to or from the address.

12860 • A decimal number shall add the indicated number of lines to the address.

12861 It shall not be an error for an intermediate address value to be less than zero or greater than the
12862 last line in the edit buffer. It shall be an error for the final address value to be less than zero or
12863 greater than the last line in the edit buffer. It shall be an error if a search for a BRE fails to find a
12864 matching line.

12865 Commands accept zero, one, or two addresses. If more than the required number of addresses
12866 are provided to a command that requires zero addresses, it shall be an error. Otherwise, if more
12867 than the required number of addresses are provided to a command, the addresses specified first

2548 Technical Standard (2000) (Draft July 31, 2000)

Utilities ed

12868 shall be evaluated and then discarded until the maximum number of valid addresses remain, for
12869 the specified command.

12870 Addresses shall be separated from each other by a comma (’,’) or semicolon character (’;’).
12871 In the case of a semicolon separator, the current line (’.’) shall be set to the first address, and
12872 only then will the second address be calculated. This feature can be used to determine the
12873 starting line for forwards and backwards searches; see rules 5. and 6.

12874 Addresses can be omitted on either side of the comma or semicolon separator, in which case the
12875 resulting address pairs shall be as follows:

12876 Specified Resulting___________________________
12877 , 1 , $
12878 , addr 1 ,a ddr
12879 addr , addr , addr
12880 ; . ; $
12881 ; addr . ; addr
12882 addr ; addr ; addr___________________________L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

12883 Any <blank> characters included between addresses, address separators, or address offsets shall
12884 be ignored.

12885 Commands in ed

12886 In the following list of ed commands, the default addresses are shown in parentheses. The
12887 number of addresses shown in the default shall be the number expected by the command. The
12888 parentheses are not part of the address; they show that the given addresses are the default.

12889 It is generally invalid for more than one command to appear on a line. However, any command
12890 (except e, E, f, q, Q, r, w, and !) can be suffixed by the letter l, n, or p; in which case, except for
12891 the l, n, and p commands, the command shall be executed and then the new current line shall be
12892 written as described below under the l, n, and p commands. When an l, n, or p suffix is used
12893 with an l, n, or p command, the command shall write to standard output as described below, but
12894 it is unspecified whether the suffix writes the current line again in the requested format or
12895 whether the suffix has no effect. For example, the pl command (base p command with an l
12896 suffix) shall either write just the current line or write it twice—once as specified for p and once
12897 as specified for l. Also, the g, G, v, and V commands shall take a command as a parameter.

12898 Each address component can be preceded by zero or more <blank> characters. The command
12899 letter can be preceded by zero or more <blank> characters. If a suffix letter (l, n, or p) is given,
12900 the application shall ensure that it immediately follows the command.

12901 The e, E, f, r, and w commands shall take an optional file parameter, separated from the
12902 command letter by one or more <blank> characters.

12903 If changes have been made in the buffer since the last w command that wrote the entire buffer,
12904 ed shall warn the user if an attempt is made to destroy the editor buffer via the e or q commands.
12905 The ed utility shall write the string:

12906 "?\n"

12907 (followed by an explanatory message if help mode has been enabled via the H command) to
12908 standard output and shall continue in command mode with the current line number unchanged.
12909 If the e or q command is repeated with no intervening command, it shall take effect.

12910 If a terminal disconnect is detected:

Shell and Utilities, Issue 6 2549

ed Utilities

12911 • If the buffer is not empty and has changed since the last write, the ed utility shall attempt to
12912 write a copy of the buffer to a file named ed.hup in the current directory. If this write fails, ed
12913 shall attempt to write a copy of the buffer to a file name ed.hup in the directory named by the
12914 HOME environment variable. If both these attempts fail, ed shall exit without saving the
12915 buffer.

12916 • The ed utility shall not write the file to the currently remembered path name or return to
12917 command mode, and shall terminate with a non-zero exit status.

12918 If an end-of-file is detected on standard input:

12919 • If the ed utility is in input mode, ed shall terminate input mode and return to command mode.
12920 It is unspecified if any partially entered lines (that is, input text without a terminating
12921 <newline> character) are discarded from the input text.

12922 • If the ed utility is in command mode, it shall act as if a q command had been entered.

12923 If the closing delimiter of an RE or of a replacement string (for example, ’/’) in a g, G, s, v, or V
12924 command would be the last character before a <newline> character, that delimiter can be
12925 omitted, in which case the addressed line shall be written. For example, the following pairs of
12926 commands are equivalent:

12927 s/s1/s2 s/s1/s2/p
12928 g/s1 g/s1/p
12929 ?s1 ?s1?

12930 If an invalid command is entered, ed shall write the string:

12931 "?\n"

12932 (followed by an explanatory message if help mode has been enabled via the H command) to
12933 standard output and shall continue in command mode with the current line number unchanged.

12934 Append Command

12935 Synopsis: (.)a
12936 <text >
12937 .

12938 The a command shall read the given text and append it after the addressed line; the current line
12939 number shall become the address of the last inserted line or, if there were none, the addressed
12940 line. Address 0 shall be valid for this command; it shall cause the appended text to be placed at
12941 the beginning of the buffer.

12942 Change Command

12943 Synopsis: (.,.)c
12944 <text >
12945 .

12946 The c command shall delete the addressed lines, then accept input text that replaces these lines;
12947 the current line shall be set to the address of the last line input; or, if there were none, at the line
12948 after the last line deleted; if the lines deleted were originally at the end of the buffer, the current
12949 line number shall be set to the address of the new last line; if no lines remain in the buffer, the
12950 current line number shall be set to zero. Address 0 shall be valid for this command; it shall be
12951 interpreted as if address 1 were specified.

2550 Technical Standard (2000) (Draft July 31, 2000)

Utilities ed

12952 Delete Command

12953 Synopsis: (.,.)d

12954 The d command shall delete the addressed lines from the buffer. The address of the line after the
12955 last line deleted shall become the current line number; if the lines deleted were originally at the
12956 end of the buffer, the current line number shall be set to the address of the new last line; if no
12957 lines remain in the buffer, the current line number shall be set to zero.

12958 Edit Command

12959 Synopsis: e [file]

12960 The e command shall delete the entire contents of the buffer and then read in the file named by
12961 the path name file . The current line number shall be set to the address of the last line of the
12962 buffer. If no path name is given, the currently remembered path name, if any, shall be used (see
12963 the f command). The number of bytes read shall be written to standard output, unless the −s
12964 option was specified, in the following format:

12965 "%d\n", < number of bytes read >

12966 The name file shall be remembered for possible use as a default path name in subsequent e, E, r,
12967 and w commands. If file is replaced by ’!’ , the rest of the line shall be taken to be a shell
12968 command line whose output is to be read. Such a shell command line shall not be remembered
12969 as the current file . All marks shall be discarded upon the completion of a successful e command.
12970 If the buffer has changed since the last time the entire buffer was written, the user shall be
12971 warned, as described previously.

12972 Edit Without Checking Command

12973 Synopsis: E [file]

12974 The E command shall possess all properties and restrictions of the e command except that the
12975 editor shall not check to see whether any changes have been made to the buffer since the last w
12976 command.

12977 File Name Command

12978 Synopsis: f [file]

12979 If file is given, the f command shall change the currently remembered path name to file ; whether
12980 the name is changed or not, it shall then write the (possibly new) currently remembered path
12981 name to the standard output in the following format:

12982 "%s\n", < pathname >

12983 The current line number shall be unchanged.

12984 Global Command

12985 Synopsis: (1,$)g/ RE/ command list

12986 In the g command, the first step shall be to mark every line that matches the given RE. Then,
12987 going sequentially from the beginning of the file to the end of the file, the given command list
12988 shall be executed for each marked line, with the current line number set to the address of that
12989 line. Any line modified by the command list shall be unmarked. When the g command completes,
12990 the current line number shall have the value assigned by the last command in the command list .
12991 If there were no matching lines, the current line number shall not be changed. A single command
12992 or the first of a list of commands shall appear on the same line as the global command. All lines

Shell and Utilities, Issue 6 2551

ed Utilities

12993 of a multi-line list except the last line shall be ended with a backslash; the a, i, and c commands
12994 and associated input are permitted. The ’.’ terminating input mode can be omitted if it would
12995 be the last line of the command list. An empty command list shall be equivalent to the p command.
12996 The use of the g, G, v, V, and ! commands in the command list produces undefined results. Any
12997 character other than <space> or <newline> can be used instead of a slash to delimit the RE.
12998 Within the RE, the RE delimiter itself can be used as a literal character if it is preceded by a
12999 backslash.

13000 Interactive Global Command

13001 Synopsis: (1,$)G/ RE/

13002 In the G command, the first step shall be to mark every line that matches the given RE. Then,
13003 for every such line, that line shall be written, the current line number shall be set to the address
13004 of that line, and any one command (other than one of the a, c, i, g, G, v, and V commands) shall
13005 be read and executed. A <newline> character shall act as a null command (causing no action to
13006 be taken on the current line); an ’&’ shall cause the re-execution of the most recent non-null
13007 command executed within the current invocation of G. Note that the commands input as part
13008 of the execution of the G command can address and affect any lines in the buffer. The final value
13009 of the current line number shall be the value set by the last command successfully executed.
13010 (Note that the last command successfully executed shall be the G command itself if a command
13011 fails or the null command is specified.) If there were no matching lines, the current line number
13012 shall not be changed. The G command can be terminated by a SIGINT signal. Any character
13013 other than <space> or <newline> can be used instead of a slash to delimit the RE and the
13014 replacement. Within the RE, the RE delimiter itself can be used as a literal character if it is
13015 preceded by a backslash.

13016 Help Command

13017 Synopsis: h

13018 The h command shall write a short message to standard output that explains the reason for the
13019 most recent ’?’ notification. The current line number shall be unchanged.

13020 Help-Mode Command

13021 Synopsis: H

13022 The H command shall cause ed to enter a mode in which help messages (see the h command)
13023 shall be written to standard output for all subsequent ’?’ notifications. The H command
13024 alternatively shall turn this mode on and off; it is initially off. If the help-mode is being turned
13025 on, the H command also explains the previous ’?’ notification, if there was one. The current
13026 line number shall be unchanged.

13027 Insert Command

13028 Synopsis: (.)i
13029 <text >
13030 .

13031 The i command shall insert the given text before the addressed line; the current line is set to the
13032 last inserted line or, if there was none, to the addressed line. This command differs from the a
13033 command only in the placement of the input text. Address 0 shall be valid for this command; it
13034 shall be interpreted as if address 1 were specified.

2552 Technical Standard (2000) (Draft July 31, 2000)

Utilities ed

13035 Join Command

13036 Synopsis: (.,.+1)j

13037 The j command shall join contiguous lines by removing the appropriate <newline> characters. If
13038 exactly one address is given, this command shall do nothing. If lines are joined, the current line
13039 number shall be set to the address of the joined line; otherwise, the current line number shall be
13040 unchanged.

13041 Mark Command

13042 Synopsis: (.)k x

13043 The k command shall mark the addressed line with name x , which the application shall ensure is
13044 a lowercase letter from the portable character set. The address "’x" shall then refer to this line;
13045 the current line number shall be unchanged.

13046 List Command

13047 Synopsis: (.,.)l

13048 The l command shall write to standard output the addressed lines in a visually unambiguous |
13049 form. The characters listed in the Base Definitions volume of IEEE Std. 1003.1-200x, Table 5-1, |
13050 Escape Sequences and Associated Actions (’\\’ , ’\a’ , ’\b’ , ’\f’ , ’\r’ , ’\t’ , ’\v’) shall |
13051 be written as the corresponding escape sequence; the ’\n’ in that table is not applicable. Non-
13052 printable characters not in the table shall be written as one three-digit octal number (with a
13053 preceding backslash character) for each byte in the character (most significant byte first). If the
13054 size of a byte on the system is greater than nine bits, the format used for non-printable characters
13055 is implementation-defined. |

13056 Long lines shall be folded, with the point of folding indicated by writing backslash/<newline>
13057 character; the length at which folding occurs is unspecified, but should be appropriate for the
13058 output device. The end of each line shall be marked with a ’$’ , and ’$’ characters within the
13059 text shall be written with a preceding backslash. An l command can be appended to any other
13060 command other than e, E, f, q, Q, r, w, or !. The current line number shall be set to the address of
13061 the last line written.

13062 Move Command

13063 Synopsis: (.,.)m address

13064 The m command shall reposition the addressed lines after the line addressed by address.
13065 Address 0 shall be valid for address and cause the addressed lines to be moved to the beginning
13066 of the buffer. It shall be an error if address address falls within the range of moved lines. The
13067 current line number shall be set to the address of the last line moved.

13068 Number Command

13069 Synopsis: (.,.)n

13070 The n command shall write to standard output the addressed lines, preceding each line by its
13071 line number and a <tab> character; the current line number shall be set to the address of the last
13072 line written. The n command can be appended to any command other than e, E, f, q, Q, r, w, or !.

Shell and Utilities, Issue 6 2553

ed Utilities

13073 Print Command

13074 Synopsis: (.,.)p

13075 The p command shall write to standard output the addressed lines; the current line number shall
13076 be set to the address of the last line written. The p command can be appended to any command
13077 other than e, E, f, q, Q, r, w, or !.

13078 Prompt Command

13079 Synopsis: P

13080 The P command shall cause ed to prompt with an asterisk (’*’) (or string, if −p is specified) for
13081 all subsequent commands. The P command alternatively shall turn this mode on and off; it shall
13082 be initially on if the −p option is specified; otherwise, off. The current line number shall be
13083 unchanged.

13084 Quit Command

13085 Synopsis: q

13086 The q command shall cause ed to exit. If the buffer has changed since the last time the entire
13087 buffer was written, the user shall be warned, as described previously.

13088 Quit Without Checking Command

13089 Synopsis: Q

13090 The Q command shall cause ed to exit without checking whether changes have been made in the
13091 buffer since the last w command.

13092 Read Command

13093 Synopsis: ($)r [file]

13094 The r command shall read in the file named by the path name file and append it after the
13095 addressed line. If no file argument is given, the currently remembered path name, if any, shall be
13096 used (see the e and f commands). The currently remembered path name shall not be changed
13097 unless there is no remembered path name. Address 0 shall be valid for r and shall cause the file
13098 to be read at the beginning of the buffer. If the read is successful, and −s was not specified, the
13099 number of bytes read shall be written to standard output in the following format:

13100 "%d\n", < number of bytes read >

13101 The current line number shall be set to the address of the last line read in. If file is replaced by
13102 ’!’ , the rest of the line shall be taken to be a shell command line whose output is to be read.
13103 Such a shell command line shall not be remembered as the current path name.

13104 Substitute Command

13105 Synopsis: (.,.)s/ RE/ replacement / flags

13106 The s command shall search each addressed line for an occurrence of the specified RE and
13107 replace either the first or all (non-overlapped) matched strings with the replacement; see the
13108 following description of the g suffix. It is an error if the substitution fails on every addressed
13109 line. Any character other than <space> or <newline> can be used instead of a slash to delimit the
13110 RE and the replacement. Within the RE, the RE delimiter itself can be used as a literal character if
13111 it is preceded by a backslash. The current line shall be set to the address of the last line on which
13112 a substitution occurred.

2554 Technical Standard (2000) (Draft July 31, 2000)

Utilities ed

13113 An ampersand (’&’) appearing in the replacement shall be replaced by the string matching the
13114 RE on the current line. The special meaning of ’&’ in this context can be suppressed by
13115 preceding it by backslash. As a more general feature, the characters ’\n’ , where n is a digit,
13116 shall be replaced by the text matched by the corresponding back-reference expression. When the
13117 character ’%’ is the only character in the replacement, the replacement used in the most recent
13118 substitute command shall be used as the replacement in the current substitute command; if there
13119 was no previous substitute command, the use of ’%’ in this manner shall be an error. The ’%’
13120 shall lose its special meaning when it is in a replacement string of more than one character or is
13121 preceded by a backslash. For each backslash (’\’) encountered in scanning replacement from
13122 beginning to end, the following character shall lose its special meaning (if any). It is unspecified
13123 what special meaning is given to any character other than ’&’ , ’\’ , ’%’ , or digits.

13124 A line can be split by substituting a <newline> character into it. The application shall ensure it
13125 escapes the <newline> character in the replacement by preceding it by backslash. Such
13126 substitution cannot be done as part of a g or v command list . The current line number shall be set
13127 to the address of the last line on which a substitution is performed. If no substitution is
13128 performed, the current line number shall be unchanged. If a line is split, a substitution shall be
13129 considered to have been performed on each of the new lines for the purpose of determining the
13130 new current line number. A substitution shall be considered to have been performed even if the
13131 replacement string is identical to the string that it replaces.

13132 The application shall ensure that the value of flags is zero or more of:

13133 count Substitute for the countth occurrence only of the RE found on each addressed line.

13134 g Globally substitute for all non-overlapping instances of the RE rather than just the first
13135 one. If both g and count are specified, the results are unspecified.

13136 l Write to standard output the final line in which a substitution was made. The line shall
13137 be written in the format specified for the l command.

13138 n Write to standard output the final line in which a substitution was made. The line shall
13139 be written in the format specified for the n command.

13140 p Write to standard output the final line in which a substitution was made. The line shall
13141 be written in the format specified for the p command.

13142 Copy Command

13143 Synopsis: (.,.)t address

13144 The t command shall be equivalent to the m command, except that a copy of the addressed lines
13145 shall be placed after address address (which can be 0); the current line number shall be set to the
13146 address of the last line added.

13147 Undo Command

13148 Synopsis: u

13149 The u command shall nullify the effect of the most recent command that modified anything in
13150 the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, u, v, G, or V command. All changes
13151 made to the buffer by a g, G, v, or V global command shall be undone as a single change; if no
13152 changes were made by the global command (such as with g/RE/p), the u command shall have
13153 no effect. The current line number shall be set to the value it had immediately before the
13154 command being undone started.

Shell and Utilities, Issue 6 2555

ed Utilities

13155 Global Non-Matched Command

13156 Synopsis: (1,$)v/ RE/ command list

13157 This command shall be equivalent to the global command g except that the lines that are marked
13158 during the first step shall be those that do not match the RE.

13159 Interactive Global Not-Matched Command

13160 Synopsis: (1,$)V/ RE/

13161 This command shall be equivalent to the interactive global command G except that the lines that
13162 are marked during the first step shall be those that do not match the RE.

13163 Write Command

13164 Synopsis: (1,$)w [file]

13165 The w command shall write the addressed lines into the file named by the path name file . The
13166 command shall create the file, if it does not exist, or shall replace the contents of the existing file.
13167 The currently remembered path name shall not be changed unless there is no remembered path
13168 name. If no path name is given, the currently remembered path name, if any, shall be used (see
13169 the e and f commands); the current line number shall be unchanged. If the command is
13170 successful, the number of bytes written shall be written to standard output, unless the −s option
13171 was specified, in the following format:

13172 "%d\n", < number of bytes written >

13173 If file begins with ’!’ , the rest of the line shall be taken to be a shell command line whose
13174 standard input shall be the addressed lines. Such a shell command line shall not be remembered
13175 as the current path name. This usage of the write command with ’!’ shall not be considered as
13176 a ‘‘last w command that wrote the entire buffer’’, as described previously; thus, this alone shall
13177 not prevent the warning to the user if an attempt is made to destroy the editor buffer via the e or
13178 q commands.

13179 Line Number Command

13180 Synopsis: ($)=

13181 The line number of the addressed line shall be written to standard output in the following
13182 format:

13183 "%d\n", < line number >

13184 The current line number shall be unchanged by this command.

13185 Shell Escape Command

13186 Synopsis: ! command

13187 The remainder of the line after the ’!’ shall be sent to the command interpreter to be
13188 interpreted as a shell command line. Within the text of that shell command line, the unescaped
13189 character ’%’ shall be replaced with the remembered path name; if a ’!’ appears as the first
13190 character of the command, it shall be replaced with the text of the previous shell command
13191 executed via ’!’ . Thus, "!!" shall repeat the previous !command. If any replacements of ’%’ or
13192 ’!’ are performed, the modified line shall be written to the standard output before command is
13193 executed. The ’!’ command shall write:

13194 "!\n"

2556 Technical Standard (2000) (Draft July 31, 2000)

Utilities ed

13195 to standard output upon completion, unless the −s option is specified. The current line number
13196 shall be unchanged.

13197 Null Command

13198 Synopsis: (.+1)

13199 An address alone on a line shall cause the addressed line to be written. A <newline> character
13200 alone shall be equivalent to "+1p" . The current line number shall be set to the address of the
13201 written line.

13202 EXIT STATUS
13203 The following exit values shall be returned:

13204 0 Successful completion without any file or command errors.

13205 >0 An error occurred.

13206 CONSEQUENCES OF ERRORS
13207 When an error in the input script is encountered, or when an error is detected that is a
13208 consequence of the data (not) present in the file or due to an external condition such as a read or
13209 write error:

13210 • If the standard input is a terminal device file, all input shall be flushed, and a new command
13211 read.

13212 • If the standard input is a regular file, ed shall terminate with a non-zero exit status.

13213 APPLICATION USAGE
13214 Because of the extremely terse nature of the default error messages, the prudent script writer
13215 begins the ed input commands with an H command, so that if any errors do occur at least some
13216 clue as to the cause is made available.

13217 In previous versions, an obsolescent − option was described. This is no longer specified.
13218 Applications should use the −s option. Using − as a file operand now produces unspecified |
13219 results. This allows implementations to continue to support the former required behavior. |

13220 EXAMPLES
13221 None.

13222 RATIONALE
13223 The initial description of this utility was adapted from the SVID. It contains some features not
13224 found in Version 7 or BSD-derived systems. Some of the differences between the POSIX and
13225 BSD ed utilities include, but need not be limited to:

13226 • The BSD − option does not suppress the ’!’ prompt after a ! command.

13227 • BSD does not support the special meanings of the ’%’ and ’!’ characters within a !
13228 command.

13229 • BSD does not support the addresses ’;’ and ’,’ .

13230 • BSD allows the command/suffix pairs pp, ll, and so on, which are unspecified in this volume
13231 of IEEE Std. 1003.1-200x.

13232 • BSD does not support the ’!’ character part of the e, r, or w commands.

13233 • A failed g command in BSD sets the line number to the last line searched if there are no
13234 matches.

13235 • BSD does not default the command list to the p command.

Shell and Utilities, Issue 6 2557

ed Utilities

13236 • BSD does not support the G, h, H, n, or V commands.

13237 • On BSD, if there is no inserted text, the insert command changes the current line to the
13238 referenced line −1; that is, the line before the specified line.

13239 • On BSD, the join command with only a single address changes the current line to that
13240 address.

13241 • BSD does not support the P command; moreover, in BSD it is synonymous with the p
13242 command.

13243 • BSD does not support the undo of the commands j, m, r, s, or t.

13244 • The Version 7 ed command W, and the BSD ed commands W, wq, and z are not present in this
13245 volume of IEEE Std. 1003.1-200x.

13246 The −s option was added to allow the functionality of the now withdrawn − option in a manner
13247 compatible with the Utility Syntax Guidelines.

13248 In early proposals there was a limit, {ED_FILE_MAX}, that described the historical limitations of
13249 some ed utilities in their handling of large files; some of these have had problems with files larger
13250 than 100 000 bytes. It was this limitation that prompted much of the desire to include a split
13251 command in this volume of IEEE Std. 1003.1-200x. Since this limit was removed, this volume of
13252 IEEE Std. 1003.1-200x requires that implementations document the file size limits imposed by ed
13253 in the conformance document. The limit {ED_LINE_MAX} was also removed; therefore, the
13254 global limit {LINE_MAX} is used for input and output lines.

13255 The manner in which the l command writes non-printable characters was changed to avoid the
13256 historical backspace-overstrike method. On video display terminals, the overstrike is ambiguous
13257 because most terminals simply replace overstruck characters, making the l format not useful for
13258 its intended purpose of unambiguously understanding the content of the line. The historical
13259 backslash escapes were also ambiguous. (The string "a\0011" could represent a line containing
13260 those six characters or a line containing the three characters ’a’ , a byte with a binary value of 1,
13261 and a 1.) In the format required here, a backslash appearing in the line is written as "\\" so that
13262 the output is truly unambiguous. The method of marking the ends of lines was adopted from the
13263 ex editor and is required for any line ending in <space>s; the ’$’ is placed on all lines so that a
13264 real ’$’ at the end of a line cannot be misinterpreted.

13265 Systems with bytes too large to fit into three octal digits must devise other means of displaying
13266 non-printable characters. Consideration was given to requiring that the number of octal digits be
13267 large enough to hold a byte, but this seemed to be too confusing for applications on the vast
13268 majority of systems where three digits are adequate. It would be theoretically possible for the
13269 application to use the getconf utility to find out the CHAR_BIT value and deal with such an
13270 algorithm; however, there is really no portable way that an application can use the octal values
13271 of the bytes across various coded character sets, so the additional specification was not
13272 worthwhile.

13273 The description of how a NUL is written was removed. The NUL character cannot be in text
13274 files, and this volume of IEEE Std. 1003.1-200x should not dictate behavior in the case of
13275 undefined, erroneous input.

13276 Unlike some of the other editing utilities, the file names accepted by the E, e, R, and r commands
13277 are not patterns.

13278 Early proposals stated that the −p option worked only when standard input was associated with
13279 a terminal device. This has been changed to conform to historical implementations, thereby
13280 allowing applications to interpose themselves between a user and the ed utility.

2558 Technical Standard (2000) (Draft July 31, 2000)

Utilities ed

13281 The form of the substitute command that uses the n suffix was limited in some historical
13282 documentation (where this was described incorrectly as ‘‘backreferencing’’). This limit has been
13283 omitted because there is no reason an editor processing lines of {LINE_MAX} length should have
13284 this restriction. The command s/x/X/2 047 should be able to substitute the 2 047th occurrence of x
13285 on a line.

13286 The use of printing commands with printing suffixes (such as pn, lp, and so on) was made
13287 unspecified because BSD-based systems allow this, whereas System V does not.

13288 Some BSD-based systems exit immediately upon receipt of end-of-file if all of the lines in the file
13289 have been deleted. Since this volume of IEEE Std. 1003.1-200x refers to the q command in this
13290 instance, such behavior is not allowed.

13291 Some historical implementations returned exit status zero even if command errors had occurred;
13292 this is not allowed by this volume of IEEE Std. 1003.1-200x.

13293 Some historical implementations contained a bug that allowed a single period to be entered in
13294 input mode as <backslash> <period> <newline>. This is not allowed by the ed because there is
13295 no description of escaping any of the characters in input mode; backslashes are entered into the
13296 buffer exactly as typed. The typical method of entering a single period has been to precede it
13297 with another character and then use the substitute command to delete that character.

13298 It is difficult under some modes of some versions of historical operating system terminal drivers
13299 to distinguish between an end-of-file condition and terminal disconnect. The ISO POSIX-2
13300 standard does not require implementations to distinguish between the two situations, which
13301 permits historical implementations of the ed utility on historical platforms to conform.
13302 Implementations are encouraged to distinguish between the two, if possible, and take
13303 appropriate action on terminal disconnect.

13304 Historically, ed accepted a zero address for the a and r commands in order to insert text at the
13305 start of the edit buffer. When the buffer was empty the command .= returned zero.
13306 IEEE Std. 1003.1-200x requires conformance to historical practice.

13307 For consistency with the a and r commands and better user functionality, the i and c commands
13308 must also accept an address of 0, in which case 0i is treated as 1i and likewise for the c
13309 command.

13310 All of the following are valid addresses:

13311 +++ Three lines after the current line.

13312 / pattern / − One line before the next occurrence of pattern.

13313 −2 Two lines before the current line.

13314 3 −−−− 2 Line one (note the intermediate negative address).

13315 1 2 3 Line six.

13316 Any number of addresses can be provided to commands taking addresses; for example,
13317 "1,2,3,4,5p" prints lines 4 and 5, because two is the greatest valid number of addresses
13318 accepted by the print command. This, in combination with the semicolon delimiter, permits
13319 users to create commands based on ordered patterns in the file. For example, the command
13320 "3;/foo/;+2p" will display the first line after line 3 that contains the pattern foo , plus the next
13321 two lines. Note that the address "3;" must still be evaluated before being discarded, because
13322 the search origin for the "/foo/" command depends on this.

13323 Historically, ed disallowed address chains, as discussed above, consisting solely of comma or
13324 semicolon separators; for example, ",,," or ";;;" were considered an error. For consistency of
13325 address specification, this restriction is removed. The following table lists some of the address

Shell and Utilities, Issue 6 2559

ed Utilities

13326 forms now possible:
__

13327 Address Addr1 Addr2 Status Comment__
13328 7, 7 7 Historical
13329 7,5, 5 5 Historical
13330 7,5,9 5 9 Historical
13331 7,9 7 9 Historical
13332 7,+ 7 8 Historical
13333 , 1 $ Historical
13334 ,7 1 7 Extension
13335 ,, $ $ Extension
13336 ,; $ $ Extension
13337 7; 7 7 Historical
13338 7;5; 5 5 Historical
13339 7;5;9 5 9 Historical
13340 7;5,9 5 9 Historical
13341 7;$;4 $ 4 Historical Valid, but erroneous.
13342 7;9 7 9 Historical
13343 7;+ 7 8 Historical
13344 ; . $ Historical
13345 ;7 . 7 Extension
13346 ;; $ $ Extension
13347 ;, $ $ Extension__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13348 Historically, values could be added to addresses by including them after one or more <blank>
13349 characters; for example, "3 − 5p" wrote the seventh line of the file, and "/foo/ 5" was the
13350 same as "5 /foo/" . However, only absolute values could be added; for example, "5 /foo/"
13351 was an error. IEEE Std. 1003.1-200x requires conformance to historical practice.

13352 Historically, ed accepted the ’ˆ’ character as an address, in which case it was identical to the
13353 hyphen character. IEEE Std. 1003.1-200x does not require or prohibit this behavior.

13354 FUTURE DIRECTIONS
13355 None.

13356 SEE ALSO
13357 ex, sed, sh, vi

13358 CHANGE HISTORY
13359 First released in Issue 2.

13360 Issue 4
13361 Aligned with the ISO/IEC 9945-2: 1993 standard.

13362 Issue 5
13363 In the OPTIONS section, the meaning of −s and − is clarified.

13364 Second FUTURE DIRECTION added.

13365 Issue 6
13366 The obsolescent single-minus form has been removed.

13367 A second APPLICATION USAGE note has been added.

13368 The Open Group corrigenda item U025/2 has been applied, correcting the description of the Edit
13369 section.

2560 Technical Standard (2000) (Draft July 31, 2000)

Utilities ed

13370 The ed utility is updated to align with the IEEE P1003.2b draft standard. This includes addition of
13371 the treatment of the SIGQUIT signal, changes to ed addressing, changes to processing when
13372 end-of-file is detected and when terminal disconnect is detected.

13373 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2561

env Utilities

13374 NAME
13375 env — set the environment for command invocation

13376 SYNOPSIS
13377 env [−i][name=value] ... [utility [argument ...]]

13378 DESCRIPTION
13379 The env utility shall obtain the current environment, modify it according to its arguments, then
13380 invoke the utility named by the utility operand with the modified environment.

13381 Optional arguments shall be passed to utility .

13382 If no utility operand is specified, the resulting environment shall be written to the standard
13383 output, with one name=value pair per line.

13384 OPTIONS
13385 The env utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
13386 12.2, Utility Syntax Guidelines. |

13387 The following options shall be supported:

13388 −i Invoke utility with exactly the environment specified by the arguments; the
13389 inherited environment shall be ignored completely.

13390 OPERANDS
13391 The following operands shall be supported:

13392 name=value Arguments of the form name=value shall modify the execution environment, and
13393 shall be placed into the inherited environment before the utility is invoked.

13394 utility The name of the utility to be invoked. If the utility operand names any of the
13395 special built-in utilities in Section 2.15 (on page 2276), the results are undefined.

13396 argument A string to pass as an argument for the invoked utility.

13397 STDIN
13398 Not used.

13399 INPUT FILES
13400 None.

13401 ENVIRONMENT VARIABLES
13402 The following environment variables shall affect the execution of env:

13403 LANG Provide a default value for the internationalization variables that are unset or null.
13404 If LANG is unset or null, the corresponding value from the implementation- |
13405 defined default locale shall be used. If any of the internationalization variables |
13406 contains an invalid setting, the utility shall behave as if none of the variables had
13407 been defined.

13408 LC_ALL If set to a non-empty string value, override the values of all the other
13409 internationalization variables.

13410 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
13411 characters (for example, single-byte as opposed to multi-byte characters in
13412 arguments).

13413 LC_MESSAGES
13414 Determine the locale that should be used to affect the format and contents of
13415 diagnostic messages written to standard error.

2562 Technical Standard (2000) (Draft July 31, 2000)

Utilities env

13416 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

13417 PATH Determine the location of the utility , as described in the Base Definitions volume of |
13418 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. If PATH is specified as a |
13419 name=value operand to env, the value given shall be used in the search for utility .

13420 ASYNCHRONOUS EVENTS
13421 Default.

13422 STDOUT
13423 If no utility operand is specified, each name=value pair in the resulting environment shall be
13424 written in the form:

13425 "%s=%s\n", < name>, < value >

13426 If the utility operand is specified, the env utility shall not write to standard output.

13427 STDERR
13428 Used only for diagnostic messages.

13429 OUTPUT FILES
13430 None.

13431 EXTENDED DESCRIPTION
13432 None.

13433 EXIT STATUS
13434 If the utility utility is invoked, the exit status of env shall be the exit status of utility ; otherwise,
13435 the env utility shall exit with one of the following values:

13436 0 The env utility completed successfully.

13437 1−125 An error occurred in the env utility.

13438 126 The utility specified by utility was found but could not be invoked.

13439 127 The utility specified by utility could not be found.

13440 CONSEQUENCES OF ERRORS
13441 Default.

13442 APPLICATION USAGE
13443 The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
13444 an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
13445 utility exited with an error indication’’. The value 127 was chosen because it is not commonly
13446 used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
13447 values above 128 can be confused with termination due to receipt of a signal. The value 126 was
13448 chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
13449 scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
13450 between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
13451 exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
13452 any other reason.

13453 Historical implementations of the env utility use the execvp() or execlp() functions defined in the
13454 System Interfaces volume of IEEE Std. 1003.1-200x to invoke the specified utility; this provides
13455 better performance and keeps users from having to escape characters with special meaning to
13456 the shell. Therefore, shell functions, special built-ins, and built-ins that are only provided by the
13457 shell are not found.

Shell and Utilities, Issue 6 2563

env Utilities

13458 EXAMPLES
13459 The following command:

13460 env −i PATH=/mybin mygrep xyz myfile

13461 invokes the command mygrep with a new PATH value as the only entry in its environment. In
13462 this case, PATH is used to locate mygrep, which then must reside in /mybin.

13463 RATIONALE
13464 As with all other utilities that invoke other utilities, this volume of IEEE Std. 1003.1-200x only
13465 specifies what env does with standard input, standard output, standard error, input files, and
13466 output files. If a utility is executed, it is not constrained by the specification of input and output
13467 by env.

13468 The −i option was added to allow the functionality of the withdrawn − option in a manner
13469 compatible with the Utility Syntax Guidelines.

13470 Some have suggested that env is redundant since the same effect is achieved by:

13471 name=value ... utility [argument ...]

13472 The example is equivalent to env when an environment variable is being added to the
13473 environment of the command, but not when the environment is being set to the given value.
13474 The env utility also writes out the current environment if invoked without arguments. There is
13475 sufficient functionality beyond what the example provides to justify inclusion of env.

13476 FUTURE DIRECTIONS
13477 None.

13478 SEE ALSO
13479 Section 2.5 (on page 2241)

13480 CHANGE HISTORY
13481 First released in Issue 2.

13482 Issue 4
13483 Aligned with the ISO/IEC 9945-2: 1993 standard.

2564 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

13484 NAME
13485 ex — text editor |

13486 SYNOPSIS
13487 UP ex [−rR][−l][−s | −v][−c command] −t tagstring][−w size][file ...]
13488

13489 DESCRIPTION
13490 The ex utility is a line-oriented text editor. There are two other modes of the editor—open and
13491 visual—in which screen-oriented editing is available. This is described more fully by the ex open
13492 and visual commands and in vi .

13493 This section uses the term edit buffer to describe the current working text. No specific
13494 implementation is implied by this term. All editing changes are performed on the edit buffer,
13495 and no changes to it shall affect any file until an editor command writes the file.

13496 Certain terminals do not have all the capabilities necessary to support the complete ex definition,
13497 such as the full-screen editing commands (visual mode or open mode). When these commands
13498 cannot be supported on such terminals, this condition shall not produce an error message such
13499 as ‘‘not an editor command’’ or report a syntax error. The implementation may either accept the
13500 commands and produce results on the screen that are the result of an unsuccessful attempt to
13501 meet the requirements of this volume of IEEE Std. 1003.1-200x or report an error describing the
13502 terminal-related deficiency.

13503 OPTIONS
13504 The ex utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
13505 Utility Syntax Guidelines. |

13506 The following options shall be supported:

13507 −c command Specify an initial command to be executed in the first edit buffer loaded from an
13508 existing file (see the EXTENDED DESCRIPTION section). Implementations may
13509 support more than a single −c option. In such implementations, the specified
13510 commands shall be executed in the order specified on the command line. |

13511 −l (The letter ell.) Set lisp mode; indents appropriately for LISP code; the (), {}, [[, and |
13512]] commands in visual mode are modified to have meaning for LISP. |

13513 −r Recover the named files (see the EXTENDED DESCRIPTION section). Recovery
13514 information for a file shall be saved during an editor or system crash (for example,
13515 when the editor is terminated by a signal which the editor can catch), or after the
13516 use of an ex preserve command.

13517 A crash in this context is an unexpected failure of the system or utility that requires
13518 restarting the failed system or utility. A system crash implies that any utilities
13519 running at the time also crash. In the case of an editor or system crash, the number
13520 of changes to the edit buffer (since the most recent preserve command) that will be
13521 recovered is unspecified.

13522 If no file operands are given and the −t option is not specified, all other options, the
13523 EXINIT variable, and any .exrc files shall be ignored; a list of all recoverable files
13524 available to the invoking user shall be written, and the editor shall exit normally
13525 without further action.

13526 −R Set readonly edit option.

13527 −s Prepare ex for batch use by taking the following actions:

Shell and Utilities, Issue 6 2565

ex Utilities

13528 • Suppress writing prompts and informational (but not diagnostic) messages.

13529 • Ignore the value of TERM and any implementation default terminal type and
13530 assume the terminal is a type incapable of supporting open or visual modes;
13531 see the visual command and the description of vi .

13532 • Suppress the use of the EXINIT environment variable and the reading of any
13533 .exrc file; see the EXTENDED DESCRIPTION section.

13534 • Suppress autoindentation, ignoring the value of the autoindent edit option.

13535 −t tagstring Edit the file containing the specified tagstring ; see ctags . The tags feature
13536 represented by −t tagstring and the tag command is optional. It shall be provided
13537 on any system that also provides a conforming implementation of ctags; otherwise,
13538 the use of −t produces undefined results. On any system, it shall be an error to
13539 specify more than a single −t option.

13540 −v Begin in visual mode (see vi).

13541 −w size Set the value of the window editor option to size .

13542 OPERANDS
13543 The following operand shall be supported:

13544 file A path name of a file to be edited.

13545 STDIN
13546 The standard input consists of a series of commands and input text, as described in the
13547 EXTENDED DESCRIPTION section. The implementation may limit each line of standard input
13548 to a length of {LINE_MAX}.

13549 If the standard input is not a terminal device, it shall be as if the −s option had been specified.

13550 If a read from the standard input returns an error, or if the editor detects an end-of-file condition
13551 from the standard input, it shall be equivalent to a SIGHUP asynchronous event.

13552 INPUT FILES
13553 Input files shall be text files or files that would be text files except for an incomplete last line that
13554 is not longer than {LINE_MAX}−1 bytes in length and contains no NUL characters. By default,
13555 any incomplete last line shall be treated as if it had a trailing <newline> character. The editing of
13556 other forms of files may optionally be allowed by ex implementations.

13557 The .exrc files and source files shall be text files consisting of ex commands; see the EXTENDED
13558 DESCRIPTION section.

13559 By default, the editor shall read lines from the files to be edited without interpreting any of those
13560 lines as any form of editor command.

13561 ENVIRONMENT VARIABLES
13562 The following environment variables shall affect the execution of ex:

13563 COLUMNS Override the system-selected horizontal screen size. See the Base Definitions |
13564 volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables for valid |
13565 values and results when it is unset or null.

13566 EXINIT Determine a list of ex commands that are executed on editor start-up. See the
13567 EXTENDED DESCRIPTION section for more details of the initialization phase.

13568 HOME Determine a path name of a directory that shall be searched for an editor start-up
13569 file named .exrc; see the EXTENDED DESCRIPTION section.

2566 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

13570 LANG Provide a default value for the internationalization variables that are unset or null.
13571 If LANG is unset or null, the corresponding value from the implementation- |
13572 defined default locale shall be used. If any of the internationalization variables |
13573 contains an invalid setting, the utility shall behave as if none of the variables had
13574 been defined.

13575 LC_ALL If set to a non-empty string value, override the values of all the other
13576 internationalization variables.

13577 LC_COLLATE
13578 Determine the locale for the behavior of ranges, equivalence classes, and multi-
13579 character collating elements within regular expressions.

13580 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
13581 characters (for example, single-byte as opposed to multi-byte characters in
13582 arguments and input files), the behavior of character classes within regular
13583 expressions, the classification of characters as uppercase or lowercase letters, the
13584 case conversion of letters, and the detection of word boundaries.

13585 LC_MESSAGES
13586 Determine the locale that should be used to affect the format and contents of
13587 diagnostic messages written to standard error.

13588 LINES Override the system-selected vertical screen size, used as the number of lines in a
13589 screenful and the vertical screen size in visual mode. See the Base Definitions |
13590 volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables for valid |
13591 values and results when it is unset or null. |

13592 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

13593 PATH Determine the search path for the shell command specified in the ex editor
13594 commands !, shell, read, and write, and the open and visual mode command !; see
13595 the description of command search and execution in Section 2.9.1.1 (on page 2257).

13596 SHELL Determine the preferred command line interpreter for use as the default value of
13597 the shell edit option.

13598 TERM Determine the name of the terminal type. If this variable is unset or null, an
13599 unspecified default terminal type shall be used.

13600 ASYNCHRONOUS EVENTS
13601 The following term is used in this and following sections to specify command and asynchronous |
13602 event actions:

13603 complete write
13604 A complete write is a write of the entire contents of the edit buffer to a file of a type
13605 other than a terminal device, or the saving of the edit buffer caused by the user
13606 executing the ex preserve command. Writing the contents of the edit buffer to a
13607 temporary file that will be removed when the editor exits shall not be considered a
13608 complete write.

13609 The following actions shall be taken upon receipt of signals:

13610 SIGINT If the standard input is not a terminal device, ex shall not write the file or return to
13611 command or text input mode, and shall exit with a non-zero exit status.

13612 Otherwise, if executing an open or visual text input mode command, ex in receipt
13613 of SIGINT shall behave identically to its receipt of the <ESC> character.

Shell and Utilities, Issue 6 2567

ex Utilities

13614 Otherwise:

13615 1. If executing an ex text input mode command, all input lines that have been
13616 completely entered shall be resolved into the edit buffer, and any partially
13617 entered line shall be discarded.

13618 2. If there is a currently executing command, it shall be aborted and a message
13619 displayed. Unless otherwise specified by the ex or vi command descriptions,
13620 it is unspecified whether any lines modified by the executing command
13621 appear modified, or as they were before being modified by the executing
13622 command, in the buffer.

13623 If the currently executing command was a motion command, its associated
13624 command shall be discarded.

13625 3. If in open or visual command mode, the terminal shall be alerted.

13626 4. The editor shall then return to command mode.

13627 SIGCONT The screen shall be refreshed if in open or visual mode.

13628 SIGHUP If the edit buffer has been modified since the last complete write, ex shall attempt
13629 to save the edit buffer so that it can be recovered later using the −r option or the ex
13630 recover command. The editor shall not write the file or return to command or text
13631 input mode, and shall terminate with a non-zero exit status.

13632 SIGTERM Refer to SIGHUP.

13633 The action taken for all other signals is unspecified.

13634 STDOUT
13635 The standard output shall be used only for writing prompts to the user, for informational
13636 messages, and for writing lines from the file.

13637 STDERR
13638 Used only for diagnostic messages.

13639 OUTPUT FILES
13640 The output from ex shall be text files.

13641 EXTENDED DESCRIPTION
13642 Only the ex mode of the editor is described in this section. See vi for additional editing
13643 capabilities available in ex.

13644 When an error occurs, ex shall write a message. If the terminal supports a standout mode (such
13645 as inverse video), the message shall be written in standout mode. If the terminal does not
13646 support a standout mode, and the edit option errorbells is set, an alert action shall precede the
13647 error message.

13648 By default, ex shall start in command mode, which shall be indicated by a : prompt; see the
13649 prompt command. Text input mode can be entered by the append, insert, or change commands;
13650 it can be exited (and command mode re-entered) by typing a period (’.’) alone at the beginning
13651 of a line.

2568 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

13652 Initialization in ex and vi

13653 The following symbols are used in this and following sections to specify locations in the edit
13654 buffer:

13655 alternate and current path names
13656 Two path names, named current and alternate , are maintained by the editor. Any ex
13657 commands that take file names as arguments shall set them as follows:

13658 1. If a file argument is specified to the ex edit, ex, or recover commands, or if an ex tag
13659 command replaces the contents of the edit buffer.

13660 a. If the command replaces the contents of the edit buffer, the current path name
13661 shall be set to the file argument or the file indicated by the tag, and the alternate
13662 path name shall be set to the previous value of the current path name.

13663 b. Otherwise, the alternate path name shall be set to the file argument.

13664 2. If a file argument is specified to the ex next command:

13665 a. If the command replaces the contents of the edit buffer, the current path name
13666 shall be set to the first file argument, and the alternate path name shall be set to
13667 the previous value of the current path name.

13668 3. If a file argument is specified to the ex file command, the current path name shall be
13669 set to the file argument, and the alternate path name shall be set to the previous value
13670 of the current path name.

13671 4. If a file argument is specified to the ex read and write commands (that is, when
13672 reading or writing a file, and not to the program named by the shell edit option), or a
13673 file argument is specified to the ex xit command:

13674 a. If the current path name has no value, the current path name shall be set to the
13675 file argument.

13676 b. Otherwise, the alternate path name shall be set to the file argument.

13677 If the alternate path name is set to the previous value of the current path name when the
13678 current path name had no previous value, then the alternate path name shall have no value
13679 as a result.

13680 current line
13681 The line of the edit buffer referenced by the cursor. Each command description specifies the
13682 current line after the command has been executed, as the current line value . When the edit
13683 buffer contains no lines, the current line shall be zero; see Addressing in ex (on page 2571).

13684 current column
13685 The current screen column occupied by the cursor. (The columns shall be numbered
13686 beginning at 1.) Each command description specifies the current column after the command
13687 has been executed, as the current column value. This column is an ideal column that is
13688 remembered over the lifetime of the editor. The actual screen column upon which the cursor
13689 rests may be different from the current column; see the cursor positioning discussion in
13690 Command Descriptions in vi (on page 3201).

13691 set to non-<blank>
13692 A description for a current column value, meaning that the current column shall be set to
13693 the last screen column on which is displayed any part of the first non-<blank> character of
13694 the line. If the line has no non-<blank> characters, the current column shall be set to the last
13695 screen column on which is displayed any part of the last character in the line. If the line is
13696 empty, the current column shall be set to column position 1.

Shell and Utilities, Issue 6 2569

ex Utilities

13697 The length of lines in the edit buffer may be limited to {LINE_MAX} bytes. In open and visual
13698 mode, the length of lines in the edit buffer may be limited to the number of characters that will
13699 fit in the display. If either limit is exceeded during editing, an error message shall be written. If
13700 either limit is exceeded by a line read in from a file, an error message shall be written and the
13701 edit session may be terminated.

13702 If the editor stops running due to any reason other than a user command, and the edit buffer has
13703 been modified since the last complete write, it shall be equivalent to a SIGHUP asynchronous
13704 event. If the system crashes, it shall be equivalent to a SIGHUP asynchronous event.

13705 During initialization (before the first file is copied into the edit buffer or any user commands
13706 from the terminal are processed) the following shall occur:

13707 1. If the environment variable EXINIT is set, the editor shall execute the ex commands
13708 contained in that variable.

13709 2. If the EXINIT variable is not set, and all of the following are true:

13710 a. The HOME environment variable is not null and not empty.

13711 b. The file .exrc in the directory referred to by the HOME environment variable:

13712 1. Exists

13713 2. Is owned by the same user ID as the real user ID of the process or the process
13714 has appropriate privileges

13715 3. Is not writeable by anyone other than the owner

13716 the editor shall execute the ex commands contained in that file. |

13717 3. If and only if all the following are true:

13718 a. The current directory is not referred to by the HOME environment variable.

13719 b. A command in the EXINIT environment variable or a command in the .exrc file in the
13720 directory referred to by the HOME environment variable sets the editor option exrc.

13721 c. The .exrc file in the current directory:

13722 1. Exists

13723 2. Is owned by the same user ID as the real user ID of the process, or by one of a |
13724 set of implementation-defined user IDs |

13725 3. Is not writeable by anyone other than the owner

13726 the editor shall attempt to execute the ex commands contained in that file. |

13727 Lines in any .exrc file that contain no characters or only <blank> characters shall be ignored. If |
13728 any .exrc file exists, but is not read for ownership or permission reasons, it shall be an error.

13729 After the EXINIT variable and any .exrc files are processed, the first file specified by the user
13730 shall be edited, as follows:

13731 1. If the user specified the −t option, the effect shall be as if the ex tag command was entered
13732 with the specified argument, with the exception that if tag processing does not result in a
13733 file to edit, the effect shall be as described in step 3. below.

13734 2. Otherwise, if the user specified any command line file arguments, the effect shall be as if
13735 the ex edit command was entered with the first of those arguments as its file argument.

13736 3. Otherwise, the effect shall be as if the ex edit command was entered with a nonexistent file
13737 name as its file argument. It is unspecified whether this action shall set the current path

2570 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

13738 name. In an implementation where this action does not set the current path name, any
13739 editor command using the current path name shall fail until an editor command sets the
13740 current path name.

13741 If the −r option was specified the first time a file in the initial argument list or a file specified by |
13742 the −t option is edited, if recovery information has previously been saved about it, that
13743 information shall be recovered and the editor shall behave as if the contents of the edit buffer
13744 have already been modified. If there are multiple instances of the file to be recovered, the one
13745 most recently saved shall be recovered, and an informational message that there are previous
13746 versions of the file that can be recovered shall be written. If no recovery information about a file
13747 is available, an informational message to this effect shall be written, and the edit shall proceed as
13748 usual.

13749 If the − option was specified the first time a file that already exists (including a file that might |
13750 not exist but for which recovery information is available, when the −r option is specified)
13751 replaces or initializes the contents of the edit buffer, the current line shall be set to the last line of
13752 the edit buffer, the current column shall be set to non-<blank>, and the ex commands specified
13753 with the −c option shall be executed. In this case, the current line and current column shall not be
13754 set as described for the command associated with the replacement or initialization of the edit
13755 buffer contents. However, if the −t option or a tag command is associated with this action, the −c
13756 option commands shall be executed and then the movement to the tag shall be performed.

13757 The current argument list shall initially be set to the file names specified by the user on the
13758 command line. If no file names are specified by the user, the current argument list shall be
13759 empty. If the −t option was specified, it is unspecified whether any file name resulting from tag
13760 processing shall be prepended to the current argument list. In the case where the file name is
13761 added as a prefix to the current argument list, the current argument list reference shall be set to
13762 that file name. In the case where the file name is not added as a prefix to the current argument
13763 list, the current argument list reference shall logically be located before the first of the file names
13764 specified on the command line (for example, a subsequent ex next command shall edit the first
13765 file name from the command line). If the −t option was not specified, the current argument list
13766 reference shall be to the first of the file names on the command line.

13767 Addressing in ex

13768 Addressing in ex relates to the current line and the current column; the address of a line is its 1-
13769 based line number, the address of a column is its 1-based count from the beginning of the line.
13770 Generally, the current line is the last line affected by a command. The current line number is the
13771 address of the current line. In each command description, the effect of the command on the
13772 current line number and the current column is described.

13773 Addresses are constructed as follows:

13774 1. The character ’.’ (period) shall address the current line.

13775 2. The character ’$’ shall address the last line of the edit buffer.

13776 3. The positive decimal number n shall address the nth line of the edit buffer.

13777 4. The address "’x" refers to the line marked with the mark name character ’x’ , which shall
13778 be a lowercase letter from the portable character set or one of the characters ’‘’ or ’’’ . It
13779 shall be an error if the line that was marked is not currently present in the edit buffer or the
13780 mark has not been set. Lines can be marked with the ex mark or k commands, or the vi m
13781 command.

13782 5. A regular expression (RE) enclosed by slashes (’/’) shall address the first line found by
13783 searching forwards from the line following the current line toward the end of the edit

Shell and Utilities, Issue 6 2571

ex Utilities

13784 buffer and stopping at the first line containing a string matching the regular expression. As
13785 stated in Regular Expressions in ex (on page 2601), an address consisting of a null regular
13786 expression delimited by slashes "//" shall address the next line containing the last regular
13787 expression encountered. In addition, the second slash can be omitted at the end of a
13788 command line. If the wrapscan edit option is set, the search shall wrap around to the
13789 beginning of the edit buffer and continue up to and including the current line, so that the
13790 entire edit buffer is searched. Within the regular expression, the sequence "\/" shall
13791 represent a literal slash instead of the regular expression delimiter.

13792 6. A regular expression enclosed in question marks (’?’) shall address the first line found by
13793 searching backwards from the line preceding the current line toward the beginning of the
13794 edit buffer and stopping at the first line containing a string matching the regular
13795 expression. The second question mark can be omitted at the end of a command line. If the
13796 wrapscan edit option is set, the search shall wrap around from the beginning of the edit
13797 buffer to the end of the edit buffer and continue up to and including the current line, so |
13798 that the entire edit buffer is searched. Within the regular expression, the sequence "\?" |
13799 shall represent a literal question mark instead of the RE delimiter.

13800 7. A plus sign (’+’) or a minus sign (’ −’) followed by a decimal number shall address the
13801 current line plus or minus the number. A ’+’ or ’ −’ not followed by a decimal number
13802 shall address the current line plus or minus 1.

13803 Addresses can be followed by zero or more address offsets, optionally <blank> character-
13804 separated. Address offsets are constructed as follows:

13805 1. A ’+’ or ’ −’ immediately followed by a decimal number shall add (subtract) the
13806 indicated number of lines to (from) the address. A ’+’ or ’ −’ not followed by a decimal
13807 number shall add (subtract) 1 to (from) the address.

13808 2. A decimal number shall add the indicated number of lines to the address.

13809 It shall not be an error for an intermediate address value to be less than zero or greater than the
13810 last line in the edit buffer. It shall be an error for the final address value to be less than zero or
13811 greater than the last line in the edit buffer.

13812 Commands take zero, one, or two addresses; see the descriptions of 1addr and 2addr in
13813 Command Descriptions in ex (on page 2578). If more than the required number of addresses
13814 are provided to a command that requires zero addresses, it shall be an error. Otherwise, if more
13815 than the required number of addresses are provided to a command, the addresses specified first
13816 shall be evaluated and then discarded until the maximum number of valid addresses remain.

13817 Addresses shall be separated from each other by a comma (’,’) or a semicolon (’;’). If no
13818 address is specified before or after a comma or semicolon separator, it shall be as if the address
13819 of the current line was specified before or after the separator. In the case of a semicolon
13820 separator, the current line (’.’) shall be set to the first address, and only then will the next
13821 address be calculated. This feature can be used to determine the starting line for forwards and
13822 backwards searches (see rules 5. and 6.).

13823 A percent sign (’%’) shall be equivalent to entering the two addresses "1,$" .

13824 Any delimiting <blank> characters between addresses, address separators, or address offsets
13825 shall be discarded.

2572 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

13826 Command Line Parsing in ex

13827 The following symbol is used in this and following sections to describe parsing behavior:

13828 escape If a character is referred to as ‘‘backslash escaped’’ or ‘‘<control>-V escaped,’’ it
13829 shall mean that the character acquired or lost a special meaning by virtue of being
13830 preceded, respectively, by a backslash or <control>-V character. Unless otherwise
13831 specified, the escaping character shall be discarded at that time and shall not be
13832 further considered for any purpose.

13833 Command-line parsing shall be done in the following steps. For each step, characters already
13834 evaluated shall be ignored; that is, the phrase ‘‘leading character’’ refers to the next character
13835 that has not yet been evaluated.

13836 1. Leading colon characters shall be skipped.

13837 2. Leading <blank> characters shall be skipped.

13838 3. If the leading character is a double-quote character, the characters up to and including the
13839 next non-backslash-escaped <newline> character shall be discarded, and any subsequent
13840 characters shall be parsed as a separate command.

13841 4. Leading characters that can be interpreted as addresses shall be evaluated; see Addressing
13842 in ex (on page 2571).

13843 5. Leading <blank> characters shall be skipped.

13844 6. If the next character is a vertical-line character or a <newline> character:

13845 a. If the next character is a <newline> character:

13846 1. If ex is in open or visual mode, the current line shall be set to the last address
13847 specified, if any.

13848 2. Otherwise, if the last command was terminated by a vertical-line character, no
13849 action shall be taken; for example, the command "||<newline>" shall
13850 execute two implied commands, not three.

13851 3. Otherwise, step 6.b. shall apply.

13852 b. Otherwise, the implied command shall be the print command. The last #, p, and l
13853 flags specified to any ex command shall be remembered and shall apply to this
13854 implied command. Executing the ex number, print, or list command shall set the
13855 remembered flags to #, nothing, and l, respectively, plus any other flags specified for
13856 that execution of the number, print, or list command.

13857 If ex is not currently performing a global or v command, and no address or count is
13858 specified, the current line shall be incremented by 1 before the command is executed.
13859 If incrementing the current line would result in an address past the last line in the
13860 edit buffer, the command shall fail, and the increment shall not happen.

13861 c. The <newline> character or vertical-line character shall be discarded and any
13862 subsequent characters shall be parsed as a separate command.

13863 7. The command name shall be comprised of the next character (if the character is not
13864 alphabetic), or the next character and any subsequent alphabetic characters (if the
13865 character is alphabetic), with the following exceptions:

13866 a. Commands that consist of any prefix of the characters in the command name delete,
13867 followed immediately by any of the characters l, p, +, −, or # shall be interpreted as a
13868 delete command, followed by a <blank> character, followed by the characters that

Shell and Utilities, Issue 6 2573

ex Utilities

13869 were not part of the prefix of the delete command. The maximum number of
13870 characters shall be matched to the command name delete; for example, "del" shall
13871 not be treated as "de" followed by the flag l.

13872 b. Commands that consist of the character k, followed by a character that can be used
13873 as the name of a mark, shall be equivalent to the mark command followed by a
13874 <blank> character, followed by the character that followed the k.

13875 c. Commands that consist of the character s, followed by characters that could be
13876 interpreted as valid options to the s command, shall be the equivalent of the s
13877 command, without any pattern or replacement values, followed by a <blank>
13878 character, followed by the characters after the s.

13879 8. The command name shall be matched against the possible command names, and a
13880 command name that contains a prefix matching the characters specified by the user shall
13881 be the executed command. In the case of commands where the characters specified by the
13882 user could be ambiguous, the executed command shall be as follows:

13883 a append n next t t
13884 c change p print u undo
13885 ch change pr print un undo
13886 e edit r read v v
13887 m move re read w write
13888 ma mark s s___LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

13889 Implementation extensions with names causing similar ambiguities shall not be checked
13890 for a match until all possible matches for commands specified by IEEE Std. 1003.1-200x
13891 have been checked.

13892 9. If the command is a ! command, or if the command is a read command followed by zero
13893 or more <blank> characters and a !, or if the command is a write command followed by
13894 one or more <blank> characters and a !, the rest of the command shall include all
13895 characters up to a non-backslash-escaped <newline> character. The <newline> character
13896 shall be discarded and any subsequent characters shall be parsed as a separate ex
13897 command.

13898 10. Otherwise, if the command is an edit, ex, or next command, or a visual command while in
13899 open or visual mode, the next part of the command shall be parsed as follows:

13900 a. Any ’!’ character immediately following the command shall be skipped and be part
13901 of the command.

13902 b. Any leading <blank> characters shall be skipped and be part of the command.

13903 c. If the next character is a ’+’ , characters up to the first non-backslash-escaped
13904 <newline> character or non-backslash-escaped <blank> character shall be skipped
13905 and be part of the command.

13906 d. The rest of the command shall be determined by the steps specified in paragraph 12.

13907 11. Otherwise, if the command is a global, open, s, or v command, the next part of the
13908 command shall be parsed as follows:

13909 a. Any leading <blank> characters shall be skipped and be part of the command.

13910 b. If the next character is not an alphanumeric, double-quote, <newline>, backslash, or
13911 vertical-line character:

13912 1. The next character shall be used as a command delimiter.

2574 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

13913 2. If the command is a global, open, or v command, characters up to the first
13914 non-backslash-escaped <newline> character, or first non-backslash-escaped
13915 delimiter character, shall be skipped and be part of the command.

13916 3. If the command is an s command, characters up to the first non-backslash-
13917 escaped <newline> character, or second non-backslash-escaped delimiter
13918 character, shall be skipped and be part of the command.

13919 c. If the command is a global or v command, characters up to the first non-backslash-
13920 escaped <newline> character shall be skipped and be part of the command.

13921 d. Otherwise, the rest of the command shall be determined by the steps specified in
13922 paragraph 12.

13923 12. Otherwise:

13924 a. If the command was a map, unmap, abbreviate, or unabbreviate command,
13925 characters up to the first non-<control>-V-escaped <newline>, vertical-line, or
13926 double-quote character shall be skipped and be part of the command.

13927 b. Otherwise, characters up to the first non-backslash-escaped <newline>, vertical-line,
13928 or double-quote character shall be skipped and be part of the command.

13929 c. If the command was an append, change, or insert command, and the step 12.b.
13930 ended at a vertical-line character, any subsequent characters, up to the next non-
13931 backslash-escaped <newline> character shall be used as input text to the command.

13932 d. If the command was ended by a double-quote character, all subsequent characters,
13933 up to the next non-backslash-escaped <newline> character, shall be discarded.

13934 e. The terminating <newline> or vertical-line character shall be discarded and any
13935 subsequent characters shall be parsed as a separate ex command.

13936 Command arguments shall be parsed as described by the Synopsis and Description of each
13937 individual ex command. This parsing shall not be <blank> character-sensitive, except for the !
13938 argument, which must follow the command name without intervening <blank> characters, and
13939 where it would otherwise be ambiguous. For example, count and flag arguments need not be
13940 <blank> character separated because "d22p" is not ambiguous, but file arguments to the ex next
13941 command must be separated by one or more <blank> characters. Any <blank> character in
13942 command arguments for the abbreviate, unabbreviate, map, and unmap commands can be
13943 <control>-V-escaped, in which case the <blank> character shall not be used as an argument
13944 delimiter. Any <blank> character in the command argument for any other command can be
13945 backslash-escaped, in which case that <blank> character shall not be used as an argument
13946 delimiter.

13947 Within command arguments for the abbreviate, unabbreviate, map, and unmap commands,
13948 any character can be <control>-V-escaped. All such escaped characters shall be treated literally
13949 and shall have no special meaning. Within command arguments for all other ex commands that
13950 are not regular expressions or replacement strings, any character that would otherwise have a
13951 special meaning can be backslash-escaped. Escaped characters shall be treated literally, without
13952 special meaning as shell expansion characters or ’!’ , ’%’ , and ’#’ expansion characters. See
13953 Regular Expressions in ex (on page 2601) and Replacement Strings in ex (on page 2602) for
13954 descriptions of command arguments that are regular expressions or replacement strings.

13955 Non-backslash-escaped ’%’ characters appearing in file arguments to any ex command shall be
13956 replaced by the current path name; unescaped ’#’ characters shall be replaced by the alternate
13957 path name. It shall be an error if ’%’ or ’#’ characters appear unescaped in an argument and
13958 their corresponding values are not set.

Shell and Utilities, Issue 6 2575

ex Utilities

13959 Non-backslash-escaped ’!’ characters in the arguments to either the ex ! command or the open
13960 and visual mode ! command, or in the arguments to the ex read command, where the first non-
13961 <blank> character after the command name is a ’!’ character, or in the arguments to the ex
13962 write command where the command name is followed by one or more <blank> characters and
13963 the first non-<blank> character after the command name is a ’!’ character, shall be replaced
13964 with the arguments to the last of those three commands as they appeared after all unescaped
13965 ’%’ , ’#’ , and ’!’ characters were replaced. It shall be an error if ’!’ characters appear
13966 unescaped in one of these commands and there has been no previous execution of one of these
13967 commands.

13968 If an error occurs during the parsing or execution of an ex command:

13969 • An informational message to this effect shall be written. Execution of the ex command shall
13970 stop, and the cursor (for example, the current line and column) shall not be further modified.

13971 • If the ex command resulted from a map expansion, all characters from that map expansion
13972 shall be discarded, except as otherwise specified by the map command.

13973 • Otherwise, if the ex command resulted from the processing of an EXINIT environment
13974 variable, a .exrc file, a :source command, a −c option, or a +command specified to an ex edit,
13975 ex, next, or visual command, no further commands from the source of the commands shall
13976 be executed.

13977 • Otherwise, if the ex command resulted from the execution of a buffer or a global or v
13978 command, no further commands caused by the execution of the buffer or the global or v
13979 command shall be executed.

13980 • Otherwise, if the ex command was not terminated by a <newline> character, all characters up
13981 to and including the next non-backslash-escaped <newline> character shall be discarded.

13982 Input Editing in ex

13983 The following symbols are used in this and following sections to specify command actions.

13984 word In the POSIX locale, a word consists of a maximal sequence of letters, digits, and
13985 underscores, delimited at both ends by characters other than letters, digits, or
13986 underscores, or by the beginning or end of a line or the edit buffer.

13987 When accepting input characters from the user, in either ex command mode or ex text input
13988 mode, ex shall enable canonical mode input processing, as defined in the System Interfaces
13989 volume of IEEE Std. 1003.1-200x.

13990 If in ex text input mode:

13991 1. If the number edit option is set, ex shall prompt for input using the line number that would
13992 be assigned to the line if it is entered, in the format specified for the ex number command.

13993 2. If the autoindent edit option is set, ex shall prompt for input using autoindent characters,
13994 as described by the autoindent edit option. autoindent characters shall follow the line
13995 number, if any.

13996 If in ex command mode:

13997 1. If the prompt edit option is set, input shall be prompted for using a single ’:’ character;
13998 otherwise, there shall be no prompt.

13999 The input characters in the following sections shall have the following effects on the input line.

2576 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14000 Scroll

14001 Synopsis: eof

14002 See the description of the stty eof character in stty .

14003 If in ex command mode:

14004 If the eof character is the first character entered on the line, the line shall be evaluated as if it
14005 contained two characters: a <control>-D and a <newline> character.

14006 Otherwise, the eof character shall have no special meaning.

14007 If in ex text input mode:

14008 If the cursor follows an autoindent character, the autoindent characters in the line shall be
14009 modified so that a part of the next text input character will be displayed on the first column
14010 in the line after the previous shiftwidth edit option column boundary, and the user shall be
14011 prompted again for input for the same line.

14012 Otherwise, if the cursor follows a ’0’ , which follows an autoindent character, and the ’0’
14013 was the previous text input character, the ’0’ and all autoindent characters in the line shall
14014 be discarded, and the user shall be prompted again for input for the same line.

14015 Otherwise, if the cursor follows a ’ˆ’ , which follows an autoindent character, and the ’ˆ’
14016 was the previous text input character, the ’ˆ’ and all autoindent characters in the line shall
14017 be discarded, and the user shall be prompted again for input for the same line. In addition,
14018 the autoindent level for the next input line shall be derived from the same line from which
14019 the autoindent level for the current input line was derived.

14020 Otherwise, if there are no autoindent or text input characters in the line, the eof character
14021 shall be discarded.

14022 Otherwise, the eof character shall have no special meaning.

14023 <newline>

14024 Synopsis: <newline>
14025 <control>-J

14026 If in ex command mode:

14027 Cause the command line to be parsed; <control>-J shall be mapped to the <newline>
14028 character for this purpose.

14029 If in ex text input mode:

14030 Terminate the current line. If there are no characters other than autoindent characters on the
14031 line, all characters on the line shall be discarded.

14032 Prompt for text input on a new line after the current line. If the autoindent edit option is set,
14033 an appropriate number of autoindent characters shall be added as a prefix to the line as
14034 described by the ex autoindent edit option.

Shell and Utilities, Issue 6 2577

ex Utilities

14035 <backslash>

14036 Synopsis: <backslash>

14037 Allow the entry of a subsequent <newline> or <control>-J as a literal character, removing any
14038 special meaning that it may have to the editor during text input mode. The backslash character
14039 shall be retained and evaluated when the command line is parsed, or retained and included
14040 when the input text becomes part of the edit buffer.

14041 <control>-V

14042 Synopsis: <control>-V

14043 Allow the entry of any subsequent character as a literal character, removing any special meaning
14044 that it may have to the editor during text input mode. The <control>-V character shall be
14045 discarded before the command line is parsed or the input text becomes part of the edit buffer.

14046 If the ‘‘literal next’’ functionality is performed by the underlying system, it is implementation- |
14047 defined whether a character other than <control>-V performs this function. |

14048 <control>-W

14049 Synopsis: <control>-W

14050 Discard the <control>-W, and the word previous to it in the input line, including any <blank>
14051 characters following the word and preceding the <control>-W. If the ‘‘word erase’’ functionality
14052 is performed by the underlying system, it is implementation-defined whether a character other |
14053 than <control>-W performs this function. |

14054 Command Descriptions in ex

14055 The following symbols are used in this section to represent command modifiers. Some of these
14056 modifiers can be omitted, in which case the specified defaults shall be used.

14057 1addr A single line address, given in any of the forms described in Addressing in ex (on
14058 page 2571); the default shall be the current line (’.’), unless otherwise specified.

14059 If the line address is zero, it shall be an error, unless otherwise specified in the
14060 following command descriptions.

14061 If the edit buffer is empty, and the address is specified with a command other than
14062 =, append, insert, open, put, read, or visual, or the address is not zero, it shall be
14063 an error.

14064 2addr Two addresses specifying an inclusive range of lines. If no addresses are specified,
14065 the default for 2addr shall be the current line only (".,."), unless otherwise
14066 specified in the following command descriptions. If one address is specified, 2addr
14067 shall specify that line only, unless otherwise specified in the following command
14068 descriptions.

14069 It shall be an error if the first address is greater than the second address.

14070 If the edit buffer is empty, and the two addresses are specified with a command
14071 other than the !, write, wq, or xit commands, or either address is not zero, it shall
14072 be an error.

14073 count A positive decimal number. If count is specified, it shall be equivalent to specifying
14074 an additional address to the command, unless otherwise specified by the following
14075 command descriptions. The additional address shall be equal to the last address
14076 specified to the command (either explicitly or by default) plus count−1.

2578 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14077 If this would result in an address greater than the last line of the edit buffer, it shall
14078 be corrected to equal the last line of the edit buffer.

14079 flags One or more of the characters ’+’ , ’ −’ , ’#’ , ’p’ , or ’l’ (ell). The flag characters
14080 can be <blank>-separated, and in any order or combination. The characters ’#’ ,
14081 ’p’ , and ’l’ shall cause lines to be written in the format specified by the print
14082 command with the specified flags .

14083 The lines to be written are as follows:

14084 1. All edit buffer lines written during the execution of the ex &, ˜, list, number,
14085 open, print, s, visual, and z commands shall be written as specified by flags .

14086 2. After the completion of an ex command with a flag as an argument, the
14087 current line shall be written as specified by flags , unless the current line was
14088 the last line written by the command.

14089 The characters ’+’ and ’ −’ cause the value of the current line after the execution
14090 of the ex command to be adjusted by the offset address as described in Addressing
14091 in ex (on page 2571). This adjustment shall occur before the current line is written
14092 as described in 2. above.

14093 The default for flags shall be none.

14094 buffer One of a number of named areas for holding text. The named buffers are specified
14095 by the alphanumeric characters of the POSIX locale. There shall also be one
14096 ‘‘unnamed’’ buffer. When no buffer is specified for editor commands that use a
14097 buffer, the unnamed buffer shall be used. Commands that store text into buffers
14098 shall store the text as it was before the command took effect, and shall store text
14099 occurring earlier in the file before text occurring later in the file, regardless of how
14100 the text region was specified. Commands that store text into buffers shall store the
14101 text into the unnamed buffer as well as any specified buffer.

14102 In ex commands, buffer names are specified as the name by itself. In open or visual
14103 mode commands the name is preceded by a double quote (’"’) character. |

14104 If the specified buffer name is an uppercase character, and the buffer contents are
14105 to be modified, the buffer shall be appended to rather than being overwritten. If
14106 the buffer is not being modified, specifying the buffer name in lowercase and
14107 uppercase shall have identical results.

14108 There shall also be buffers named by the numbers 1 through 9. In open and visual
14109 mode, if a region of text including characters from more than a single line is being
14110 modified by the vi c or d commands, the motion character associated with the c or
14111 d commands specifies that the buffer text shall be in line mode, or the commands
14112 %, ‘, /, ?, (,), N, n, {, or } are used to define a region of text for the c or d commands,
14113 the contents of buffers 1 through 8 shall be moved into the buffer named by the
14114 next numerically greater value, the contents of buffer 9 shall be discarded, and the
14115 region of text shall be copied into buffer 1. This shall be in addition to copying the
14116 text into a user-specified buffer or unnamed buffer, or both. Numeric buffers can
14117 be specified as a source buffer for open and visual mode commands; however,
14118 specifying a numeric buffer as the write target of an open or visual mode
14119 command shall have unspecified results.

14120 The text of each buffer shall have the characteristic of being in either line or
14121 character mode. Appending text to a non-empty buffer shall set the mode to match
14122 the characteristic of the text being appended. Appending text to a buffer shall
14123 cause the creation of at least one additional line in the buffer. All text stored into

Shell and Utilities, Issue 6 2579

ex Utilities

14124 buffers by ex commands shall be in line mode. The ex commands that use buffers
14125 as the source of text specify individually how buffers of different modes are
14126 handled. Each open or visual mode command that uses buffers for any purpose
14127 specifies individually the mode of the text stored into the buffer and how buffers
14128 of different modes are handled.

14129 file Command text used to derive a path name. The default shall be the current path
14130 name, as defined previously, in which case, if no current path name has yet been
14131 established it shall be an error, except where specifically noted in the individual
14132 command descriptions that follow. If the command text contains any of the
14133 characters ’˜’ , ’{’ , ’[’ , ’*’ , ’?’ , ’$’ , ’‘’ , ’’’ , ’"’ , and ’\’ , it shall be |
14134 subjected to the process of ‘‘shell expansions’’, as described below; if more than a
14135 single path name results and the command expects only one, it shall be an error.

14136 The process of shell expansions in the editor shall be done as follows. The ex utility
14137 shall pass two arguments to the program named by the shell edit option; the first
14138 shall be −c, and the second shall be the string "echo" and the command text as a
14139 single argument. The standard output and standard error of that command shall
14140 replace the command text.

14141 ! A character that can be appended to the command name to modify its operation,
14142 as detailed in the individual command descriptions. With the exception of the ex
14143 read, write, and ! commands, the ’!’ character shall only act as a modifier if there
14144 are no <blank> characters between it and the command name.

14145 remembered search direction
14146 The vi commands N and n begin searching in a forwards or backwards direction in
14147 the edit buffer based on a remembered search direction, which is initially unset,
14148 and is set by the ex global, v, s, and tag commands, and the vi / and ? commands.

14149 Abbreviate

14150 Synopsis: ab [breviate][lhs rhs]

14151 If lhs and rhs are not specified, write the current list of abbreviations and do nothing more.

14152 Implementations may restrict the set of characters accepted in lhs or rh, except that printable
14153 characters and <blank> characters shall not be restricted. Additional restrictions shall be |
14154 implementation-defined. |

14155 In both lhs and rhs, any character may be escaped with a <control>-V, in which case the
14156 character shall not be used to delimit lhs from rhs, and the escaping <control>-V shall be
14157 discarded.

14158 In open and visual text input mode, if a non-word or <ESC> character that is not escaped by a
14159 <control>-V character is entered after a word character, a check shall be made for a set of
14160 characters matching lhs , in the text input entered during this command. If it is found, the effect
14161 shall be as if rhs was entered instead of lhs .

14162 The set of characters that are checked is defined as follows:

14163 1. If there are no characters inserted before the word and non-word or <ESC> characters that
14164 triggered the check, the set of characters shall consist of the word character.

14165 2. If the character inserted before the word and non-word or <ESC> characters that triggered
14166 the check is a word character, the set of characters shall consist of the characters inserted
14167 immediately before the triggering characters that are word characters, plus the triggering
14168 word character.

2580 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14169 3. If the character inserted before the word and non-word or <ESC> characters that triggered
14170 the check is not a word character, the set of characters shall consist of the characters that
14171 were inserted before the triggering characters that are neither <blank> characters nor word
14172 characters, plus the triggering word character.

14173 It is unspecified whether the lhs argument entered for the ex abbreviate and unabbreviate
14174 commands is replaced in this fashion. Regardless of whether or not the replacement occurs, the
14175 effect of the command shall be as if the replacement had not occurred.

14176 Current line : Unchanged.

14177 Current column : Unchanged.

14178 Append

14179 Synopsis: [1addr] a[ppend][!]

14180 Enter text input mode; the input text shall be placed after the specified line. If line zero is
14181 specified, the text shall be placed at the beginning of the edit buffer.

14182 This command shall be affected by the number and autoindent edit options; following the
14183 command name with ’!’ shall cause the autoindent edit option setting to be toggled for the
14184 duration of this command only.

14185 Current line : Set to the last input line; if no lines were input, set to the specified line, or to the
14186 first line of the edit buffer if a line of zero was specified, or zero if the edit buffer is empty.

14187 Current column : Set to non-<blank>.

14188 Arguments

14189 Synopsis: ar [gs]

14190 Write the current argument list, with the current argument-list entry, if any, between ’[’ and
14191 ’]’ characters.

14192 Current line : Unchanged.

14193 Current column : Unchanged.

14194 Change

14195 Synopsis: [2addr] c [hange][!][count]

14196 Enter ex text input mode; the input text shall replace the specified lines. The specified lines shall
14197 be copied into the unnamed buffer, which shall become a line mode buffer.

14198 This command shall be affected by the number and autoindent edit options; following the
14199 command name with ’!’ shall cause the autoindent edit option setting to be toggled for the
14200 duration of this command only.

14201 Current line : Set to the last input line; if no lines were input, set to the line before the first
14202 address, or to the first line of the edit buffer if there are no lines preceding the first address, or to
14203 zero if the edit buffer is empty.

14204 Current column : Set to non-<blank>.

Shell and Utilities, Issue 6 2581

ex Utilities

14205 Change Directory

14206 Synopsis: chd [ir][!][directory]
14207 cd [!][directory]

14208 Change the current working directory to directory .

14209 If no directory argument is specified, and the HOME environment variable is set to a non-null
14210 and non-empty value, directory shall default to the value named in the HOME environment
14211 variable. If the HOME environment variable is empty or is undefined, the default value of
14212 directory is implementation-defined. |

14213 If no ’!’ is appended to the command name, and the edit buffer has been modified since the
14214 last complete write, and the current path name does not begin with a ’/’ , it shall be an error.

14215 Current line : Unchanged.

14216 Current column : Unchanged.

14217 Copy

14218 Synopsis: [2addr] co [py] 1addr [flags]
14219 [2addr] t 1addr [flags]

14220 Copy the specified lines after the specified destination line; line zero specifies that the lines shall
14221 be placed at the beginning of the edit buffer.

14222 Current line : Set to the last line copied.

14223 Current column : Set to non-<blank>.

14224 Delete

14225 Synopsis: [2addr] d[elete][buffer][count][flags]

14226 Delete the specified lines into a buffer (defaulting to the unnamed buffer), which shall become a
14227 line-mode buffer.

14228 Flags can immediately follow the command name; see Command Line Parsing in ex (on page
14229 2573).

14230 Current line : Set to the line following the deleted lines, or to the last line in the edit buffer if that
14231 line is past the end of the edit buffer, or to zero if the edit buffer is empty.

14232 Current column : Set to non-<blank>.

14233 Edit

14234 Synopsis: e[dit][!][+command][file]
14235 ex [!][+command][file]

14236 If no ’!’ is appended to the command name, and the edit buffer has been modified since the
14237 last complete write, it shall be an error.

14238 If file is specified, replace the current contents of the edit buffer with the current contents of file ,
14239 and set the current path name to file . If file is not specified, replace the current contents of the
14240 edit buffer with the current contents of the file named by the current path name. If for any
14241 reason the current contents of the file cannot be accessed, the edit buffer shall be empty.

14242 The +command option shall be <blank> character-delimited; <blank> characters within
14243 +command can be escaped by preceding them with a backslash character. The +command shall be
14244 interpreted as an ex command immediately after the contents of the edit buffer have been

2582 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14245 replaced and the current line and column have been set.

14246 If the edit buffer is empty:

14247 Current line : Set to 0.

14248 Current column : Set to 1.

14249 Otherwise, if executed while in ex command mode or if the +command argument is specified:

14250 Current line : Set to the last line of the edit buffer.

14251 Current column : Set to non-<blank>.

14252 Otherwise, if file is omitted or results in the current path name:

14253 Current line : Set to the first line of the edit buffer.

14254 Current column : Set to non-<blank>.

14255 Otherwise, if file is the same as the last file edited, the line and column shall be set as follows; if
14256 the file was previously edited, the line and column may be set as follows:

14257 Current line : Set to the last value held when that file was last edited. If this value is not a valid
14258 line in the new edit buffer, set to the first line of the edit buffer.

14259 Current column : If the current line was set to the last value held when the file was last edited, set
14260 to the last value held when the file was last edited. Otherwise, or if the last value is not a valid
14261 column in the new edit buffer, set to non-<blank>.

14262 Otherwise:

14263 Current line : Set to the first line of the edit buffer.

14264 Current column : Set to non-<blank>.

14265 File

14266 Synopsis: f [ile][file]

14267 If a file argument is specified, the alternate path name shall be set to the current path name, and
14268 the current path name shall be set to file .

14269 Write an informational message. If the file has a current path name, it shall be included in this
14270 message; otherwise, the message shall indicate that there is no current path name. If the edit
14271 buffer contains lines, the current line number and the number of lines in the edit buffer shall be
14272 included in this message; otherwise, the message shall indicate that the edit buffer is empty. If
14273 the edit buffer has been modified since the last complete write, this fact shall be included in this
14274 message. If the readonly edit option is set, this fact shall be included in this message. The
14275 message may contain other unspecified information.

14276 Current line : Unchanged.

14277 Current column : Unchanged.

Shell and Utilities, Issue 6 2583

ex Utilities

14278 Global

14279 Synopsis: [2addr] g[lobal] / pattern / [commands]
14280 [2addr] v / pattern / [commands]

14281 The optional ’!’ character after the global command shall be the same as executing the v
14282 command.

14283 If pattern is empty (for example, "//") or not specified, the last regular expression used in the
14284 editor command shall be used as the pattern . The pattern can be delimited by slashes (shown in |
14285 the Synopsis), as well as any non-alphanumeric or non-<blank> character other than backslash, |
14286 vertical line, double quote, or <newline>.

14287 If no lines are specified, the lines shall default to the entire file.

14288 The global and v commands are logically two-pass operations. First, mark the lines within the
14289 specified lines that match (global) or do not match (v or global!) the specified pattern. Second,
14290 execute the ex commands given by commands, with the current line (’.’) set to each marked |
14291 line. If an error occurs during this process, or the contents of the edit buffer are replaced (for
14292 example, by the ex :edit command) an error message shall be written and no more commands
14293 resulting from the execution of this command shall be processed.

14294 Multiple ex commands can be specified by entering multiple commands on a single line using a
14295 vertical line to delimit them, or one per line, by escaping each <newline> with a backslash.

14296 If no commands are specified:

14297 1. If in ex command mode, it shall be as if the print command were specified.

14298 2. Otherwise, no command shall be executed.

14299 For the append, change, and insert commands, the input text shall be included as part of the
14300 command, and the terminating period can be omitted if the command ends the list of
14301 commands. The open and visual commands can be specified as one of the commands, in which
14302 case each marked line shall cause the editor to enter open or visual mode. If open or visual mode
14303 is exited using the vi Q command, the current line shall be set to the next marked line, and open
14304 or visual mode reentered, until the list of marked lines is exhausted.

14305 The global, v, and undo commands cannot be used in commands. Marked lines may be deleted |
14306 by commands executed for lines occurring earlier in the file than the marked lines. In this case, |
14307 no commands shall be executed for the deleted lines. |

14308 If the remembered search direction is not set, the global and v commands shall set it to forward.

14309 The autoprint and autoindent edit options shall be inhibited for the duration of the g or v
14310 command.

14311 Current line : If no commands executed, set to the last marked line. Otherwise, as specified for
14312 the executed ex commands.

14313 Current column : If no commands are executed, set to non-<blank>; otherwise, as specified for the
14314 individual ex commands.

2584 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14315 Insert

14316 Synopsis: [1addr] i [nsert][!]

14317 Enter ex text input mode; the input text shall be placed before the specified line. If the line is zero
14318 or 1, the text shall be placed at the beginning of the edit buffer.

14319 This command shall be affected by the number and autoindent edit options; following the
14320 command name with ’!’ shall cause the autoindent edit option setting to be toggled for the
14321 duration of this command only.

14322 Current line : Set to the last input line; if no lines were input, set to the line before the specified
14323 line, or to the first line of the edit buffer if there are no lines preceding the specified line, or zero
14324 if the edit buffer is empty.

14325 Current column : Set to non-<blank>.

14326 Join

14327 Synopsis: [2addr] j [oin][!][count][flags]

14328 If count is specified:

14329 If no address was specified, the join command shall behave as if 2addr were the current line
14330 and the current line plus count (. , . + count).

14331 If one address was specified, the join command shall behave as if 2addr were the specified
14332 address and the specified address plus count (addr ,addr + count).

14333 If two addresses were specified, the join command shall behave as if an additional address,
14334 equal to the last address plus count −1 (addr1 ,addr2 ,addr2 + count −1), was specified.

14335 If this would result in a second address greater than the last line of the edit buffer, it shall be
14336 corrected to be equal to the last line of the edit buffer.

14337 If no count is specified:

14338 If no address was specified, the join command shall behave as if 2addr were the current line
14339 and the next line (. , . +1).

14340 If one address was specified, the join command shall behave as if 2addr were the specified
14341 address and the next line (addr ,addr +1).

14342 Join the text from the specified lines together into a single line, which shall replace the specified
14343 lines.

14344 If a ’!’ character is appended to the command name, the join shall be without modification of
14345 any line, independent of the current locale.

14346 Otherwise, in the POSIX locale, set the current line to the first of the specified lines, and then, for
14347 each subsequent line, proceed as follows:

14348 1. Discard leading <space>s from the line to be joined.

14349 2. If the line to be joined is now empty, delete it, and skip steps 3 through 5. |

14350 3. If the current line ends in a <blank> character, or the first character of the line to be joined
14351 is a ’)’ character, join the lines without further modification.

14352 4. If the last character of the current line is a ’.’ , join the lines with two <space> characters
14353 between them.

Shell and Utilities, Issue 6 2585

ex Utilities

14354 5. Otherwise, join the lines with a single <space> character between them.

14355 Current line : Set to the first line specified.

14356 Current column : Set to non-<blank>.

14357 List

14358 Synopsis: [2addr] l [ist][count][flags]

14359 This command shall be equivalent to the ex command:

14360 [2addr] p[rint][count] l [flags]

14361 See Print (on page 2590).

14362 Map

14363 Synopsis: map[!][lhs rhs]

14364 If lhs and rhs are not specified:

14365 1. If ’!’ is specified, write the current list of text input mode maps.

14366 2. Otherwise, write the current list of command mode maps.

14367 3. Do nothing more.

14368 Implementations may restrict the set of characters accepted in lhs or rhs, except that printable
14369 characters and <blank> characters shall not be restricted. Additional restrictions shall be |
14370 implementation-defined. In both lhs and rhs, any character can be escaped with a <control>-V, in |
14371 which case the character shall not be used to delimit lhs from rhs, and the escaping <control>-V
14372 shall be discarded.

14373 If the character ’!’ is appended to the map command name, the mapping shall be effective
14374 during open or visual text input mode rather than open or visual command mode. This allows
14375 lhs to have two different map definitions at the same time: one for command mode and one for
14376 text input mode.

14377 For command mode mappings:

14378 When the lhs is entered as any part of a vi command in open or visual mode (but not as part
14379 of the arguments to the command), the action shall be as if the corresponding rhs had been
14380 entered.

14381 If any character in the command, other than the first, is escaped using a <control>-V
14382 character, that character shall not be part of a match to an lhs .

14383 It is unspecified whether implementations shall support map commands where the lhs is
14384 more than a single character in length, where the first character of the lhs is printable.

14385 If lhs contains more than one character and the first character is ’#’ , followed by a sequence |
14386 of digits corresponding to a numbered function key, then when this function key is typed it |
14387 shall be mapped to rhs. Characters other than digits following a ’#’ character also
14388 represent the function key named by the characters in the lhs following the ’#’ and may be
14389 mapped to rhs. It is unspecified how function keys are named or what function keys are |
14390 supported.

14391 For text input mode mappings:

2586 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14392 When the lhs is entered as any part of text entered in open or visual text input modes, the
14393 action shall be as if the corresponding rhs had been entered.

14394 If any character in the input text is escaped using a <control>-V character, that character shall
14395 not be part of a match to an lhs .

14396 It is unspecified whether the lhs argument entered for the map or unmap commands is
14397 replaced in this fashion. Regardless of whether or not the replacement occurs, the effect of
14398 the command shall be as if the replacement had not occurred.

14399 If only part of the lhs is entered, it is unspecified how long the editor will wait for additional,
14400 possibly matching characters before treating the already entered characters as not matching the
14401 lhs .

14402 The rhs characters shall themselves be subject to remapping, unless otherwise specified by the
14403 remap edit option, except that if the characters in lhs occur as prefix characters in rhs, those
14404 characters shall not be remapped.

14405 On block-mode terminals, the mapping need not occur immediately (for example, it may occur
14406 after the terminal transmits a group of characters to the system), but it shall achieve the same
14407 results as if it occurred immediately.

14408 Current line : Unchanged.

14409 Current column : Unchanged.

14410 Mark

14411 Synopsis: [1addr] ma[rk] character
14412 [1addr] k character

14413 Implementations shall support character values of a single lowercase letter of the POSIX locale
14414 and the characters ’‘’ and ’’’ ; support of other characters is implementation-defined. |

14415 If executing the vi m command, set the specified mark to the current line and 1-based numbered
14416 character referenced by the current column, if any; otherwise, column position 1.

14417 Otherwise, set the specified mark to the specified line and 1-based numbered first non-<blank>
14418 character in the line, if any; otherwise, the last character in the line, if any; otherwise, column
14419 position 1.

14420 The mark shall remain associated with the line until the mark is reset or the line is deleted. If a
14421 deleted line is restored by a subsequent undo command, any marks previously associated with
14422 the line, which have not been reset, shall be restored as well. Any use of a mark not associated
14423 with a current line in the edit buffer shall be an error.

14424 The marks ‘ and ’ shall be set as described previously, immediately before the following events
14425 occur in the editor:

14426 1. The use of ’$’ as an ex address

14427 2. The use of a positive decimal number as an ex address

14428 3. The use of a search command as an ex address

14429 4. The use of a mark reference as an ex address

14430 5. The use of the following open and visual mode commands: <control>-], %, (,), [,], {, }.

14431 6. The use of the following open and visual mode commands: ’, G, H, L, M, z if the current
14432 line will change as a result of the command

Shell and Utilities, Issue 6 2587

ex Utilities

14433 7. The use of the open and visual mode commands: /, ?, N, ‘, n if the current line or column
14434 will change as a result of the command

14435 8. The use of the ex mode commands: z, undo, global, v

14436 For rules 1., 2., 3., and 4., the ‘ and ’ marks shall not be set if the ex command is parsed as
14437 specified by rule 6.a. in Command Line Parsing in ex (on page 2573).

14438 For rules 5., 6., and 7., the ‘ and ’ marks shall not be set if the commands are used as motion
14439 commands in open and visual mode.

14440 For rules 1., 2., 3., 4., 5., 6., 7., and 8., the ‘ and ’ marks shall not be set if the command fails.

14441 The ‘ and ’ marks shall be set as described previously, each time the contents of the edit buffer
14442 are replaced (including the editing of the initial buffer), if in open or visual mode, or if in ex
14443 mode and the edit buffer is not empty, before any commands or movements (including
14444 commands or movements specified by the −c or −t options or the +command argument) are
14445 executed on the edit buffer. If in open or visual mode, the marks shall be set as if executing the vi
14446 m command; otherwise, as if executing the ex mark command.

14447 When changing from ex mode to open or visual mode, if the ‘ and ’ marks are not already set,
14448 the ‘ and ’ marks shall be set as described previously.

14449 Current line : Unchanged.

14450 Current column : Unchanged.

14451 Move

14452 Synopsis: [2addr] m[ove] 1addr [flags]

14453 Move the specified lines after the specified destination line. A destination of line zero specifies
14454 that the lines shall be placed at the beginning of the edit buffer. It shall be an error if the
14455 destination line is within the range of lines to be moved.

14456 Current line : Set to the last of the moved lines.

14457 Current column : Set to non-<blank>.

14458 Next

14459 Synopsis: n[ext][!][+command][file ...]

14460 If no ’!’ is appended to the command name, and the edit buffer has been modified since the
14461 last complete write, it shall be an error, unless the file is successfully written as specified by the
14462 autowrite option.

14463 If one or more files is specified:

14464 1. Set the argument list to the specified file names.

14465 2. Set the current argument list reference to be the first entry in the argument list.

14466 3. Set the current path name to the first file name specified.

14467 Otherwise:

14468 1. It shall be an error if there are no more file names in the argument list after the file name
14469 currently referenced.

14470 2. Set the current path name and the current argument list reference to the file name after the
14471 file name currently referenced in the argument list.

2588 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14472 Replace the contents of the edit buffer with the contents of the file named by the current path
14473 name. If for any reason the contents of the file cannot be accessed, the edit buffer shall be empty.

14474 This command shall be affected by the autowrite and writeany edit options.

14475 The +command option shall be <blank> character-delimited; <blank> characters can be escaped
14476 by preceding them with a backslash character. The +command shall be interpreted as an ex
14477 command immediately after the contents of the edit buffer have been replaced and the current
14478 line and column have been set.

14479 Current line : Set as described for the edit command.

14480 Current column : Set as described for the edit command.

14481 Number

14482 Synopsis: [2addr] nu [mber][count][flags]
14483 [2addr] #[count][flags]

14484 These commands shall be equivalent to the ex command:

14485 [2addr] p[rint][count] #[flags]

14486 See Print (on page 2590). |

14487 Open

14488 Synopsis: [1addr] o[pen] / pattern / [flags]

14489 This command need not be supported on block-mode terminals or terminals with insufficient
14490 capabilities. If standard input, standard output, or standard error are not terminal devices, the
14491 results are unspecified.

14492 Enter open mode.

14493 The trailing delimiter can be omitted from pattern at the end of the command line. If pattern is
14494 empty (for example, "//") or not specified, the last regular expression used in the editor shall be
14495 used as the pattern. The pattern can be delimited by slashes (shown in the Synopsis), as well as
14496 any alphanumeric, or non-<blank> character other than backslash, vertical line, double quote, or
14497 <newline> character.

14498 Current line : Set to the specified line.

14499 Current column : Set to non-<blank>.

14500 Preserve

14501 Synopsis: pre [serve]

14502 Save the edit buffer in a form that can later be recovered by using the −r option or by using the ex
14503 recover command. After the file has been preserved, a mail message shall be sent to the user.
14504 This message shall be readable by invoking the mailx utility. The message shall contain the name
14505 of the file, the time of preservation, and an ex command that could be used to recover the file.
14506 Additional information may be included in the mail message.

14507 Current line : Unchanged.

14508 Current column : Unchanged.

Shell and Utilities, Issue 6 2589

ex Utilities

14509 Print

14510 Synopsis: [2addr] p[rint][count][flags]

14511 Write the addressed lines. The behavior is unspecified if the number of columns on the display is
14512 less than the number of columns required to write any single character in the lines being written.

14513 Non-printable characters, except for the <tab> character, shall be written as implementation- |
14514 defined multi-character sequences. |

14515 If the # flag is specified or the number edit option is set, each line shall be preceded by its line
14516 number in the following format:

14517 "%6d∆∆", < line number >

14518 If the l flag is specified or the list edit option is set:

14519 1. The characters listed in the Base Definitions volume of IEEE Std. 1003.1-200x, Table 5-1, |
14520 Escape Sequences and Associated Actions shall be written as the corresponding escape |
14521 sequence.

14522 2. Non-printable characters not in the Base Definitions volume of IEEE Std. 1003.1-200x, |
14523 Table 5-1, Escape Sequences and Associated Actions shall be written as one three-digit |
14524 octal number (with a preceding backslash) for each byte in the character (most significant
14525 byte first). If the size of a byte on the system is greater than 9 bits, the format used for non-
14526 printable characters is implementation-defined. |

14527 3. The end of each line shall be marked with a ’$’ , and literal ’$’ characters within the line
14528 shall be written with a preceding backslash.

14529 Long lines shall be folded; the length at which folding occurs is unspecified, but should be
14530 appropriate for the output terminal, considering the number of columns of the terminal.

14531 If a line is folded, and the l flag is not specified and the list edit option is not set, it is unspecified
14532 whether a multi-column character at the folding position is separated; it shall not be discarded.

14533 Current line : Set to the last written line.

14534 Current column : Unchanged if the current line is unchanged; otherwise, set to non-<blank>.

14535 Put

14536 Synopsis: [1addr] pu [t][buffer]

14537 Append text from the specified buffer (by default, the unnamed buffer) to the specified line; line
14538 zero specifies that the text shall be placed at the beginning of the edit buffer. Each portion of a
14539 line in the buffer shall become a new line in the edit buffer, regardless of the mode of the buffer.

14540 Current line : Set to the last line entered into the edit buffer.

14541 Current column : Set to non-<blank>.

14542 Quit

14543 Synopsis: q[uit][!]

14544 If no ’!’ is appended to the command name:

14545 1. If the edit buffer has been modified since the last complete write, it shall be an error.

14546 2. If there are file names in the argument list after the file name currently referenced, and the
14547 last command was not a quit, wq, xit, or ZZ (see Exit (on page 3235)) command, it shall be
14548 an error.

2590 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14549 Otherwise, terminate the editing session.

14550 Read

14551 Synopsis: [1addr] r [ead][!][file]

14552 If ’!’ is not the first non-<blank> character to follow the command name, a copy of the
14553 specified file shall be appended into the edit buffer after the specified line; line zero specifies that
14554 the copy shall be placed at the beginning of the edit buffer. The number of lines and bytes read
14555 shall be written. If no file is named, the current path name shall be the default. If there is no
14556 current path name, then file shall become the current path name. If there is no current path name
14557 or file operand, it shall be an error. Specifying a file that is not of type regular shall have
14558 unspecified results.

14559 Otherwise, if file is preceded by ’!’ , the rest of the line after the ’!’ shall have ’%’ , ’#’ , and
14560 ’!’ characters expanded as described in Command Line Parsing in ex (on page 2573).

14561 The ex utility shall then pass two arguments to the program named by the shell edit option; the
14562 first shall be −c and the second shall be the expanded arguments to the read command as a
14563 single argument. The standard input of the program shall be set to the standard input of the ex
14564 program when it was invoked. The standard error and standard output of the program shall be
14565 appended into the edit buffer after the specified line.

14566 Each line in the copied file or program output (as delimited by <newline> characters or the end
14567 of the file or output if it is not immediately preceded by a <newline> character), shall be a
14568 separate line in the edit buffer. Any occurrences of <carriage-return> and <newline> character
14569 pairs in the output shall be treated as single <newline> characters.

14570 The special meaning of the ’!’ following the read command can be overridden by escaping it
14571 with a backslash character.

14572 Current line : If no lines are added to the edit buffer, unchanged. Otherwise, if in open or visual
14573 mode, set to the first line entered into the edit buffer. Otherwise, set to the last line entered into
14574 the edit buffer.

14575 Current column : Set to non-<blank>.

14576 Recover

14577 Synopsis: rec [over][!] file

14578 If no ’!’ is appended to the command name, and the edit buffer has been modified since the
14579 last complete write, it shall be an error.

14580 If no file operand is specified, then the current path name shall be used. If there is no current
14581 path name or file operand, it shall be an error.

14582 If no recovery information has previously been saved about file , the recover command shall
14583 behave identically to the edit command, and an informational message to this effect shall be
14584 written.

14585 Otherwise, set the current path name to file , and replace the current contents of the edit buffer
14586 with the recovered contents of file . If there are multiple instances of the file to be recovered, the
14587 one most recently saved shall be recovered, and an informational message that there are
14588 previous versions of the file that can be recovered shall be written. The editor shall behave as if
14589 the contents of the edit buffer have already been modified.

14590 Current file : Set as described for the edit command.

Shell and Utilities, Issue 6 2591

ex Utilities

14591 Current column : Set as described for the edit command.

14592 Rewind

14593 Synopsis: rew [ind][!]

14594 If no ’!’ is appended to the command name, and the edit buffer has been modified since the
14595 last complete write, it shall be an error, unless the file is successfully written as specified by the
14596 autowrite option.

14597 If the argument list is empty, it shall be an error.

14598 The current argument list reference and the current path name shall be set to the first file name
14599 in the argument list.

14600 Replace the contents of the edit buffer with the contents of the file named by the current path
14601 name. If for any reason the contents of the file cannot be accessed, the edit buffer shall be empty.

14602 This command shall be affected by the autowrite and writeany edit options.

14603 Current line : Set as described for the edit command.

14604 Current column : Set as described for the edit command.

14605 Set

14606 Synopsis: se [t][option [=[value]] ...][nooption ...][option ? ...][all]

14607 When no arguments are specified, write the value of the term edit option and those options
14608 whose values have been changed from the default settings; when the argument all is specified,
14609 write all of the option values.

14610 Giving an option name followed by the character ’?’ shall cause the current value of that
14611 option to be written. The ’?’ can be separated from the option name by zero or more <blank>
14612 characters. The ’?’ shall be necessary only for Boolean valued options. Boolean options can be
14613 given values by the form set option to turn them on or set nooption to turn them off; string and
14614 numeric options can be assigned by the form set option=value . Any <blank> characters in strings
14615 can be included as is by preceding each <blank> with an escaping backslash. More than one
14616 option can be set or listed by a single set command by specifying multiple arguments, each
14617 separated from the next by one or more <blank> characters.

14618 See Edit Options in ex (on page 2602) for details about specific options.

14619 Current line : Unchanged.

14620 Current column : Unchanged.

14621 Shell

14622 Synopsis: sh [ell]

14623 Invoke the program named in the shell edit option with the single argument −i (interactive
14624 mode). Editing shall be resumed when the program exits.

14625 Current line : Unchanged.

14626 Current column : Unchanged.

2592 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14627 Source

14628 Synopsis: so [urce] file

14629 Read and execute ex commands from file . Lines in the file that contain no characters or only
14630 <blank> characters shall be ignored.

14631 Current line : As specified for the individual ex commands.

14632 Current column : As specified for the individual ex commands.

14633 Substitute

14634 Synopsis: [2addr] s [ubstitute][/ pattern / repl / [options][count][flags]]
14635 [2addr] &[options][count][flags]]
14636 [2addr] ˜ [options][count][flags]]

14637 Replace the first instance of the pattern pattern by the string repl on each specified line. (See
14638 Regular Expressions in ex (on page 2601) and Replacement Strings in ex (on page 2602).) Any
14639 non-alphabetic, non-<blank> delimiter other than ’\\’ , ’|’ , double quote, or <newline> |
14640 character can be used instead of ’/’ . Backslash characters can be used to escape delimiters,
14641 backslash characters, and other special characters.

14642 The trailing delimiter can be omitted from pattern or from repl at the end of the command line. If
14643 both pattern and repl are not specified or are empty (for example, "//"), the last s command
14644 shall be repeated. If only pattern is not specified or is empty, the last regular expression used in
14645 the editor shall be used as the pattern. If only repl is not specified or is empty, the pattern shall be
14646 replaced by nothing. If the entire replacement pattern is ’%’ , the last replacement pattern to an
14647 s command shall be used.

14648 Entering a <carriage-return> in repl (which requires an escaping backslash in ex mode and an
14649 escaping <control>-V in open or vi mode) shall split the line at that point, creating a new line in
14650 the edit buffer. The <carriage-return> shall be discarded.

14651 If options include the letter ’g’ (global), all non-overlapping instances of the pattern in the line
14652 shall be replaced.

14653 If options includes the letter ’c’ (confirm), then before each substitution the line shall be
14654 written; the written line shall reflect all previous substitutions. On the following line, <space>
14655 characters shall be written beneath the characters from the line that are before the pattern to be
14656 replaced, and ’ˆ’ characters written beneath the characters included in the pattern to be
14657 replaced. The ex utility shall then wait for a response from the user. An affirmative response
14658 shall cause the substitution to be done, while any other input shall not make the substitution. An
14659 affirmative response shall consist of a line with the affirmative response (as defined by the
14660 current locale) at the beginning of the line. This line shall be subject to editing in the same way as
14661 the ex command line.

14662 If interrupted (see the ASYNCHRONOUS EVENTS section), any modifications confirmed by the
14663 user shall be preserved in the edit buffer after the interrupt.

14664 If the remembered search direction is not set, the s command shall set it to forward.

14665 In the second Synopsis, the & command shall repeat the previous substitution, as if the &
14666 command were replaced by:

14667 s/ pattern / repl /

14668 where pattern and repl are as specified in the previous s, &, or ˜ command.

Shell and Utilities, Issue 6 2593

ex Utilities

14669 In the third Synopsis, the ˜ command shall repeat the previous substitution, as if the ’˜’ were
14670 replaced by:

14671 s/ pattern / repl /

14672 where pattern shall be the last regular expression specified to the editor, and repl shall be from
14673 the previous substitution (including & and ˜) command.

14674 These commands shall be affected by the LC_MESSAGES environment variable.

14675 Current line : Set to the last line in which a substitution occurred, or, unchanged if no
14676 substitution occurred.

14677 Current column : Set to non-<blank>.

14678 Suspend

14679 Synopsis: su [spend][!]
14680 st [op][!]

14681 Allow control to return to the invoking process; ex shall suspend itself as if it had received the
14682 SIGTSTP signal. The suspension shall occur only if job control is enabled in the invoking shell
14683 (see the description of set −m).

14684 These commands shall be affected by the autowrite and writeany edit options.

14685 The current susp character (see stty) shall have the same affect as the suspend command.

14686 Tag

14687 Synopsis: ta [g][!] tagstring

14688 The results are unspecified if the format of a tags file is not as specified by the ctags utility (see
14689 ctags) description.

14690 The tag command shall search for tagstring in the tag files referred to by the tag edit option, in
14691 the order they are specified, until a reference to tagstring is found. Files shall be searched from
14692 beginning to end. If no reference is found, it shall be an error and an error message to this effect
14693 shall be written. If the reference is not found, or if an error occurs while processing a file referred
14694 to in the tag edit option, it shall be an error, and an error message shall be written at the first
14695 occurrence of such an error.

14696 Otherwise, if the tags file contained a pattern, the pattern shall be treated as a regular expression
14697 used in the editor; for example, for the purposes of the s command.

14698 If the tagstring is in a file with a different name than the current path name, set the current path
14699 name to the name of that file, and replace the contents of the edit buffer with the contents of that
14700 file. In this case, if no ’!’ is appended to the command name, and the edit buffer has been
14701 modified since the last complete write, it shall be an error, unless the file is successfully written
14702 as specified by the autowrite option.

14703 This command shall be affected by the autowrite, tag, taglength, and writeany edit options.

14704 Current line : If the tags file contained a line number, set to that line number. If the line number is
14705 larger than the last line in the edit buffer, an error message shall be written and the current line
14706 shall be set as specified for the edit command.

14707 If the tags file contained a pattern, set to the first occurrence of the pattern in the file. If no
14708 matching pattern is found, an error message shall be written and the current line shall be set as
14709 specified for the edit command.

2594 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14710 Current column : If the tags file contained a line-number reference and that line-number was not
14711 larger than the last line in the edit buffer, or if the tags file contained a pattern and that pattern
14712 was found, set to non-<blank>. Otherwise, set as specified for the edit command.

14713 Unabbreviate

14714 Synopsis: una [bbrev] lhs

14715 If lhs is not an entry in the current list of abbreviations (see Abbreviate (on page 2580)), it shall
14716 be an error. Otherwise, delete lhs from the list of abbreviations.

14717 Current line : Unchanged.

14718 Current column : Unchanged.

14719 Undo

14720 Synopsis: u[ndo]

14721 Reverse the changes made by the last command that modified the contents of the edit buffer,
14722 including undo. For this purpose, the global, v, open, and visual commands, and commands
14723 resulting from buffer executions and mapped character expansions, are considered single
14724 commands.

14725 If no action that can be undone preceded the undo command, it shall be an error.

14726 If the undo command restores lines that were marked, the mark shall also be restored unless it
14727 was reset subsequent to the deletion of the lines.

14728 Current line :

14729 1. If lines are added or changed in the file, set to the first line added or changed.

14730 2. Set to the line before the first line deleted, if it exists.

14731 3. Set to 1 if the edit buffer is not empty.

14732 4. Set to zero.

14733 Current column : Set to non-<blank>.

14734 Unmap

14735 Synopsis: unm[ap][!] lhs

14736 If ’!’ is appended to the command name, and if lhs is not an entry in the list of text input mode
14737 map definitions, it shall be an error. Otherwise, delete lhs from the list of text input mode map
14738 definitions.

14739 If no ’!’ is appended to the command name, and if lhs is not an entry in the list of command
14740 mode map definitions, it shall be an error. Otherwise, delete lhs from the list of command mode
14741 map definitions.

14742 Current line : Unchanged.

14743 Current column : Unchanged.

Shell and Utilities, Issue 6 2595

ex Utilities

14744 Version

14745 Synopsis: ve [rsion]

14746 Write a message containing version information for the editor. The format of the message is
14747 unspecified.

14748 Current line : Unchanged.

14749 Current column : Unchanged.

14750 Visual

14751 Synopsis: [1addr] vi [sual][type][count][flags]

14752 If ex is currently in open or visual mode, the Synopsis and behavior of the visual command shall
14753 be the same as the edit command, as specified by Edit (on page 2582).

14754 Otherwise, this command need not be supported on block-mode terminals or terminals with
14755 insufficient capabilities. If standard input, standard output, or standard error are not terminal
14756 devices, the results are unspecified.

14757 If count is specified, the value of the window edit option shall be set to count (as described in
14758 window (on page 2609)). If the ’ˆ’ type character was also specified, the window edit option
14759 shall be set before being used by the type character.

14760 Enter visual mode. If type is not specified, it shall be as if a type of ’+’ was specified. The type
14761 shall cause the following effects:

14762 + Place the beginning of the specified line at the top of the display.

14763 - Place the end of the specified line at the bottom of the display.

14764 . Place the beginning of the specified line in the middle of the display.

14765 ^ If the specified line is less than or equal to the value of the window edit option, set the line
14766 to 1; otherwise, decrement the line by the value of the window edit option minus 1. Place
14767 the beginning of this line as close to the bottom of the displayed lines as possible, while still
14768 displaying the value of the window edit option number of lines.

14769 Current line : Set to the specified line.

14770 Current column : Set to non-<blank>.

14771 Write

14772 Synopsis: [2addr] w[rite][!][>>][file]
14773 [2addr] w[rite][!][file]
14774 [2addr] wq[!][>>][file]

14775 If no lines are specified, the lines shall default to the entire file.

14776 The command wq shall be equivalent to a write command followed by a quit command; wq!
14777 shall be equivalent to write! followed by quit. In both cases, if the write command fails, the
14778 quit shall not be attempted.

14779 If the command name is not followed by one or more <blank> characters, or file is not preceded
14780 by a ’!’ character, the write shall be to a file.

14781 1. If the >> argument is specified, and the file already exists, the lines shall be appended to
14782 the file instead of replacing its contents. If the >> argument is specified, and the file does
14783 not already exist, it is unspecified whether the write shall proceed as if the >> argument

2596 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14784 had not been specified or if the write shall fail.

14785 2. If the readonly edit option is set (see readonly (on page 2606)), the write shall fail.

14786 3. If file is specified, and is not the current path name, and the file exists, the write shall fail.

14787 4. If file is not specified, the current path name shall be used. If there is no current path name,
14788 the write command shall fail.

14789 5. If the current path name is used, and the current path name has been changed by the file
14790 or read commands, and the file exists, the write shall fail. If the write is successful,
14791 subsequent writes shall not fail for this reason (unless the current path name is changed
14792 again).

14793 6. If the whole edit buffer is not being written, and the file to be written exists, the write shall
14794 fail.

14795 For rules 1., 2., 4., and 5., the write can be forced by appending the character ’!’ to the
14796 command name.

14797 For rules 2., 4., and 5., the write can be forced by setting the writeany edit option.

14798 Additional, implementation-defined tests may cause the write to fail. |

14799 If the edit buffer is empty, a file without any contents shall be written.

14800 An informational message shall be written noting the number of lines and bytes written.

14801 Otherwise, if the command is followed by one or more <blank> characters, and file is preceded
14802 by ’!’ , the rest of the line after the ’!’ shall have ’%’ , ’#’ , and ’!’ characters expanded as
14803 described in Command Line Parsing in ex (on page 2573).

14804 The ex utility shall then pass two arguments to the program named by the shell edit option; the
14805 first shall be −c and the second shall be the expanded arguments to the write command as a
14806 single argument. The specified lines shall be written to the standard input of the command. The
14807 standard error and standard output of the program. if any, shall be written as described for the
14808 print command. If the last character in that output is not a <newline> character, a <newline>
14809 shall be written at the end of the output.

14810 The special meaning of the ’!’ following the write command can be overridden by escaping it
14811 with a backslash character.

14812 Current line : Unchanged.

14813 Current column : Unchanged.

14814 Write and Exit

14815 Synopsis: [2addr] x [it][!][file]

14816 If the edit buffer has not been modified since the last complete write, xit shall be equivalent to
14817 the quit command, or if a ’!’ is appended to the command name, to quit!.

14818 Otherwise, xit shall be equivalent to the wq command, or if a ’!’ is appended to the command
14819 name, to wq!.

14820 Current line : Unchanged.

14821 Current line : Unchanged.

Shell and Utilities, Issue 6 2597

ex Utilities

14822 Yank

14823 Synopsis: [2addr] ya [nk][buffer][count]

14824 Copy the specified lines to the specified buffer (by default, the unnamed buffer), which shall
14825 become a line-mode buffer.

14826 Current line : Unchanged.

14827 Current line : Unchanged.

14828 Adjust Window

14829 Synopsis: [1addr] z [!][type ...][count][flags]

14830 If no line is specified, the current line shall be the default; if type is omitted as well, the current
14831 line value shall first be incremented by 1. If incrementing the current line would cause it to be
14832 greater than the last line in the edit buffer, it shall be an error.

14833 If there are <blank> characters between the type argument and the preceding z command name
14834 or optional ’!’ character, it shall be an error.

14835 If count is specified, the value of the window edit option shall be set to count (as described in
14836 window (on page 2609)). If count is omitted, it shall default to 2 times the value of the scroll edit
14837 option, or if ! was specified, the number of lines in the display minus 1.

14838 If type is omitted, then count lines starting with the specified line shall be written. Otherwise,
14839 count lines starting with the line specified by the type argument shall be written.

14840 The type argument shall change the lines to be written. The possible values of type are as follows:

14841 − The specified line shall be decremented by the following value:

14842 (((number of ‘‘ −’’ characters) x count) −1)

14843 If the calculation would result in a number less than 1, it shall be an error. Write lines from
14844 the edit buffer, starting at the new value of line, until count lines or the last line in the edit
14845 buffer has been written.

14846 + The specified line shall be incremented by the following value:

14847 (((number of ‘‘+’’ characters) −1) x count) +1

14848 If the calculation would result in a number greater than the last line in the edit buffer, it
14849 shall be an error. Write lines from the edit buffer, starting at the new value of line, until
14850 count lines or the last line in the edit buffer has been written. |

14851 =,. If more than a single ’.’ or ’=’ is specified, it shall be an error. The following steps shall be
14852 taken:

14853 1. If count is zero, nothing shall be written.

14854 2. Write as many of the N lines before the current line in the edit buffer as exist. If count
14855 or ’!’ was specified, N shall be:

14856 (count −1) /2

14857 Otherwise, N shall be:

14858 (count −3) /2

14859 If N is a number less than 3, no lines shall be written.

2598 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14860 3. If ’=’ was specified as the type character, write a line consisting of the smaller of the
14861 number of columns in the display divided by two, or 40 ’ −’ characters.

14862 4. Write the current line.

14863 5. Repeat step 3.

14864 6. Write as many of the N lines after the current line in the edit buffer as exist. N shall be
14865 defined as in step 2. If N is a number less than 3, no lines shall be written. current line
14866 in the edit buffer as exist. If count is less than 3, no lines shall be written.

14867 ^ The specified line shall be decremented by the following value:

14868 (((number of ‘‘ˆ’’ characters) +1) x count) −1

14869 If the calculation would result in a number less than 1, it shall be an error. Write lines from
14870 the edit buffer, starting at the new value of line, until count lines or the last line in the edit
14871 buffer has been written.

14872 Current line : Set to the last line written, unless the type is =, in which case, set to the specified
14873 line.

14874 Current column : Set to non-<blank>.

14875 Escape

14876 Synopsis: ! command
14877 [addr] ! command

14878 The contents of the line after the ’!’ shall have ’%’ , ’#’ , and ’!’ characters expanded as
14879 described in Command Line Parsing in ex (on page 2573). If the expansion causes the text of the
14880 line to change, it shall be redisplayed, preceded by a single ’!’ character.

14881 The ex utility shall execute the program named by the shell edit option. It shall pass two
14882 arguments to the program; the first shall be −c, and the second shall be the expanded arguments
14883 to the ! command as a single argument.

14884 If no lines are specified, the standard input, standard output, and standard error of the program
14885 shall be set to the standard input, standard output, and standard error of the ex program when it
14886 was invoked. In addition, a warning message shall be written if the edit buffer has been
14887 modified since the last complete write, and the warn edit option is set.

14888 If lines are specified, they shall be passed to the program as standard input, and the standard
14889 output and standard error of the program shall replace those lines in the edit buffer. Each line in
14890 the program output (as delimited by <newline> characters or the end of the output if it is not
14891 immediately preceded by a <newline> character), shall be a separate line in the edit buffer. Any
14892 occurrences of <carriage-return> and <newline> character pairs in the output shall be treated as
14893 single <newline> characters. The specified lines shall be copied into the unnamed buffer before
14894 they are replaced, and the unnamed buffer shall become a line-mode buffer.

14895 If in ex mode, a single ’!’ character shall be written when the program completes.

14896 This command shall be affected by the shell and warn edit options. If no lines are specified, this
14897 command shall be affected by the autowrite and writeany edit options. If lines are specified, this
14898 command shall be affected by the autoprint edit option.

14899 Current line :

14900 1. If no lines are specified, unchanged.

Shell and Utilities, Issue 6 2599

ex Utilities

14901 2. Otherwise, set to the last line read in, if any lines are read in.

14902 3. Otherwise, set to the line before the first line of the lines specified, if that line exists.

14903 4. Otherwise, set to the first line of the edit buffer if the edit buffer is not empty.

14904 5. Otherwise, set to zero.

14905 Current column : If no lines are specified, unchanged. Otherwise, set to non-<blank>.

14906 Shift Left

14907 Synopsis: [2addr] <[< ...][count][flags]

14908 Shift the specified lines to the start of the line; the number of column positions to be shifted shall
14909 be the number of command characters times the value of the shiftwidth edit option. Only
14910 leading <blank> characters shall be deleted or changed into other <blank> characters in shifting;
14911 other characters shall not be affected.

14912 Lines to be shifted shall be copied into the unnamed buffer, which shall become a line-mode
14913 buffer.

14914 This command shall be affected by the autoprint edit option.

14915 Current line : Set to the last line in the lines specified.

14916 Current column : Set to non-<blank>.

14917 Shift Right

14918 Synopsis: [2addr] >[> ...][count][flags]

14919 Shift the specified lines away from the start of the line; the number of column positions to be
14920 shifted shall be the number of command characters times the value of the shiftwidth edit option.
14921 The shift shall be accomplished by adding <blank> characters as a prefix to the line or changing
14922 leading <blank> characters into other <blank> characters. Empty lines shall not be changed.

14923 Lines to be shifted shall be copied into the unnamed buffer, which shall become a line-mode
14924 buffer.

14925 This command shall be affected by the autoprint edit option.

14926 Current line : Set to the last line in the lines specified.

14927 Current column : Set to non-<blank>.

14928 <control>-D

14929 Synopsis: <control>-D

14930 Write the next n lines, where n is the minimum of the values of the scroll edit option and the
14931 number of lines after the current line in the edit buffer. If the current line is the last line of the
14932 edit buffer it shall be an error.

14933 Current line : Set to the last line written.

14934 Current column : Set to non-<blank>.

2600 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

14935 Write Line Number

14936 Synopsis: [1addr] = [flags]

14937 If line is not specified, it shall default to the last line in the edit buffer. Write the line number of
14938 the specified line.

14939 Current line : Unchanged.

14940 Current column : Unchanged.

14941 Execute

14942 Synopsis: [2addr] @ buffer
14943 [2addr] * buffer

14944 If no buffer is specified or is specified as ’@’ or ’*’ , the last buffer executed shall be used. If no
14945 previous buffer has been executed, it shall be an error.

14946 For each line specified by the addresses, set the current line (’.’) to the specified line, and
14947 execute the contents of the named buffer (as they were at the time the @ command was executed)
14948 as ex commands. For each line of a line-mode buffer, and all but the last line of a character-mode
14949 buffer, the ex command parser shall behave as if the line was terminated by a <newline>
14950 character.

14951 If an error occurs during this process, or a line specified by the addresses does not exist when the
14952 current line would be set to it, or more than a single line was specified by the addresses, and the
14953 contents of the edit buffer are replaced (for example, by the ex :edit command) an error message
14954 shall be written, and no more commands resulting from the execution of this command shall be
14955 processed.

14956 Current line : As specified for the individual ex commands.

14957 Current column : As specified for the individual ex commands.

14958 Regular Expressions in ex

14959 The ex utility shall support regular expressions that are a superset of the basic regular |
14960 expressions described in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 9.3, Basic |
14961 Regular Expressions. A null regular expression ("//") shall be equivalent to the last regular |
14962 expression encountered.

14963 Regular expressions can be used in addresses to specify lines and, in some commands (for
14964 example, the substitute command), to specify portions of a line to be substituted.

14965 The following constructs can be used to enhance the basic regular expressions:

14966 \< Match the beginning of a word . (See the definition of word at the beginning of Command
14967 Descriptions in ex (on page 2578).)

14968 \> Match the end of a word .

14969 ~ Match the replacement part of the last substitute command. The tilde (’˜’) character can
14970 be escaped in a regular expression to become a normal character with no special meaning.
14971 The backslash shall be discarded.

14972 When the editor option magic is not set, the only characters with special meanings shall be ’ˆ’
14973 at the beginning of a pattern, ’$’ at the end of a pattern, and ’\’ . The characters ’.’ , ’*’ ,
14974 ’[’ , and ’˜’ shall be treated as ordinary characters unless preceded by a ’\’ ; when preceded
14975 by a ’\’ they shall regain their special meaning, or in the case of backslash, be handled as a
14976 single backslash. Backslashes used to escape other characters shall be discarded.

Shell and Utilities, Issue 6 2601

ex Utilities

14977 Replacement Strings in ex

14978 The character ’&’ (’\&’ if the editor option magic is not set) in the replacement string shall
14979 stand for the text matched by the pattern to be replaced. The character ’˜’ (’\˜’ if magic is not
14980 set) shall be replaced by the replacement part of the previous substitute command. The
14981 sequence ’\n’ , where n is an integer, shall be replaced by the text matched by the pattern
14982 enclosed in the nth set of parentheses ’\(’ and ’\)’ .

14983 The strings ’\l’ , ’\u’ , ’\L’ , and ’\U’ can be used to modify the case of elements in the
14984 replacement string (using the ’\&’ or "\" digit) notation. The string ’\l’ (’\u’) shall cause
14985 the character that follows to be converted to lowercase (uppercase). The string ’\L’ (’\U’)
14986 shall cause all characters subsequent to it to be converted to lowercase (uppercase) as they are
14987 inserted by the substitution until the string ’\e’ or ’\E’ , or the end of the replacement string,
14988 is encountered.

14989 Otherwise, any character following a backslash shall be treated as that literal character, and the
14990 escaping backslash shall be discarded.

14991 An example of case conversion with the s command is as follows:

14992 : p
14993 The cat sat on the mat.
14994 : s/\<.at\>/\u&/gp
14995 The Cat Sat on the Mat.
14996 : s/S\(.*\)M/S\U\1\eM/p
14997 The Cat SAT ON THE Mat.

14998 Edit Options in ex

14999 The ex utility has a number of options that modify its behavior. These options have default
15000 settings, which can be changed using the set command.

15001 Options are Boolean unless otherwise specified.

15002 autoindent, ai

15003 [Default unset]

15004 If autoindent is set, each line in input mode shall be indented (using first as many <tab>
15005 characters as possible, as determined by the editor option tabstop, and then using <space>
15006 characters) to align with another line, as follows:

15007 1. If in open or visual mode and the text input is part of a line-oriented command (see the
15008 EXTENDED DESCRIPTION in vi), align to the first column. Otherwise, if in open or
15009 visual mode, indentation for each line shall be set as follows:

15010 a. If a line was previously inserted as part of this command, it shall be set to the
15011 indentation of the last inserted line by default, or as otherwise specified for the |
15012 <control>-D character in Input Mode Commands in vi (on page 3235). |

15013 b. Otherwise, it shall be set to the indentation of the previous current line, if any;
15014 otherwise, to the first column.

15015 2. For the ex a, i, and c commands, indentation for each line shall be set as follows:

15016 a. If a line was previously inserted as part of this command, it shall be set to the
15017 indentation of the last inserted line by default, or as otherwise specified for the eof
15018 character in Scroll (on page 2577).

2602 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15019 b. Otherwise, if the command is the ex a command, it shall be set to the line appended
15020 after, if any; otherwise to the first column.

15021 c. Otherwise, if the command is the ex i command, it shall be set to the line inserted
15022 before, if any; otherwise to the first column.

15023 d. Otherwise, if the command is the ex c command, it shall be set to the indentation of
15024 the line replaced.

15025 autoprint, ap

15026 [Default set]

15027 If autoprint is set, the current line shall be written after each ex command that modifies the
15028 contents of the current edit buffer, and after each tag command for which the tag search pattern
15029 was found or tag line number was valid, unless:

15030 1. The command was executed while in open or visual mode.

15031 2. The command was executed as part of a global or v command or @ buffer execution.

15032 3. The command was the form of the read command that reads a file into the edit buffer.

15033 4. The command was the append, change, or insert command.

15034 5. The command was not terminated by a <newline> character.

15035 6. The current line shall be written by a flag specified to the command; for example, delete #
15036 shall write the current line as specified for the flag modifier to the delete command, and
15037 not as specified by the autoprint edit option.

15038 autowrite, aw

15039 [Default unset]

15040 If autowrite is set, and the edit buffer has been modified since it was last completely written to
15041 any file, the contents of the edit buffer shall be written as if the ex write command had been
15042 specified without arguments, before each command affected by the autowrite edit option is
15043 executed. Appending the character ’!’ to the command name of any of the ex commands
15044 except ’!’ shall prevent the write. If the write fails, it shall be an error and the command shall
15045 not be executed. |

15046 beautify, bf

15047 XSI [Default unset]

15048 If beautify is set, all non-printable characters, other than <tab>, <newline>, and <form-feed>
15049 characters, shall be discarded from text read in from files. |

15050 directory, dir |

15051 [Default implementation-defined] |

15052 The value of this option specifies the directory in which the editor buffer is to be placed. If this
15053 directory is not writable by the user, the editor shall quit. |

Shell and Utilities, Issue 6 2603

ex Utilities

15054 edcompatible, ed |

15055 [Default unset] |

15056 Causes the presence of g and c suffixes on substitute commands to be remembered, and toggled
15057 by repeating the suffixes. |

15058 errorbells, eb

15059 [Default unset]

15060 If the editor is in ex mode, and the terminal does not support a standout mode (such as inverse
15061 video), and errorbells is set, error messages shall be preceded by alerting the terminal.

15062 exrc

15063 [Default unset]

15064 If exrc is set, ex shall access any .exrc file in the current directory, as described in Initialization in
15065 ex and vi (on page 2569). If exrc is not set, ex shall ignore any .exrc file in the current directory
15066 during initialization, unless the current directory is that named by the HOME environment
15067 variable.

15068 ignorecase, ic

15069 [Default unset]

15070 If ignorecase is set, characters that have uppercase and lowercase representations shall have
15071 those representations considered as equivalent for purposes of regular expression comparison.

15072 The ignorecase edit option shall affect all remembered regular expressions; for example,
15073 unsetting the ignorecase edit option shall cause a subsequent vi n command to search for the
15074 last basic regular expression in a case-sensitive fashion. |

15075 lisp |

15076 [Default unset] |

15077 autoindent mode and the (,), {, }, [[, and]] commands in visual mode are suitably modified for |
15078 LISP code. |

15079 list

15080 [Default unset]

15081 If list is set, edit buffer lines written while in ex command mode shall be written as specified for
15082 the print command with the l flag specified. In open or visual mode, each edit buffer line shall
15083 be displayed as specified for the ex print command with the l flag specified. In open or visual
15084 text input mode, when the cursor does not rest on any character in the line, it shall rest on the
15085 ’$’ marking the end of the line.

2604 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15086 magic

15087 [Default set]

15088 If magic is set, modify the interpretation of characters in regular expressions and substitution
15089 replacement strings (see Regular Expressions in ex (on page 2601) and Replacement Strings in
15090 ex (on page 2602)).

15091 mesg

15092 [Default set]

15093 If mesg is set, the permission for others to use the write or talk commands to write to the
15094 terminal shall be turned on while in open or visual mode. The shell-level command mesg n shall
15095 take precedence over any setting of the ex mesg option; that is, if mesg y was issued before the
15096 editor started (or in a shell escape), such as:

15097 :!mesg y

15098 the mesg option in ex shall suppress incoming messages, but the mesg option shall not enable
15099 incoming messages if mesg n was issued.

15100 number, nu

15101 [Default unset]

15102 If number is set, edit buffer lines written while in ex command mode shall be written with line
15103 numbers, in the format specified by the print command with the # flag specified. In ex text input
15104 mode, each line shall be preceded by the line number it will have in the file.

15105 In open or visual mode, each edit buffer line shall be displayed with a preceding line number, in
15106 the format specified by the ex print command with the # flag specified. This line number shall
15107 not be considered part of the line for the purposes of evaluating the current column; that is,
15108 column position 1 shall be the first column position after the format specified by the print
15109 command.

15110 paragraphs, para

15111 [Default in the POSIX locale IPLPPPQPP LIpplpipbp]

15112 The paragraphs edit option shall define additional paragraph boundaries for the open and visual
15113 mode commands. The paragraphs edit option can be set to a character string consisting of zero
15114 or more character pairs. It shall be an error to set it to an odd number of characters.

15115 prompt

15116 [Default set]

15117 If prompt is set, ex command mode input shall be prompted for with a colon (’:’); when unset,
15118 no prompt shall be written.

Shell and Utilities, Issue 6 2605

ex Utilities

15119 readonly

15120 [Default see text]

15121 If readonly edit option is set, read-only mode shall be enabled (see Write (on page 2596)). The
15122 readonly edit option shall be initialized to set if either of the following conditions are true:

15123 • The command-line option −R was specified.

15124 • Performing actions equivalent to the access() function called with the following arguments
15125 indicates that the file lacks write permission:

15126 1. The current path name is used as the path argument.

15127 2. The constant W_OK is used as the amode argument.

15128 The readonly edit option may be initialized to set for other, implementation-defined reasons. |
15129 The readonly edit option shall not be initialized to unset based on any special privileges of the |
15130 user or process. The readonly edit option shall be reinitialized each time that the contents of the
15131 edit buffer are replaced (for example, by an edit or next command) unless the user has explicitly
15132 set it, in which case it shall remain set until the user explicitly unsets it. Once unset, it shall again
15133 be reinitialized each time that the contents of the edit buffer are replaced. |

15134 redraw |

15135 [Default unset] |

15136 The editor simulates an intelligent terminal on a dumb terminal. (Since this is likely to require a
15137 large amount of output to the terminal, it is useful only at high transmission speeds.) |

15138 remap

15139 [Default set]

15140 If remap is set, map translation shall allow for maps defined in terms of other maps; translation
15141 shall continue until a final product is obtained. If unset, only a one-step translation shall be done.

15142 report

15143 [Default 5]

15144 The value of this report edit option specifies what number of lines being added, copied, deleted,
15145 or modified in the edit buffer will cause an informational message to be written to the user. The
15146 following conditions shall cause an informational message. The message shall contain the
15147 number of lines added, copied, deleted, or modified, but is otherwise unspecified.

15148 • An ex or vi editor command, other than open, undo, or visual, that modifies at least the value
15149 of the report edit option number of lines, and which is not part of an ex global or v
15150 command, or ex or vi buffer execution, shall cause an informational message to be written.

15151 • An ex yank or vi y or Y command, that copies at least the value of the report edit option plus
15152 1 number of lines, and which is not part of an ex global or v command, or ex or vi buffer
15153 execution, shall cause an informational message to be written.

15154 • An ex global, v, open, undo, or visual command or ex or vi buffer execution, that adds or
15155 deletes a total of at least the value of the report edit option number of lines, and which is not
15156 part of an ex global or v command, or ex or vi buffer execution, shall cause an informational
15157 message to be written. (For example, if 3 lines were added and 8 lines deleted during an ex
15158 visual command, 5 would be the number compared against the report edit option after the
15159 command completed.

2606 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15160 scroll, scr

15161 [Default (number of lines in the display −1)/2]

15162 The value of the scroll edit option shall determine the number of lines scrolled by by the ex
15163 <control>-D and z commands. For the vi <control>-D and <control>-U commands, it shall be the
15164 initial number of lines to scroll when no previous <control>-D or <control>-U command has
15165 been executed.

15166 sections

15167 [Default in the POSIX locale NHSHH HUnhsh]

15168 The sections edit option shall define additional section boundaries for the open and visual mode
15169 commands. The sections edit option can be set to a character string consisting of zero or more
15170 character pairs; it shall be an error to set it to an odd number of characters.

15171 shell, sh

15172 [Default from the environment variable SHELL]

15173 The value of this option shall be a string. The default shall be taken from the SHELL
15174 environment variable. If the SHELL environment variable is null or empty, the sh (see sh) utility
15175 shall be the default.

15176 shiftwidth, sw

15177 [Default 8]

15178 The value of this option shall give the width in columns of an indentation level used during
15179 autoindentation and by the shift commands (< and >).

15180 showmatch, sm

15181 [Default unset]

15182 The functionality described for the showmatch edit option need not be supported on block-
15183 mode terminals or terminals with insufficient capabilities.

15184 If showmatch is set, in open or visual mode, when a ’)’ or ’}’ is typed, if the matching ’(’ or
15185 ’{’ is currently visible on the display, the matching ’(’ or ’{’ shall be flagged moving the
15186 cursor to its location for an unspecified amount of time.

15187 showmode

15188 [Default unset]

15189 If showmode is set, in open or visual mode, the current mode that the editor is in shall be
15190 displayed on the last line of the display. Command mode and text input mode shall be
15191 differentiated; other unspecified modes and implementation-defined information may be |
15192 displayed. |

Shell and Utilities, Issue 6 2607

ex Utilities

15193 slowopen

15194 [Default unset]

15195 If slowopen is set during open and visual text input modes, the editor shall not update portions
15196 of the display other than those screen columns that display the characters entered by the user
15197 (see Input Mode Commands in vi (on page 3235)).

15198 tabstop, ts

15199 [Default 8]

15200 The value of this edit option shall specify the column boundary used by a <tab> character in the
15201 display (see autoprint, ap (on page 2603) and Input Mode Commands in vi (on page 3235)).

15202 taglength, tl

15203 [Default zero]

15204 The value of this edit option shall specify the maximum number of characters that are
15205 considered significant in the user-specified tag name and in the tag name from the tags file. If the
15206 value is zero, all characters in both tag names shall be significant.

15207 tags

15208 [Default see text]

15209 The value of this edit option shall be a string of <blank> character-delimited path names of files
15210 used by the tag command. The default value is unspecified.

15211 term

15212 [Default from the environment variable TERM]

15213 The value of this edit option shall be a string. The default shall be taken from the TERM variable
15214 in the environment. If the TERM environment variable is empty or null, the default is
15215 unspecified. The editor shall use the value of this edit option to determine the type of the display
15216 device.

15217 The results are unspecified if the user changes the value of the term edit option after editor
15218 initialization.

15219 terse

15220 [Default unset]

15221 If terse is set, error messages may be less verbose. However, except for this caveat, error
15222 messages are unspecified. Furthermore, not all error messages need change for different settings
15223 of this option.

15224 warn

15225 [Default set]

15226 If warn is set, and the contents of the edit buffer have been modified since they were last
15227 completely written, the editor shall write a warning message before certain ! commands (see
15228 Escape (on page 2599)).

2608 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15229 window

15230 [Default see text]

15231 A value used in open and visual mode, by the <control>-B and <control>-F commands, and, in
15232 visual mode, to specify the number of lines displayed when the screen is repainted.

15233 If the −w command-line option is not specified, the default value shall be set to the value of the
15234 LINES environment variable. If the LINES environment variable is empty or null, the default
15235 shall be the number of lines in the display minus 1.

15236 Setting the window edit option to zero or to a value greater than the number of lines in the
15237 display minus 1 (either explicitly or based on the −w option or the LINES environment variable)
15238 shall cause the window edit option to be set to the number of lines in the display minus 1.

15239 The baud rate of the terminal line may change the default in an implementation-defined manner. |

15240 wrapmargin, wm

15241 [Default 0]

15242 If the value of this edit option is zero, it shall have no effect.

15243 If not in the POSIX locale, the effect of this edit option is implementation-defined. |

15244 Otherwise, it shall specify a number of columns from the ending margin of the terminal.

15245 During open and visual text input modes, for each character for which any part of the character
15246 is displayed in a column that is less than wrapmargin columns from the ending margin of the
15247 screen, the editor shall behave as follows:

15248 1. If the character triggering this event is a <blank> character, it, and all immediately
15249 preceding <blank> characters on the current line entered during the execution of the
15250 current text input command, shall be discarded, and the editor shall behave as if the user
15251 had entered a single <newline> character instead. In addition, if the next user-entered
15252 character is a <space> character, it shall be discarded as well.

15253 2. Otherwise, if there are one or more <blank> characters on the current line immediately
15254 preceding the last group of inserted non-<blank> characters which was entered during the
15255 execution of the current text input command, the <blank> characters shall be replaced as if
15256 the user had entered a single <newline> character instead.

15257 If the autoindent edit option is set, and the events described in 1. or 2. are performed, any
15258 <blank> characters at or after the cursor in the current line shall be discarded.

15259 The ending margin shall be determined by the system or overridden by the user, as described for
15260 COLUMNS in in the ENVIRONMENT VARIABLES section and the Base Definitions volume of |
15261 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

15262 wrapscan, ws

15263 [Default set]

15264 If wrapscan is set, searches (the ex / or ? addresses, or open and visual mode /, ?, N, and n
15265 commands) shall wrap around the beginning or end of the edit buffer; when unset, searches
15266 shall stop at the beginning or end of the edit buffer.

Shell and Utilities, Issue 6 2609

ex Utilities

15267 writeany, wa

15268 [Default unset]

15269 If writeany is set, some of the checks performed when executing the ex write commands shall be
15270 inhibited, as described in editor option autowrite.

15271 EXIT STATUS
15272 The following exit values shall be returned:

15273 0 Successful completion.

15274 >0 An error occurred.

15275 CONSEQUENCES OF ERRORS
15276 When any error is encountered and the standard input is not a terminal device file, ex shall not
15277 write the file or return to command or text input mode, and shall terminate with a non-zero exit
15278 status.

15279 Otherwise, when an unrecoverable error is encountered, it shall be equivalent to a SIGHUP
15280 asynchronous event.

15281 Otherwise, when an error is encountered, the editor shall behave as specified in Command Line
15282 Parsing in ex (on page 2573).

15283 APPLICATION USAGE
15284 If a SIGSEGV signal is received while ex is saving a file, the file might not be successfully saved.

15285 The next command can accept more than one file, so usage such as:

15286 next ‘ls [abc]*‘

15287 is valid; it would not be valid for the edit or read commands, for example, because they expect
15288 only one file and unspecified results occur. |

15289 EXAMPLES
15290 None.

15291 RATIONALE
15292 The ex/vi specification is based on the historical practice found in the 4 BSD and System V
15293 implementations of ex and vi. A freely redistributable implementation of ex/vi, which is
15294 tracking IEEE Std. 1003.1-200x fairly closely, and demonstrates the intended changes between
15295 historical implementations and IEEE Std. 1003.1-200x, may be obtained by anonymous FTP |
15296 from: |

15297 ftp://ftp.rdg.opengroup/pub/mirrors/nvi

15298 A restricted editor (both the historical red utility and modifications to ex) were considered and
15299 rejected for inclusion. Neither option provided the level of security that users might expect.

15300 It is recognized that ex visual mode and related features would be difficult, if not impossible, to
15301 implement satisfactorily on a block-mode terminal, or a terminal without any form of cursor
15302 addressing; thus, it is not a mandatory requirement that such features should work on all
15303 terminals. It is the intention, however, that an ex implementation should provide the full set of
15304 capabilities on all terminals capable of supporting them.

2610 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15305 Options

15306 The −c replacement for +command was inspired by the −e option of sed. Historically, all such
15307 commands (see edit and next as well) were executed from the last line of the edit buffer. This
15308 meant, for example, that "+/pattern" would fail unless the wrapscan option was set.
15309 IEEE Std. 1003.1-200x requires conformance to historical practice. Historically, some
15310 implementations restricted the ex commands that could be listed as part of the command line
15311 arguments. For consistency, IEEE Std. 1003.1-200x does not permit these restrictions.

15312 In historical implementations of the editor, the −R option (and the readonly edit option) only
15313 prevented overwriting of files; appending to files was still permitted, mapping loosely into the
15314 csh noclobber variable. Some implementations, however, have not followed this semantic, and
15315 readonly does not permit appending either. IEEE Std. 1003.1-200x follows the latter practice,
15316 believing that it is a more obvious and intuitive meaning of readonly.

15317 The −s option suppresses all interactive user feedback and is useful for editing scripts in batch
15318 jobs. The list of specific effects is historical practice. The terminal type ‘‘incapable of supporting
15319 open and visual modes’’ has historically been named ‘‘dumb’’.

15320 The −t option was required because the ctags utility appears in IEEE Std. 1003.1-200x and the
15321 option is available in all historical implementations of ex.

15322 Historically, the ex and vi utilities accepted a −x option, which did encryption based on the
15323 algorithm found in the historical crypt utility. The −x option for encryption, and the associated
15324 crypt utility, were omitted because the algorithm used was not specifiable and the export control
15325 laws of some nations make it difficult to export cryptographic technology. In addition, it did not
15326 historically provide the level of security that users might expect.

15327 Standard Input

15328 An end-of-file condition is not equivalent to an end-of-file character. A common end-of-file
15329 character, <control>-D, is historically an ex command.

15330 There was no maximum line length in historical implementations of ex. Specifically, as it was
15331 parsed in chunks, the addresses had a different maximum length than the file names. Further,
15332 the maximum line buffer size was declared as {BUFSIZ}, which was different lengths on
15333 different systems. This version selected the value of {LINE_MAX} to impose a reasonable
15334 restriction on portable usage of ex and to aid test suite writers in their development of realistic
15335 tests that exercise this limit.

15336 Input Files

15337 It was an explicit decision by the standard developers that a <newline> character be added to
15338 any file lacking one. It was believed that this feature of ex and vi was relied on by users in order
15339 to make text files lacking a trailing <newline> more portable. It is recognized that this will
15340 require a user-specified option or extension for implementations that permit ex and vi to edit
15341 files of type other than text if such files are not otherwise identified by the system. It was agreed
15342 that the ability to edit files of arbitrary type can be useful, but it was not considered necessary to
15343 mandate that an ex or vi implementation be required to handle files other than text files.

15344 The paragraph in the INPUT FILES section, ‘‘By default, . . .’’, is intended to close a long-standing
15345 security problem in ex and vi, that of the ‘‘modeline’’ or ‘‘modelines’’ edit option. This feature
15346 allows any line in the first or last five lines of the file containing the strings "ex:" or "vi:"
15347 (and, apparently, "ei:" or "vx:") to be a line containing editor commands, and ex interprets all
15348 the text up to the next ’:’ or <newline> as a command. Consider the consequences, for
15349 example, of an unsuspecting user using ex or vi as the editor when replying to a mail message in
15350 which a line such as:

Shell and Utilities, Issue 6 2611

ex Utilities

15351 ex:! rm −rf :

15352 appeared in the signature lines. The standard developers believed strongly that an editor should
15353 not by default interpret any lines of a file. Vendors are strongly urged to delete this feature from
15354 their implementations of ex and vi.

15355 Asynchronous Events

15356 The intention of the phrase ‘‘complete write’’ is that the entire edit buffer be written to stable
15357 storage. The note regarding temporary files is intended for implementations that use temporary
15358 files to back edit buffers unnamed by the user.

15359 Historically, SIGQUIT was ignored by ex, but was the equivalent of the Q command in visual
15360 mode; that is, it exited visual mode and entered ex mode. IEEE Std. 1003.1-200x permits, but does
15361 not require, this behavior. Historically, SIGINT was often used by vi users to terminate text
15362 input mode (<control>-C is often easier to enter than <ESC>). Some implementations of vi
15363 alerted the terminal on this event, and some did not. IEEE Std. 1003.1-200x requires that SIGINT
15364 behave identically to <ESC>, and that the terminal not be alerted.

15365 Historically, suspending the ex editor during text input mode was similar to SIGINT, as
15366 completed lines were retained, but any partial line discarded, and the editor returned to
15367 command mode. IEEE Std. 1003.1-200x is silent on this issue; implementations are encouraged to
15368 follow historical practice, where possible.

15369 Historically, the vi editor did not treat SIGTSTP as an asynchronous event, and it was therefore
15370 impossible to suspend the editor in visual text input mode. There are two major reasons for this.
15371 The first is that SIGTSTP is a broadcast signal on UNIX systems, and the chain of events where
15372 the shell execs an application that then execs vi usually caused confusion for the terminal state if
15373 SIGTSTP was delivered to the process group in the default manner. The second was that most
15374 implementations of the UNIX curses package are not reentrant, and the receipt of SIGTSTP at the
15375 wrong time will cause them to crash. IEEE Std. 1003.1-200x is silent on this issue;
15376 implementations are encouraged to treat suspension as an asynchronous event if possible.

15377 Historically, modifications to the edit buffer made before SIGINT interrupted an operation were
15378 retained; that is, anywhere from zero to all of the lines to be modified might have been modified
15379 by the time the SIGINT arrived. These changes were not discarded by the arrival of SIGINT.
15380 IEEE Std. 1003.1-200x permits this behavior, noting that the undo command is required to be able
15381 to undo these partially completed commands.

15382 The action taken for signals other than SIGINT, SIGCONT, SIGHUP, and SIGTERM is
15383 unspecified because some implementations attempt to save the edit buffer in a useful state when
15384 other signals are received.

15385 Standard Error

15386 For ex/vi, diagnostic messages are those messages reported as a result of a failed attempt to
15387 invoke ex or vi, such as invalid options or insufficient resources, or an abnormal termination
15388 condition. Diagnostic messages should not be confused with the error messages generated by
15389 inappropriate or illegal user commands.

2612 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15390 Initialization in ex and vi

15391 If an ex command (other than cd, chdir, or source) has a file name argument, one or both of the
15392 alternate and current path names will be set. Informally, they are set as follows:

15393 1. If the ex command is one that replaces the contents of the edit buffer, and it succeeds, the
15394 current path name will be set to the file name argument (the first file name argument in the
15395 case of the next command) and the alternate path name will be set to the previous current
15396 path name, if there was one.

15397 2. In the case of the file read/write forms of the read and write commands, if there is no
15398 current path name, the current path name will be set to the file name argument.

15399 3. Otherwise, the alternate path name will be set to the file name argument.

15400 For example, :edit foo and :recover foo, when successful, set the current path name, and, if there
15401 was a previous current path name, the alternate path name. The commands :write, !command,
15402 and :edit set neither the current or alternate path names. If the :edit foo command were to fail
15403 for some reason, the alternate path name would be set. The read and write commands set the
15404 alternate path name to their file argument, unless the current path name is not set, in which case
15405 they set the current path name to their file arguments. The alternate path name was not
15406 historically set by the :source command. IEEE Std. 1003.1-200x requires conformance to |
15407 historical practice. Implementations adding commands that take file names as arguments are |
15408 encouraged to set the alternate path name as described here.

15409 Historically, ex and vi read the .exrc file in the $HOME directory twice, if the editor was executed
15410 in the $HOME directory. IEEE Std. 1003.1-200x prohibits this behavior.

15411 Historically, the 4 BSD ex and vi read the $HOME and local .exrc files if they were owned by the
15412 real ID of the user, or the sourceany option was set, regardless of other considerations. This was
15413 a security problem because it is possible to put normal UNIX system commands inside a .exrc
15414 file. IEEE Std. 1003.1-200x does not specify the sourceany option, and historical implementations
15415 are encouraged to delete it.

15416 The .exrc files must be owned by the real ID of the user, and not writeable by anyone other than
15417 the owner. The appropriate privileges exception is intended to permit users to acquire special
15418 privileges, but continue to use the .exrc files in their home directories.

15419 System V Release 3.2 and later vi implementations added the option [no]exrc. The behavior is
15420 that local .exrc files are read-only if the exrc option is set. The default for the exrc option was off,
15421 so by default, local .exrc files were not read. The problem this was intended to solve was that
15422 System V permitted users to give away files, so there is no possible ownership or writeability
15423 test to ensure that the file is safe. This is still a security problem on systems where users can give
15424 away files, but there is nothing additional that IEEE Std. 1003.1-200x can do. The |
15425 implementation-defined exception is intended to permit groups to have local .exrc files that are |
15426 shared by users, by creating pseudo-users to own the shared files.

15427 IEEE Std. 1003.1-200x does not mention system-wide ex and vi start-up files. While they exist in
15428 several implementations of ex and vi, they are not present in any implementations considered
15429 historical practice by IEEE Std. 1003.1-200x. Implementations that have such files should use
15430 them only if they are owned by the real user ID or an appropriate user (for example, root on
15431 UNIX systems) and if they are not writeable by any user other than their owner. System-wide
15432 start-up files should be read before the EXINIT variable, $HOME/.exrc or local .exrc files are
15433 evaluated.

15434 Historically, any ex command could be entered in the EXINIT variable or the .exrc file, although
15435 ones requiring that the edit buffer already contain lines of text generally caused historical
15436 implementations of the editor to drop core. IEEE Std. 1003.1-200x requires that any ex command

Shell and Utilities, Issue 6 2613

ex Utilities

15437 be permitted in the EXINIT variable and .exrc files, for simplicity of specification and
15438 consistency, although many of them will obviously fail under many circumstances.

15439 The initialization of the contents of the edit buffer uses the phrase ‘‘the effect shall be’’ with
15440 regard to various ex commands. The intent of this phrase is that edit buffer contents loaded
15441 during the initialization phase not be lost; that is, loading the edit buffer should fail if the .exrc
15442 file read in the contents of a file and did not subsequently write the edit buffer. An additional
15443 intent of this phrase is to specify that the initial current line and column is set as specified for the
15444 individual ex commands.

15445 Historically, the −t option behaved as if the tag search were a +command ; that is, it was executed
15446 from the last line of the file specified by the tag. This resulted in the search failing if the pattern
15447 was a forward search pattern and the wrapscan edit option was not set. IEEE Std. 1003.1-200x
15448 does not permit this behavior, requiring that the search for the tag pattern be performed on the
15449 entire file, and, if not found, that the current line be set to a more reasonable location in the file.

15450 Historically, the empty edit buffer presented for editing when a file was not specified by the user
15451 was unnamed. This is permitted by IEEE Std. 1003.1-200x; however, implementations are
15452 encouraged to provide users a temporary file name for this buffer because it permits them the
15453 use of ex commands that use the current path name during temporary edit sessions.

15454 Historically, the file specified using the −t option was not part of the current argument list. This
15455 practice is permitted by IEEE Std. 1003.1-200x; however, implementations are encouraged to
15456 include its name in the current argument list for consistency.

15457 Historically, the −c command was generally not executed until a file that already exists was
15458 edited. IEEE Std. 1003.1-200x requires conformance to this historical practice. Commands that
15459 could cause the −c command to be executed include the ex commands edit, next, recover,
15460 rewind, and tag, and the vi commands <control>-ˆ and <control>-]. Historically, reading a file
15461 into an edit buffer did not cause the −c command to be executed (even though it might set the
15462 current path name) with the exception that it did cause the −c command to be executed if: the
15463 editor was in ex mode, the edit buffer had no current path name, the edit buffer was empty, and
15464 no read commands had yet been attempted. For consistency and simplicity of specification,
15465 IEEE Std. 1003.1-200x does not permit this behavior.

15466 Historically, the −r option was the same as a normal edit session if there was no recovery
15467 information available for the file. This allowed users to enter:

15468 vi −r *.c

15469 and recover whatever files were recoverable. In some implementations, recovery was attempted
15470 only on the first file named, and the file was not entered into the argument list; in others,
15471 recovery was attempted for each file named. In addition, some historical implementations
15472 ignored −r if −t was specified or did not support command line file arguments with the −t option.
15473 For consistency and simplicity of specification, IEEE Std. 1003.1-200x disallows these special
15474 cases, and requires that recovery be attempted the first time each file is edited.

15475 Historically, vi initialized the ‘ and ’ marks, but ex did not. This meant that if the first command
15476 in ex mode was visual or if an ex command was executed first (for example, vi +10 file), vi was
15477 entered without the marks being initialized. Because the standard developers believed the marks
15478 to be generally useful, and for consistency and simplicity of specification, IEEE Std. 1003.1-200x
15479 requires that they always be initialized if in open or visual mode, or if in ex mode and the edit
15480 buffer is not empty. Not initializing it in ex mode if the edit buffer is empty is historical practice;
15481 however, it has always been possible to set (and use) marks in empty edit buffers in open and
15482 visual mode edit sessions.

2614 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15483 Addressing

15484 Historically, ex and vi accepted the additional addressing forms ’\/’ and ’\?’ . They were
15485 equivalent to "//" and "??" , respectively. They are not required by IEEE Std. 1003.1-200x,
15486 mostly because nobody can remember whether they ever did anything different historically.

15487 Historically, ex and vi permitted an address of zero for several commands, and permitted the %
15488 address in empty files for others. For consistency, IEEE Std. 1003.1-200x requires support for the
15489 former in the few commands where it makes sense, and disallows it otherwise. In addition,
15490 because IEEE Std. 1003.1-200x requires that % be logically equivalent to "1,$" , it is also
15491 supported where it makes sense and disallowed otherwise.

15492 Historically, the % address could not be followed by further addresses. For consistency and
15493 simplicity of specification, IEEE Std. 1003.1-200x requires that additional addresses be
15494 supported.

15495 All of the following are valid addresses:

15496 +++ Three lines after the current line.

15497 / re / − One line before the next occurrence of re.

15498 −2 Two lines before the current line.

15499 3 −−−− 2 Line one (note intermediate negative address).

15500 1 2 3 Line six.

15501 Any number of addresses can be provided to commands taking addresses; for example,
15502 "1,2,3,4,5p" prints lines 4 and 5, because two is the greatest valid number of addresses
15503 accepted by the print command. This, in combination with the semicolon delimiter, permits
15504 users to create commands based on ordered patterns in the file. For example, the command
15505 3;/foo/;+2print will display the first line after line 3 that contains the pattern foo , plus the next
15506 two lines. Note that the address 3; must be evaluated before being discarded because the search
15507 origin for the /foo/ command depends on this.

15508 Historically, values could be added to addresses by including them after one or more <blank>
15509 characters; for example, 3 − 5p wrote the seventh line of the file, and /foo/ 5 was the same as
15510 /foo/+5. However, only absolute values could be added; for example, 5 /foo/ was an error.
15511 IEEE Std. 1003.1-200x requires conformance to historical practice. Address offsets are separately
15512 specified from addresses because they could historically be provided to visual mode search
15513 commands.

15514 Historically, any missing addresses defaulted to the current line. This was true for leading and
15515 trailing comma-delimited addresses, and for trailing semicolon-delimited addresses. For
15516 consistency, IEEE Std. 1003.1-200x requires it for leading semicolon addresses as well.

15517 Historically, ex and vi accepted the ’ˆ’ character as both an address and as a flag offset for
15518 commands. In both cases it was identical to the ’ −’ character. IEEE Std. 1003.1-200x does not
15519 require or prohibit this behavior.

15520 Historically, the enhancements to basic regular expressions could be used in addressing; for
15521 example, ’˜’ , ’\<’ , and ’\>’ . IEEE Std. 1003.1-200x requires conformance to historical
15522 practice; that is, that regular expression usage be consistent, and that regular expression
15523 enhancements be supported wherever regular expressions are used.

Shell and Utilities, Issue 6 2615

ex Utilities

15524 Command Line Parsing in ex

15525 Historical ex command parsing was even more complex than that described here.
15526 IEEE Std. 1003.1-200x requires the subset of the command parsing that the standard developers
15527 believed was documented and that users could reasonably be expected to use in a portable
15528 fashion, and that was historically consistent between implementations. (The discarded
15529 functionality is obscure, at best.) Historical implementations will require changes in order to
15530 comply with IEEE Std. 1003.1-200x; however, users are not expected to notice any of these
15531 changes. Most of the complexity in ex parsing is to handle three special termination cases:

15532 1. The !, global, v, and the filter versions of the read and write commands are delimited by
15533 <newline> characters (they can contain vertical-line characters that are usually shell pipes).

15534 2. The ex, edit, next, and visual in open and visual mode commands all take ex commands,
15535 optionally containing vertical-line characters, as their first arguments.

15536 3. The s command takes a regular expression as its first argument, and uses the delimiting
15537 characters to delimit the command.

15538 Historically, vertical-line characters in the +command argument of the ex, edit, next, vi, and
15539 visual commands, and in the pattern and replacement parts of the s command, did not delimit the
15540 command, and in the filter cases for read and write, and the !, global, and v commands, they did
15541 not delimit the command at all. For example, the following commands are all valid:

15542 : edit +25 | s/abc/ABC/ file.c
15543 : s/ | /PIPE/
15544 : read !spel l % | columnate
15545 : global/pattern/p | l
15546 : s/a/b/ | s/c/d | set

15547 Historically, empty or <blank> filled lines in .exrc files and sourced files (as well as EXINIT |
15548 variables and ex command scripts) were treated as default commands; that is, print commands.
15549 IEEE Std. 1003.1-200x specifically requires that they be ignored when encountered in .exrc and
15550 sourced files to eliminate a common source of new user error.

15551 Historically, ex commands with multiple adjacent (or <blank>-separated) vertical lines were
15552 handled oddly when executed from ex mode. For example, the command ||| <carriage-return>,
15553 when the cursor was on line 1, displayed lines 2, 3, and 5 of the file. In addition, the command |
15554 would only display the line after the next line, instead of the next two lines. The former worked
15555 more logically when executed from vi mode, and displayed lines 2, 3, and 4.
15556 IEEE Std. 1003.1-200x requires the vi behavior; that is, a single default command and line
15557 number increment for each command separator, and trailing <newline> characters after
15558 vertical-line separators are discarded.

15559 Historically, ex permitted a single extra colon as a leading command character; for example,
15560 :g/pattern/:p was a valid command. IEEE Std. 1003.1-200x generalizes this to require that any
15561 number of leading colon characters be stripped.

15562 Historically, any prefix of the delete command could be followed without intervening <blank>
15563 characters by a flag character because in the command d p, p is interpreted as the buffer p .
15564 IEEE Std. 1003.1-200x requires conformance to historical practice.

15565 Historically, the k command could be followed by the mark name without intervening <blank>
15566 characters. IEEE Std. 1003.1-200x requires conformance to historical practice.

15567 Historically, the s command could be immediately followed by flag and option characters; for
15568 example, s/e/E/|s|sgc3p was a valid command. However, flag characters could not stand alone;
15569 for example, the commands sp and s l would fail, while the command sgp and s gl would

2616 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15570 succeed. (Obviously, the ’#’ flag character was used as a delimiter character if it followed the
15571 command.) Another issue was that option characters had to precede flag characters even when
15572 the command was fully specified; for example, the command s/e/E/pg would fail, while the
15573 command s/e/E/gp would succeed. IEEE Std. 1003.1-200x requires conformance to historical
15574 practice.

15575 Historically, the first command name that had a prefix matching the input from the user was the
15576 executed command; for example, ve, ver, and vers all executed the version command.
15577 Commands were in a specific order, however, so that a matched append, not abbreviate.
15578 IEEE Std. 1003.1-200x requires conformance to historical practice. The restriction on command
15579 search order for implementations with extensions is to avoid the addition of commands such
15580 that the historical prefixes would fail to work portably.

15581 Historical implementations of ex and vi did not correctly handle multiple ex commands,
15582 separated by vertical-line characters, that entered or exited visual mode or the editor. Because
15583 implementations of vi exist that do not exhibit this failure mode, IEEE Std. 1003.1-200x does not
15584 permit it.

15585 The requirement that alphabetic command names consist of all following alphabetic characters
15586 up to the next non-alphabetic character means that alphabetic command names must be
15587 separated from their arguments by one or more non-alphabetic characters, normally a <blank>
15588 or ’!’ character, except as specified for the exceptions, the delete, k, and s commands.

15589 Historically, the repeated execution of the ex default print commands (<control>-D, eof ,
15590 <newline>, <carriage-return>) erased any prompting character and displayed the next lines
15591 without scrolling the terminal; that is, immediately below any previously displayed lines. This
15592 provided a cleaner presentation of the lines in the file for the user. IEEE Std. 1003.1-200x does not
15593 require this behavior because it may be impossible in some situations; however,
15594 implementations are strongly encouraged to provide this semantic if possible.

15595 Historically, it was possible to change files in the middle of a command, and have the rest of the
15596 command executed in the new file; for example:

15597 :edit +25 file.c | s/abc/ABC/ | 1

15598 was a valid command, and the substitution was attempted in the newly edited file.
15599 IEEE Std. 1003.1-200x requires conformance to historical practice. The following commands are
15600 examples that exercise the ex parser:

15601 echo ’foo | bar’ > file1; echo ’foo/bar’ > file2;
15602 vi
15603 :edit +1 | s/|/PIPE / | w file 1 | e file 2 | 1 | s/\//SLASH/ | wq

15604 Historically, there was no protection in editor implementations to avoid ex global, v, @, or *
15605 commands changing edit buffers during execution of their associated commands. Because this
15606 would almost invariably result in catastrophic failure of the editor, and implementations exist
15607 that do exhibit these problems, IEEE Std. 1003.1-200x requires that changing the edit buffer
15608 during a global or v command, or during a @ or * command for which there will be more than a
15609 single execution, be an error. Implementations supporting multiple edit buffers simultaneously
15610 are strongly encouraged to apply the same semantics to switching between buffers as well.

15611 The ex command quoting required by IEEE Std. 1003.1-200x is a superset of the quoting in
15612 historical implementations of the editor. For example, it was not historically possible to escape a
15613 <blank> character in a file name; for example, :edit foo\\\ bar would report that too many file
15614 names had been entered for the edit command, and there was no method of escaping a <blank>
15615 in the first argument of an edit, ex, next, or visual command at all. IEEE Std. 1003.1-200x extends
15616 historical practice, requiring that quoting behavior be made consistent across all ex commands,

Shell and Utilities, Issue 6 2617

ex Utilities

15617 except for the map, unmap, abbreviate, and unabbreviate commands, which historically used
15618 <control>-V instead of backslashes for quoting. For those four commands, IEEE Std. 1003.1-200x
15619 requires conformance to historical practice.

15620 Backslash quoting in ex is non-intuitive. Backslash escapes are ignored unless they escape a
15621 special character; for example, when performing file argument expansion, the string "\\%" is
15622 equivalent to ’\%’ , not "\< current path name >" . This can be confusing for users because
15623 backslash is usually one of the characters that causes shell expansion to be performed, and
15624 therefore shell quoting rules must be taken into consideration. Generally, quoting characters are
15625 only considered if they escape a special character, and a quoting character must be provided for
15626 each layer of parsing for which the character is special. As another example, only a single
15627 backslash is necessary for the ’\l’ sequence in substitute replacement patterns, because the
15628 character ’l’ is not special to any parsing layer above it.

15629 <control>-V quoting in ex is slightly different from backslash quoting. In the four commands
15630 where <control>-V quoting applies (abbreviate, unabbreviate, map, and unmap), any character
15631 may be escaped by a <control>-V whether it would have a special meaning or not.
15632 IEEE Std. 1003.1-200x requires conformance to historical practice.

15633 Historical implementations of the editor did not require delimiters within character classes to be
15634 escaped; for example, the command :s/[/]// on the string "xxx/yyy" would delete the ’/’ from
15635 the string. IEEE Std. 1003.1-200x disallows this historical practice for consistency and because it
15636 places a large burden on implementations by requiring that knowledge of regular expressions be
15637 built into the editor parser.

15638 Historically, quoting <newline> characters in ex commands was handled inconsistently. In most
15639 cases, the <newline> always terminated the command, regardless of any preceding escape
15640 character, because backslash characters did not escape <newline> characters for most ex
15641 commands. However, some ex commands (for example, s, map, and abbreviation) permitted
15642 <newline> characters to be escaped (although in the case of map and abbreviation, <control>-V
15643 characters escaped them instead of backslashes). This was true in not only the command line,
15644 but also .exrc and sourced files. For example, the command:

15645 map = foo<control-V><newline>bar

15646 would succeed, although it was sometimes difficult to get the <control>-V and the inserted
15647 <newline> passed to the ex parser. For consistency and simplicity of specification,
15648 IEEE Std. 1003.1-200x requires that it be possible to escape <newline> characters in ex commands
15649 at all times, using backslashes for most ex commands, and using <control>-V characters for the
15650 map and abbreviation commands. For example, the command print<newline>list is required to
15651 be parsed as the single command print<newline>list. While this differs from historical practice,
15652 IEEE Std. 1003.1-200x developers believed it unlikely that any script or user depended on the
15653 historical behavior.

15654 Historically, an error in a command specified using the −c option did not cause the rest of the −c
15655 commands to be discarded. IEEE Std. 1003.1-200x disallows this for consistency with mapped
15656 keys, the @, global, source, and v commands, the EXINIT environment variable, and the .exrc
15657 files.

2618 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15658 Input Editing in ex

15659 One of the common uses of the historical ex editor is over slow network connections. Editors
15660 that run in canonical mode can require far less traffic to and from, and far less processing on, the
15661 host machine, as well as more easily supporting block-mode terminals. For these reasons,
15662 IEEE Std. 1003.1-200x requires that ex be implemented using canonical mode input processing,
15663 as was done historically.

15664 IEEE Std. 1003.1-200x does not require the historical 4 BSD input editing characters ‘‘word erase’’
15665 or ‘‘literal next’’. For this reason, it is unspecified how they are handled by ex, although they
15666 must have the required effect. Implementations that resolve them after the line has been ended
15667 using a <newline> or <control>-M character, and implementations that rely on the underlying
15668 system terminal support for this processing, are both conforming. Implementations are strongly
15669 urged to use the underlying system functionality, if at all possible, for compatibility with other
15670 system text input interfaces.

15671 Historically, when the eof character was used to decrement the autoindent level, the cursor
15672 moved to display the new end of the autoindent characters, but did not move the cursor to a
15673 new line, nor did it erase the <control>-D character from the line. IEEE Std. 1003.1-200x does not
15674 specify that the cursor remain on the same line or that the rest of the line is erased; however,
15675 implementations are strongly encouraged to provide the best possible user interface; that is, the
15676 cursor should remain on the same line, and any <control>-D character on the line should be
15677 erased.

15678 IEEE Std. 1003.1-200x does not require the historical 4 BSD input editing character ‘‘reprint’’,
15679 traditionally <control>-R, which redisplayed the current input from the user. For this reason,
15680 and because the functionality cannot be implemented after the line has been terminated by the
15681 user, IEEE Std. 1003.1-200x makes no requirements about this functionality. Implementations are
15682 strongly urged to make this historical functionality available, if possible.

15683 Historically, <control>-Q did not perform a literal next function in ex, as it did in vi.
15684 IEEE Std. 1003.1-200x requires conformance to historical practice to avoid breaking historical ex
15685 scripts and .exrc files.

15686 eof

15687 Whether the eof character immediately modifies the autoindent characters in the prompt is left
15688 unspecified so that implementations can conform in the presence of systems that do not support
15689 this functionality. Implementations are encouraged to modify the line and redisplay it
15690 immediately, if possible.

15691 The specification of the handling of the eof character differs from historical practice only in that
15692 eof characters are not discarded if they follow normal characters in the text input. Historically,
15693 they were always discarded.

15694 Command Descriptions in ex

15695 Historically, several commands (for example, global, v, visual, s, write, wq, yank, !, <, >, &, and
15696 ~) were executable in empty files (that is, the default address(es) were 0), or permitted explicit
15697 addresses of 0 (for example, 0 was a valid address, or 0,0 was a valid range). Addresses of 0, or
15698 command execution in an empty file, make sense only for commands that add new text to the
15699 edit buffer or write commands (because users may wish to write empty files).
15700 IEEE Std. 1003.1-200x requires this behavior for such commands and disallows it otherwise, for
15701 consistency and simplicity of specification.

15702 A count to an ex command has been historically corrected to be no greater than the last line in a
15703 file; for example, in a five-line file, the command 1,6print would fail, but the command 1print300

Shell and Utilities, Issue 6 2619

ex Utilities

15704 would succeed. IEEE Std. 1003.1-200x requires conformance to historical practice.

15705 Historically, the use of flags in ex commands could be obscure. General historical practice was as
15706 described by IEEE Std. 1003.1-200x, but there were some special cases. For example, the list,
15707 number, and print commands ignored trailing address offsets; for example, 3p +++# would
15708 display line 3, and 3 would be the current line after the execution of the command. The open and
15709 visual commands ignored both the trailing offsets and the trailing flags. Also, flags specified to
15710 the open and visual commands interacted badly with the list edit option, and setting and then
15711 unsetting it during the open/visual session would cause vi to stop displaying lines in the
15712 specified format. For consistency and simplicity of specification, IEEE Std. 1003.1-200x does not
15713 permit any of these exceptions to the general rule.

15714 IEEE Std. 1003.1-200x uses the word copy in several places when discussing buffers. This is not
15715 intended to imply implementation.

15716 Historically, ex users could not specify numeric buffers because of the ambiguity this would
15717 cause; for example, in the command 3 delete 2, it is unclear whether 2 is a buffer name or a
15718 count . IEEE Std. 1003.1-200x requires conformance to historical practice by default, but does not
15719 preclude extensions.

15720 Historically, the contents of the unnamed buffer were frequently discarded after commands that
15721 did not explicitly affect it; for example, when using the edit command to switch files. For
15722 consistency and simplicity of specification, IEEE Std. 1003.1-200x does not permit this behavior.

15723 The ex utility did not historically have access to the numeric buffers, and, furthermore, deleting
15724 lines in ex did not modify their contents. For example, if, after doing a delete in vi, the user
15725 switched to ex, did another delete, and then switched back to vi, the contents of the numeric
15726 buffers would not have changed. IEEE Std. 1003.1-200x requires conformance to historical
15727 practice. Numeric buffers are described in the ex utility in order to confine the description of
15728 buffers to a single location in IEEE Std. 1003.1-200x.

15729 The metacharacters that trigger shell expansion in file arguments match historical practice, as
15730 does the method for doing shell expansion. Implementations wishing to provide users with the
15731 flexibility to alter the set of metacharacters are encouraged to provide a shellmeta string edit
15732 option.

15733 Historically, ex commands executed from vi refreshed the screen when it did not strictly need to
15734 do so; for example, :!date > /dev/null does not require a screen refresh because the output of the
15735 UNIX date command requires only a single line of the screen. IEEE Std. 1003.1-200x requires that
15736 the screen be refreshed if it has been overwritten, but makes no requirements as to how an
15737 implementation should make that determination. Implementations may prompt and refresh the
15738 screen regardless.

15739 Abbreviate

15740 Historical practice was that characters that were entered as part of an abbreviation replacement
15741 were subject to map expansions, the showmatch edit option, further abbreviation expansions,
15742 and so on; that is, they were logically pushed onto the terminal input queue, and were not a
15743 simple replacement. IEEE Std. 1003.1-200x requires conformance to historical practice.
15744 Historical practice was that whenever a non-word character (that had not been escaped by a
15745 <control>-V) was entered after a word character, vi would check for abbreviations. The check
15746 was based on the type of the character entered before the word character of the word/non-word
15747 pair that triggered the check. The word character of the word/non-word pair that triggered the
15748 check and all characters entered before the trigger pair that were of that type were included in
15749 the check, with the exception of <blank> characters, which always delimited the abbreviation.

2620 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15750 This means that, for the abbreviation to work, the lhs must end with a word character, there can
15751 be no transitions from word to non-word characters (or vice versar) other than between the last
15752 and next-to-last characters in the lhs , and there can be no <blank> characters in the lhs . In
15753 addition, because of the historical quoting rules, it was impossible to enter a literal <control>-V
15754 in the lhs . IEEE Std. 1003.1-200x requires conformance to historical practice. Historical
15755 implementations did not inform users when abbreviations that could never be used were
15756 entered; implementations are strongly encouraged to do so.

15757 For example, the following abbreviations will work:

15758 :ab (p REPLACE
15759 :ab p REPLACE
15760 :ab ((p REPLACE

15761 The following abbreviations will not work:

15762 :ab (REPLACE
15763 :ab (pp REPLACE

15764 Historical practice is that words on the vi colon command line were subject to abbreviation
15765 expansion, including the arguments to the abbrev (and more interestingly) the unabbrev
15766 command. Because there are implementations that do not do abbreviation expansion for the first
15767 argument to those commands, this is permitted, but not required, by IEEE Std. 1003.1-200x.
15768 However, the following sequence:

15769 :ab foo bar
15770 :ab foo baz

15771 resulted in the addition of an abbreviation of "baz" for the string "bar" in historical ex/vi, and
15772 the sequence:

15773 :ab foo1 bar
15774 :ab foo2 bar
15775 :unabbreviate foo2

15776 deleted the abbreviation "foo1" , not "foo2" . These behaviors are not permitted by
15777 IEEE Std. 1003.1-200x because they clearly violate the expectations of the user.

15778 It was historical practice that <control>-V, not backslash, characters be interpreted as escaping
15779 subsequent characters in the abbreviate command. IEEE Std. 1003.1-200x requires conformance
15780 to historical practice; however, it should be noted that an abbreviation containing a <blank> will
15781 never work.

15782 Append

15783 Historically, any text following a vertical-line command separator after an append, change, or
15784 insert command became part of the insert text. For example, in the command:

15785 :g/pattern/append|stuff1

15786 a line containing the text "stuff1" would be appended to each line matching pattern. It was
15787 also historically valid to enter:

15788 :append|stuff1
15789 stuff2
15790 .

15791 and the text on the ex command line would be appended along with the text inserted after it.
15792 There was an historical bug, however, that the user had to enter two terminating lines (the ’.’
15793 lines) to terminate text input mode in this case. IEEE Std. 1003.1-200x requires conformance to

Shell and Utilities, Issue 6 2621

ex Utilities

15794 historical practice, but disallows the historical need for multiple terminating lines.

15795 Change

15796 See the RATIONALE for the append command. Historical practice for cursor positioning after
15797 the change command when no text is input, is as described in IEEE Std. 1003.1-200x. However,
15798 one System V implementation is known to have been modified such that the cursor is positioned
15799 on the first address specified, and not on the line before the first address. IEEE Std. 1003.1-200x
15800 disallows this modification for consistency.

15801 Historically, the change command did not support buffer arguments, although some
15802 implementations allow the specification of an optional buffer. This behavior is neither required
15803 nor disallowed by IEEE Std. 1003.1-200x.

15804 Change Directory

15805 A common extension in ex implementations is to use the elements of a cdpath edit option as
15806 prefix directories for path arguments to chdir that are relative path names and that do not have
15807 ’.’ or ".." as their first component. Elements in the cdpath edit option are colon-separated.
15808 The initial value of the cdpath edit option is the value of the shell CDPATH environment
15809 variable. This feature was not included in IEEE Std. 1003.1-200x because it does not exist in any
15810 of the implementations considered historical practice.

15811 Copy

15812 Historical implementations of ex permitted copies to lines inside of the specified range; for
15813 example, :2,5copy3 was a valid command. IEEE Std. 1003.1-200x requires conformance to
15814 historical practice.

15815 Delete

15816 IEEE Std. 1003.1-200x requires support for the historical parsing of a delete command followed
15817 by flags, without any intervening <blank> characters. For example:

15818 1dp Deletes the first line and prints the line that was second.

15819 1delep As for 1dp.

15820 1d Deletes the first line, saving it in buffer p .

15821 1d p1l (Pee-one-ell.) Deletes the first line, saving it in buffer p , and listing the line that was
15822 second.

15823 Edit

15824 Historically, any ex command could be entered as a +command argument to the edit command,
15825 although some (for example, insert and append) were known to confuse historical
15826 implementations. For consistency and simplicity of specification, IEEE Std. 1003.1-200x requires
15827 that any command be supported as an argument to the edit command.

15828 Historically, the command argument was executed with the current line set to the last line of the
15829 file, regardless of whether the edit command was executed from visual mode or not.
15830 IEEE Std. 1003.1-200x requires conformance to historical practice.

15831 Historically, the +command specified to the edit and next commands was delimited by the first
15832 <blank> character, and there was no way to quote them. For consistency, IEEE Std. 1003.1-200x
15833 requires that the usual ex backslash quoting be provided.

2622 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15834 Historically, specifying the +command argument to the edit command required a file name to be
15835 specified as well; for example, :edit +100 would always fail. For consistency and simplicity of
15836 specification, IEEE Std. 1003.1-200x does not permit this usage to fail for that reason.

15837 Historically, only the cursor position of the last file edited was remembered by the editor.
15838 IEEE Std. 1003.1-200x requires that this be supported; however, implementations are permitted
15839 to remember and restore the cursor position for any file previously edited.

15840 File

15841 Historical versions of the ex editor file command displayed a current line and number of lines in
15842 the edit buffer of 0 when the file was empty, while the vi <control>-G command displayed a
15843 current line and number of lines in the edit buffer of 1 in the same situation.
15844 IEEE Std. 1003.1-200x does not permit this discrepancy, instead requiring that a message be
15845 displayed indicating that the file is empty.

15846 Global

15847 The two-pass operation of the global and v commands is not intended to imply implementation,
15848 only the required result of the operation.

15849 The current line and column are set as specified for the individual ex commands. This
15850 requirement is cumulative; that is, the current line and column must track across all the
15851 commands executed by the global or v commands.

15852 Insert

15853 See the RATIONALE for the append command.

15854 Historically, insert could not be used with an address of zero; that is, not when the edit buffer
15855 was empty. IEEE Std. 1003.1-200x requires that this command behave consistently with the
15856 append command.

15857 Join

15858 The action of the join command in relation to the special characters is only defined for the
15859 POSIX locale because the correct amount of white space after a period varies; in Japanese none is
15860 required, in French only a single space, and so on.

15861 List

15862 The historical output of the list command was potentially ambiguous. The standard developers
15863 believed correcting this to be more important than adhering to historical practice, and
15864 IEEE Std. 1003.1-200x requires unambiguous output.

15865 Map

15866 Historically, command mode maps only applied to command names; for example, if the
15867 character ’x’ was mapped to ’y’ , the command fx searched for the ’x’ character, not the ’y’
15868 character. IEEE Std. 1003.1-200x requires this behavior. Historically, entering <control>-V as the
15869 first character of a vi command was an error. Several implementations have extended the
15870 semantics of vi such that <control>-V means that the subsequent command character is not
15871 mapped. This is permitted, but not required, by IEEE Std. 1003.1-200x. Regardless, using
15872 <control>-V to escape the second or later character in a sequence of characters that might match
15873 a map command, or any character in text input mode, is historical practice, and stops the entered
15874 keys from matching a map. IEEE Std. 1003.1-200x requires conformance to historical practice.

Shell and Utilities, Issue 6 2623

ex Utilities

15875 Historical implementations permitted digits to be used as a map command lhs , but then ignored
15876 the map. IEEE Std. 1003.1-200x requires that the mapped digits not be ignored.

15877 The historical implementation of the map command did not permit map commands that were
15878 more than a single character in length if the first character was printable. This behavior is
15879 permitted, but not required, by IEEE Std. 1003.1-200x.

15880 Historically, mapped characters were remapped unless the remap edit option was not set, or the |
15881 prefix of the mapped characters matched the mapping characters; for example, in the map:

15882 :map ab abcd

15883 the characters "ab" were used as is and were not remapped, but the characters "cd" were
15884 mapped if appropriate. This can cause infinite loops in the vi mapping mechanisms.
15885 IEEE Std. 1003.1-200x requires conformance to historical practice, and that such loops be
15886 interruptible.

15887 Text input maps had the same problems with expanding the lhs for the ex map! and unmap!
15888 command as did the ex abbreviate and unabbreviate commands. See the RATIONALE for the ex
15889 abbreviate command. IEEE Std. 1003.1-200x requires similar modification of some historical
15890 practice for the map and unmap commands, as described for the abbreviate and unabbreviate
15891 commands.

15892 Historically, maps that were subsets of other maps behaved differently depending on the order
15893 in which they were defined. For example:

15894 :map! ab short
15895 :map! abc long

15896 would always translate the characters "ab" to "short" , regardless of how fast the characters
15897 "abc" were entered. If the entry order was reversed:

15898 :map! abc long
15899 :map! ab short

15900 the characters "ab" would cause the editor to pause, waiting for the completing ’c’ character,
15901 and the characters might never be mapped to "short" . For consistency and simplicity of
15902 specification, IEEE Std. 1003.1-200x requires that the shortest match be used at all times.

15903 The length of time the editor spends waiting for the characters to complete the lhs is unspecified
15904 because the timing capabilities of systems are often inexact and variable, and it may depend on
15905 other factors such as the speed of the connection. The time should be long enough for the user to
15906 be able to complete the sequence, but not long enough for the user to have to wait. Some
15907 implementations of vi have added a keytime option, which permits users to set the number of
15908 0,1 seconds the editor waits for the completing characters. Because mapped terminal function
15909 and cursor keys tend to start with an <ESC> character, and <ESC> is the key ending vi text input
15910 mode, maps starting with <ESC> characters are generally exempted from this timeout period,
15911 or, at least timed out differently.

15912 Mark

15913 Historically, users were able to set the ‘‘previous context’’ marks explicitly. In addition, the ex
15914 commands ’’ and ’‘ and the vi commands ’’, ‘‘, ‘’, and ’‘ all referred to the same mark. In addition,
15915 the previous context marks were not set if the command, with which the address setting the
15916 mark was associated, failed. IEEE Std. 1003.1-200x requires conformance to historical practice.
15917 Historically, if marked lines were deleted, the mark was also deleted, but would reappear if the
15918 change was undone. IEEE Std. 1003.1-200x requires conformance to historical practice.

2624 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

15919 The description of the special events that set the ‘ and ’ marks matches historical practice. For
15920 example, historically the command /a/,/b/ did not set the ‘ and ’ marks, but the command
15921 /a/,/b/delete did.

15922 Next

15923 Historically, any ex command could be entered as a +command argument to the next command,
15924 although some (for example, insert and append) were known to confuse historical
15925 implementations. IEEE Std. 1003.1-200x requires that any command be permitted and that it
15926 behave as specified. The next command can accept more than one file, so usage such as:

15927 next ‘ls [abc] ‘

15928 is valid; it need not be valid for the edit or read commands, for example, because they expect
15929 only one file name.

15930 Historically, the next command behaved differently from the :rewind command in that it
15931 ignored the force flag if the autowrite flag was set. For consistency, IEEE Std. 1003.1-200x does
15932 not permit this behavior.

15933 Historically, the next command positioned the cursor as if the file had never been edited before,
15934 regardless. IEEE Std. 1003.1-200x does not permit this behavior, for consistency with the edit
15935 command.

15936 Implementations wanting to provide a counterpart to the next command that edited the
15937 previous file have used the command prev[ious], which takes no file argument.
15938 IEEE Std. 1003.1-200x does not require this command.

15939 Open

15940 Historically, the open command would fail if the open edit option was not set.
15941 IEEE Std. 1003.1-200x does not mention the open edit option and does not require this behavior.
15942 Some historical implementations do not permit entering open mode from open or visual mode,
15943 only from ex mode. For consistency, IEEE Std. 1003.1-200x does not permit this behavior.

15944 Historically, entering open mode from the command line (that is, vi +open) resulted in
15945 anomalous behaviors; for example, the ex file and set commands, and the vi command
15946 <control>-G did not work. For consistency, IEEE Std. 1003.1-200x does not permit this behavior.

15947 Historically, the open command only permitted ’/’ characters to be used as the search pattern
15948 delimiter. For consistency, IEEE Std. 1003.1-200x requires that the search delimiters used by the
15949 s, global, and v commands be accepted as well.

15950 Preserve

15951 The preserve command does not historically cause the file to be considered unmodified for the
15952 purposes of future commands that may exit the editor. IEEE Std. 1003.1-200x requires
15953 conformance to historical practice.

15954 Historical documentation stated that mail was not sent to the user when preserve was executed;
15955 however, historical implementations did send mail in this case. IEEE Std. 1003.1-200x requires
15956 conformance to the historical implementations.

Shell and Utilities, Issue 6 2625

ex Utilities

15957 Print

15958 The writing of NUL by the print command is not specified as a special case because the standard
15959 developers did not want to require ex to support NUL characters. Historically, characters were
15960 displayed using the ARPA standard mappings, which are as follows:

15961 1. Printable characters are left alone.

15962 2. Control characters less than \177 are represented as ’ˆ’ followed by the character offset
15963 from the ’@’ character in the ASCII map; for example, \007 is represented as ’ˆG’ .

15964 3. \177 is represented as ’ˆ’ followed by ’?’ .

15965 The display of characters having their eighth bit set was less standard. Existing implementations
15966 use hex (0x00), octal (\000), and a meta-bit display. (The latter displayed bytes that had their
15967 eighth bit set as the two characters "M−" followed by the seven-bit display as described above.)
15968 The latter probably has the best claim to historical practice because it was used for the −v option
15969 of 4 BSD and 4 BSD-derived versions of the cat utility since 1980.

15970 No specific display format is required by IEEE Std. 1003.1-200x.

15971 Explicit dependence on the ASCII character set has been avoided where possible, hence the use |
15972 of the phrase an ‘‘implementation-defined multi-character sequence’’ for the display of non- |
15973 printable characters in preference to the historical usage of, for instance, "ˆI" for the <tab>
15974 character. Implementations are encouraged to conform to historical practice in the absence of
15975 any strong reason to diverge.

15976 Historically, all ex commands beginning with the letter ’p’ could be entered using capitalized
15977 versions of the commands; for example, P[rint], Pre[serve], and Pu[t] were all valid command
15978 names. IEEE Std. 1003.1-200x permits, but does not require, this historical practice because
15979 capital forms of the commands are used by some implementations for other purposes.

15980 Put

15981 Historically, an ex put command, executed from open or visual mode, was the same as the open
15982 or visual mode P command, if the buffer was named and was cut in character mode, and the
15983 same as the p command if the buffer was named and cut in line mode. If the unnamed buffer
15984 was the source of the text, the entire line from which the text was taken was usually put, and the
15985 buffer was handled as if in line mode, but it was possible to get extremely anomalous behavior.
15986 In addition, using the Q command to switch into ex mode, and then doing a put often resulted in
15987 errors as well, such as appending text that was unrelated to the (supposed) contents of the
15988 buffer. For consistency and simplicity of specification, IEEE Std. 1003.1-200x does not permit
15989 these behaviors. All ex put commands are required to operate in line mode, and the contents of
15990 the buffers are not altered by changing the mode of the editor.

15991 Read

15992 Historically, an ex read command executed from open or visual mode, executed in an empty file,
15993 left an empty line as the first line of the file. For consistency and simplicity of specification,
15994 IEEE Std. 1003.1-200x does not permit this behavior. Historically, a read in open or visual mode
15995 from a program left the cursor at the last line read in, not the first. For consistency,
15996 IEEE Std. 1003.1-200x does not permit this behavior.

15997 Historical implementations of ex were unable to undo read commands that read from the output
15998 of a program. For consistency, IEEE Std. 1003.1-200x does not permit this behavior.

15999 Historically, the ex and vi message after a successful read or write command specified
16000 ‘‘characters’’, not ‘‘bytes’’. IEEE Std. 1003.1-200x requires that the number of bytes be displayed,

2626 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

16001 not the number of characters, because it may be difficult in multi-byte implementations to
16002 determine the number of characters read. Implementations are encouraged to clarify the
16003 message displayed to the user.

16004 Historically, reads were not permitted on files other than type regular, except that FIFO files
16005 could be read (probably only because they did not exist when ex and vi were originally written).
16006 Because the historical ex evaluated read! and read ! equivalently, there can be no optional way
16007 to force the read. IEEE Std. 1003.1-200x permits, but does not require, this behavior.

16008 Recover

16009 Some historical implementations of the editor permitted users to recover the edit buffer contents
16010 from a previous edit session, and then exit without saving those contents (or explicitly
16011 discarding them). The intent of IEEE Std. 1003.1-200x in requiring that the edit buffer be treated
16012 as already modified is to prevent this user error.

16013 Rewind

16014 Historical implementations supported the rewind command when the user was editing the first
16015 file in the list; that is, the file that the rewind command would edit. IEEE Std. 1003.1-200x
16016 requires conformance to historical practice.

16017 Substitute

16018 Historically, ex accepted an r option to the s command. The effect of the r option was to use the
16019 last regular expression used in any command as the pattern, the same as the ˜ command. The r
16020 option is not required by IEEE Std. 1003.1-200x. Historically, the c and g options were toggled;
16021 for example, the command :s/abc/def/ was the same as s/abc/def/ccccgggg. For simplicity of
16022 specification, IEEE Std. 1003.1-200x does not permit this behavior.

16023 The tilde command is often used to replace the last search RE. For example, in the sequence:

16024 s/red/blue/
16025 /green
16026 ~

16027 the ˜ command is equivalent to:

16028 s/green/blue/

16029 Historically, ex accepted all of the following forms:

16030 s/abc/def/
16031 s/abc/def
16032 s/abc/
16033 s/abc

16034 IEEE Std. 1003.1-200x requires conformance to this historical practice.

16035 The s command presumes that the ’ˆ’ character only occupies a single column in the display.
16036 Much of the ex and vi specification presumes that the <space> character only occupies a single
16037 column in the display. There are no known character sets for which this is not true.

16038 Historically, the final column position for the substitute commands was based on previous
16039 column movements; a search for a pattern followed by a substitution would leave the column
16040 position unchanged, while a 0 command followed by a substitution would change the column
16041 position to the first non-<blank>. For consistency and simplicity of specification,
16042 IEEE Std. 1003.1-200x requires that the final column position always be set to the first non-
16043 <blank>.

Shell and Utilities, Issue 6 2627

ex Utilities

16044 Set

16045 Historical implementations redisplayed all of the options for each occurrence of the all keyword.
16046 IEEE Std. 1003.1-200x permits, but does not require, this behavior.

16047 Tag

16048 No requirement is made as to where ex and vi shall look for the file referenced by the tag entry.
16049 Historical practice has been to look for the path found in the tags file, based on the current |
16050 directory. A useful extension found in some implementations is to look based on the directory |
16051 containing the tags file that held the entry, as well. No requirement is made as to which |
16052 reference for the tag in the tags file is used. This is deliberate, in order to permit extensions such |
16053 as multiple entries in a tags file for a tag. |

16054 Because users often specify many different tags files, some of which need not be relevant or exist
16055 at any particular time, IEEE Std. 1003.1-200x requires that error messages about problem tags
16056 files be displayed only if the requested tag is not found, and then, only once for each time that
16057 the tag edit option is changed.

16058 The requirement that the current edit buffer be unmodified is only necessary if the file indicated
16059 by the tag entry is not the same as the current file (as defined by the current path name).
16060 Historically, the file would be reloaded if the file name had changed, as well as if the file name
16061 was different from the current path name. For consistency and simplicity of specification,
16062 IEEE Std. 1003.1-200x does not permit this behavior, requiring that the name be the only factor in
16063 the decision.

16064 Historically, vi only searched for tags in the current file from the current cursor to the end of the
16065 file, and therefore, if the wrapscan option was not set, tags occurring before the current cursor
16066 were not found. IEEE Std. 1003.1-200x considers this a bug, and implementations are required to
16067 search for the first occurrence in the file, regardless.

16068 Undo

16069 The undo description deliberately uses the word ‘‘modified’’. The undo command is not
16070 intended to undo commands that replace the contents of the edit buffer, such as edit, next, tag,
16071 or recover.

16072 Cursor positioning after the undo command was inconsistent in the historical vi, sometimes
16073 attempting to restore the original cursor position (global, undo, and v commands), and
16074 sometimes, in the presence of maps, placing the cursor on the last line added or changed instead
16075 of the first. IEEE Std. 1003.1-200x requires a simplified behavior for consistency and simplicity of
16076 specification.

16077 Version

16078 The version command cannot be exactly specified since there is no widely-accepted definition of
16079 what the version information should contain. Implementations are encouraged to do something
16080 reasonably intelligent.

2628 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

16081 Write

16082 Historically, the ex and vi message after a successful read or write command specified
16083 ‘‘characters’’, not ‘‘bytes’’. IEEE Std. 1003.1-200x requires that the number of bytes be displayed,
16084 not the number of characters because it may be difficult in multi-byte implementations to
16085 determine the number of characters written. Implementations are encouraged to clarify the
16086 message displayed to the user.

16087 Implementation-defined tests are permitted so that implementations can make additional |
16088 checks; for example, for locks or file modification times.

16089 Historically, attempting to append to a nonexistent file caused an error. It has been left
16090 unspecified in IEEE Std. 1003.1-200x to permit implementations to let the write succeed, so that
16091 the append semantics are similar to those of the historical csh.

16092 Historical vi permitted empty edit buffers to be written. However, since the way vi got around
16093 dealing with ‘‘empty’’ files was to always have a line in the edit buffer, no matter what, it wrote
16094 them as files of a single, empty line. IEEE Std. 1003.1-200x does not permit this behavior.

16095 Historically, ex restored standard output and standard error to their values as of when ex was
16096 invoked, before writes to programs were performed. This could disturb the terminal
16097 configuration as well as be a security issue for some terminals. IEEE Std. 1003.1-200x does not
16098 permit this, requiring that the program output be captured and displayed as if by the ex print
16099 command.

16100 Adjust Window

16101 Historically, the line count was set to the value of the scroll option if the type character was
16102 end-of-file. This feature was broken on most historical implementations long ago, however, and
16103 is not documented anywhere. For this reason, IEEE Std. 1003.1-200x is resolutely silent.

16104 Historically, the z command was <blank> character-sensitive and z + and z − did different
16105 things than z+ and z− because the type could not be distinguished from a flag. (The commands
16106 z . and z = were historically invalid.) IEEE Std. 1003.1-200x requires conformance to this
16107 historical practice.

16108 Historically, the z command was further <blank> character-sensitive in that the count could not
16109 be <blank> character-delimited; for example, the commands z= 5 and z− 5 were also invalid.
16110 Because the count is not ambiguous with respect to either the type character or the flags, this is
16111 not permitted by IEEE Std. 1003.1-200x.

16112 Escape

16113 Historically, ex filter commands only read the standard output of the commands, letting
16114 standard error appear on the terminal as usual. The vi utility, however, read both standard
16115 output and standard error. IEEE Std. 1003.1-200x requires the latter behavior for both ex and vi,
16116 for consistency.

16117 Shift Left and Shift Right

16118 Historically, it was possible to add shift characters to increase the effect of the command; for
16119 example, <<< outdented (or >>> indented) the lines 3 levels of indentation instead of the default
16120 1. IEEE Std. 1003.1-200x requires conformance to historical practice.

Shell and Utilities, Issue 6 2629

ex Utilities

16121 <control>-D

16122 Historically, the <control>-D command erased the prompt, providing the user with an unbroken
16123 presentation of lines from the edit buffer. This is not required by IEEE Std. 1003.1-200x;
16124 implementations are encouraged to provide it if possible. Historically, the <control>-D
16125 command took, and then ignored, a count . IEEE Std. 1003.1-200x does not permit this behavior.

16126 Write Line Number

16127 Historically, the ex = command, when executed in ex mode in an empty edit buffer, reported 0,
16128 and from open or visual mode, reported 1. For consistency and simplicity of specification,
16129 IEEE Std. 1003.1-200x does not permit this behavior.

16130 Execute

16131 Historically, ex did not correctly handle the inclusion of text input commands (that is, append,
16132 insert, and change) in executed buffers. IEEE Std. 1003.1-200x does not permit this exclusion for
16133 consistency.

16134 Historically, the logical contents of the buffer being executed did not change if the buffer itself
16135 were modified by the commands being executed; that is, buffer execution did not support self-
16136 modifying code. IEEE Std. 1003.1-200x requires conformance to historical practice.

16137 Historically, the @ command took a range of lines, and the @ buffer was executed once per line,
16138 with the current line (’.’) set to each specified line. IEEE Std. 1003.1-200x requires conformance
16139 to historical practice.

16140 Some historical implementations did not notice if errors occurred during buffer execution. This,
16141 coupled with the ability to specify a range of lines for the ex @ command, makes it trivial to
16142 cause them to drop core. IEEE Std. 1003.1-200x requires that implementations stop buffer
16143 execution if any error occurs, if the specified line doesn’t exist, or if the contents of the edit buffer
16144 itself are replaced (for example, the buffer executes the ex :edit command).

16145 Regular Expressions in ex

16146 Historical practice is that the characters in the replacement part of the last s command—that is,
16147 those matched by entering a ’˜’ in the regular expression—were not further expanded by the
16148 regular expression engine. So, if the characters contained the string "a.," they would match
16149 ’a’ followed by ".," and not ’a’ followed by any character. IEEE Std. 1003.1-200x requires
16150 con formance to historical practice.

16151 Edit Options in ex

16152 The following paragraphs describe the historical behavior of some edit options that were not, for
16153 whatever reason, included in IEEE Std. 1003.1-200x. Implementations are strongly encouraged
16154 to only use these names if the functionality described here is fully supported.

16155 extended The extended edit option has been used in some implementations of vi to provide
16156 extended regular expressions instead of basic regular expressions This option was
16157 omitted from IEEE Std. 1003.1-200x because it is not widespread historical practice.

16158 flash The flash edit option historically caused the screen to flash instead of beeping on
16159 error. This option was omitted from IEEE Std. 1003.1-200x because it is not found
16160 in some historical implementations.

16161 hardtabs The hardtabs edit option historically defined the number of columns between
16162 hardware tab settings. This option was omitted from IEEE Std. 1003.1-200x
16163 because it was believed to no longer be generally useful.

2630 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

16164 modeline The modeline (sometimes named modelines) edit option historically caused ex or
16165 vi to read the five first and last lines of the file for editor commands. This option is
16166 a security problem, and vendors are strongly encouraged to delete it from
16167 historical implementations.

16168 open The open edit option historically disallowed the ex open and visual commands.
16169 This edit option was omitted because these commands are required by
16170 IEEE Std. 1003.1-200x.

16171 optimize The optimize edit option historically expedited text throughput by setting the
16172 terminal to not do automatic carriage returns when printing more than one logical
16173 line of output. This option was omitted from IEEE Std. 1003.1-200x because it was
16174 intended for terminals without addressable cursors, which are rarely, if ever, still
16175 used.

16176 ruler The ruler edit option has been used in some implementations of vi to present a
16177 current row/column ruler for the user. This option was omitted from
16178 IEEE Std. 1003.1-200x because it is not widespread historical practice.

16179 sourceany The sourceany edit option historically caused ex or vi to source start-up files that
16180 were owned by users other than the user running the editor. This option is a
16181 security problem, and vendors are strongly encouraged to remove it from their
16182 implementations.

16183 timeout The timeout edit option historically enabled the (now standard) feature of only
16184 waiting for a short period before returning keys that could be part of a macro. This
16185 feature was omitted from IEEE Std. 1003.1-200x because its behavior is now
16186 standard, it is not widely useful, and it was rarely documented.

16187 verbose The verbose edit option has been used in some implementations of vi to cause vi to
16188 output error messages for common errors; for example, attempting to move the
16189 cursor past the beginning or end of the line instead of only alerting the screen. (The
16190 historical vi only alerted the terminal and presented no message for such errors.
16191 The historical editor option terse did not select when to present error messages, it
16192 only made existing error messages more or less verbose.) This option was omitted
16193 from IEEE Std. 1003.1-200x because it is not widespread historical practice;
16194 however, implementors are encouraged to use it if they wish to provide error
16195 messages for naive users.

16196 wraplen The wraplen edit option has been used in some implementations of vi to specify an
16197 automatic margin measured from the left margin instead of from the right margin.
16198 This is useful when multiple screen sizes are being used to edit a single file. This
16199 option was omitted from IEEE Std. 1003.1-200x because it is not widespread
16200 historical practice; however, implementors are encouraged to use it if they add this
16201 functionality.

16202 autoindent, ai

16203 Historically, the command 0a did not do any autoindentation, regardless of the current
16204 indentation of line 1. IEEE Std. 1003.1-200x requires that any indentation present in line 1 be
16205 used.

Shell and Utilities, Issue 6 2631

ex Utilities

16206 autoprint, ap

16207 Historically, the autoprint edit option was not completely consistent or based solely on
16208 modifications to the edit buffer. Exceptions were the read command (when reading from a file,
16209 but not from a filter), the append, change, insert, global, and v commands, all of which were not
16210 affected by autoprint, and the tag command, which was affected by autoprint.
16211 IEEE Std. 1003.1-200x requires conformance to historical practice.

16212 Historically, the autoprint option only applied to the last of multiple commands entered using
16213 vertical-bar delimiters; for example, delete <newline> was affected by autoprint, but
16214 delete|version <newline> was not. IEEE Std. 1003.1-200x requires conformance to historical
16215 practice.

16216 autowrite, aw

16217 Appending the ’!’ character to the ex next command to avoid performing an automatic write
16218 was not supported in historical implementations. IEEE Std. 1003.1-200x requires that the
16219 behavior match the other ex commands for consistency.

16220 ignorecase, ic

16221 Historical implementations of case-insensitive matching (the ignorecase edit option) lead to
16222 counterintuitive situations when uppercase characters were used in range expressions.
16223 Historically, the process was as follows:

16224 1. Take a line of text from the edit buffer.

16225 2. Convert uppercase to lowercase in text line.

16226 3. Convert uppercase to lowercase in regular expressions, except in character class
16227 specifications.

16228 4. Match regular expressions against text.

16229 This would mean that, with ignorecase in effect, the text:

16230 The cat sat on the mat

16231 would be matched by

16232 /ˆthe/

16233 but not by:

16234 /ˆ[A −Z]he/

16235 For consistency with other commands implementing regular expressions, IEEE Std. 1003.1-200x
16236 does not permit this behavior.

16237 paragraphs, para

16238 Earlier versions of IEEE Std. 1003.1-200x made the default paragraphs and sections edit options |
16239 implementation-defined, arguing they were historically oriented to the UNIX system troff text |
16240 formatter, and a ‘‘portable user’’ could use the {, }, [[,]], (, and) commands in open or visual
16241 mode and have the cursor stop in unexpected places. IEEE Std. 1003.1-200x specifies their values
16242 in the POSIX locale because the unusual grouping (they only work when grouped into two
16243 characters at a time) means that they cannot be used for general purpose movement, regardless.

2632 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

16244 readonly

16245 Implementations are encouraged to provide the best possible information to the user as to the
16246 read-only status of the file, with the exception that they should not consider the current special
16247 privileges of the process. This provides users a safety net because they must force the overwrite
16248 of read-only files, even when running with additional privileges.

16249 The readonly edit option specification largely conforms to historical practice. The only
16250 difference is that historical implementations did not notice that the user had set the readonly
16251 edit option in cases where the file was already marked read-only for some reason, and would
16252 therefore reinitialize the readonly edit option the next time the contents of the edit buffer were
16253 replaced. This behavior is disallowed by IEEE Std. 1003.1-200x.

16254 report

16255 The requirement that lines copied to a buffer interact differently than deleted lines is historical
16256 practice. For example, if the report edit option is set to 3, deleting 3 lines will cause a report to be
16257 written, but 4 lines must be copied before a report is written.

16258 The requirement that the ex global, v, open, undo, and visual commands present reports based
16259 on the total number of lines added or deleted during the command execution, and that
16260 commands executed by the global and v commands not present reports, is historical practice.
16261 IEEE Std. 1003.1-200x extends historical practice by requiring that buffer execution be treated
16262 similarly. The reasons for this are two-fold. Historically, only the report by the last command
16263 executed from the buffer would be seen by the user, as each new report would overwrite the
16264 last. In addition, the standard developers believed that buffer execution had more in common
16265 with global and v commands than it did with other ex commands, and should behave similarly,
16266 for consistency and simplicity of specification.

16267 showmatch, sm

16268 The length of time the cursor spends on the matching character is unspecified because the
16269 timing capabilities of systems are often inexact and variable. The time should be long enough for
16270 the user to notice, but not long enough for the user to become annoyed. Some implementations
16271 of vi have added a matchtime option that permits users to set the number of 0,1 second intervals
16272 the cursor pauses on the matching character.

16273 showmode

16274 The showmode option has been used in some historical implementations of ex and vi to display
16275 the current editing mode when in open or visual mode. The editing modes have generally
16276 included ‘‘command’’ and ‘‘input’’, and sometimes other modes such as ‘‘replace’’ and
16277 ‘‘change’’. The string was usually displayed on the bottom line of the screen at the far right-hand
16278 corner. In addition, a preceding ’*’ character often denoted if the contents of the edit buffer had
16279 been modified. The latter display has sometimes been part of the showmode option, and
16280 sometimes based on another option. This option was not available in the 4 BSD historical
16281 implementation of vi, but was viewed as generally useful, particularly to novice users, and is
16282 required by IEEE Std. 1003.1-200x.

16283 The smd shorthand for the showmode option was not present in all historical implementations
16284 of the editor. IEEE Std. 1003.1-200x requires it, for consistency.

16285 Not all historical implementations of the editor displayed a mode string for command mode,
16286 differentiating command mode from text input mode by the absence of a mode string.
16287 IEEE Std. 1003.1-200x permits this behavior for consistency with historical practice, but
16288 implementations are encouraged to provide a display string for both modes.

Shell and Utilities, Issue 6 2633

ex Utilities

16289 slowopen

16290 Historically the slowopen option was automatically set if the terminal baud rate was less than
16291 1 200 baud, or if the baud rate was 1 200 baud and the redraw option was not set. The slowopen
16292 option had two effects. First, when inserting characters in the middle of a line, characters after
16293 the cursor would not be pushed ahead, but would appear to be overwritten. Second, when
16294 creating a new line of text, lines after the current line would not be scrolled down, but would
16295 appear to be overwritten. In both cases, ending text input mode would cause the screen to be
16296 refreshed to match the actual contents of the edit buffer. Finally, terminals that were sufficiently
16297 intelligent caused the editor to ignore the slowopen option. IEEE Std. 1003.1-200x permits most
16298 historical behavior, extending historical practice to require slowopen behaviors if the edit option
16299 is set by the user.

16300 tags

16301 The default path for tags files is left unspecified as implementations may have their own tags
16302 implementations that do not correspond to the historical ones. The default tags option value
16303 should probably at least include the file ./tags.

16304 term

16305 Historical implementations of ex and vi ignored changes to the term edit option after the initial
16306 terminal information was loaded. This is permitted by IEEE Std. 1003.1-200x; however,
16307 implementations are encouraged to permit the user to modify their terminal type at any time.

16308 terse

16309 Historically, the terse edit option optionally provided a shorter, less descriptive error message,
16310 for some error messages. This is permitted, but not required, by IEEE Std. 1003.1-200x.
16311 Historically, most common visual mode errors (for example, trying to move the cursor past the
16312 end of a line) did not result in an error message, but simply alerted the terminal.
16313 Implementations wishing to provide messages for novice users are urged to do so based on the
16314 edit option verbose, and not terse.

16315 window

16316 In historical implementations, the default for the window edit option was based on the baud
16317 rate as follows:

16318 1. If the baud rate was less than 1 200, the edit option w300 set the window value; for
16319 example, the line:

16320 set w300=12

16321 would set the window option to 12 if the baud rate was less than 1 200.

16322 2. If the baud rate was equal to 1 200, the edit option w1200 set the window value.

16323 3. If the baud rate was greater than 1 200, the edit option w9600 set the window value.

16324 The w300, w1200, and w9600 options do not appear in IEEE Std. 1003.1-200x because of their
16325 dependence on specific baud rates.

16326 In historical implementations, the size of the window displayed by various commands was
16327 related to, but not necessarily the same as, the window edit option. For example, the size of the
16328 window was set by the ex command visual 10, but it did not change the value of the window
16329 edit option. However, changing the value of the window edit option did change the number of
16330 lines that were displayed when the screen was repainted. IEEE Std. 1003.1-200x does not permit

2634 Technical Standard (2000) (Draft July 31, 2000)

Utilities ex

16331 this behavior in the interests of consistency and simplicity of specification, and requires that all
16332 commands that change the number of lines that are displayed do it by setting the value of the
16333 window edit option.

16334 wrapmargin, wm

16335 Historically, the wrapmargin option did not affect maps inserting characters that also had
16336 associated counts; for example :map K 5aABC DEF. Unfortunately, there are widely used
16337 maps that depend on this behavior. For consistency and simplicity of specification,
16338 IEEE Std. 1003.1-200x does not permit this behavior.

16339 Historically, wrapmargin was calculated using the column display width of all characters on the
16340 screen. For example, an implementation using "ˆI" to represent <tab> characters when the list
16341 edit option was set, where ’ˆ’ and ’I’ each took up a single column on the screen, would
16342 calculate the wrapmargin based on a value of 2 for each <tab> character. The number edit
16343 option similarly changed the effective length of the line as well. IEEE Std. 1003.1-200x requires
16344 conformance to historical practice.

16345 FUTURE DIRECTIONS
16346 None.

16347 SEE ALSO
16348 ed, sed, stty , vi , the System Interfaces volume of IEEE Std. 1003.1-200x, access()

16349 CHANGE HISTORY
16350 First released in Issue 2.

16351 Issue 4
16352 Aligned with the ISO/IEC 9945-2: 1993 standard.

16353 Issue 5
16354 The FUTURE DIRECTIONS section is added.

16355 Issue 6
16356 This utility is now marked as part of the User Portability Utilities option.

16357 The obsolescent SYNOPSIS is removed, removing the +command and − options.

16358 The following new requirements on POSIX implementations derive from alignment with the
16359 Single UNIX Specification:

16360 • The −l option is added.

16361 • In the map command description, the sequence #digit is added.

16362 • The directory, edcompatible, redraw, slowopen, and lisp edit options are added.

16363 The ex utility is extensively changed for alignment with the IEEE P1003.2b draft standard. This |
16364 includes changes as a result of the IEEE PASC Interpretations 1003.2 #31, #38, #49, #50, #51, #52, |
16365 #55, #56, #57, #61, #62, #63, #64, #65, and #78. |

Shell and Utilities, Issue 6 2635

expand Utilities

16366 NAME
16367 expand — convert tabs to spaces

16368 SYNOPSIS
16369 UP expand [−t tablist][file ...]
16370

16371 DESCRIPTION
16372 The expand utility shall write files or the standard input to the standard output with <tab>
16373 characters replaced with one or more <space> characters needed to pad to the next tab stop. Any
16374 <backspace> characters shall be copied to the output and cause the column position count for
16375 tab stop calculations to be decremented; the column position count shall not be decremented
16376 below zero.

16377 OPTIONS
16378 The expand utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
16379 12.2, Utility Syntax Guidelines. |

16380 The following option shall be supported:

16381 −t tablist Specify the tab stops. The application shall ensure that the argument tablist |
16382 consists of either a single positive decimal integer or a list of tabstops. If a single |
16383 number is given, tabs shall be set that number of column positions apart instead of |
16384 the default 8. |

16385 If a list of tabstops is given, the application shall ensure that it consists of a list of |
16386 two or more positive decimal integers, separated by <blank> characters or comms, |
16387 in ascending order. The tabs shall be set at those specific column positions. Each |
16388 tab stop N shall be an integer value greater than zero, and the list is in strictly |
16389 ascending order. This is taken to mean that, from the start of a line of output, |
16390 tabbing to position N shall cause the next character output to be in the (N+1)th |
16391 column position on that line.

16392 In the event of expand having to process a <tab> character at a position beyond the
16393 last of those specified in a multiple tab-stop list, the <tab> character shall be
16394 replaced by a single <space> character in the output.

16395 OPERANDS
16396 The following operand shall be supported:

16397 file The path name of a text file to be used as input.

16398 STDIN
16399 See the INPUT FILES section.

16400 INPUT FILES
16401 Input files shall be text files.

16402 ENVIRONMENT VARIABLES
16403 The following environment variables shall affect the execution of expand:

16404 LANG Provide a default value for the internationalization variables that are unset or null.
16405 If LANG is unset or null, the corresponding value from the implementation- |
16406 defined default locale shall be used. If any of the internationalization variables |
16407 contains an invalid setting, the utility shall behave as if none of the variables had
16408 been defined.

16409 LC_ALL If set to a non-empty string value, override the values of all the other
16410 internationalization variables.

2636 Technical Standard (2000) (Draft July 31, 2000)

Utilities expand

16411 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
16412 characters (for example, single-byte as opposed to multi-byte characters in
16413 arguments and input files), the processing of <tab> and <space> characters, and
16414 for the determination of the width in column positions each character would
16415 occupy on an output device.

16416 LC_MESSAGES
16417 Determine the locale that should be used to affect the format and contents of
16418 diagnostic messages written to standard error.

16419 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

16420 ASYNCHRONOUS EVENTS
16421 Default.

16422 STDOUT
16423 The standard output shall be equivalent to the input files with <tab> characters converted into
16424 the appropriate number of <space> characters.

16425 STDERR
16426 Used only for diagnostic messages.

16427 OUTPUT FILES
16428 None.

16429 EXTENDED DESCRIPTION
16430 None.

16431 EXIT STATUS
16432 The following exit values shall be returned:

16433 0 Successful completion

16434 >0 An error occurred.

16435 CONSEQUENCES OF ERRORS
16436 The expand utility shall terminate with an error message and non-zero exit status upon
16437 encountering difficulties accessing one of the file operands.

16438 APPLICATION USAGE
16439 None. |

16440 EXAMPLES
16441 None.

16442 RATIONALE
16443 The expand utility is useful for preprocessing text files (before sorting, looking at specific
16444 columns, and so on) that contain <tab>s.

16445 See the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.106, Column Position. |

16446 The tablist option-argument consists of integers in ascending order. Utility Syntax Guideline 8
16447 mandates that expand shall accept the integers (within the single argument) separated using
16448 either commas or <blank>s.

16449 FUTURE DIRECTIONS
16450 None.

Shell and Utilities, Issue 6 2637

expand Utilities

16451 SEE ALSO
16452 tabs, unexpand

16453 CHANGE HISTORY
16454 First released in Issue 4.

16455 Issue 6
16456 This utility is now marked as part of the User Portability Utilities option.

16457 The APPLICATION USAGE section is added.

16458 The obsolescent SYNOPSIS is removed.

16459 The LC_CTYPE environment variable description is updated to align with the IEEE P1003.2b
16460 draft standard.

16461 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2638 Technical Standard (2000) (Draft July 31, 2000)

Utilities expr

16462 NAME
16463 expr — evaluate arguments as an expression

16464 SYNOPSIS
16465 expr operand

16466 DESCRIPTION
16467 The expr utility shall evaluate an expression and write the result to standard output.

16468 OPTIONS
16469 None.

16470 OPERANDS
16471 The single expression evaluated by expr shall be formed from the operands, as described in the
16472 EXTENDED DESCRIPTION section. The application shall ensure that each of the expression
16473 operator symbols:

16474 () | & = > >= < <= != + − * / % :

16475 and the symbols integer and string in the table are provided as separate arguments to expr.

16476 STDIN
16477 Not used.

16478 INPUT FILES
16479 None.

16480 ENVIRONMENT VARIABLES
16481 The following environment variables shall affect the execution of expr:

16482 LANG Provide a default value for the internationalization variables that are unset or null.
16483 If LANG is unset or null, the corresponding value from the implementation- |
16484 defined default locale shall be used. If any of the internationalization variables |
16485 contains an invalid setting, the utility shall behave as if none of the variables had
16486 been defined.

16487 LC_ALL If set to a non-empty string value, override the values of all the other
16488 internationalization variables.

16489 LC_COLLATE
16490 Determine the locale for the behavior of ranges, equivalence classes, and multi-
16491 character collating elements within regular expressions and by the string
16492 comparison operators.

16493 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
16494 characters (for example, single-byte as opposed to multi-byte characters in
16495 arguments) and the behavior of character classes within regular expressions.

16496 LC_MESSAGES
16497 Determine the locale that should be used to affect the format and contents of
16498 diagnostic messages written to standard error.

16499 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

16500 ASYNCHRONOUS EVENTS
16501 Default.

Shell and Utilities, Issue 6 2639

expr Utilities

16502 STDOUT
16503 The expr utility shall evaluate the expression and write the result, followed by a <newline>
16504 character, to standard output.

16505 STDERR
16506 Used only for diagnostic messages.

16507 OUTPUT FILES
16508 None.

16509 EXTENDED DESCRIPTION
16510 The formation of the expression to be evaluated is shown in the following table. The symbols
16511 expr, expr1, and expr2 represent expressions formed from integer and string symbols and the
16512 expression operator symbols (all separate arguments) by recursive application of the constructs
16513 described in the table. The expressions are listed in order of increasing precedence, with equal-
16514 precedence operators grouped between horizontal lines. All of the operators shall be left-
16515 associative.

16516 Expression Description___
16517 Returns the evaluation of expr1 if it is neither null nor zero;
16518 otherwise, returns the evaluation of expr2 if it is not null;
16519 otherwise, zero.

expr1 | expr2

16520 Returns the evaluation of expr1 if neither expression evaluates to
16521 null or zero; otherwise, returns zero.

expr1 & expr2

16522 Returns the result of a decimal integer comparison if both
16523 arguments are integers; otherwise, returns the result of a string
16524 comparison using the locale-specific collation sequence. The
16525 result of each comparison is 1 if the specified relationship is true,
16526 or 0 if the relationship is false.
16527 expr1 = expr2 Equal.
16528 expr1 > expr2 Greater than.
16529 expr1 >= expr2 Greater than or equal.
16530 expr1 < expr2 Less than.
16531 expr1 <= expr2 Less than or equal.
16532 expr1 != expr2 Not equal.___
16533 Addition of decimal integer-valued arguments.expr1 + expr2
16534 Subtraction of decimal integer-valued arguments.expr1 − expr2___
16535 Multiplication of decimal integer-valued arguments.expr1 * expr2
16536 Integer division of decimal integer-valued arguments, producing
16537 an integer result.

expr1 / expr2

16538 Remainder of integer division of decimal integer-valued
16539 arguments.

expr1 % expr2

16540 Matching expression; see below.expr1 : expr2___
16541 Grouping symbols. Any expression can be placed within
16542 parentheses. Parentheses can be nested to a depth of
16543 {EXPR_NEST_MAX}.

(expr)

16544 An argument consisting only of an (optional) unary minus
16545 followed by digits.

integer

16546 A string argument; see below.string___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

2640 Technical Standard (2000) (Draft July 31, 2000)

Utilities expr

16547 Matching Expression

16548 The ’:’ matching operator shall compare the string resulting from the evaluation of expr1 with
16549 the regular expression pattern resulting from the evaluation of expr2. Regular expression syntax |
16550 shall be that defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 9.3, Basic |
16551 Regular Expressions, except that all patterns are anchored to the beginning of the string (that is, |
16552 only sequences starting at the first character of a string are matched by the regular expression)
16553 and, therefore, it is unspecified whether ’ˆ’ is a special character in that context. Usually, the
16554 matching operator shall return a string representing the number of characters matched (’0’ on
16555 failure). Alternatively, if the pattern contains at least one regular expression subexpression
16556 "[\(...\)]" , the string corresponding to "\1" shall be returned.

16557 String Operand

16558 A string argument is an argument that cannot be identified as an integer argument or as one of
16559 the expression operator symbols shown in the OPERANDS section.

16560 The use of string arguments length, substr, index, or match produces unspecified results.

16561 EXIT STATUS
16562 The following exit values shall be returned:

16563 0 The expression evaluates to neither null nor zero.

16564 1 The expression evaluates to null or zero.

16565 2 Invalid expression.

16566 >2 An error occurred.

16567 CONSEQUENCES OF ERRORS
16568 Default.

16569 APPLICATION USAGE
16570 After argument processing by the shell, expr is not required to be able to tell the difference
16571 between an operator and an operand except by the value. If "$a" is ’=’ , the command:

16572 expr $a = ’=’

16573 looks like:

16574 expr = = =

16575 as the arguments are passed to expr (and they all may be taken as the ’=’ operator). The
16576 following works reliably:

16577 expr X$a = X=

16578 Also note that this volume of IEEE Std. 1003.1-200x permits implementations to extend utilities.
16579 The expr utility permits the integer arguments to be preceded with a unary minus. This means
16580 that an integer argument could look like an option. Therefore, the portable application must
16581 employ the " −−" construct of Guideline 10 of the Base Definitions volume of |
16582 IEEE Std. 1003.1-200x, Section 12.2, Utility Syntax Guidelines to protect its operands if there is |
16583 any chance the first operand might be a negative integer (or any string with a leading minus).

16584 EXAMPLES
16585 The expr utility has a rather difficult syntax:

16586 • Many of the operators are also shell control operators or reserved words, so they have to be
16587 escaped on the command line.

Shell and Utilities, Issue 6 2641

expr Utilities

16588 • Each part of the expression is composed of separate arguments, so liberal usage of <blank>
16589 characters is required. For example:
16590 __
16591 Invalid Valid__
16592 expr 1+2 expr 1 + 2
16593 expr "1 + 2" expr 1 + 2
16594 expr 1 + (2 * 3) expr 1 + \(2 * 3 \)__LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

16595 In many cases, the arithmetic and string features provided as part of the shell command
16596 language are easier to use than their equivalents in expr. Newly written scripts should avoid
16597 expr in favor of the new features within the shell; see Section 2.5 (on page 2241) and Section 2.6.4
16598 (on page 2248).

16599 The following command:

16600 a=$(expr $a + 1)

16601 adds 1 to the variable a .

16602 The following command, for "$a" equal to either /usr/abc/file or just file:

16603 expr $a : ’.*/\(.*\)’ \| $a

16604 returns the last segment of a path name (that is, file). Applications should avoid the character
16605 ’/’ used alone as an argument: expr may interpret it as the division operator.

16606 The following command:

16607 expr "//$a" : ’.*/\(.*\)’

16608 is a better representation of the previous example. The addition of the "//" characters
16609 eliminates any ambiguity about the division operator and simplifies the whole expression. Also
16610 note that path names may contain characters contained in the IFS variable and should be quoted
16611 to avoid having "$a" expand into multiple arguments.

16612 The following command:

16613 expr "$VAR" : ’.*’

16614 returns the number of characters in VAR .

16615 RATIONALE
16616 In an early proposal, EREs were used in the matching expression syntax. This was changed to
16617 BREs to avoid breaking historical applications.

16618 The use of a leading circumflex in the BRE is unspecified because many historical
16619 implementations have treated it as a special character, despite their system documentation. For
16620 example:

16621 expr foo : ˆfoo expr ˆfoo : ˆfoo

16622 return 3 and 0, respectively, on those systems; their documentation would imply the reverse.
16623 Thus, the anchoring condition is left unspecified to avoid breaking historical scripts relying on
16624 this undocumented feature.

16625 FUTURE DIRECTIONS
16626 None.

2642 Technical Standard (2000) (Draft July 31, 2000)

Utilities expr

16627 SEE ALSO
16628 Section 2.6.4

16629 CHANGE HISTORY
16630 First released in Issue 2.

16631 Issue 4
16632 Aligned with the ISO/IEC 9945-2: 1993 standard.

16633 Issue 5
16634 FUTURE DIRECTIONS section added.

16635 Issue 6
16636 The expr utility is aligned with the IEEE P1003.2b draft standard, to include resolution of IEEE |
16637 PASC Interpretation 1003.2 #104. |

16638 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2643

false Utilities

16639 NAME
16640 false — return false value

16641 SYNOPSIS
16642 false

16643 DESCRIPTION
16644 The false utility shall return with a non-zero exit code.

16645 OPTIONS
16646 None.

16647 OPERANDS
16648 None.

16649 STDIN
16650 Not used.

16651 INPUT FILES
16652 None.

16653 ENVIRONMENT VARIABLES
16654 None.

16655 ASYNCHRONOUS EVENTS
16656 Default.

16657 STDOUT
16658 Not used.

16659 STDERR
16660 None.

16661 OUTPUT FILES
16662 None.

16663 EXTENDED DESCRIPTION
16664 None.

16665 EXIT STATUS
16666 The false utility always shall exit with a value other than zero.

16667 CONSEQUENCES OF ERRORS
16668 Default.

16669 APPLICATION USAGE
16670 None.

16671 EXAMPLES
16672 None.

16673 RATIONALE
16674 None.

16675 FUTURE DIRECTIONS
16676 None.

16677 SEE ALSO
16678 true

2644 Technical Standard (2000) (Draft July 31, 2000)

Utilities false

16679 CHANGE HISTORY
16680 First released in Issue 2.

16681 Issue 4
16682 Aligned with the ISO/IEC 9945-2: 1993 standard.

Shell and Utilities, Issue 6 2645

fc Utilities

16683 NAME
16684 fc — process the command history list

16685 SYNOPSIS
16686 UP fc [−r][−e editor] [first [last]]

16687 fc −l [−nr] [first [last]]

16688 fc −s [old =new][first]
16689

16690 DESCRIPTION
16691 The fc utility shall list, or shall edit and re-execute, commands previously entered to an
16692 interactive sh.

16693 The command history list shall reference commands by number. The first number in the list is
16694 selected arbitrarily. The relationship of a number to its command shall not change except when
16695 the user logs in and no other process is accessing the list, at which time the system may reset the
16696 numbering to start the oldest retained command at another number (usually 1). When the
16697 number reaches an implementation-defined upper limit, which shall be no smaller than the |
16698 value in HISTSIZE or 32 767 (whichever is greater), the shell may wrap the numbers, starting the
16699 next command with a lower number (usually 1). However, despite this optional wrapping of
16700 numbers, fc shall maintain the time-ordering sequence of the commands. For example, if four
16701 commands in sequence are given the numbers 32 766, 32 767, 1 (wrapped), and 2 as they are
16702 executed, command 32 767 is considered the command previous to 1, even though its number is
16703 higher.

16704 When commands are edited (when the −l option is not specified), the resulting lines shall be
16705 entered at the end of the history list and then re-executed by sh. The fc command that caused the
16706 editing shall not be entered into the history list. If the editor returns a non-zero exit status, this
16707 shall suppress the entry into the history list and the command re-execution. Any command line
16708 variable assignments or redirection operators used with fc shall affect both the fc command itself
16709 as well as the command that results; for example:

16710 fc −s −− −1 2>/dev/null

16711 reinvokes the previous command, suppressing standard error for both fc and the previous
16712 command.

16713 OPTIONS
16714 The fc utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
16715 Utility Syntax Guidelines. |

16716 The following options shall be supported:

16717 −e editor Use the editor named by editor to edit the commands. The editor string is a utility
16718 name, subject to search via the PATH variable (see the Base Definitions volume of |
16719 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables). The value in the FCEDIT |
16720 variable shall be used as a default when −e is not specified. If FCEDIT is null or
16721 unset, ed shall be used as the editor.

16722 −l (The letter ell.) List the commands rather than invoking an editor on them. The
16723 commands shall be written in the sequence indicated by the first and last operands,
16724 as affected by −r, with each command preceded by the command number.

16725 −n Suppress command numbers when listing with −l.

16726 −r Reverse the order of the commands listed (with −l) or edited (with neither −l nor
16727 −s).

2646 Technical Standard (2000) (Draft July 31, 2000)

Utilities fc

16728 −s Reexecute the command without invoking an editor.

16729 OPERANDS
16730 The following operands shall be supported:

16731 first, last
16732 Select the commands to list or edit. The number of previous commands that can be
16733 accessed shall be determined by the value of the HISTSIZE variable. The value of
16734 first or last or both shall be one of the following:

16735 [+]number A positive number representing a command number; command
16736 numbers can be displayed with the −l option.

16737 −number A negative decimal number representing the command that was
16738 executed number of commands previously. For example, −1 is the
16739 immediately previous command.

16740 string A string indicating the most recently entered command that begins
16741 with that string. If the old=new operand is not also specified with −s,
16742 the string form of the first operand cannot contain an embedded
16743 equal sign.

16744 When the synopsis form with −s is used:

16745 • If first is omitted, the previous command shall be used.

16746 For the synopsis forms without −s:

16747 • If last is omitted, last shall default to the previous command when −l is
16748 specified; otherwise, it shall default to first .

16749 • If first and last are both omitted, the previous 16 commands shall be listed or
16750 the previous single command shall be edited (based on the −l option).

16751 • If first and last are both present, all of the commands from first to last shall be
16752 edited (without −l) or listed (with −l). Editing multiple commands shall be
16753 accomplished by presenting to the editor all of the commands at one time, each
16754 command starting on a new line. If first represents a newer command than last ,
16755 the commands shall be listed or edited in reverse sequence, equivalent to using
16756 −r. For example, the following commands on the first line are equivalent to the
16757 corresponding commands on the second:

16758 fc −r 10 20 fc 30 40
16759 fc 20 10 fc −r 40 30

16760 • When a range of commands is used, it shall not be an error to specify first or last
16761 values that are not in the history list; fc shall substitute the value representing
16762 the oldest or newest command in the list, as appropriate. For example, if there
16763 are only ten commands in the history list, numbered 1 to 10:

16764 fc −l
16765 fc 1 99

16766 shall list and edit, respectively, all ten commands.

16767 old=new Replace the first occurrence of string old in the commands to be re-executed by the
16768 string new.

Shell and Utilities, Issue 6 2647

fc Utilities

16769 STDIN
16770 Not used.

16771 INPUT FILES
16772 None.

16773 ENVIRONMENT VARIABLES
16774 The following environment variables shall affect the execution of fc:

16775 FCEDIT This variable, when expanded by the shell, shall determine the default value for
16776 the −e editor option’s editor option-argument. If FCEDIT is null or unset, ed shall be
16777 used as the editor.

16778 HISTFILE Determine a path name naming a command history file. If the HISTFILE variable is
16779 not set, the shell may attempt to access or create a file .sh_history in the directory
16780 referred to by the HOME environment variable. If the shell cannot obtain both read |
16781 and write access to, or create, the history file, it shall use an unspecified |
16782 mechanism that allows the history to operate properly. (References to history |
16783 ‘‘file’’ in this section shall be understood to mean this unspecified mechanism in |
16784 such cases.) An implementation may choose to access this variable only when |
16785 initializing the history file; this initialization shall occur when fc or sh first attempt |
16786 to retrieve entries from, or add entries to, the file, as the result of commands issued
16787 by the user, the file named by the ENV variable, or implementation-defined system |
16788 start-up files. In some historical shells, the history file is initialized just after the |
16789 ENV file has been processed. Therefore, it is implementation-defined whether |
16790 changes made to HISTFILE after the history file has been initialized are effective.
16791 Implementations may choose to disable the history list mechanism for users with
16792 appropriate privileges who do not set HISTFILE; the specific circumstances under
16793 which this occurs are implementation-defined. If more than one instance of the |
16794 shell is using the same history file, it is unspecified how updates to the history file |
16795 from those shells interact. As entries are deleted from the history file, they shall be
16796 deleted oldest first. It is unspecified when history file entries are physically
16797 removed from the history file.

16798 HISTSIZE Determine a decimal number representing the limit to the number of previous
16799 commands that are accessible. If this variable is unset, an unspecified default
16800 greater than or equal to 128 shall be used. The maximum number of commands in
16801 the history list is unspecified, but shall be at least 128. An implementation may
16802 choose to access this variable only when initializing the history file, as described
16803 under HISTFILE. Therefore, it is unspecified whether changes made to HISTSIZE
16804 after the history file has been initialized are effective.

16805 LANG Provide a default value for the internationalization variables that are unset or null.
16806 If LANG is unset or null, the corresponding value from the implementation- |
16807 defined default locale shall be used. If any of the internationalization variables |
16808 contains an invalid setting, the utility shall behave as if none of the variables had
16809 been defined.

16810 LC_ALL If set to a non-empty string value, override the values of all the other
16811 internationalization variables.

16812 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
16813 characters (for example, single-byte as opposed to multi-byte characters in
16814 arguments and input files).

16815 LC_MESSAGES
16816 Determine the locale that should be used to affect the format and contents of

2648 Technical Standard (2000) (Draft July 31, 2000)

Utilities fc

16817 diagnostic messages written to standard error.

16818 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

16819 ASYNCHRONOUS EVENTS
16820 Default.

16821 STDOUT
16822 When the −l option is used to list commands, the format of each command in the list shall be as
16823 follows:

16824 "%d\t%s\n", < line number >, < command>

16825 If both the −l and −n options are specified, the format of each command shall be:

16826 "\t%s\n", < command>

16827 If the <command> consists of more than one line, the lines after the first shall be displayed as:

16828 "\t%s\n", < continued-command >

16829 STDERR
16830 Used only for diagnostic messages.

16831 OUTPUT FILES
16832 None.

16833 EXTENDED DESCRIPTION
16834 None.

16835 EXIT STATUS
16836 The following exit values shall be returned:

16837 0 Successful completion of the listing.

16838 >0 An error occurred.

16839 Otherwise, the exit status shall be that of the commands executed by fc.

16840 CONSEQUENCES OF ERRORS
16841 Default.

16842 APPLICATION USAGE
16843 Since editors sometimes use file descriptors as integral parts of their editing, redirecting their file
16844 descriptors as part of the fc command can produce unexpected results. For example, if vi is the
16845 FCEDIT editor, the command:

16846 fc −s | more

16847 does not work correctly on many systems.

16848 Users on windowing systems may want to have separate history files for each window by
16849 setting HISTFILE as follows:

16850 HISTFILE=$HOME/.sh_hist$$

16851 EXAMPLES |
16852 None.

16853 RATIONALE
16854 This utility is based on the fc built-in of the KornShell.

16855 An early proposal specified the −e option as [−e editor [old= new]], which is not historical
16856 practice. Historical practice in fc of either [−e editor] or [−e − [old= new]] is acceptable, but not

Shell and Utilities, Issue 6 2649

fc Utilities

16857 both together. To clarify this, a new option −s was introduced replacing the [−e −]. This resolves
16858 the conflict and makes fc conform to the Utility Syntax Guidelines.

16859 HISTFILE Some implementations of the KornShell check for the superuser and do not create |
16860 a history file unless HISTFILE is set. This is done primarily to avoid creating
16861 unlinked files in the root file system when logging in during single-user mode.
16862 HISTFILE must be set for the superuser to have history.

16863 HISTSIZE Needed to limit the size of history files. It is the intent of the standard developers
16864 that when two shells share the same history file, commands that are entered in one
16865 shell shall be accessible by the other shell. Because of the difficulties of
16866 synchronization over a network, the exact nature of the interaction is unspecified.

16867 The initialization process for the history file can be dependent on the system start-up files, in
16868 that they may contain commands that effectively preempt the settings the user has for HISTFILE
16869 and HISTSIZE. For example, function definition commands are recorded in the history file. If the
16870 system administrator includes function definitions in some system start-up file called before the
16871 ENV file, the history file is initialized before the user can influence its characteristics. In some
16872 historical shells, the history file is initialized just after the ENV file has been processed. Because
16873 of these situations, the text requires the initialization process to be implementation-defined. |

16874 Consideration was given to omitting the fc utility in favor of the command line editing feature in
16875 sh. For example, in vi editing mode, typing "<ESC> v" is equivalent to:

16876 EDITOR=vi fc

16877 However, the fc utility allows the user the flexibility to edit multiple commands simultaneously
16878 (such as fc 10 20) and to use editors other than those supported by sh for command line editing.

16879 In the KornShell, the alias r (‘‘re-do’’) is preset to fc −e − (equivalent to the POSIX fc −s). This is
16880 probably an easier command name to remember than fc (‘‘fix command’’), but it does not meet
16881 the Utility Syntax Guidelines. Renaming fc to hist or redo was considered, but since this
16882 description closely matches historical KornShell practice already, such a renaming was seen as
16883 gratuitous. Users are free to create aliases whenever odd historical names such as fc, awk, cat,
16884 grep, or yacc are standardized by POSIX.

16885 Command numbers have no ordering effects; they are like serial numbers. The −r option and
16886 −number operand address the sequence of command execution, regardless of serial numbers. So,
16887 for example, if the command number wrapped back to 1 at some arbitrary point, there would be
16888 no ambiguity associated with traversing the wrap point. For example, if the command history
16889 were:

16890 32766: echo 1
16891 32767: echo 2
16892 1: echo 3

16893 the number −2 refers to command 32 767 because it is the second previous command, regardless
16894 of serial number.

16895 FUTURE DIRECTIONS
16896 None.

16897 SEE ALSO
16898 sh

2650 Technical Standard (2000) (Draft July 31, 2000)

Utilities fc

16899 CHANGE HISTORY
16900 First released in Issue 4.

16901 Issue 5
16902 FUTURE DIRECTIONS section added.

16903 Issue 6
16904 This utility is now marked as part of the User Portability Utilities option.

16905 In the ENVIRONMENT VARIABLES section, the text ‘‘user’s home directory’’ is updated to
16906 ‘‘directory referred to by the HOME environment variable’’.

Shell and Utilities, Issue 6 2651

fg Utilities

16907 NAME
16908 fg — run jobs in the foreground

16909 SYNOPSIS
16910 UP fg [job_id]
16911

16912 DESCRIPTION
16913 If job control is enabled (see the description of set −m), the fg utility shall move a background job
16914 from the current environment (see Section 2.13 (on page 2273)) into the foreground.

16915 Using fg to place a job into the foreground shall remove its process ID from the list of those
16916 ‘‘known in the current shell execution environment’’; see Section 2.9.3.1 (on page 2259).

16917 OPTIONS
16918 None.

16919 OPERANDS
16920 The following operand shall be supported:

16921 job_id Specify the job to be run as a foreground job. If no job_id operand is given, the
16922 job_id for the job that was most recently suspended, placed in the background or
16923 run as a background job, shall be used. The format of job_id is described in the Base |
16924 Definitions volume of IEEE Std. 1003.1-200x, Section 3.205, Job Control Job ID. |

16925 STDIN
16926 Not used.

16927 INPUT FILES
16928 None.

16929 ENVIRONMENT VARIABLES
16930 The following environment variables shall affect the execution of fg:

16931 LANG Provide a default value for the internationalization variables that are unset or null.
16932 If LANG is unset or null, the corresponding value from the implementation- |
16933 defined default locale shall be used. If any of the internationalization variables |
16934 contains an invalid setting, the utility shall behave as if none of the variables had
16935 been defined.

16936 LC_ALL If set to a non-empty string value, override the values of all the other
16937 internationalization variables.

16938 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
16939 characters (for example, single-byte as opposed to multi-byte characters in
16940 arguments).

16941 LC_MESSAGES
16942 Determine the locale that should be used to affect the format and contents of
16943 diagnostic messages written to standard error.

16944 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

16945 ASYNCHRONOUS EVENTS
16946 Default.

16947 STDOUT
16948 The fg utility shall write the command line of the job to standard output in the following format:

16949 "%s\n", < command>

2652 Technical Standard (2000) (Draft July 31, 2000)

Utilities fg

16950 STDERR
16951 Used only for diagnostic messages.

16952 OUTPUT FILES
16953 None.

16954 EXTENDED DESCRIPTION
16955 None.

16956 EXIT STATUS
16957 The following exit values shall be returned:

16958 0 Successful completion.

16959 >0 An error occurred.

16960 CONSEQUENCES OF ERRORS
16961 If job control is disabled, the fg utility shall exit with an error and no job shall be placed in the
16962 foreground.

16963 APPLICATION USAGE
16964 The fg utility does not work as expected when it is operating in its own utility execution
16965 environment because that environment has no applicable jobs to manipulate. See the
16966 APPLICATION USAGE section for bg (on page 2422). For this reason, fg is generally
16967 implemented as a shell regular built-in. |

16968 EXAMPLES
16969 None.

16970 RATIONALE
16971 The extensions to the shell specified in this volume of IEEE Std. 1003.1-200x have mostly been
16972 based on features provided by the KornShell. The job control features provided by bg, fg, and jobs
16973 are also based on the KornShell. The standard developers examined the characteristics of the C
16974 shell versions of these utilities and found that differences exist. Despite widespread use of the C
16975 shell, the KornShell versions were selected for this volume of IEEE Std. 1003.1-200x to maintain a
16976 degree of uniformity with the rest of the KornShell features selected (such as the very popular
16977 command line editing features).

16978 FUTURE DIRECTIONS
16979 None.

16980 SEE ALSO
16981 bg, kill , jobs , wait

16982 CHANGE HISTORY
16983 First released in Issue 4.

16984 Issue 6
16985 This utility is now marked as part of the User Portability Utilities option.

16986 The APPLICATION USAGE section is added.

16987 The JC marking is removed from the SYNOPSIS since job control is mandatory is this issue.

Shell and Utilities, Issue 6 2653

file Utilities

16988 NAME
16989 file — determine file type

16990 SYNOPSIS
16991 UP file [−dhi][−M file][−m file] file ...
16992

16993 DESCRIPTION
16994 The file utility shall perform a series of tests on each specified file in an attempt to classify it:

16995 1. If the file is not a regular file, its file type shall be identified. The file types directory, FIFO,
16996 block special, and character special shall be identified as such. Other implementation- |
16997 defined file types may also be identified. |

16998 2. If the file is a regular file, and:

16999 a. The file is zero-length, it shall be identified as an empty file.

17000 b. The file is not zero-length, file shall examine an initial segment of the file and shall
17001 make a guess at identifying its contents or whether it is an executable binary file.
17002 (The answer is not guaranteed to be correct.)

17003 If file does not exist, cannot be read, or its file status could not be determined, the output shall
17004 indicate that the file was processed, but that its type could not be determined.

17005 If file is a symbolic link, by default the link shall be resolved and file shall test the type of file
17006 referenced by the symbolic link.

17007 OPTIONS
17008 The file utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
17009 12.2, Utility Syntax Guidelines. |

17010 The following options shall be supported by the implementation:

17011 −d Apply any default system tests to the file.

17012 −h When a symbolic link is encountered, identify the file as a symbolic link. If −h is
17013 not specified and file is a symbolic link that refers to a nonexistent file, file shall
17014 identify the file as a symbolic link, as if −h had been specified.

17015 −i If a file is a regular file, do not attempt to classify the type of the file further, but
17016 identify the file as specified in the STDOUT section, using a <type> string that |
17017 contains the string "regular file" . |

17018 −M file Specify the name of a file containing tests that shall be applied to a file in order to
17019 classify it (see the EXTENDED DESCRIPTION). No default system tests shall be
17020 applied.

17021 −m file Specify the name of a file containing tests that shall be applied to a file in order to
17022 classify it (see the EXTENDED DESCRIPTION).

17023 If multiple instances of the −m, −d, or −M options are specified, the concatenation of the tests
17024 specified, in the order specified, shall be the set of tests that are applied. If a −M option is
17025 specified, no tests other than those specified using the −d, −M, and −m options shall be applied
17026 to the file. If neither the −d nor −M options are specified, any default system tests shall be
17027 applied after any tests specified using the −m option.

2654 Technical Standard (2000) (Draft July 31, 2000)

Utilities file

17028 OPERANDS
17029 The following operand shall be supported:

17030 file A path name of a file to be tested.

17031 STDIN
17032 Not used.

17033 INPUT FILES
17034 The file can be any file type.

17035 ENVIRONMENT VARIABLES
17036 The following environment variables shall affect the execution of file:

17037 LANG Provide a default value for the internationalization variables that are unset or null.
17038 If LANG is unset or null, the corresponding value from the implementation- |
17039 defined default locale shall be used. If any of the internationalization variables |
17040 contains an invalid setting, the utility shall behave as if none of the variables had
17041 been defined.

17042 LC_ALL If set to a non-empty string value, override the values of all the other
17043 internationalization variables.

17044 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
17045 characters (for example, single-byte as opposed to multi-byte characters in
17046 arguments and input files).

17047 LC_MESSAGES
17048 Determine the locale that should be used to affect the format and contents of
17049 diagnostic messages written to standard error and informative messages written to
17050 standard output.

17051 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

17052 ASYNCHRONOUS EVENTS
17053 Default.

17054 STDOUT
17055 In the POSIX locale, the following format shall be used to identify each operand, file specified:

17056 "%s: %s\n", < file >, < type >

17057 The values for <type> are unspecified, except that in the POSIX locale, if file is identified as one
17058 of the types listed in the following table, <type> shall contain (but is not limited to) the
17059 corresponding string. Each space shown in the strings shall be exactly one <space> character.

Shell and Utilities, Issue 6 2655

file Utilities

17060 Table 4-8 File Utility Output Strings
__

17061 If file is a: <type> shall contain the string:__
17062 Directory directory
17063 FIFO fifo
17064 Block special block special
17065 Character special character special
17066 Executable binary executable
17067 Empty regular file empty
17068 Symbolic link symbolic link to
17069 ar archive library (see ar) archive
17070 Extended cpio format (see pax) cpio archive
17071 Extended tar format (see ustar in pax) tar archive
17072 Shell script commands text
17073 C-language source c program text
17074 FORTRAN source fortran program text__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

17075 If file is identified as a symbolic link (see −h), the following alternative output format shall be
17076 used:

17077 "%s: %s %s\n", < file >, < type >, < contents of link >"

17078 If the file named by the file operand does not exist or cannot be read, the string "cannot open"
17079 shall be included as part of the <type> field, but this shall not be considered an error that affects
17080 the exit status. If the type of the file named by the file operand cannot be determined, the string
17081 "data" shall be included as part of the <type> field, but this shall not be considered an error that
17082 affects the exit status.

17083 STDERR
17084 Used only for diagnostic messages.

17085 OUTPUT FILES
17086 None.

17087 EXTENDED DESCRIPTION
17088 A file specified as an option-argument to the −m or −M options shall contain one test per line,
17089 which shall be applied to the file. If the test succeeds, the message field of the line shall be
17090 printed and no further tests shall be applied, with the exception that tests on immediately
17091 following lines beginning with a single ’>’ character shall be applied.

17092 Each line shall be composed of the following four <blank>-separated fields:

17093 offset An unsigned number (optionally preceded by a single ’>’ character) specifying
17094 the offset , in bytes, of the value in the file that is to be compared against the value
17095 field of the line. If the file is shorter than the specified offset, the test shall fail.

17096 If the offset begins with the character ’>’ , the test contained in the line shall not be
17097 applied to the file unless the test on the last line for which the offset did not begin
17098 with a ’>’ was successful. By default, the offset shall be interpreted as an unsigned
17099 decimal number. With a leading 0x or 0X, the offset shall be interpreted as a
17100 hexadecimal number; otherwise, with a leading 0, the offset shall be interpreted as
17101 an octal number.

17102 type The type of the value in the file to be tested. The type shall consist of the type
17103 specification characters c, d, f, s, and u, specifying character, signed decimal,
17104 floating point, string, and unsigned decimal, respectively.

2656 Technical Standard (2000) (Draft July 31, 2000)

Utilities file

17105 The type string shall be interpreted as the bytes from the file starting at the
17106 specified offset and including the same number of bytes specified by the value field.
17107 If insufficient bytes remain in the file past the offset to match the value field, the test
17108 shall fail.

17109 The type specification characters d, f, and u can be followed by an optional
17110 unsigned decimal integer that specifies the number of bytes represented by the
17111 type. The type specification character f can be followed by an optional F, D, or L,
17112 indicating that the value is of type float, double, or long double, respectively. The
17113 type specification characters d and u can be followed by an optional C, S, I, or L,
17114 indicating that the value is of type char, short, int, or long, respectively.

17115 The default number of bytes represented by the type specifiers d, f, and u shall
17116 correspond to their respective C-language types as follows. If the system claims
17117 conformance to the C-Language Development Utilities option, those specifiers
17118 shall correspond to the default sizes used in the c99 utility. Otherwise, the default |
17119 sizes shall be implementation-defined. |

17120 For the type specifier characters d and u, the default number of bytes shall |
17121 correspond to the size of a basic integer type of the implementation. For these |
17122 specifier characters, the implementation shall support values of the optional |
17123 number of bytes to be converted corresponding to the number of bytes in the C-
17124 language types char, short, int, or long. These numbers can also be specified by an
17125 application as the characters C, S, I, and L, respectively. The byte order used when
17126 interpreting numeric values is implementation-defined, but shall correspond to the |
17127 order in which a constant of the corresponding type is stored in memory on the |
17128 system.

17129 For the type specifier f, the default number of bytes shall correspond to the number
17130 of bytes in the basic double precision floating-point data type of the underlying
17131 implementation. The implementation shall support values of the optional number
17132 of bytes to be converted corresponding to the number of bytes in the C-language
17133 types float, double, and long double. These numbers can also be specified by an
17134 application as the characters F, D, and L, respectively.

17135 All type specifiers, except for s, can be followed by a mask specifier of the form
17136 &number. The mask value shall be AND’ed with the value before the comparison
17137 with the value from the file is made. By default, the mask shall be interpreted as an
17138 unsigned decimal number. With a leading 0x or 0X, the mask shall be interpreted
17139 as an unsigned hexadecimal number; otherwise, with a leading 0, the mask shall be
17140 interpreted as an unsigned octal number.

17141 The strings byte, short, long, and string shall also be supported as type fields,
17142 being interpreted as dC, dS, dL, and s, respectively.

17143 value The value to be compared with the value from the file.

17144 Any value that contains a character that is not a digit, other than a leading sign
17145 (’+’ or ’ −’) or a leading 0x or 0X, shall be interpreted as a string. The test shall
17146 succeed only when a string value exactly matches the bytes from the file.

17147 If the value is a string, it can contain the following sequences:

17148 \character The backslash-escape sequences as specified in the Base |
17149 Definitions volume of IEEE Std. 1003.1-200x, Table 5-1, Escape |
17150 Sequences and Associated Actions (’\\’ , ’\a’ , ’\b’ , ’\f’ , |
17151 ’\n’ , ’\r’ , ’\t’ , ’\v’). The results of using any other

Shell and Utilities, Issue 6 2657

file Utilities

17152 character, other than an octal digit, following the backslash are
17153 unspecified.

17154 \octal Octal sequences that can be used to represent characters with
17155 specific coded values. An octal sequence shall consist of a
17156 backslash followed by the longest sequence of one, two, or three
17157 octal-digit characters (01234567). If the size of a byte on the
17158 system is greater than 9 bits, the valid escape sequence used to
17159 represent a byte is implementation-defined. |

17160 By default, any value that is not a string shall be interpreted as a signed decimal
17161 number. Any such value, with a leading 0x or 0X, shall be interpreted as an
17162 unsigned hexadecimal number; otherwise, with a leading zero, the value shall be
17163 interpreted as an unsigned octal number.

17164 If the value is not a string, it can be preceded by a character indicating the
17165 comparison to be performed. Permissible characters and the comparisons they
17166 specify are as follows:

17167 = The test shall succeed if the value from the file equals the value field.

17168 < The test shall succeed if the value from the file is less than the value field.

17169 > The test shall succeed if the value from the file is greater than the value field.

17170 & The test shall succeed if all of the bits in the value field are set in the value
17171 from the file. |

17172 ^ The test shall succeed if at least one of the bits in the value field is not set in the |
17173 value from the file.

17174 x The test shall succeed if there is any value in the file.

17175 message The message to be printed if the test succeeds. The message shall be interpreted
17176 using the notation for the printf formatting specification; see printf . If the value
17177 field was a string, then the value from the file shall be the argument for the printf
17178 formatting specification; otherwise, the value from the file shall be the argument.

17179 EXIT STATUS
17180 The following exit values shall be returned:

17181 0 Successful completion.

17182 >0 An error occurred.

17183 CONSEQUENCES OF ERRORS
17184 Default.

17185 APPLICATION USAGE
17186 The file utility can only be required to guess at many of the file types because only exhaustive
17187 testing can determine some types with certainty. For example, binary data on some systems
17188 might match the initial segment of an executable or a tar archive.

17189 Note that the table indicates that the output contains the stated string. Systems may add text
17190 before or after the string. For executables, as an example, the machine architecture and various
17191 facts about how the file was link-edited may be included. |

2658 Technical Standard (2000) (Draft July 31, 2000)

Utilities file

17192 EXAMPLES
17193 Determine whether an argument is a binary executable file:

17194 file "$1" | grep −Fq executable &&
17195 printf "%s is executable.\n" "$1"

17196 RATIONALE
17197 The −f option was omitted because the same effect can (and should) be obtained using the xargs
17198 utility.

17199 Historical versions of the file utility attempt to identify the following types of files: symbolic link,
17200 directory, character special, block special, socket, tar archive, cpio archive, SCCS archive, archive
17201 library, empty, compress output, pack output, binary data, C source, FORTRAN source, assembler
17202 source, nroff/troff/eqn/tbl source troff output, shell script, C shell script, English text, ASCII text,
17203 various executables, APL workspace, compiled terminfo entries, and CURSES screen images.
17204 Only those types that are reasonably well specified in POSIX or are directly related to POSIX
17205 utilities are listed in the table.

17206 Implementations that support symbolic links are encouraged to use the string "symbolic
17207 link" to identify them.

17208 Historical systems have used a ‘‘magic file’’ named /etc/magic to help identify file types. Because
17209 it is generally useful for users and scripts to be able to identify special file types, the −m flag and
17210 a portable format for user-created magic files has been specified. No requirement is made that an
17211 implementation of file use this method of identifying files, only that users be permitted to add
17212 their own classifying tests.

17213 In addition, three options have been added to historical practice. The −d flag has been added to
17214 permit users to cause their tests to follow any default system tests. The −i flag has been added to
17215 permit users to test portably for regular files in shell scripts. The −M flag has been added to
17216 permit users to ignore any default system tests.

17217 The historical −c option was omitted as not particularly useful to users or portable shell scripts.
17218 In addition, a reasonable implementation of the file utility would report any errors found each
17219 time the magic file is read.

17220 The historical format of the magic file was the same as that specified by the Rationale in the
17221 previous version of IEEE Std. 1003.1-200x for the offset , value , and message fields; however, it
17222 used less precise type fields than the format specified by the current normative text. The new
17223 type field values are a superset of the historical ones.

17224 The following is an example magic file:

17225 0 short 070707 cpio archive
17226 0 short 0143561 Byte-swapped cpio archive
17227 0 string 070707 ASCII cpio archive
17228 0 long 0177555 Very old archive
17229 0 short 0177545 Old archive
17230 0 short 017437 Old packed data
17231 0 string \037\036 Packed data
17232 0 string \377\037 Compacted data
17233 0 string \037\235 Compressed data
17234 >2 byte&0x80 >0 Block compressed
17235 >2 byte&0x1f x %d bits
17236 0 string \032\001 Compiled Terminfo Entry
17237 0 short 0433 Curses screen image
17238 0 short 0434 Curses screen image

Shell and Utilities, Issue 6 2659

file Utilities

17239 0 string <ar> System V Release 1 archive
17240 0 string !<arch>\n__.SYMDEF Archive random library
17241 0 string !<arch> Archive
17242 0 string ARF_BEGARF PHIGS clear text archive
17243 0 long 0x137A2950 Scalable OpenFont binary
17244 0 long 0x137A2951 Encrypted scalable OpenFont binary

17245 The use of a basic integer data type is intended to allow the implementation to choose a word |
17246 size commonly used by applications on that architecture. |

17247 FUTURE DIRECTIONS
17248 None.

17249 SEE ALSO
17250 ls

17251 CHANGE HISTORY
17252 First released in Issue 4.

17253 Issue 6
17254 This utility is now marked as part of the User Portability Utilities option.

17255 Options and an EXTENDED DESCRIPTION are added as specified in the IEEE P1003.2b draft
17256 standard.

2660 Technical Standard (2000) (Draft July 31, 2000)

Utilities find

17257 NAME
17258 find — find files

17259 SYNOPSIS
17260 find [−H | −L] path ... [operand_expression ...]

17261 DESCRIPTION
17262 The find utility shall recursively descend the directory hierarchy from each file specified by path ,
17263 evaluating a Boolean expression composed of the primaries described in the OPERANDS section
17264 for each file encountered.

17265 The find utility shall be able to descend to arbitrary depths in a file hierarchy and shall not fail
17266 due to path length limitations (unless a path operand specified by the application exceeds
17267 {PATH_MAX} requirements).

17268 The find utility shall detect infinite loops; that is, entering a previously visited directory that is an
17269 ancestor of the last file encountered. When it detects an infinite loop, find shall write a
17270 diagnostic message to standard error and shall either recover its position in the hierarchy or
17271 terminate.

17272 OPTIONS
17273 The find utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
17274 12.2, Utility Syntax Guidelines. |

17275 The following options shall be supported by the implementation:

17276 −H Cause the file information and file type evaluated for each symbolic link
17277 encountered on the command line to be those of the file referenced by the link, and
17278 not the link itself. If the referenced file does not exist, the file information and type
17279 shall be for the link itself. File information for all symbolic links not on the
17280 command line shall be that of the link itself.

17281 −L Cause the file information and file type evaluated for each symbolic link to be
17282 those of the file referenced by the link, and not the link itself.

17283 Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
17284 an error. The last option specified shall determine the behavior of the utility.

17285 OPERANDS
17286 The following operands shall be supported:

17287 The path operand is a path name of a starting point in the directory hierarchy.

17288 The first argument that starts with a ’ −’ , or is a ’!’ or a ’(’ , and all subsequent arguments
17289 shall be interpreted as an expression made up of the following primaries and operators. In the
17290 descriptions, wherever n is used as a primary argument, it shall be interpreted as a decimal
17291 integer optionally preceded by a plus (’+’) or minus (’ −’) sign, as follows:

17292 +n More than n.

17293 n Exactly n.

17294 −n Less than n.

17295 The following primaries shall be supported:

17296 −name pattern
17297 The primary shall evaluate as true if the basename of the file name being examined
17298 matches pattern using the pattern matching notation described in Section 2.14 (on
17299 page 2274).

Shell and Utilities, Issue 6 2661

find Utilities

17300 −nouser The primary shall evaluate as true if the file belongs to a user ID for which the
17301 getpwuid() function defined in the System Interfaces volume of
17302 IEEE Std. 1003.1-200x (or equivalent) returns NULL.

17303 −nogroup The primary shall evaluate as true if the file belongs to a group ID for which the
17304 getgrgid() function defined in the System Interfaces volume of
17305 IEEE Std. 1003.1-200x (or equivalent) returns NULL.

17306 −xdev The primary always shall evaluate as true; it shall cause find not to continue
17307 descending past directories that have a different device ID (st_dev , see the stat()
17308 function defined in the System Interfaces volume of IEEE Std. 1003.1-200x). If any
17309 −xdev primary is specified, it shall apply to the entire expression even if the −xdev
17310 primary would not normally be evaluated.

17311 −prune The primary always shall evaluate as true; it shall cause find not to descend the
17312 current path name if it is a directory. If the −depth primary is specified, the −prune
17313 primary shall have no effect.

17314 −perm [−]mode
17315 The mode argument is used to represent file mode bits. It shall be identical in
17316 format to the symbolic_mode operand described in chmod (on page 2450), and shall
17317 be interpreted as follows. To start, a template shall be assumed with all file mode
17318 bits cleared. An op symbol of ’+’ shall set the appropriate mode bits in the
17319 template; ’ −’ shall clear the appropriate bits; ’=’ shall set the appropriate mode
17320 bits, without regard to the contents of process’ file mode creation mask. The op
17321 symbol of ’ −’ cannot be the first character of mode; this avoids ambiguity with the
17322 optional leading hyphen. Since the initial mode is all bits off, there are not any
17323 symbolic modes that need to use ’ −’ as the first character.

17324 If the hyphen is omitted, the primary shall evaluate as true when the file
17325 permission bits exactly match the value of the resulting template.

17326 Otherwise, if mode is prefixed by a hyphen, the primary shall evaluate as true if at
17327 least all the bits in the resulting template are set in the file permission bits. |

17328 −perm [−]onum |
17329 If the hyphen is omitted, the primary shall evaluate as true when the file |
17330 permission bits exactly match the value of the octal number onum and only the bits
17331 corresponding to the octal mask 07777 shall be compared. (See the description of
17332 the octal mode in chmod (on page 2450).) Otherwise, if onum is prefixed by a
17333 hyphen, the primary shall evaluate as true if at least all of the bits specified in onum
17334 that are also set in the octal mask 07777 are set. |

17335 −type c The primary shall evaluate as true if the type of the file is c, where c is ’b’ , ’c’ ,
17336 ’d’ , ’l’ , ’p’ , ’f’ , or ’s’ for block special file, character special file, directory, |
17337 symbolic link, FIFO, regular file, or socket, respectively. |

17338 −links n The primary shall evaluate as true if the file has n links.

17339 −user uname The primary shall evaluate as true if the file belongs to the user uname. If uname is
17340 a decimal integer and the getpwnam() (or equivalent) function does not return a
17341 valid user name, uname shall be interpreted as a user ID.

17342 −group gname
17343 The primary shall evaluate as true if the file belongs to the group gname. If gname
17344 is a decimal integer and the getgrnam() (or equivalent) function does not return a
17345 valid group name, gname shall be interpreted as a group ID.

2662 Technical Standard (2000) (Draft July 31, 2000)

Utilities find

17346 −size n[c] The primary shall evaluate as true if the file size in bytes, divided by 512 and
17347 rounded up to the next integer, is n. If n is followed by the character ’c’ , the size
17348 shall be in bytes.

17349 −atime n The primary shall evaluate as true if the file access time subtracted from the
17350 initialization time, divided by 86 400 (with any remainder discarded), is n.

17351 −ctime n The primary shall evaluate as true if the time of last change of file status
17352 information subtracted from the initialization time, divided by 86 400 (with any
17353 remainder discarded), is n.

17354 −mtime n The primary shall evaluate as true if the file modification time subtracted from the
17355 initialization time, divided by 86 400 (with any remainder discarded), is n.

17356 −exec utility_name [argument . . .] ;
17357 The primary shall evaluate as true if the invoked utility utility_name returns a zero
17358 value as exit status. The end of the primary expression shall be punctuated by a
17359 semicolon. A utility_name or argument containing only the two characters "{}"
17360 shall be replaced by the current path name. If a utility_name or argument string
17361 contains the two characters "{}" , but not just the two characters "{}" , it is |
17362 implementation-defined whether find replaces those two characters with the |
17363 current path name or uses the string without change. The current directory for the
17364 invocation of utility_name shall be the same as the current directory when the find
17365 utility was started. If the utility_name names any of the special built-in utilities in
17366 Section 2.15 (on page 2276), the results are undefined.

17367 −ok utility_name [argument . . .] ;
17368 The −ok primary shall be equivalent to −exec, except that find shall request
17369 affirmation of the invocation of utility_name using the current file as an argument
17370 by writing to standard error as described in the STDERR section. If the response on
17371 standard input is affirmative, the utility shall be invoked. Otherwise, the command
17372 shall not be invoked and the value of the −ok operand shall be false.

17373 −print The primary always shall evaluate as true; it shall cause the current path name to
17374 be written to standard output.

17375 −newer file The primary shall evaluate as true if the modification time of the current file is
17376 more recent than the modification time of the file named by the path name file .

17377 −depth The primary shall always evaluate as true; it shall cause descent of the directory
17378 hierarchy to be done so that all entries in a directory are acted on before the
17379 directory itself. If a −depth primary is not specified, all entries in a directory shall
17380 be acted on after the directory itself. If any −depth primary is specified, it shall
17381 apply to the entire expression even if the −depth primary would not normally be
17382 evaluated.

17383 The primaries can be combined using the following operators (in order of decreasing
17384 precedence):

17385 (expression) True if expression is true.

17386 ! expression Negation of a primary; the unary NOT operator.

17387 expression [−a] expression
17388 Conjunction of primaries; the AND operator is implied by the juxtaposition of two
17389 primaries or made explicit by the optional −a operator. The second expression
17390 shall not be evaluated if the first expression is false.

Shell and Utilities, Issue 6 2663

find Utilities

17391 expression −o expression
17392 Alternation of primaries; the OR operator. The second expression shall not be
17393 evaluated if the first expression is true.

17394 If no expression is present, −print shall be used as the expression. Otherwise, if the given
17395 expression does not contain any of the primaries −exec, −ok, or −print, the given expression shall
17396 be effectively replaced by:

17397 (given_expression) −print

17398 The −user, −group, and −newer primaries each shall evaluate their respective arguments only
17399 once.

17400 STDIN
17401 If the −ok primary is used, the response shall be read from the standard input. An entire line
17402 shall be read as the response. Otherwise, the standard input shall not be used.

17403 INPUT FILES
17404 None.

17405 ENVIRONMENT VARIABLES
17406 The following environment variables shall affect the execution of find:

17407 LANG Provide a default value for the internationalization variables that are unset or null.
17408 If LANG is unset or null, the corresponding value from the implementation- |
17409 defined default locale shall be used. If any of the internationalization variables |
17410 contains an invalid setting, the utility shall behave as if none of the variables had
17411 been defined.

17412 LC_ALL If set to a non-empty string value, override the values of all the other
17413 internationalization variables.

17414 LC_COLLATE
17415 Determine the locale for the behavior of ranges, equivalence classes and multi-
17416 character collating elements used in the pattern matching notation for the −n
17417 option and in the extended regular expression defined for the yesexpr locale
17418 keyword in the LC_MESSAGES category.

17419 LC_CTYPE This variable determines the locale for the interpretation of sequences of bytes of
17420 text data as characters (for example, single-byte as opposed to multi-byte
17421 characters in arguments), the behavior of character classes within the pattern
17422 matching notation used for the −n option, and the behavior of character classes
17423 within regular expressions used in the extended regular expression defined for the
17424 yesexpr locale keyword in the LC_MESSAGES category.

17425 LC_MESSAGES
17426 Determine the locale for the processing of affirmative responses that should be
17427 used to affect the format and contents of diagnostic messages written to standard
17428 error.

17429 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

17430 PATH Determine the location of the utility_name for the −exec and −ok primaries, as |
17431 described in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, |
17432 Environment Variables. |

2664 Technical Standard (2000) (Draft July 31, 2000)

Utilities find

17433 ASYNCHRONOUS EVENTS
17434 Default.

17435 STDOUT
17436 The −print primary shall cause the current path names to be written to standard output. The
17437 format shall be:

17438 "%s\n", < path >

17439 STDERR
17440 The −ok primary shall write a prompt to standard error containing at least the utility_name to be
17441 invoked and the current path name. In the POSIX locale, the last non-<blank> character in the
17442 prompt shall be ’?’ . The exact format used is unspecified.

17443 Otherwise, the standard error shall be used only for diagnostic messages.

17444 OUTPUT FILES
17445 None.

17446 EXTENDED DESCRIPTION
17447 None.

17448 EXIT STATUS
17449 The following exit values shall be returned:

17450 0 All path operands were traversed successfully.

17451 >0 An error occurred.

17452 CONSEQUENCES OF ERRORS
17453 Default.

17454 APPLICATION USAGE
17455 When used in operands, pattern matching notation, semicolons, opening parentheses, and
17456 closing parentheses are special to the shell and must be quoted (see Section 2.2 (on page 2236)).

17457 The bit that is traditionally used for sticky (historically 01000) is specified in the −perm primary
17458 using the octal number argument form. Since this bit is not defined by this volume of
17459 IEEE Std. 1003.1-200x, applications must not assume that it actually refers to the traditional
17460 sticky bit.

17461 EXAMPLES

17462 1. The following commands are equivalent:

17463 find .
17464 find . −print

17465 They both write out the entire directory hierarchy from the current directory.

17466 2. The following command:

17467 find / \(−name tmp −o −name ’*.xx’ \) −atime +7 −exec rm {} \;

17468 removes all files named tmp or ending in .xx that have not been accessed for seven or more
17469 24-hour periods.

17470 3. The following command:

17471 find . −perm −o+w,+s

17472 prints (−print is assumed) the names of all files in or below the current directory, with all
17473 of the file permission bits S_ISUID, S_ISGID, and S_IWOTH set.

Shell and Utilities, Issue 6 2665

find Utilities

17474 4. The following command:

17475 find . −name SCCS−prune −o −print

17476 recursively prints path names of all files in the current directory and below, but skips
17477 directories named SCCS and files in them.

17478 5. The following command:

17479 find . −print −name SCCS−prune

17480 behaves as in the previous example, but prints the names of the SCCS directories.

17481 6. The following command is roughly equivalent to the −nt extension to test:

17482 if [−n "$(find file1 −prune −newer file2)"]; then
17483 printf %s\\n "file1 is newer than file2"
17484 fi

17485 7. The descriptions of −atime, −ctime, and −mtime use the terminology n ‘‘86 400 second |
17486 periods (days)’’. For example, a file accessed at 23:59 is selected by: |

17487 find . −atime −1 −print

17488 at 00:01 the next day (less than 24 hours later, not more than one day ago); the midnight
17489 boundary between days has no effect on the 24-hour calculation.

17490 RATIONALE
17491 The −a operator was retained as an optional operator for compatibility with historical shell
17492 scripts, even though it is redundant with expression concatenation.

17493 The descriptions of the ’ −’ modifier on the mode and onum arguments to the −perm primary
17494 agree with historical practice on BSD and System V implementations. System V and BSD
17495 documentation both describe it in terms of checking additional bits; in fact, it uses the same bits,
17496 but checks for having at least all of the matching bits set instead of having exactly the matching
17497 bits set.

17498 The exact format of the interactive prompts is unspecified. Only the general nature of the
17499 contents of prompts are specified because:

17500 • Implementations may desire more descriptive prompts than those used on historical
17501 implementations.

17502 • Since the historical prompt strings do not terminate with <newline>s, there is no portable
17503 way for another program to interact with the prompts of this utility via pipes.

17504 Therefore, an application using this prompting option relies on the system to provide the most
17505 suitable dialog directly with the user, based on the general guidelines specified.

17506 The −name file operand was changed to use the shell pattern matching notation so that find is
17507 consistent with other utilities using pattern matching.

17508 The −size operand refers to the size of a file, rather than the number of blocks it may occupy in |
17509 the file system. The intent is that the st_size field defined in the System Interfaces volume of
17510 IEEE Std. 1003.1-200x should be used, not the st_blocks found in historical implementations.
17511 There are at least two reasons for this:

17512 1. In both System V and BSD, find only uses st_size in size calculations for the operands
17513 specified by this volume of IEEE Std. 1003.1-200x. (BSD uses st_blocks only when
17514 processing the −ls primary.)

2666 Technical Standard (2000) (Draft July 31, 2000)

Utilities find

17515 2. Users usually think of file size in terms of bytes, which is also the unit used by the ls utility
17516 for the output from the −l option. (In both System V and BSD, ls uses st_size for the −l
17517 option size field and uses st_blocks for the ls −s calculations. This volume of
17518 IEEE Std. 1003.1-200x does not specify ls −s.)

17519 The descriptions of −atime, −ctime, and −mtime were changed from the SVID description of n
17520 ‘‘days’’ to ‘‘24-hour periods’’. The description is also different in terms of the exact timeframe for
17521 the n case (versus the +n or −n), but it matches all known historical implementations. It refers to
17522 one 86 400 second period in the past, not any time from the beginning of that period to the |
17523 current time. For example, −atime 3 is true if the file was accessed any time in the period from 72 |
17524 hours to 48 hours ago.

17525 Historical implementations do not modify "{}" when it appears as a substring of an −exec or
17526 −ok utility_name or argument string. There have been numerous user requests for this extension,
17527 so this volume of IEEE Std. 1003.1-200x allows the desired behavior. At least one recent
17528 implementation does support this feature, but encountered several problems in managing
17529 memory allocation and dealing with multiple occurrences of "{}" in a string while it was being
17530 developed, so it is not yet required behavior.

17531 Assuming the presence of −print was added to correct a historical pitfall that plagues novice
17532 users, it is entirely upward-compatible from the historical System V find utility. In its simplest
17533 form (find directory), it could be confused with the historical BSD fast find. The BSD developers
17534 agreed that adding −print as a default expression was the correct decision and have added the
17535 fast find functionality within a new utility called locate.

17536 Historically, the −L option was implemented using the primary −follow. The −H and −L options
17537 were added for two reasons. First, they offer a finer granularity of control and consistency with
17538 other programs that walk file hierarchies. Second, the −follow primary always evaluated to true.
17539 As they were historically really global variables that took effect before the traversal began, some
17540 valid expressions had unexpected results. An example is the expression −print −o −follow.
17541 Because −print always evaluates to true, the standard order of evaluation implies that −follow
17542 would never be evaluated. This was never the case. Historical practice for the −follow primary,
17543 however, is not consistent. Some implementations always follow symbolic links on the
17544 command line whether −follow is specified or not. Others follow symbolic links on the
17545 command line only if −follow is specified. Both behaviors are provided by the −H and −L
17546 options, but scripts using the current −follow primary would be broken if the −follow option is
17547 specified to work either way.

17548 Since the −L option resolves all symbolic links and the −type l primary is true for symbolic links
17549 that still exist after symbolic links have been resolved, the command:

17550 find −L . −type l

17551 prints a list of symbolic links reachable from the current directory that do not resolve to
17552 accessible files.

17553 FUTURE DIRECTIONS
17554 None.

17555 SEE ALSO
17556 chmod , pax , sh, test, the System Interfaces volume of IEEE Std. 1003.1-200x, stat()

17557 CHANGE HISTORY
17558 First released in Issue 2.

Shell and Utilities, Issue 6 2667

find Utilities

17559 Issue 4
17560 Aligned with the ISO/IEC 9945-2: 1993 standard.

17561 Issue 5
17562 FUTURE DIRECTIONS section added.

17563 Issue 6
17564 The following new requirements on POSIX implementations derive from alignment with the
17565 Single UNIX Specification:

17566 • The −perm [−]onum primary is supported.

17567 The find utility is aligned with the IEEE P1003.2b draft standard, to include processing of
17568 symbolic links and changes to the description of the atime, ctime, and mtime operands.

2668 Technical Standard (2000) (Draft July 31, 2000)

Utilities fold

17569 NAME
17570 fold — filter for folding lines

17571 SYNOPSIS
17572 fold [−bs][−w width][file ...]

17573 DESCRIPTION
17574 The fold utility is a filter that shall fold lines from its input files, breaking the lines to have a
17575 maximum of width column positions (or bytes, if the −b option is specified). Lines shall be
17576 broken by the insertion of a <newline> character such that each output line (referred to later in
17577 this section as a segment) is the maximum width possible that does not exceed the specified
17578 number of column positions (or bytes). A line shall not be broken in the middle of a character.
17579 The behavior is undefined if width is less than the number of columns any single character in the
17580 input would occupy.

17581 If the <carriage-return>, <backspace>, or <tab> characters are encountered in the input, and the
17582 −b option is not specified, they shall be treated specially:

17583 <backspace> The current count of line width shall be decremented by one, although the count
17584 never shall become negative. The fold utility shall not insert a <newline> character
17585 immediately before or after any <backspace> character.

17586 <carriage-return>
17587 The current count of line width shall be set to zero. The fold utility shall not insert a
17588 <newline> character immediately before or after any <carriage-return> character.

17589 <tab> Each <tab> character encountered shall advance the column position pointer to the
17590 next tab stop. Tab stops shall be at each column position n such that n modulo 8
17591 equals 1.

17592 OPTIONS
17593 The fold utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
17594 12.2, Utility Syntax Guidelines. |

17595 The following options shall be supported:

17596 −b Count width in bytes rather than column positions.

17597 −s If a segment of a line contains a <blank> character within the first width column
17598 positions (or bytes), break the line after the last such <blank> character meeting the
17599 width constraints. If there is no <blank> character meeting the requirements, the −s
17600 option shall have no effect for that output segment of the input line.

17601 −w width Specify the maximum line length, in column positions (or bytes if −b is specified).
17602 The results are unspecified if width is not a positive decimal number. The default
17603 value shall be 80.

17604 OPERANDS
17605 The following operand shall be supported:

17606 file A path name of a text file to be folded. If no file operands are specified, the
17607 standard input shall be used.

17608 STDIN
17609 The standard input shall be used only if no file operands are specified. See the INPUT FILES
17610 section.

Shell and Utilities, Issue 6 2669

fold Utilities

17611 INPUT FILES
17612 If the −b option is specified, the input files shall be text files except that the lines are not limited
17613 to {LINE_MAX} bytes in length. If the −b option is not specified, the input files shall be text files.

17614 ENVIRONMENT VARIABLES
17615 The following environment variables shall affect the execution of fold:

17616 LANG Provide a default value for the internationalization variables that are unset or null.
17617 If LANG is unset or null, the corresponding value from the implementation- |
17618 defined default locale shall be used. If any of the internationalization variables |
17619 contains an invalid setting, the utility shall behave as if none of the variables had
17620 been defined.

17621 LC_ALL If set to a non-empty string value, override the values of all the other
17622 internationalization variables.

17623 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
17624 characters (for example, single-byte as opposed to multi-byte characters in
17625 arguments and input files), and for the determination of the width in column
17626 positions each character would occupy on a constant-width font output device.

17627 LC_MESSAGES
17628 Determine the locale that should be used to affect the format and contents of
17629 diagnostic messages written to standard error.

17630 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

17631 ASYNCHRONOUS EVENTS
17632 Default.

17633 STDOUT
17634 The standard output shall be a file containing a sequence of characters whose order shall be
17635 preserved from the input files, possibly with inserted <newline> characters.

17636 STDERR
17637 Used only for diagnostic messages.

17638 OUTPUT FILES
17639 None.

17640 EXTENDED DESCRIPTION
17641 None.

17642 EXIT STATUS
17643 The following exit values shall be returned:

17644 0 All input files were processed successfully.

17645 >0 An error occurred.

17646 CONSEQUENCES OF ERRORS
17647 Default.

2670 Technical Standard (2000) (Draft July 31, 2000)

Utilities fold

17648 APPLICATION USAGE
17649 The cut and fold utilities can be used to create text files out of files with arbitrary line lengths. The
17650 cut utility should be used when the number of lines (or records) needs to remain constant. The
17651 fold utility should be used when the contents of long lines need to be kept contiguous.

17652 The fold utility is frequently used to send text files to printers that truncate, rather than fold, lines
17653 wider than the printer is able to print (usually 80 or 132 column positions).

17654 EXAMPLES
17655 An example invocation that submits a file of possibly long lines to the printer (under the
17656 assumption that the user knows the line width of the printer to be assigned by lp):

17657 fold −w 132 bigfile | lp

17658 RATIONALE
17659 Although terminal input in canonical processing mode requires the erase character (frequently
17660 set to <backspace>) to erase the previous character (not byte or column position), terminal
17661 output is not buffered and is extremely difficult, if not impossible, to parse correctly; the
17662 interpretation depends entirely on the physical device that actually displays/prints/stores the
17663 output. In all known internationalized implementations, the utilities producing output for mixed
17664 column-width output assume that a <backspace> backs up one column position and outputs
17665 enough <backspace>s to return to the start of the character when <backspace> is used to
17666 provide local line motions to support underlining and emboldening operations. Since fold
17667 without the −b option is dealing with these same constraints, <backspace> is always treated as
17668 backing up one column position rather than backing up one character.

17669 Historical versions of the fold utility assumed 1 byte was one character and occupied one column
17670 position when written out. This is no longer always true. Since the most common usage of fold is
17671 believed to be folding long lines for output to limited-length output devices, this capability was
17672 preserved as the default case. The −b option was added so that applications could fold files with
17673 arbitrary length lines into text files that could then be processed by the standard utilities. Note
17674 that although the width for the −b option is in bytes, a line is never split in the middle of a
17675 character. (It is unspecified what happens if a width is specified that is too small to hold a single
17676 character found in the input followed by a <newline>.)

17677 The tab stops are hardcoded to be every eighth column to meet historical practice. No new
17678 method of specifying other tab stops was invented.

17679 FUTURE DIRECTIONS
17680 None.

17681 SEE ALSO
17682 cut

17683 CHANGE HISTORY
17684 First released in Issue 4.

17685 Issue 6
17686 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2671

fort77 Utilities

17687 NAME
17688 fort77 — FORTRAN compiler (FORTRAN)

17689 SYNOPSIS
17690 FD fort77 [−c][−g][−L directory] ... [−O optlevel][−o outfile][−s][−w]
17691 operand ...
17692

17693 DESCRIPTION
17694 The fort77 utility is the interface to the FORTRAN compilation system; it shall accept the full
17695 FORTRAN-77 language defined by the ANSI X3.9-1978 standard. The system conceptually
17696 consists of a compiler and link editor. The files referenced by operands are compiled and linked
17697 to produce an executable file. It is unspecified whether the linking occurs entirely within the
17698 operation of fort77; some systems may produce objects that are not fully resolved until the file is
17699 executed.

17700 If the −c option is present, for all path name operands of the form file .f, the files:

17701 $(basename pathname .f).o

17702 shall be created or overwritten as the result of successful compilation. If the −c option is not
17703 specified, it is unspecified whether such .o files are created or deleted for the file .f operands.

17704 If there are no options that prevent link editing (such as −c) and all operands compile and link
17705 without error, the resulting executable file shall be written into the file named by the −o option
17706 (if present) or to the file a.out. The executable file shall be created as specified in the System
17707 Interfaces volume of IEEE Std. 1003.1-200x, except that the file permissions shall be set to:

17708 S_IRWXO | S_IRWXG | S_IRWXU

17709 and that the bits specified by the umask of the process shall be cleared.

17710 OPTIONS
17711 The fort77 utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
17712 12.2, Utility Syntax Guidelines, except that: |

17713 • The −l library operands have the format of options, but their position within a list of
17714 operands affects the order in which libraries are searched.

17715 • The order of specifying the multiple −L options is significant.

17716 • Portable applications shall specify each option separately; that is, grouping option letters (for
17717 example, −cg) need not be recognized by all implementations.

17718 The following options shall be supported:

17719 −c Suppress the link-edit phase of the compilation, and do not remove any object files
17720 that are produced.

17721 −g Produce symbolic information in the object or executable files; the nature of this
17722 information is unspecified, and may be modified by implementation-defined |
17723 interactions with other options. |

17724 −s Produce object or executable files, or both, from which symbolic and other
17725 information not required for proper execution using the exec family of functions
17726 defined in the System Interfaces volume of IEEE Std. 1003.1-200x has been
17727 removed (stripped). If both −g and −s options are present, the action taken is
17728 unspecified.

17729 −o outfile Use the path name outfile , instead of the default a.out, for the executable file
17730 produced. If the −o option is present with −c, the result is unspecified.

2672 Technical Standard (2000) (Draft July 31, 2000)

Utilities fort77

17731 −L directory Change the algorithm of searching for the libraries named in −l operands to look in
17732 the directory named by the directory path name before looking in the usual places.
17733 Directories named in −L options shall be searched in the specified order. At least
17734 ten instances of this option shall be supported in a single fort77 command
17735 invocation. If a directory specified by a −L option contains a file named libf.a, the
17736 results are unspecified.

17737 −O optlevel Specify the level of code optimization. If the optlevel option-argument is the digit
17738 ’0’ , all special code optimizations shall be disabled. If it is the digit ’1’ , the
17739 nature of the optimization is unspecified. If the −O option is omitted, the nature of
17740 the system’s default optimization is unspecified. It is unspecified whether code
17741 generated in the presence of the −O 0 option is the same as that generated when
17742 −O is omitted. Other optlevel values may be supported.

17743 −w Suppress warnings.

17744 Multiple instances of −L options can be specified.

17745 OPERANDS
17746 An operand is either in the form of a path name or the form −l library . At least one operand of the
17747 path name form shall be specified. The following operands shall be supported:

17748 file.f The path name of a FORTRAN source file to be compiled and optionally passed to
17749 the link editor. The file name operand shall be of this form if the −c option is used.

17750 file.a A library of object files typically produced by ar, and passed directly to the link
17751 editor. Implementations may recognize implementation-defined suffixes other |
17752 than .a as denoting object file libraries. |

17753 file.o An object file produced by fort77 −c and passed directly to the link editor.
17754 Implementations may recognize implementation-defined suffixes other than .o as |
17755 denoting object files.

17756 The processing of other files is implementation-defined. |

17757 −l library (The letter ell.) Search the library named:

17758 lib library .a

17759 A library is searched when its name is encountered, so the placement of a −l
17760 operand is significant. Several standard libraries can be specified in this manner, as
17761 described in the EXTENDED DESCRIPTION section. Implementations may |
17762 recognize implementation-defined suffixes other than .a as denoting libraries. |

17763 STDIN
17764 Not used.

17765 INPUT FILES
17766 The input file shall be one of the following: a text file containing FORTRAN source code; an
17767 object file in the format produced by fort77 −c; or a library of object files, in the format produced
17768 by archiving zero or more object files, using ar. Implementations may supply additional utilities
17769 that produce files in these formats. Additional input files are implementation-defined. |

17770 A <tab> character encountered within the first six characters on a line of source code shall cause
17771 the compiler to interpret the following character as if it were the seventh character on the line
17772 (that is, in column 7).

Shell and Utilities, Issue 6 2673

fort77 Utilities

17773 ENVIRONMENT VARIABLES
17774 The following environment variables shall affect the execution of fort77:

17775 LANG Provide a default value for the internationalization variables that are unset or null.
17776 If LANG is unset or null, the corresponding value from the implementation- |
17777 defined default locale shall be used. If any of the internationalization variables |
17778 contains an invalid setting, the utility shall behave as if none of the variables had
17779 been defined.

17780 LC_ALL If set to a non-empty string value, override the values of all the other
17781 internationalization variables.

17782 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
17783 characters (for example, single-byte as opposed to multi-byte characters in
17784 arguments and input files).

17785 LC_MESSAGES
17786 Determine the locale that should be used to affect the format and contents of
17787 diagnostic messages written to standard error.

17788 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

17789 TMPDIR Determine the path name that should override the default directory for temporary
17790 files, if any.

17791 ASYNCHRONOUS EVENTS
17792 Default.

17793 STDOUT
17794 Not used.

17795 STDERR
17796 Used only for diagnostic messages. If more than one file operand ending in .f (or possibly other |
17797 unspecified suffixes) is given, for each such file:

17798 "%s:\n", < file >

17799 may be written to allow identification of the diagnostic message with the appropriate input file.

17800 This utility may produce warning messages about certain conditions that do not warrant
17801 returning an error (non-zero) exit value.

17802 OUTPUT FILES
17803 Object files, listing files and executable files shall be produced in unspecified formats.

17804 EXTENDED DESCRIPTION

17805 Standard Libraries

17806 The fort77 utility shall recognize the following −l operand for the standard library:

17807 −l f This library contains all library functions referenced in the ANSI X3.9-1978
17808 standard. This operand shall not be required to be present to cause a search of this
17809 library.

17810 In the absence of options that inhibit invocation of the link editor, such as −c, the fort77 utility
17811 shall cause the equivalent of a −l f operand to be passed to the link editor as the last −l operand,
17812 causing it to be searched after all other object files and libraries are loaded.

17813 It is unspecified whether the library libf.a exists as a regular file. The implementation may
17814 accept as −l operands names of objects that do not exist as regular files.

2674 Technical Standard (2000) (Draft July 31, 2000)

Utilities fort77

17815 External Symbols

17816 The FORTRAN compiler and link editor shall support the significance of external symbols up to
17817 a length of at least 31 bytes; case folding is permitted. The action taken upon encountering
17818 symbols exceeding the implementation-defined maximum symbol length is unspecified. |

17819 The compiler and link editor shall support a minimum of 511 external symbols per source or
17820 object file, and a minimum of 4 095 external symbols total. A diagnostic message is written to
17821 standard output if the implementation-defined limit is exceeded; other actions are unspecified. |

17822 EXIT STATUS
17823 The following exit values shall be returned:

17824 0 Successful compilation or link edit.

17825 >0 An error occurred.

17826 CONSEQUENCES OF ERRORS
17827 When fort77 encounters a compilation error, it shall write a diagnostic to standard error and
17828 continue to compile other source code operands. It shall return a non-zero exit status, but it is |
17829 implementation-defined whether an object module is created. If the link edit is unsuccessful, a |
17830 diagnostic message shall be written to standard error, and fort77 shall exit with a non-zero
17831 status.

17832 APPLICATION USAGE
17833 None.

17834 EXAMPLES
17835 The following usage example compiles xyz.f and creates the executable file foo:

17836 fort77 −o foo xyz.f

17837 The following example compiles xyz.f and creates the object file xyz.o:

17838 fort77 −c xyz.f

17839 The following example compiles xyz.f and creates the executable file a.out:

17840 fort77 xyz.f

17841 The following example compiles xyz.f, links it with b.o, and creates the executable a.out:

17842 fort77 xyz.f b.o

17843 RATIONALE
17844 The name of this utility was chosen as fort77 to parallel the renaming of the C compiler. The
17845 name f77 was not chosen to avoid problems with historical implementations. The
17846 ANSI X3.9-1978 standard was selected as a normative reference because the ISO/IEC version of
17847 FORTRAN-77 has been superseded by the ISO/IEC 1539: 1990 standard (Fortran-90).

17848 The file inclusion and symbol definition #define mechanisms used by the c99 utility were not |
17849 included in this volume of IEEE Std. 1003.1-200x—even though they are commonly
17850 implemented—since there is no requirement that the FORTRAN compiler use the C
17851 preprocessor.

17852 The −onetrip option was not included in this volume of IEEE Std. 1003.1-200x, even though
17853 many historical compilers support it, because it is derived from FORTRAN-66; it is an
17854 anachronism that should not be perpetuated.

17855 Some implementations produce compilation listings. This aspect of FORTRAN has been left
17856 unspecified because there was controversy concerning the various methods proposed for
17857 implementing it: a −V option overlapped with historical vendor practice and a naming

Shell and Utilities, Issue 6 2675

fort77 Utilities

17858 convention of creating files with .l suffixes collided with historical lex file naming practice.

17859 There is no −I option in this version of this volume of IEEE Std. 1003.1-200x to specify a directory
17860 for file inclusion. An INCLUDE directive has been a part of the Fortran-90 discussions, but an
17861 interface supporting that standard is not in the current scope.

17862 It is noted that many FORTRAN compilers produce an object module even when compilation
17863 errors occur; during a subsequent compilation, the compiler may patch the object module rather
17864 than recompiling all the code. Consequently, it is left to the implementor whether or not an
17865 object file is created.

17866 A reference to MIL-STD-1753 was removed from an early proposal in response to a request from |
17867 the POSIX FORTRAN-binding standard developers. It was not the intention of the standard |
17868 developers to require certification of the FORTRAN compiler, and IEEE Std. 1003.9-1992 does |
17869 not specify the military standard or any special preprocessing requirements. Furthermore, use of |
17870 that document would have been inappropriate for an international standard.

17871 The specification of optimization has been subject to changes through early proposals. At one
17872 time, −O and −N were Booleans: optimize and do not optimize (with an unspecified default).
17873 Some historical practice lead this to be changed to:

17874 −O 0 No optimization.

17875 −O 1 Some level of optimization.

17876 −O n Other, unspecified levels of optimization.

17877 It is not always clear whether ‘‘good code generation’’ is the same thing as optimization. Simple
17878 optimizations of local actions do not usually affect the semantics of a program. The −O 0 option
17879 has been included to accommodate the very particular nature of scientific calculations in a
17880 highly optimized environment; compilers make errors. Some degree of optimization is expected,
17881 even if it is not documented here, and the ability to shut it off completely could be important
17882 when porting an application. An implementation may treat −O 0 as ‘‘do less than normal’’ if it
17883 wishes, but this is only meaningful if any of the operations it performs can affect the semantics
17884 of a program. It is highly dependent on the implementation whether doing less than normal is
17885 logical. It is not the intent of the −O 0 option to ask for inefficient code generation, but rather to
17886 assure that any semantically visible optimization is suppressed.

17887 The specification of standard library access is consistent with the C compiler specification.
17888 Implementations are not required to have /usr/lib/libf.a, as many historical implementations do,
17889 but if not they are required to recognize f as a token.

17890 External symbol size limits are in normative text; portable applications need to know these
17891 limits. However, the minimum maximum symbol length should be taken as a constraint on a
17892 portable application, not on an implementation, and consequently the action taken for a symbol
17893 exceeding the limit is unspecified. The minimum size for the external symbol table was added
17894 for similar reasons.

17895 The CONSEQUENCES OF ERRORS section clearly specifies the behavior of the compiler when
17896 compilation or link-edit errors occur. The behavior of several historical implementations was
17897 examined, and the choice was made to be silent on the status of the executable, or a.out, file in
17898 the face of compiler or linker errors. If a linker writes the executable file, then links it on disk
17899 with lseek()s and write()s, the partially linked executable file can be left on disk and its execute
17900 bits turned off if the link edit fails. However, if the linker links the image in memory before
17901 writing the file to disk, it need not touch the executable file (if it already exists) because the link
17902 edit fails. Since both approaches are historical practice, a portable application shall rely on the
17903 exit status of fort77, rather than on the existence or mode of the executable file.

2676 Technical Standard (2000) (Draft July 31, 2000)

Utilities fort77

17904 The −g and −s options are not specified as mutually-exclusive. Historically these two options
17905 have been mutually-exclusive, but because both are so loosely specified, it seemed appropriate
17906 to leave their interaction unspecified.

17907 The requirement that portable applications specify compiler options separately is to reserve the |
17908 multi-character option name space for vendor-specific compiler options, which are known to |
17909 exist in many historical implementations. Implementations are not required to recognize, for
17910 example, −gc as if it were −g −c; nor are they forbidden from doing so. The SYNOPSIS shows all
17911 of the options separately to highlight this requirement on applications.

17912 Echoing file names to standard error is considered a diagnostic message because it would
17913 otherwise be difficult to associate an error message with the erring file. They are described with
17914 ‘‘may’’ to allow implementations to use other methods of identifying files and to parallel the
17915 description in c99. |

17916 FUTURE DIRECTIONS
17917 A compilation system based on the ISO/IEC 1539: 1990 standard (Fortran-90) may be considered |
17918 for a future issue; it may have a different utility name from fort77. |

17919 SEE ALSO
17920 ar , asa , c99 , umask |

17921 CHANGE HISTORY
17922 First released in Issue 4.

17923 Issue 6
17924 This utility is now marked as part of the FORTRAN Development Utilities option.

17925 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2677

fuser Utilities

17926 NAME
17927 fuser — list process IDs of all processes that have one or more files open

17928 SYNOPSIS
17929 XSI fuser [−cfu] file ...
17930

17931 DESCRIPTION
17932 The fuser utility shall write to standard output the process IDs of processes running on the local
17933 system that have one or more named files open. For block special devices, all processes using
17934 any file on that device are listed.

17935 The fuser utility shall write to standard error additional information about the named files
17936 indicating how the file is being used.

17937 Any output for processes running on remote systems that have a named file open is unspecified.

17938 A user may need appropriate privilege to invoke the fuser utility.

17939 OPTIONS
17940 The fuser utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
17941 12.2, Utility Syntax Guidelines. |

17942 The following options shall be supported:

17943 −c The file is treated as a mount point and the utility shall report on any files open in
17944 the file system.

17945 −f The report shall be only for the named files.

17946 −u The user name, in parentheses, associated with each process ID written to standard
17947 output shall be written to standard error.

17948 OPERANDS
17949 The following operand shall be supported:

17950 file A path name on which the file or file system is to be reported.

17951 STDIN
17952 Not used.

17953 INPUT FILES
17954 The user database.

17955 ENVIRONMENT VARIABLES
17956 The following environment variables shall affect the execution of fuser:

17957 LANG Provide a default value for the internationalization variables that are unset or null.
17958 If LANG is unset or null, the corresponding value from the implementation- |
17959 defined default locale shall be used. If any of the internationalization variables |
17960 contain an invalid setting, the utility behaves as if none of the variables had been
17961 set.

17962 LC_ALL If set to a non-empty string value, override the values of all the other
17963 internationalization variables.

17964 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
17965 characters (for example, single-byte as opposed to multi-byte characters in
17966 arguments).

17967 LC_MESSAGES
17968 Determine the locale that should be used to affect the format and contents of

2678 Technical Standard (2000) (Draft July 31, 2000)

Utilities fuser

17969 diagnostic messages written to standard error.

17970 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

17971 ASYNCHRONOUS EVENTS
17972 Default.

17973 STDOUT
17974 The fuser utility shall write the process ID for each process using each file given as an operand to
17975 standard output in the following format:

17976 "%d", < process_id >

17977 STDERR
17978 The fuser utility shall write diagnostic messages to standard error.

17979 The fuser utility also shall write the following to standard error:

17980 • The path name of each named file is written followed immediately by a colon.

17981 • For each process ID written to standard output, the character ’c’ shall be written to
17982 standard error if the process is using the file as its current directory and the character ’r’
17983 shall be written to standard error if the process is using the file as its root directory.
17984 Implementations may write other alphabetic characters to indicate other uses of files.

17985 • When the −u option is specified, characters indicating the use of the file shall be followed
17986 immediately by the user name, in parentheses, corresponding to the process’ real user ID. If
17987 the user name cannot be resolved from the process’ real user ID, the process’ real user ID
17988 shall be written instead of the user name.

17989 When standard output and standard error are directed to the same file, the output shall be
17990 interspersed so that the file name appears at the start of each line, followed by the process ID
17991 and characters indicating the use of the file. Then, if the −u option is specified, the user name or
17992 user ID for each process using that file shall be written.

17993 A <newline> character shall be written to standard error after the last output described above |
17994 for each file operand. |

17995 OUTPUT FILES
17996 None.

17997 EXTENDED DESCRIPTION
17998 None.

17999 EXIT STATUS
18000 The following exit values shall be returned:

18001 0 Successful completion.

18002 >0 An error occurred.

18003 CONSEQUENCES OF ERRORS
18004 Default.

Shell and Utilities, Issue 6 2679

fuser Utilities

18005 APPLICATION USAGE
18006 None.

18007 EXAMPLES
18008 The command:

18009 fuser −fu .

18010 writes to standard output the process IDs of processes that are using the current directory and
18011 writes to standard error an indication of how those processes are using the directory and the
18012 user names associated with the processes that are using the current directory.

18013 RATIONALE
18014 None.

18015 FUTURE DIRECTIONS
18016 None.

18017 SEE ALSO
18018 None.

18019 CHANGE HISTORY
18020 First released in Issue 5.

2680 Technical Standard (2000) (Draft July 31, 2000)

Utilities gencat

18021 NAME
18022 gencat — generate a formatted message catalog

18023 SYNOPSIS
18024 XSI gencat catfile msgfile ...
18025

18026 DESCRIPTION
18027 The gencat utility shall merge the message text source files msgfile into a formatted message
18028 catalog catfile . The file catfile shall be created if it does not already exist. If catfile does exist, its
18029 messages shall be included in the new catfile . If set and message numbers collide, the new
18030 message text defined in msgfile shall replace the old message text currently contained in catfile .

18031 OPTIONS
18032 None.

18033 OPERANDS
18034 The following operands shall be supported:

18035 catfile A path name of the formatted message catalog. If ’ −’ is specified, standard output
18036 shall be used. The format of the message catalog produced is unspecified.

18037 msgfile A path name of a message text source file. If ’ −’ is specified for an instance of
18038 msgfile , standard input shall be used. The format of message text source files is
18039 defined in the EXTENDED DESCRIPTION section.

18040 STDIN
18041 The standard input shall not be used unless a msgfile operand is specified as ’ −’ .

18042 INPUT FILES
18043 The input files shall be text files.

18044 ENVIRONMENT VARIABLES
18045 The following environment variables shall affect the execution of gencat:

18046 LANG Provide a default value for the internationalization variables that are unset or null.
18047 If LANG is unset or null, the corresponding value from the implementation- |
18048 defined default locale shall be used. If any of the internationalization variables |
18049 contains an invalid setting, the utility shall behave as if none of the variables had
18050 been defined.

18051 LC_ALL If set to a non-empty string value, override the values of all the other
18052 internationalization variables.

18053 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
18054 characters (for example, single-byte as opposed to multi-byte characters in
18055 arguments and input files).

18056 LC_MESSAGES
18057 Determine the locale that should be used to affect the format and contents of
18058 diagnostic messages written to standard error.

18059 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

18060 ASYNCHRONOUS EVENTS
18061 Default.

Shell and Utilities, Issue 6 2681

gencat Utilities

18062 STDOUT
18063 The standard output shall not be used unless the catfile operand is specified as ’ −’ .

18064 STDERR
18065 Used only for diagnostic messages.

18066 OUTPUT FILES
18067 None.

18068 EXTENDED DESCRIPTION
18069 The application shall ensure that the format of a message text source file is defined as follows.
18070 Note that the fields of a message text source line are separated by a single <blank> character.
18071 Any other <blank> characters are considered as being part of the subsequent field.

18072 $set n comment
18073 This line specifies the set identifier of the following messages until the next $set or
18074 end-of-file appears. The n denotes the set identifier, which is defined as a number
18075 in the range [1, {NL_SETMAX}] (see the <limits.h> header defined in the System
18076 Interfaces volume of IEEE Std. 1003.1-200x). The application shall ensure that set
18077 identifiers are presented in ascending order within a single source file, but need
18078 not be contiguous. Any string following the set identifier shall be treated as a
18079 comment. If no $set directive is specified in a message text source file, all messages |
18080 shall be located in an implementation-defined default message set NL_SETD (see |
18081 the <nl_types.h> header defined in the System Interfaces volume of
18082 IEEE Std. 1003.1-200x).

18083 $delset n comment
18084 This line deletes message set n from an existing message catalog. The n denotes the
18085 set number [1, {NL_SETMAX}]. Any string following the set number shall be
18086 treated as a comment.

18087 $ comment A line beginning with ’$’ followed by a <blank> character shall be treated as a
18088 comment.

18089 m message-text
18090 The m denotes the message identifier, which is defined as a number in the range [1,
18091 {NL_MSGMAX}] (see the <limits.h> header defined in the System Interfaces |
18092 volume of IEEE Std. 1003.1-200x). The message-text shall be stored in the message |
18093 catalog with the set identifier specified by the last $set directive, and with message
18094 identifier m. If the message-text is empty, and a <blank> character field separator is
18095 present, an empty string shall be stored in the message catalog. If a message source
18096 line has a message number, but neither a field separator nor message-text, the
18097 existing message with that number (if any) shall be deleted from the catalog. The
18098 application shall ensure that message identifiers are in ascending order within a
18099 single set, but need not be contiguous. The application shall ensure that the length
18100 of message-text is in the range [0, {NL_TEXTMAX}] (see the <limits.h> header
18101 defined in the System Interfaces volume of IEEE Std. 1003.1-200x).

18102 $quote n This line specifies an optional quote character c, which can be used to surround
18103 message-text so that trailing spaces or null (empty) messages are visible in a
18104 message source line. By default, or if an empty $quote directive is supplied, no
18105 quoting of message-text shall be recognized.

18106 Empty lines in a message text source file shall be ignored. The effects of lines starting with any
18107 character other than those defined above are implementation-defined. |

2682 Technical Standard (2000) (Draft July 31, 2000)

Utilities gencat

18108 Text strings can contain the special characters and escape sequences defined in the following
18109 table:
18110 __
18111 Description Symbol Sequence__
18112 <newline> NL(LF) \n
18113 Horizontal tab HT \t
18114 <vertical-tab> VT \v
18115 <backspace> BS \b
18116 <carriage-return> CR \r
18117 <form-feed> FF \f
18118 Backslash \ \\
18119 Bit pattern ddd \ddd__LL

L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

18120 The escape sequence "\ddd" consists of backslash followed by one, two, or three octal digits,
18121 which shall be taken to specify the value of the desired character. If the character following a
18122 backslash is not one of those specified, the backslash shall be ignored.

18123 Backslash (’\’) followed by a <newline> character is also used to continue a string on the
18124 following line. Thus, the following two lines describe a single message string:

18125 1 This line continues \
18126 to the next line

18127 which is equivalent to:

18128 1 This line continues to the next line

18129 EXIT STATUS
18130 The following exit values shall be returned:

18131 0 Successful completion.

18132 >0 An error occurred.

18133 CONSEQUENCES OF ERRORS
18134 Default.

18135 APPLICATION USAGE
18136 Message catalogs produced by gencat are binary encoded, meaning that their portability cannot
18137 be guaranteed between different types of machine. Thus, just as C programs need to be
18138 recompiled for each type of machine, so message catalogs must be recreated via gencat.

18139 EXAMPLES
18140 None.

18141 RATIONALE
18142 None.

18143 FUTURE DIRECTIONS
18144 None.

18145 SEE ALSO
18146 iconv , the System Interfaces volume of IEEE Std. 1003.1-200x, <limits.h>

CHANGE18147 HISTORY
18148 First released in Issue 3.

Shell and Utilities, Issue 6 2683

gencat Utilities

18149 Issue 4
18150 Format reorganized.

18151 Internationalized environment variable support mandated.

18152 Issue 6
18153 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2684 Technical Standard (2000) (Draft July 31, 2000)

Utilities get

18154 NAME
18155 get — get a version of an SCCS file (DEVELOPMENT)

18156 SYNOPSIS
18157 XSI get [−begkmlLpst][−c cutoff][−i list][−r SID][−x list] file ...
18158

18159 DESCRIPTION
18160 The get utility shall generate a text file from each named SCCS file according to the specifications
18161 given by its options.

18162 The generated text is normally written into a file called the g-file whose name is derived from
18163 the SCCS file name by simply removing the leading "s." . |

18164 OPTIONS
18165 The get utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
18166 12.2, Utility Syntax Guidelines. |

18167 The following options shall be supported:

18168 −r SID Indicate the SCCS Identification String (SID) of the version (delta) of an SCCS file
18169 to be retrieved. The table shows, for the most useful cases, what version of an
18170 SCCS file is retrieved (as well as the SID of the version to be eventually created by
18171 delta if the −e option is also used), as a function of the SID specified.

18172 −c cutoff Indicate the cutoff date-time, in the form:

18173 YY[MM[DD[HH[MM[SS]]]]]

18174 For the YY component, values in the range [69-99] shall refer to years in the
18175 twentieth century (1969 to 1999 inclusive); values in the range [00-68] shall refer to
18176 years in the twenty-first century (2000 to 2068 inclusive).

18177 No changes (deltas) to the SCCS file that were created after the specified cutoff
18178 date-time are included in the generated text file. Units omitted from the date-time
18179 default to their maximum possible values; for example, −c 7502 is equivalent to −c
18180 750228235959.

18181 Any number of non-numeric characters may separate the various 2-digit pieces of
18182 the cutoff date-time. This feature allows the user to specify a cutoff date in the form:
18183 −c "77/2/2 9:22:25".

18184 −e Indicate that the get is for the purpose of editing or making a change (delta) to the
18185 SCCS file via a subsequent use of delta. The −e option used in a get for a particular |
18186 version (SID) of the SCCS file shall prevent further get commands from editing on |
18187 the same SID until delta is executed or the j (joint edit) flag is set in the SCCS file.
18188 Concurrent use of get −e for different SIDs is always allowed.

18189 If the g-file generated by get with a −e option is accidentally ruined in the process
18190 of editing, it may be regenerated by re-executing the get command with the −k
18191 option in place of the −e option.

18192 SCCS file protection specified via the ceiling, floor, and authorized user list stored |
18193 in the SCCS file shall be enforced when the −e option is used. |

18194 −b Use with the −e option to indicate that the new delta should have an SID in a new |
18195 branch as shown in the table below. This option shall be ignored if the b flag is not |
18196 present in the file or if the retrieved delta is not a leaf delta. (A leaf delta is one that
18197 has no successors on the SCCS file tree.)

Shell and Utilities, Issue 6 2685

get Utilities

18198 Note: A branch delta may always be created from a non-leaf delta.

18199 −i list Indicate a list of deltas to be included (forced to be applied) in the creation of the
18200 generated file. The list has the following syntax:

18201 <list> ::= <range> | <list> , <range>
18202 <range> ::= SID | SID − SID

18203 SID, the SCCS Identification of a delta, may be in any form shown in the ‘‘SID
18204 Specified’’ column of the table in the EXTENDED DESCRIPTION section. Partial
18205 SIDs are interpreted as shown in the ‘‘SID Retrieved’’ column of the table.

18206 −x list Indicate a list of deltas to be excluded (forced not to be applied) in the creation of
18207 the generated file. See the −i option for the list format.

18208 −k Suppress replacement of identification keywords (see below) in the retrieved text
18209 by their value. The −k option is implied by the −e option.

18210 −l Write a delta summary into an l-file.

18211 −L Write a delta summary to standard output. All informative output that normally is |
18212 written to standard output shall be written to standard error instead, unless the −s |
18213 option is used, in which case it shall be suppressed. |

18214 −p Write the text retrieved from the SCCS file to the standard output. No g-file shall |
18215 be created. All informative output that normally goes to the standard output shall |
18216 go to standard error instead, unless the −s option is used, in which case it |
18217 disappears.

18218 −s Suppress all informative output normally written to standard output. However, |
18219 fatal error messages (which shall always be written to the standard error) remain |
18220 unaffected. |

18221 −m Precede each text line retrieved from the SCCS file by the SID of the delta that
18222 inserted the text line in the SCCS file. The format is:

18223 "%s\t%s", < SID>, < text line >

18224 −n Precede each generated text line with the %M% identification keyword value (see
18225 below). The format is:

18226 "%s\t%s", < %M% value>, < text line >

18227 When both the −m and −n options are used, the <text line> shall be replaced by the |
18228 −m option-generated format.

18229 −g Suppress the actual retrieval of text from the SCCS file. It is primarily used to
18230 generate an l-file, or to verify the existence of a particular SID.

18231 −t Use to access the most recently created (top) delta in a given release (for example,
18232 −r 1), or release and level (for example, −r 1.2).

18233 OPERANDS
18234 The following operands shall be supported:

18235 file A path name of an existing SCCS file or a directory. If file is a directory, the get |
18236 utility shall behave as though each file in the directory were specified as a named |
18237 file, except that non-SCCS files (last component of the path name does not begin |
18238 with s.) and unreadable files shall be silently ignored. |

18239 If a single instance file is specified as ’ −’ , the standard input is read; each line of
18240 the standard input is taken to be the name of an SCCS file to be processed. Non-

2686 Technical Standard (2000) (Draft July 31, 2000)

Utilities get

18241 SCCS files and unreadable files shall be silently ignored. |

18242 STDIN
18243 The standard input shall be a text file used only if the file operand is specified as ’ −’ . Each line |
18244 of the text file shall be interpreted as an SCCS path name. |

18245 INPUT FILES
18246 The SCCS files are files of an unspecified format.

18247 ENVIRONMENT VARIABLES
18248 The following environment variables shall affect the execution of get:

18249 LANG Provide a default value for the internationalization variables that are unset or null.
18250 If LANG is unset or null, the corresponding value from the implementation- |
18251 defined default locale shall be used. If any of the internationalization variables |
18252 contains an invalid setting, the utility shall behave as if none of the variables had
18253 been defined.

18254 LC_ALL If set to a non-empty string value, override the values of all the other
18255 internationalization variables.

18256 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
18257 characters (for example, single-byte as opposed to multi-byte characters in
18258 arguments and input files).

18259 LC_MESSAGES
18260 Determine the locale that should be used to affect the format and contents of
18261 diagnostic messages written to standard error, and informative messages written
18262 to standard output (or standard error, if the −p option is used).

18263 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

18264 ASYNCHRONOUS EVENTS
18265 Default.

18266 STDOUT
18267 For each file processed, get shall write to standard output the SID being accessed and the number
18268 of lines retrieved from the SCCS file, in the following format:

18269 "%s\n%d lines\n", < SID>, < number of lines >

18270 If the −e option is used, the SID of the delta to be made shall appear after the SID accessed and
18271 before the number of lines generated, in the POSIX locale:

18272 "%s\nnew delta %s\n%d\n", < SID accessed >, < SID to be made >,
18273 <number of lines >

18274 If there is more than one named file or if a directory or standard input is named, each path name
18275 shall be written before each of the lines shown in one of the preceding formats:

18276 "\n%s:\n", < pathname >

18277 If the −L option is used, a delta summary shall be written following the format specified below
18278 for l-files.

18279 If the −i option is used, included deltas are listed following the notation, in the POSIX locale:

18280 "Included:\n"

18281 If the −x option is used, excluded deltas are listed following the notation, in the POSIX locale:

Shell and Utilities, Issue 6 2687

get Utilities

18282 "Excluded:\n"

18283 If the −p or −L options are specified, the standard output consists of the text retrieved from the
18284 SCCS file.

18285 STDERR
18286 The standard error shall be used only for diagnostic messages, except if the −p or −L options are
18287 specified, it includes all informative messages normally sent to standard output.

18288 OUTPUT FILES
18289 Several auxiliary files may be created by get. These files are known generically as the g-file, l-
18290 file, p-file, and z-file. The letter before the hyphen is called the tag . An auxiliary file name is
18291 formed from the SCCS file name: the application shall ensure that the last component of all
18292 SCCS file names is of the form s.module-name; the auxiliary files are named by replacing the
18293 leading s with the tag. The g-file is an exception to this scheme: the g-file is named by removing
18294 the s. prefix. For example, for s.xyz.c, the auxiliary file names would be xyz.c, l.xyz.c, p.xyz.c,
18295 and z.xyz.c, respectively.

18296 The g-file, which contains the generated text, is created in the current directory (unless the −p
18297 option is used). A g-file is created in all cases, whether or not any lines of text were generated by
18298 the get. It is owned by the real user. If the −k option is used or implied, it is writable by the
18299 owner only (read-only for everyone else); otherwise, it is read-only. Only the real user need have
18300 write permission in the current directory.

18301 The l-file contains a table showing which deltas were applied in generating the retrieved text.
18302 The l-file is created in the current directory if the −l option is used; it is read-only and it is
18303 owned by the real user. Only the real user need have write permission in the current directory.

18304 Lines in the l-file have the following format:

18305 "%c%c%c∆%s\t%s ∆%s\n", < code1 >, < code2 >, < code3 >,
18306 <SID>, < date-time >, < login >

18307 where the entries are: |

18308 <code1> A <space> character if the delta was applied; ’*’ otherwise.

18309 <code2> A <space> character if the delta was applied or was not applied and ignored; ’*’
18310 if the delta was not applied and was not ignored.

18311 <code3> A character indicating a special reason why the delta was or was not applied:

18312 I Included.

18313 X Excluded.

18314 C Cut off (by a −c option).

18315 <date-time> Date and time (using the date utility’s %y/%m/%d %T format) of creation.

18316 <login> Login name of person who created delta.

18317 The comments and MR data shall follow on subsequent lines, indented one <tab> character. A |
18318 blank line terminates each entry.

18319 The p-file is used to pass information resulting from a get with a −e option along to delta. Its
18320 contents are also used to prevent a subsequent execution of get with a −e option for the same SID
18321 until delta is executed or the joint edit flag, j, is set in the SCCS file. The p-file shall be created in |
18322 the directory containing the SCCS file and the application shall ensure that the effective user has |
18323 write permission in that directory. It is writable by owner only, and it is owned by the effective
18324 user. Each line in the p-file has the following format:

2688 Technical Standard (2000) (Draft July 31, 2000)

Utilities get

18325 "%s∆%s∆%s∆%s%s%s\n", < g-file SID >,
18326 <SID of new delta >, < login-name of real user >,
18327 <date-time >, < i-value >, < x-value >

18328 where <i-value> uses the format " " if no −i option was specified, and uses the format: |

18329 " ∆−i%s", < −i option option-argument > |

18330 if a −i option was specified and <x-value> uses the format " " if no −x option was specified, and |
18331 uses the format: |

18332 " ∆−x%s", < −x option option-argument > |

18333 if a −x option was specified. There can be an arbitrary number of lines in the p-file at any time; |
18334 no two lines can have the same new delta SID.

18335 The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the
18336 binary process ID of the command (that is, get) that created it. The z-file is created in the
18337 directory containing the SCCS file for the duration of get. The same protection restrictions as
18338 those for the p-file apply for the z-file. The z-file shall be created read-only. |

18339 EXTENDED DESCRIPTION
__

18340 Determination of SCCS Identification String__
18341 SID* −b Keyletter Other SID SID of Delta
18342 Specified Used† Conditions Retrieved to be Created__
18343 none‡ no R defaults to mR mR.mL mR.(mL+1)__
18344 none‡ yes R defaults to mR mR.mL mR.mL.(mB+1).1__
18345 R no R > mR mR.mL R.1***__
18346 R no R = mR mR.mL mR.(mL+1)__
18347 R yes R > mR mR.mL mR.mL.(mB+1).1__
18348 R yes R = mR mR.mL mR.mL.(mB+1).1__
18349 R < mR and
18350 R does not exist

R − hR.mL** hR.mL.(mB+1).1

__
18351 Trunk successor in release > R
18352 and R exists

R − R.mL R.mL.(mB+1).1

__
18353 R.L no No trunk successor R.L R.(L+1)__
18354 R.L yes No trunk successor R.L R.L.(mB+1).1__
18355 Trunk successor
18356 in release ≥ R

R.L − R.L R.L.(mB+1).1

__
18357 R.L.B no No branch successor R.L.B.mS R.L.B.(mS+1)__
18358 R.L.B yes No branch successor R.L.B.mS R.L.(mB+1).1__
18359 R.L.B.S no No branch successor R.L.B.S R.L.B.(S+1)__
18360 R.L.B.S yes No branch successor R.L.B.S R.L.(mB+1).1__
18361 R.L.B.S − Branch successor R.L.B.S R.L.(mB+1).1__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

18362 * R, L, B, and S are the release, level, branch, and sequence components of the SID,
18363 respectively; m means maximum. Thus, for example, R.mL means ‘‘the maximum level
18364 number within release R’’; R.L.(mB+1).1 means ‘‘the first sequence number on the new
18365 branch (that is, maximum branch number plus one) of level L within release R’’. Note
18366 that if the SID specified is of the form R.L, R.L.B, or R.L.B.S, each of the specified
18367 components shall exist.

Shell and Utilities, Issue 6 2689

get Utilities

18368 ** hR is the highest existing release that is lower than the specified, nonexistent, release R.

18369 *** This is used to force creation of the first delta in a new release.

18370 † The −b option is effective only if the b flag is present in the file. An entry of ’ −’ means
18371 ‘‘irrelevant’’.

18372 ‡ This case applies if the d (default SID) flag is not present in the file. If the d flag is
18373 present in the file, then the SID obtained from the d flag is interpreted as if it had been
18374 specified on the command line. Thus, one of the other cases in this table applies.

18375 Identification Keywords

18376 Identifying information shall be inserted into the text retrieved from the SCCS file by replacing |
18377 identification keywords with their value wherever they occur. The following keywords may be |
18378 used in the text stored in an SCCS file:

18379 %M% Module name: either the value of the m flag in the file, or if absent, the name of the
18380 SCCS file with the leading s. removed.

18381 %I% SCCS identification (SID) (%R%.%L% or %R%.%L%.%B%.%S%) of the retrieved
18382 text.

18383 %R% Release.

18384 %L% Level.

18385 %B% Branch.

18386 %S% Sequence.

18387 %D% Current date (YY/MM/DD).

18388 %H% Current date (MM/DD/YY).

18389 %T% Current time (HH:MM:SS).

18390 %E% Date newest applied delta was created (YY/MM/DD).

18391 %G% Date newest applied delta was created (MM/DD/YY).

18392 %U% Time newest applied delta was created (HH:MM:SS).

18393 %Y% Module type: value of the t flag in the SCCS file.

18394 %F% SCCS file name.

18395 %P% SCCS absolute path name.

18396 %Q% The value of the q flag in the file.

18397 %C% Current line number. This keyword is intended for identifying messages output by
18398 the program, such as ‘‘this should not have happened’’ type errors. It is not
18399 intended to be used on every line to provide sequence numbers.

18400 %Z% The four-character string "@(#)" recognizable by what.

18401 %W% A shorthand notation for constructing what strings:

18402 %W%=%Z%%M%<tab>%I%

18403 %A% Another shorthand notation for constructing what strings:

18404 %A%=%Z%%Y%%M%%I%%Z%

2690 Technical Standard (2000) (Draft July 31, 2000)

Utilities get

18405 EXIT STATUS
18406 The following exit values shall be returned:

18407 0 Successful completion.

18408 >0 An error occurred.

18409 CONSEQUENCES OF ERRORS
18410 Default.

18411 APPLICATION USAGE
18412 None.

18413 EXAMPLES
18414 None.

18415 RATIONALE
18416 None.

18417 FUTURE DIRECTIONS
18418 The −lp option may be withdrawn in a future issue.

18419 SEE ALSO
18420 admin , delta , prs, what

18421 CHANGE HISTORY
18422 First released in Issue 2.

18423 Issue 4
18424 Format reorganized.

18425 Exceptions to Utility Syntax Guidelines conformance noted.

18426 Internationalized environment variable support mandated.

18427 Issue 5
18428 Correction to the first format string in STDOUT.

18429 The interpretation of the YY component of the −c cutoff argument is noted.

18430 Issue 6
18431 The obsolescent SYNOPSIS is removed, removing the −lp option.

18432 The Open Group corrigenda item U025/5 has been applied, correcting text in the OPTIONS
18433 section.

18434 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

18435 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements. |

18436 The Open Group corrigenda item U048/1 has been applied. |

Shell and Utilities, Issue 6 2691

getconf Utilities

18437 NAME
18438 getconf — get configuration values

18439 SYNOPSIS
18440 getconf [−v specification] system_var |

18441 getconf [−v specification] path_var pathname |

18442 DESCRIPTION |
18443 In the first synopsis form, the getconf utility shall write to the standard output the value of the
18444 variable specified by the system_var operand.

18445 In the second synopsis form, the getconf utility shall write to the standard output the value of the
18446 variable specified by the path_var operand for the path specified by the pathname operand.

18447 The value of each configuration variable shall be determined as if it were obtained by calling the
18448 function from which it is defined to be available by this volume of IEEE Std. 1003.1-200x or by
18449 the System Interfaces volume of IEEE Std. 1003.1-200x (see the OPERANDS section). The value
18450 shall reflect conditions in the current operating environment.

18451 OPTIONS
18452 The getconf utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
18453 12.2, Utility Syntax Guidelines. |

18454 The following option shall be supported:

18455 −v specification |
18456 Indicate a specific specification and version for which configuration variables shall |
18457 be determined. If this option is not specified, the values returned correspond to an
18458 implementation default conforming compilation environment.

18459 If the command:

18460 getconf _POSIX_V6_ILP32_OFF32

18461 does not write " −1\n" or "undefined\n" to standard output, then commands of
18462 the form:

18463 getconf −v POSIX_V6_ILP32_OFF32 ...

18464 determine values for configuration variables corresponding to the |
18465 POSIX_V6_ILP32_OFF32 compilation environment specified in c99 (on page 2425), |
18466 EXTENDED DESCRIPTION.

18467 If the command:

18468 getconf _POSIX_V6_ILP32_OFFBIG

18469 does not write " −1\n" or "undefined\n" to standard output, then commands of
18470 the form:

18471 getconf −v POSIX_V6_ILP32_OFFBIG ...

18472 determine values for configuration variables corresponding to the |
18473 POSIX_V6_ILP32_OFFBIG compilation environment specified in c99 (on page |
18474 2425), EXTENDED DESCRIPTION. |

18475 If the command:

18476 getconf _POSIX_V6_LP64_OFF64

18477 does not write " −1\n" or "undefined\n" to standard output, then commands of
18478 the form:

2692 Technical Standard (2000) (Draft July 31, 2000)

Utilities getconf

18479 getconf −v POSIX_V6_LP64_OFF64 ...

18480 determine values for configuration variables corresponding to the |
18481 POSIX_V6_LP64_OFF64 compilation environment specified in c99 (on page 2425), |
18482 EXTENDED DESCRIPTION.

18483 If the command:

18484 getconf _POSIX_V6_LPBIG_OFFBIG

18485 does not write " −1\n" or "undefined\n" to standard output, then commands of
18486 the form:

18487 getconf −v POSIX_V6_LPBIG_OFFBIG ...

18488 determine values for configuration variables corresponding to the |
18489 POSIX_V6_LPBIG_OFFBIG compilation environment specified in c99 (on page |
18490 2425), EXTENDED DESCRIPTION. |

18491 OPERANDS
18492 The following operands shall be supported:

18493 path_var A name of a configuration variable. All of the variables in the pathconf () function
18494 defined in the System Interfaces volume of IEEE Std. 1003.1-200x are supported
18495 and the implementation may add other local variables.

18496 pathname A path name for which the variable specified by path_var is to be determined.

18497 system_var A name of a configuration variable. All of the variables in the confstr() and
18498 sysconf() functions defined in the System Interfaces volume of
18499 IEEE Std. 1003.1-200x shall be supported and the implementation may add other
18500 local values. |

18501 When the symbol listed in the first column of the following table is used as the |
18502 system_var operand, getconf yields the same value as confstr() when called with the
18503 value in the second column: |
18504 ___ ||
18505 system_var confstr() Name Value ||___ ||LL ||LL ||LL ||
18506 PATH _CS_PATH |
18507 POSIX_V6_ILP32_OFF32_CFLAGS _CS_POSIX_V6_ILP32_OFF32_CFLAGS |
18508 POSIX_V6_ILP32_OFF32_LDFLAGS _CS_POSIX_V6_ILP32_OFF32_LDFLAGS |
18509 POSIX_V6_ILP32_OFF32_LIBS _CS_POSIX_V6_ILP32_OFF32_LIBS |
18510 POSIX_V6_ILP32_OFF32_LINTFLAGS _CS_POSIX_V6_ILP32_OFF32_LINTFLAGS |
18511 POSIX_V6_ILP32_OFFBIG_CFLAGS _CS_POSIX_V6_ILP32_OFFBIG_CFLAGS |
18512 POSIX_V6_ILP32_OFFBIG_LDFLAGS _CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS |
18513 POSIX_V6_ILP32_OFFBIG_LIBS _CS_POSIX_V6_ILP32_OFFBIG_LIBS |
18514 POSIX_V6_ILP32_OFFBIG_LINTFLAGS _CS_POSIX_V6_ILPBIG_OFF32_LINTFLAGS |
18515 POSIX_V6_LP64_OFF64_CFLAGS _CS_POSIX_V6_LP64_OFF64_CFLAGS |
18516 POSIX_V6_LP64_OFF64_LDFLAGS _CS_POSIX_V6_LP64_OFF64_LDFLAGS |
18517 POSIX_V6_LP64_OFF64_LIBS _CS_POSIX_V6_LP64_OFF64_LIBS |
18518 POSIX_V6_LP64_OFF64_LINTFLAGS _CS_POSIX_V6_LP64_OFF64_LINTFLAGS |
18519 POSIX_V6_LPBIG_OFFBIG_CFLAGS _CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS |
18520 POSIX_V6_LPBIG_OFFBIG_LDFLAGS _CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS |
18521 POSIX_V6_LPBIG_OFFBIG_LIBS _CS_POSIX_V6_LPBIG_OFFBIG_LIBS |___ |LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

Shell and Utilities, Issue 6 2693

getconf Utilities

18522 ___ ||
18523 system_var confstr() Name Value ||___ ||LL ||LL ||LL ||
18524 POSIX_V6_LPBIG_OFFBIG_LINTFLAGS _CS_POSIX_V6_LPBIG_OFFBIG_LINTFLAGS |
18525 XSI XBS5_ILP32_OFF32_CFLAGS (LEGACY) _CS_XBS5_ILP32_OFF32_CFLAGS |
18526 XBS5_ILP32_OFF32_LDFLAGS (LEGACY) _CS_XBS5_ILP32_OFF32_LDFLAGS |
18527 XBS5_ILP32_OFF32_LIBS (LEGACY) _CS_XBS5_ILP32_OFF32_LIBS |
18528 XBS5_ILP32_OFF32_LINTFLAGS (LEGACY) _CS_XBS5_ILP32_OFF32_LINTFLAGS |
18529 XBS5_ILP32_OFFBIG_CFLAGS (LEGACY) _CS_XBS5_ILP32_OFFBIG_CFLAGS |
18530 XBS5_ILP32_OFFBIG_LDFLAGS (LEGACY) _CS_XBS5_ILP32_OFFBIG_LDFLAGS |
18531 XBS5_ILP32_OFFBIG_LIBS (LEGACY) _CS_XBS5_ILP32_OFFBIG_LIBS |
18532 XBS5_ILP32_OFFBIG_LINTFLAGS (LEGACY) _CS_XBS5_ILPBIG_OFF32_LINTFLAGS |
18533 XBS5_LP64_OFF64_CFLAGS (LEGACY) _CS_XBS5_LP64_OFF64_CFLAGS |
18534 XBS5_LP64_OFF64_LDFLAGS (LEGACY) _CS_XBS5_LP64_OFF64_LDFLAGS |
18535 XBS5_LP64_OFF64_LIBS (LEGACY) _CS_XBS5_LP64_OFF64_LIBS |
18536 XBS5_LP64_OFF64_LINTFLAGS (LEGACY) _CS_XBS5_LP64_OFF64_LINTFLAGS |
18537 XBS5_LPBIG_OFFBIG_CFLAGS (LEGACY) _CS_XBS5_LPBIG_OFFBIG_CFLAGS |
18538 XBS5_LPBIG_OFFBIG_LDFLAGS (LEGACY) _CS_XBS5_LPBIG_OFFBIG_LDFLAGS |
18539 XBS5_LPBIG_OFFBIG_LIBS (LEGACY) _CS_XBS5_LPBIG_OFFBIG_LIBS |
18540 XBS5_LPBIG_OFFBIG_LINTFLAGS (LEGACY) _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS |___ |LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

18541 STDIN |
18542 Not used.

18543 INPUT FILES
18544 None.

18545 ENVIRONMENT VARIABLES
18546 The following environment variables shall affect the execution of getconf:

18547 LANG Provide a default value for the internationalization variables that are unset or null.
18548 If LANG is unset or null, the corresponding value from the implementation- |
18549 defined default locale shall be used. If any of the internationalization variables |
18550 contains an invalid setting, the utility shall behave as if none of the variables had
18551 been defined.

18552 LC_ALL If set to a non-empty string value, override the values of all the other
18553 internationalization variables.

18554 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
18555 characters (for example, single-byte as opposed to multi-byte characters in
18556 arguments).

18557 LC_MESSAGES
18558 Determine the locale that should be used to affect the format and contents of
18559 diagnostic messages written to standard error.

18560 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

18561 ASYNCHRONOUS EVENTS
18562 Default.

18563 STDOUT
18564 If the specified variable is defined on the system and its value is described to be available from
18565 the confstr() function defined in the System Interfaces volume of IEEE Std. 1003.1-200x, its value
18566 shall be written in the following format:

18567 "%s\n", < value >

2694 Technical Standard (2000) (Draft July 31, 2000)

Utilities getconf

18568 Otherwise, if the specified variable is defined on the system, its value shall be written in the
18569 following format:

18570 "%d\n", < value >

18571 If the specified variable is valid, but is undefined on the system, getconf shall write using the
18572 following format:

18573 "undefined\n"

18574 If the variable name is invalid or an error occurs, nothing shall be written to standard output.

18575 STDERR
18576 Used only for diagnostic messages.

18577 OUTPUT FILES
18578 None.

18579 EXTENDED DESCRIPTION
18580 None.

18581 EXIT STATUS
18582 The following exit values shall be returned:

18583 0 The specified variable is valid and information about its current state was written
18584 successfully.

18585 >0 An error occurred.

18586 CONSEQUENCES OF ERRORS
18587 Default.

18588 APPLICATION USAGE
18589 None.

18590 EXAMPLES
18591 The following example illustrates the value of {NGROUPS_MAX}:

18592 getconf NGROUPS_MAX

18593 The following example illustrates the value of {NAME_MAX} for a specific directory:

18594 getconf NAME_MAX /usr

18595 The following example shows how to deal more carefully with results that might be unspecified:

18596 if value=$(getconf PATH_MAX /usr); then
18597 if ["$value" = "undefined"]; then
18598 echo PATH_MAX in /usr is infinite.
18599 else
18600 echo PATH_MAX in /usr is $value.
18601 fi
18602 else
18603 echo Error in getconf.
18604 fi

18605 Note that:

18606 sysconf(_SC_POSIX_C_BIND);

18607 and:

Shell and Utilities, Issue 6 2695

getconf Utilities

18608 system("getconf POSIX2_C_BIND");

18609 in a C program could give different answers. The sysconf() call supplies a value that corresponds
18610 to the conditions when the program was either compiled or executed, depending on the
18611 implementation; the system() call to getconf always supplies a value corresponding to conditions
18612 when the program is executed.

18613 RATIONALE
18614 The original need for this utility, and for the confstr() function, was to provide a way of finding
18615 the configuration-defined default value for the PATH environment variable. Since PATH can be
18616 modified by the user to include directories that could contain utilities replacing the standard
18617 utilities, shell scripts need a way to determine the system-supplied PATH environment variable
18618 value that contains the correct search path for the standard utilities. It was later suggested that
18619 access to the other variables described in this volume of IEEE Std. 1003.1-200x could also be
18620 useful to applications.

18621 This functionality of getconf would not be adequately subsumed by another command such as: |

18622 grep var /etc/conf

18623 because such a strategy would provide correct values for neither those variables that can vary at
18624 runtime, nor those that can vary depending on the path.

18625 Early proposal versions of getconf specified exit status 1 when the specified variable was valid,
18626 but not defined on the system. The output string "undefined" is now used to specify this case
18627 with exit code 0 because so many things depend on an exit code of zero when an invoked utility
18628 is successful.

18629 FUTURE DIRECTIONS
18630 None.

18631 SEE ALSO
18632 c99 , the System Interfaces volume of IEEE Std. 1003.1-200x, confstr(), pathconf (), sysconf() |

18633 CHANGE HISTORY
18634 First released in Issue 4.

18635 Issue 4, Version 2
18636 The following changes are made in the table of values for system_var:

18637 • Names beginning with POSIX_ are changed to begin with _POSIX_.

18638 • Names beginning with XOPEN_ are changed to begin with _XOPEN_.

18639 • {MN_NMAX} is changed to {NL_MAX}.

18640 • {NL_SET_MAX} is changed to {NL_SETMAX}.

18641 • {NL_TEXT_MAX} is changed to {NL_TEXTMAX}.

18642 • The _XOPEN_CRYPT, _XOPEN_ENH_I18N, and _XOPEN_SHM configuration variables are
18643 added to the list.

18644 Issue 5
18645 In the OPERANDS section:

18646 • {NL_MAX} is changed to {NL_NMAX}.

18647 • Entries beginning NL_ are deleted from the list of standard configuration variables.

18648 • The list of variables previously marked UX is merged with the list marked EX.

2696 Technical Standard (2000) (Draft July 31, 2000)

Utilities getconf

18649 • Operands are added to support new Option Groups.

18650 • Operands are added so that getconf can determine supported programming environments.

18651 Issue 6
18652 The Open Group corrigenda item U029/4 has been applied, correcting the example command in
18653 the last paragraph of the OPTIONS section.

18654 The following new requirements on POSIX implementations derive from alignment with the
18655 Single UNIX Specification:

18656 • Operands are added to determine supported programming environments.

18657 This reference page is updated for alignment with the ISO/IEC 9899: 1999 standard. Specifically, |
18658 new macros for c99 programming environments are introduced. |

Shell and Utilities, Issue 6 2697

getopts Utilities

18659 NAME
18660 getopts — parse utility options

18661 SYNOPSIS
18662 getopts optstring name [arg ...]

18663 DESCRIPTION
18664 The getopts utility can be used to retrieve options and option-arguments from a list of
18665 parameters. It shall support the Utility Syntax Guidelines 3 to 10, inclusive, described in the Base |
18666 Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, Utility Syntax Guidelines. |

18667 Each time it is invoked, the getopts utility shall place the value of the next option in the shell
18668 variable specified by the name operand and the index of the next argument to be processed in the
18669 shell variable OPTIND. Whenever the shell is invoked, OPTIND shall be initialized to 1.

18670 When the option requires an option-argument, the getopts utility shall place it in the shell
18671 variable OPTARG. If no option was found, or if the option that was found does not have an
18672 option-argument, OPTARG shall be unset.

18673 If an option character not contained in the optstring operand is found where an option character
18674 is expected, the shell variable specified by name shall be set to the question-mark (’?’) character.
18675 In this case, if the first character in optstring is a colon (’:’), the shell variable OPTARG shall be
18676 set to the option character found, but no output shall be written to standard error; otherwise, the
18677 shell variable OPTARG shall be unset and a diagnostic message shall be written to standard
18678 error. This condition shall be considered to be an error detected in the way arguments were
18679 presented to the invoking application, but shall be not an error in getopts processing.

18680 If an option-argument is missing:

18681 • If the first character of optstring is a colon, the shell variable specified by name shall be set to
18682 the colon character and the shell variable OPTARG shall be set to the option character found.

18683 • Otherwise, the shell variable specified by name shall be set to the question-mark character,
18684 the shell variable OPTARG shall be unset, and a diagnostic message shall be written to
18685 standard error. This condition shall be considered to be an error detected in the way
18686 arguments were presented to the invoking application, but shall not be an error in getopts
18687 processing; a diagnostic message shall be written as stated, but the exit status shall be zero.

18688 When the end of options is encountered, the getopts utility shall exit with a return value greater
18689 than zero; the shell variable OPTIND shall be set to the index of the first non-option-argument,
18690 where the first " −−" argument is considered to be an option-argument if there are no other non-
18691 option-arguments appearing before it, or the value "$#" +1 if there are no non-option-
18692 arguments; the name variable shall be set to the question-mark character. Any of the following
18693 shall identify the end of options: the special option " −−" , finding an argument that does not
18694 begin with a ’ −’ , or encountering an error.

18695 The shell variables OPTIND and OPTARG shall be local to the caller of getopts and shall not be
18696 exported by default.

18697 The shell variable specified by the name operand, OPTIND and OPTARG shall affect the current
18698 shell execution environment; see Section 2.13 (on page 2273).

18699 If the application sets OPTIND to the value 1, a new set of parameters can be used: either the
18700 current positional parameters or new arg values. Any other attempt to invoke getopts multiple
18701 times in a single shell execution environment with parameters (positional parameters or arg
18702 operands) that are not the same in all invocations, or with an OPTIND value modified to be a
18703 value other than 1, produces unspecified results.

2698 Technical Standard (2000) (Draft July 31, 2000)

Utilities getopts

18704 OPTIONS
18705 None.

18706 OPERANDS
18707 The following operands shall be supported:

18708 optstring A string containing the option characters recognized by the utility invoking getopts.
18709 If a character is followed by a colon, the option shall be expected to have an
18710 argument, which should be supplied as a separate argument. Applications should
18711 specify an option character and its option-argument as separate arguments, but
18712 getopts shall interpret the characters following an option character requiring
18713 arguments as an argument whether or not this is done. An explicit null option-
18714 argument need not be recognized if it is not supplied as a separate argument when
18715 getopts is invoked. (See also the getopt() function defined in the System Interfaces
18716 volume of IEEE Std. 1003.1-200x.) The characters question-mark and colon shall
18717 not be used as option characters by an application. The use of other option
18718 characters that are not alphanumeric produces unspecified results. If the option-
18719 argument is not supplied as a separate argument from the option character, the
18720 value in OPTARG shall be stripped of the option character and the ’ −’ . The first
18721 character in optstring determines how getopts behaves if an option character is not
18722 known or an option-argument is missing.

18723 name The name of a shell variable that shall be set by the getopts utility to the option
18724 character that was found.

18725 The getopts utility by default shall parse positional parameters passed to the invoking shell
18726 procedure. If args are given, they shall be parsed instead of the positional parameters.

18727 STDIN
18728 Not used.

18729 INPUT FILES
18730 None.

18731 ENVIRONMENT VARIABLES
18732 The following environment variables shall affect the execution of getopts:

18733 LANG Provide a default value for the internationalization variables that are unset or null.
18734 If LANG is unset or null, the corresponding value from the implementation- |
18735 defined default locale shall be used. If any of the internationalization variables |
18736 contains an invalid setting, the utility shall behave as if none of the variables had
18737 been defined.

18738 LC_ALL If set to a non-empty string value, override the values of all the other
18739 internationalization variables.

18740 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
18741 characters (for example, single-byte as opposed to multi-byte characters in
18742 arguments and input files).

18743 LC_MESSAGES
18744 Determine the locale that should be used to affect the format and contents of
18745 diagnostic messages written to standard error.

18746 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

18747 OPTIND This variable shall be used by the getopts utility as the index of the next argument
18748 to be processed.

Shell and Utilities, Issue 6 2699

getopts Utilities

18749 ASYNCHRONOUS EVENTS
18750 Default.

18751 STDOUT
18752 Not used.

18753 STDERR
18754 Whenever an error is detected and the first character in the optstring operand is not a colon
18755 (’:’), a diagnostic message shall be written to standard error with the following information in
18756 an unspecified format:

18757 • The invoking program name shall be identified in the message. The invoking program name
18758 shall be the value of the shell special parameter 0 (see Section 2.5.2 (on page 2241)) at the time
18759 the getopts utility is invoked. A name equivalent to:

18760 basename "$0"

18761 may be used.

18762 • If an option is found that was not specified in optstring , this error is identified and the invalid
18763 option character shall be identified in the message.

18764 • If an option requiring an option-argument is found, but an option-argument is not found,
18765 this error shall be identified and the invalid option character shall be identified in the
18766 message.

18767 OUTPUT FILES
18768 None.

18769 EXTENDED DESCRIPTION
18770 None.

18771 EXIT STATUS
18772 The following exit values shall be returned:

18773 0 An option, specified or unspecified by optstring , was found.

18774 >0 The end of options was encountered or an error occurred.

18775 CONSEQUENCES OF ERRORS
18776 Default.

18777 APPLICATION USAGE
18778 Since getopts affects the current shell execution environment, it is generally provided as a shell
18779 regular built-in. If it is called in a subshell or separate utility execution environment, such as one
18780 of the following:

18781 (getopts abc value "$@")
18782 nohup getopts ...
18783 find . −exec getopts ... \;

18784 it does not affect the shell variables in the caller’s environment.

18785 Note that shell functions share OPTIND with the calling shell even though the positional
18786 parameters are changed. If the calling shell and any of its functions uses getopts to parse
18787 arguments, the results are unspecified.

18788 EXAMPLES
18789 The following example script parses and displays its arguments:

18790 aflag=
18791 bflag=

2700 Technical Standard (2000) (Draft July 31, 2000)

Utilities getopts

18792 while getopts ab: name
18793 do
18794 case $name in
18795 a) aflag=1;;
18796 b) bflag=1
18797 bval="$OPTARG";;
18798 ?) printf "Usage: %s: [−a] [−b value] args\n" $0
18799 exit 2;;
18800 esac
18801 done
18802 if [! −z "$aflag"]; then
18803 printf "Option −a specified\n"
18804 fi
18805 if [! −z "$bflag"]; then
18806 printf ’Option −b "%s" specified\n’ "$bval"
18807 fi
18808 shift $(($OPTIND − 1))
18809 printf "Remaining arguments are: %s\n" "$*"

18810 RATIONALE
18811 The getopts utility was chosen in preference to the System V getopt utility because getopts handles
18812 option-arguments containing <blank> characters.

18813 The OPTARG variable is not mentioned in the ENVIRONMENT VARIABLES section because it
18814 does not affect the execution of getopts; it is one of the few ‘‘output-only’’ variables used by the
18815 standard utilities.

18816 The colon is not allowed as an option character because that is not historical behavior, and it
18817 violates the Utility Syntax Guidelines. The colon is now specified to behave as in the KornShell
18818 version of the getopts utility; when used as the first character in the optstring operand, it disables
18819 diagnostics concerning missing option-arguments and unexpected option characters. This
18820 replaces the use of the OPTERR variable that was specified in an early proposal.

18821 The formats of the diagnostic messages produced by the getopts utility and the getopt() function
18822 are not fully specified because implementations with superior (‘‘friendlier’’) formats objected to
18823 the formats used by some historical implementations. The standard developers considered it
18824 important that the information in the messages used be uniform between getopts and getopt().
18825 Exact duplication of the messages might not be possible, particularly if a utility is built on
18826 another system that has a different getopt() function, but the messages must have specific
18827 information included so that the program name, invalid option character, and type of error can
18828 be distinguished by a user.

18829 Only a rare application program intercepts a getopts standard error message and wants to parse
18830 it. Therefore, implementations are free to choose the most usable messages they can devise. The
18831 following formats are used by many historical implementations:

18832 "%s: illegal option −− %c\n", < program name >, < option character >

18833 "%s: option requires an argument −− %c\n", < program name >, \
18834 <option character >

18835 Historical shells with built-in versions of getopt() or getopts have used different formats,
18836 frequently not even indicating the option character found in error.

Shell and Utilities, Issue 6 2701

getopts Utilities

18837 FUTURE DIRECTIONS
18838 None.

18839 SEE ALSO
18840 The System Interfaces volume of IEEE Std. 1003.1-200x, getopt()

18841 CHANGE HISTORY
18842 First released in Issue 4.

18843 Issue 6
18844 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2702 Technical Standard (2000) (Draft July 31, 2000)

Utilities grep

18845 NAME
18846 grep — search a file for a pattern

18847 SYNOPSIS
18848 grep [−E| −F][−c| −l| −q][−insvx] −e pattern_list...
18849 [−f pattern_file] ... [file ...]

18850 grep [−E| −F][−c| −l| −q][−insvx][−e pattern_list]...
18851 −f pattern_file ... [file ...]

18852 grep [−E| −F][−c| −l| −q][−insvx] pattern_list [file ...]

18853 DESCRIPTION
18854 The grep utility shall search the input files, selecting lines matching one or more patterns; the
18855 types of patterns are controlled by the options specified. The patterns are specified by the −e
18856 option, −f option, or the pattern_list operand. The pattern_list ’s value shall consist of one or more
18857 patterns separated by <newline> characters; the pattern_file ’s contents shall consist of one or
18858 more patterns terminated by <newline> characters. By default, an input line shall be selected if
18859 any pattern, treated as an entire basic regular expression (BRE) as described in the Base |
18860 Definitions volume of IEEE Std. 1003.1-200x, Section 9.3, Basic Regular Expressions, matches any |
18861 part of the line; a null BRE shall match every line. By default, each selected input line shall be |
18862 written to the standard output.

18863 Regular expression matching shall be based on text lines. Since a <newline> character separates
18864 or terminates patterns (see the −e and −f options below), regular expressions cannot contain a
18865 <newline> character. Similarly, since patterns are matched against individual lines of the input,
18866 there is no way for a pattern to match a <newline> character found in the input.

18867 OPTIONS
18868 The grep utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
18869 12.2, Utility Syntax Guidelines. |

18870 The following options shall be supported:

18871 −E Match using extended regular expressions. Treat each pattern specified as an ERE, |
18872 as described in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 9.4, |
18873 Extended Regular Expressions. If any entire ERE pattern matches some part of an |
18874 input line, the line shall be matched. A null ERE shall match every line.

18875 −F Match using fixed strings. Treat each pattern specified as a string instead of a
18876 regular expression. If an input line contains any of the patterns as a contiguous
18877 sequence of bytes, the line shall be matched. A null string shall match every line.

18878 −c Write only a count of selected lines to standard output.

18879 −e pattern_list
18880 Specify one or more patterns to be used during the search for input. The
18881 application shall ensure that patterns in pattern_list are separated by a <newline>
18882 character. A null pattern can be specified by two adjacent <newline> characters in
18883 pattern_list . Unless the −E or −F option is also specified, each pattern shall be
18884 treated as a BRE, as described in the Base Definitions volume of |
18885 IEEE Std. 1003.1-200x, Section 9.3, Basic Regular Expressions. Multiple −e and −f |
18886 options shall be accepted by the grep utility. All of the specified patterns shall be
18887 used when matching lines, but the order of evaluation is unspecified.

18888 −f pattern_file
18889 Read one or more patterns from the file named by the path name pattern_file .
18890 Patterns in pattern_file shall be terminated by a <newline> character. A null pattern

Shell and Utilities, Issue 6 2703

grep Utilities

18891 can be specified by an empty line in pattern_file . Unless the −E or −F option is also
18892 specified, each pattern shall be treated as a BRE, as described in the Base |
18893 Definitions volume of IEEE Std. 1003.1-200x, Section 9.3, Basic Regular |
18894 Expressions. |

18895 −i Perform pattern matching in searches without regard to case; see the Base |
18896 Definitions volume of IEEE Std. 1003.1-200x, Section 9.2, Regular Expression |
18897 General Requirements. |

18898 −l (The letter ell.) Write only the names of files containing selected lines to standard
18899 output. Path names shall be written once per file searched. If the standard input is
18900 searched, a path name of "(standard input)" shall be written, in the POSIX
18901 locale. In other locales, "standard input" may be replaced by something more
18902 appropriate in those locales.

18903 −n Precede each output line by its relative line number in the file, each file starting at
18904 line 1. The line number counter shall be reset for each file processed.

18905 −q Quiet. Do not write anything to the standard output, regardless of matching lines.
18906 Exit with zero status if an input line is selected.

18907 −s Suppress the error messages ordinarily written for nonexistent or unreadable files.
18908 Other error messages shall not be suppressed.

18909 −v Select lines not matching any of the specified patterns. If the −v option is not
18910 specified, selected lines shall be those that match any of the specified patterns.

18911 −x Consider only input lines that use all characters in the line to match an entire fixed
18912 string or regular expression to be matching lines.

18913 OPERANDS
18914 The following operands shall be supported:

18915 pattern_list Specify one or more patterns to be used during the search for input. This operand |
18916 shall be treated as if it were specified as −e pattern_list .

18917 file A path name of a file to be searched for the patterns. If no file operands are
18918 specified, the standard input shall be used.

18919 STDIN
18920 The standard input shall be used only if no file operands are specified. See the INPUT FILES
18921 section.

18922 INPUT FILES
18923 The input files shall be text files.

18924 ENVIRONMENT VARIABLES
18925 The following environment variables shall affect the execution of grep:

18926 LANG Provide a default value for the internationalization variables that are unset or null.
18927 If LANG is unset or null, the corresponding value from the implementation- |
18928 defined default locale shall be used. If any of the internationalization variables |
18929 contains an invalid setting, the utility shall behave as if none of the variables had
18930 been defined.

18931 LC_ALL If set to a non-empty string value, override the values of all the other
18932 internationalization variables.

18933 LC_COLLATE
18934 Determine the locale for the behavior of ranges, equivalence classes and multi-

2704 Technical Standard (2000) (Draft July 31, 2000)

Utilities grep

18935 character collating elements within regular expressions.

18936 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
18937 characters (for example, single-byte as opposed to multi-byte characters in
18938 arguments and input files) and the behavior of character classes within regular
18939 expressions.

18940 LC_MESSAGES
18941 Determine the locale that should be used to affect the format and contents of
18942 diagnostic messages written to standard error.

18943 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

18944 ASYNCHRONOUS EVENTS
18945 Default.

18946 STDOUT
18947 If the −l option is in effect, and the −q option is not, the following shall be written for each file
18948 containing at least one selected input line:

18949 "%s\n", < file >

18950 Otherwise, if more than one file argument appears, and −q is not specified, the grep utility shall
18951 prefix each output line by:

18952 "%s:", < file >

18953 The remainder of each output line shall depend on the other options specified:

18954 • If the −c option is in effect, the remainder of each output line shall contain:

18955 "%d\n", < count >

18956 • Otherwise, if −c is not in effect and the −n option is in effect, the following shall be written to
18957 standard output:

18958 "%d:", < line number >

18959 • Finally, the following shall be written to standard output:

18960 "%s", < selected-line contents >

18961 STDERR
18962 Used only for diagnostic messages.

18963 OUTPUT FILES
18964 None.

18965 EXTENDED DESCRIPTION
18966 None.

18967 EXIT STATUS
18968 The following exit values shall be returned:

18969 0 One or more lines were selected.

18970 1 No lines were selected.

18971 >1 An error occurred.

Shell and Utilities, Issue 6 2705

grep Utilities

18972 CONSEQUENCES OF ERRORS
18973 If the −q option is specified, the exit status shall be zero if an input line is selected, even if an
18974 error was detected. Otherwise, default actions shall be performed.

18975 APPLICATION USAGE
18976 Care should be taken when using characters in pattern_list that may also be meaningful to the
18977 command interpreter. It is safest to enclose the entire pattern_list argument in single quotes:

18978 ’...’

18979 The −e pattern_list option has the same effect as the pattern_list operand, but is useful when
18980 pattern_list begins with the hyphen delimiter. It is also useful when it is more convenient to
18981 provide multiple patterns as separate arguments.

18982 Multiple −e and −f options are accepted and grep uses all of the patterns it is given while
18983 matching input text lines. (Note that the order of evaluation is not specified. If an
18984 implementation finds a null string as a pattern, it is allowed to use that pattern first, matching
18985 every line, and effectively ignore any other patterns.)

18986 The −q option provides a means of easily determining whether or not a pattern (or string) exists
18987 in a group of files. When searching several files, it provides a performance improvement
18988 (because it can quit as soon as it finds the first match) and requires less care by the user in
18989 choosing the set of files to supply as arguments (because it exits zero if it finds a match even if
18990 grep detected an access or read error on earlier file operands). |

18991 EXAMPLES

18992 1. To find all uses of the word "Posix" (in any case) in file text.mm and write with line
18993 numbers:

18994 grep −i −n posix text.mm

18995 2. To find all empty lines in the standard input:

18996 grep ˆ$

18997 or:

18998 grep −v .

18999 3. Both of the following commands print all lines containing strings "abc" or "def" or both:

19000 grep −E ’abc
19001 def’

19002 grep −F ’abc
19003 def’

19004 4. Both of the following commands print all lines matching exactly "abc" or "def" :

19005 grep −E ’ˆabc$
19006 ^def$’

19007 grep −F −x ’abc
19008 def’

19009 RATIONALE
19010 This grep has been enhanced in an upward-compatible way to provide the exact functionality of
19011 the historical egrep and fgrep commands as well. It was the clear intention of the standard
19012 developers to consolidate the three greps into a single command.

2706 Technical Standard (2000) (Draft July 31, 2000)

Utilities grep

19013 The old egrep and fgrep commands are likely to be supported for many years to come as
19014 implementation extensions, allowing historical applications to operate unmodified.

19015 Historical implementations usually silently ignored all but one of multiply-specified −e and −f
19016 options, but were not consistent as to which specification was actually used.

19017 The −b option was omitted from the OPTIONS section because block numbers are |
19018 implementation-defined. |

19019 The System V restriction on using − to mean standard input was omitted.

19020 A definition of action taken when given a null BRE or ERE is specified. This is an error condition
19021 in some historical implementations.

19022 The −l option previously indicated that its use was undefined when no files were explicitly
19023 named. This behavior was historical and placed an unnecessary restriction on future
19024 implementations. It has been removed.

19025 The historical BSD grep −s option practice is easily duplicated by redirecting standard output to
19026 /dev/null. The −s option required here is from System V.

19027 The −x option, historically available only with fgrep, is available here for all of the non-
19028 obsolescent versions.

19029 FUTURE DIRECTIONS
19030 None.

19031 SEE ALSO
19032 sed

19033 CHANGE HISTORY
19034 First released in Issue 2.

19035 Issue 4
19036 Aligned with the ISO/IEC 9945-2: 1993 standard.

19037 Issue 6
19038 The Open Group corrigenda item U029/5 has been applied, correcting the SYNOPSIS.

19039 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2707

hash Utilities

19040 NAME
19041 hash — remember or report utility locations

19042 SYNOPSIS
19043 XSI hash [utility ...]

19044 hash −r
19045

19046 DESCRIPTION
19047 The hash utility shall affect the way the current shell environment remembers the locations of
19048 utilities found as described in Section 2.9.1.1 (on page 2257). Depending on the arguments
19049 specified, it shall add utility locations to its list of remembered locations or it shall purge the
19050 contents of the list. When no arguments are specified, it shall report on the contents of the list.

19051 Utilities provided as built-ins to the shell shall not be reported by hash.

19052 OPTIONS
19053 The hash utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
19054 12.2, Utility Syntax Guidelines. |

19055 The following option shall be supported:

19056 −r Forget all previously remembered utility locations.

19057 OPERANDS
19058 The following operand shall be supported:

19059 utility The name of a utility to be searched for and added to the list of remembered
19060 locations. If utility contains one or more slashes, the results are unspecified.

19061 STDIN
19062 Not used.

19063 INPUT FILES
19064 None.

19065 ENVIRONMENT VARIABLES
19066 The following environment variables shall affect the execution of hash:

19067 LANG Provide a default value for the internationalization variables that are unset or null.
19068 If LANG is unset or null, the corresponding value from the implementation- |
19069 defined default locale shall be used. If any of the internationalization variables |
19070 contains an invalid setting, the utility shall behave as if none of the variables had
19071 been defined.

19072 LC_ALL If set to a non-empty string value, override the values of all the other
19073 internationalization variables.

19074 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
19075 characters (for example, single-byte as opposed to multi-byte characters in
19076 arguments).

19077 LC_MESSAGES
19078 Determine the locale that should be used to affect the format and contents of
19079 diagnostic messages written to standard error.

19080 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

19081 PATH Determine the location of utility , as described in the Base Definitions volume of |
19082 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

2708 Technical Standard (2000) (Draft July 31, 2000)

Utilities hash

19083 ASYNCHRONOUS EVENTS
19084 Default.

19085 STDOUT
19086 The standard output of hash shall be used when no arguments are specified. Its format is
19087 unspecified, but includes the path name of each utility in the list of remembered locations for the
19088 current shell environment. This list shall consist of those utilities named in previous hash
19089 invocations that have been invoked, and may contain those invoked and found through the
19090 normal command search process.

19091 STDERR
19092 Used only for diagnostic messages.

19093 OUTPUT FILES
19094 None.

19095 EXTENDED DESCRIPTION
19096 None.

19097 EXIT STATUS
19098 The following exit values shall be returned:

19099 0 Successful completion.

19100 >0 An error occurred.

19101 CONSEQUENCES OF ERRORS
19102 Default.

19103 APPLICATION USAGE
19104 Since hash affects the current shell execution environment, it is always provided as a shell
19105 regular built-in. If it is called in a separate utility execution environment, such as one of the
19106 following:

19107 nohup hash −r
19108 find . −type f | xargs hash

19109 it does not affect the command search process of the caller’s environment.

19110 The hash utility may be implemented as an alias—for example, alias −t −, in which case utilities
19111 found through normal command search are not listed by the hash command.

19112 The effects of hash −r can also be achieved portably by resetting the value of PATH; in the
19113 simplest form, this can be:

19114 PATH="$PATH"

19115 The use of hash with utility names is unnecessary for most applications, but may provide a
19116 performance improvement on a few implementations; normally, the hashing process is included
19117 by default.

19118 EXAMPLES
19119 None.

19120 RATIONALE
19121 None.

19122 FUTURE DIRECTIONS
19123 None.

Shell and Utilities, Issue 6 2709

hash Utilities

19124 SEE ALSO
19125 Section 2.9.1.1 (on page 2257)

19126 CHANGE HISTORY
19127 First released in Issue 2.

19128 Issue 4
19129 Relocated from the sh description to reflect its status as a regular built-in utility.

2710 Technical Standard (2000) (Draft July 31, 2000)

Utilities head

19130 NAME
19131 head — copy the first part of files

19132 SYNOPSIS
19133 head [−n number][file ...]

19134 DESCRIPTION
19135 The head utility shall copy its input files to the standard output, ending the output for each file at
19136 a designated point.

19137 Copying shall end at the point in each input file indicated by the −n number option. The option-
19138 argument number shall be counted in units of lines.

19139 OPTIONS
19140 The head utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
19141 12.2, Utility Syntax Guidelines. |

19142 The following option shall be supported:

19143 −n number The first number lines of each input file shall be copied to standard output. The
19144 application shall ensure that the number option-argument is a positive decimal
19145 integer.

19146 If no options are specified, head shall act as if −n 10 had been specified.

19147 OPERANDS
19148 The following operand shall be supported:

19149 file A path name of an input file. If no file operands are specified, the standard input
19150 shall be used.

19151 STDIN
19152 The standard input shall be used only if no file operands are specified. See the INPUT FILES
19153 section.

19154 INPUT FILES
19155 Input files shall be text files, but the line length is not restricted to {LINE_MAX} bytes.

19156 ENVIRONMENT VARIABLES
19157 The following environment variables shall affect the execution of head:

19158 LANG Provide a default value for the internationalization variables that are unset or null.
19159 If LANG is unset or null, the corresponding value from the implementation- |
19160 defined default locale shall be used. If any of the internationalization variables |
19161 contains an invalid setting, the utility shall behave as if none of the variables had
19162 been defined.

19163 LC_ALL If set to a non-empty string value, override the values of all the other
19164 internationalization variables.

19165 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
19166 characters (for example, single-byte as opposed to multi-byte characters in
19167 arguments and input files).

19168 LC_MESSAGES
19169 Determine the locale that should be used to affect the format and contents of
19170 diagnostic messages written to standard error.

19171 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Shell and Utilities, Issue 6 2711

head Utilities

19172 ASYNCHRONOUS EVENTS
19173 Default.

19174 STDOUT
19175 The standard output shall contain designated portions of the input files.

19176 If multiple file operands are specified, head shall precede the output for each with the header:

19177 "\n==> %s <==\n", < pathname >

19178 except that the first header written shall not include the initial <newline> character.

19179 STDERR
19180 Used only for diagnostic messages.

19181 OUTPUT FILES
19182 None.

19183 EXTENDED DESCRIPTION
19184 None.

19185 EXIT STATUS
19186 The following exit values shall be returned:

19187 0 Successful completion.

19188 >0 An error occurred.

19189 CONSEQUENCES OF ERRORS
19190 Default.

19191 APPLICATION USAGE
19192 The obsolescent −number form is withdrawn in this version. Applications should use the −n
19193 number option.

19194 EXAMPLES
19195 To write the first ten lines of all files (except those with a leading period) in the directory:

19196 head *

19197 RATIONALE
19198 Although it is possible to simulate head with sed 10q for a single file, the standard developers
19199 decided that the popularity of head on historical BSD systems warranted its inclusion alongside
19200 tail.

19201 This standard version of head follows the Utility Syntax Guidelines. The −n option was added to
19202 this new interface so that head and tail would be more logically related.

19203 There is no −c option (as there is in tail) because it is not historical practice and because other
19204 utilities in this volume of IEEE Std. 1003.1-200x provide similar functionality.

19205 FUTURE DIRECTIONS
19206 None.

19207 SEE ALSO
19208 sed, tail

19209 CHANGE HISTORY
19210 First released in Issue 4.

2712 Technical Standard (2000) (Draft July 31, 2000)

Utilities head

19211 Issue 6
19212 The obsolescent −number form is withdrawn.

19213 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2713

iconv Utilities

19214 NAME
19215 iconv — codeset conversion

19216 SYNOPSIS
19217 iconv [−cs] −f fromcode −t tocode [file ...]

19218 iconv −l

19219 DESCRIPTION
19220 The iconv utility shall convert the encoding of characters in file from one codeset to another and
19221 write the results to standard output.

19222 When the options indicate that charmap files are used to specify the codesets (see OPTIONS),
19223 the codeset conversion shall be accomplished by performing a logical join on the symbolic
19224 character names in the two charmaps. The implementation need not support the use of charmap
19225 files for codeset conversion unless the POSIX2_LOCALEDEF symbol is defined on the system.

19226 OPTIONS
19227 The iconv utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
19228 12.2, Utility Syntax Guidelines. |

19229 The following options shall be supported:

19230 −c Omit any invalid characters from the output. When −c is not used, the results of
19231 encountering invalid characters in the input stream (either those that are not valid
19232 members of the fromcode or those that have no corresponding value in tocode) shall
19233 be specified in the system documentation. The presence or absence of −c shall not
19234 affect the exit status of iconv.

19235 −f fromcode Identify the codeset of the input file. If the option-argument contains a slash
19236 character, iconv shall attempt to use it as the path name of a charmap file, as
19237 defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 6.4, |
19238 Character Set Description File. If the path name does not represent a valid, |
19239 readable charmap file, the results are undefined. If the option-argument does not |
19240 contain a slash, it shall be considered the name of one of the codeset descriptions
19241 provided by the system, in an unspecified format. The valid values of the option-
19242 argument without a slash are implementation-defined. If this option is omitted, the |
19243 codeset of the current locale shall be used. |

19244 −l Write all supported fromcode and tocode values to standard output in an unspecified
19245 format.

19246 −s Suppress any messages written to standard error concerning invalid characters.
19247 When −s is not used, the results of encountering invalid characters in the input
19248 stream (either those that are not valid members of the fromcode or those that have
19249 no corresponding value in tocode) shall be specified in the system documentation.
19250 The presence or absence of −s shall not affect the exit status of iconv.

19251 −t tocode Identify the codeset to be used for the output file. The semantics are equivalent to
19252 the −f fromcode option.

19253 If either −f or −t represents a charmap file, but the other does not (or is omitted), or both −f and
19254 −t are omitted, the results are undefined.

19255 OPERANDS
19256 The following operand shall be supported:

19257 file A path name of an input file. If no file operands are specified, or if a file operand is
19258 ’ −’ , the standard input shall be used.

2714 Technical Standard (2000) (Draft July 31, 2000)

Utilities iconv

19259 STDIN
19260 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ . |

19261 INPUT FILES
19262 The input file shall be a text file.

19263 ENVIRONMENT VARIABLES
19264 The following environment variables shall affect the execution of iconv:

19265 LANG Provide a default value for the internationalization variables that are unset or null.
19266 If LANG is unset or null, the corresponding value from the implementation- |
19267 defined default locale shall be used. If any of the internationalization variables |
19268 contains an invalid setting, the utility shall behave as if none of the variables had
19269 been defined.

19270 LC_ALL If set to a non-empty string value, override the values of all the other
19271 internationalization variables.

19272 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
19273 characters (for example, single-byte as opposed to multi-byte characters in
19274 arguments). During translation of the file, this variable is superseded by the use of
19275 the fromcode option-argument.

19276 LC_MESSAGES
19277 Determine the locale that should be used to affect the format and contents of
19278 diagnostic messages written to standard error.

19279 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

19280 ASYNCHRONOUS EVENTS
19281 Default.

19282 STDOUT
19283 When the −l option is used, the standard output shall contain all supported fromcode and tocode
19284 values, written in an unspecified format.

19285 When the −l option is not used, the standard output shall contain the sequence of characters
19286 read from the input files, translated to the specified codeset. Nothing else shall be written to the
19287 standard output.

19288 STDERR
19289 Used only for diagnostic messages.

19290 OUTPUT FILES
19291 None.

19292 EXTENDED DESCRIPTION
19293 None.

19294 EXIT STATUS
19295 The following exit values shall be returned:

19296 0 Successful completion.

19297 >0 An error occurred.

19298 CONSEQUENCES OF ERRORS
19299 Default.

Shell and Utilities, Issue 6 2715

iconv Utilities

19300 APPLICATION USAGE
19301 The user must ensure that both charmap files use the same symbolic names for characters the
19302 two codesets have in common.

19303 EXAMPLES
19304 The following example converts the contents of file mail.x400 from the ISO/IEC 6937: 1994
19305 standard codeset to the ISO/IEC 8859-1: 1998 standard codeset, and stores the results in file
19306 mail.local:

19307 iconv −f IS6937 −t IS8859 mail.x400 > mail.local

19308 RATIONALE
19309 The iconv utility can be used portably only when the user provides two charmap files as option-
19310 arguments. This is because a single charmap provided by the user cannot reliably be joined with
19311 the names in a system-provided character set description. The valid values for fromcode and
19312 tocode are implementation-defined and do not have to have any relation to the charmap |
19313 mechanisms. As an aid to interactive users, the −l option was adopted from the Plan 9 operating
19314 system. It writes information concerning these implementation-defined values. The format is |
19315 unspecified because there are many possible useful formats that could be chosen, such as a
19316 matrix of valid combinations of fromcode and tocode . The −l option is not intended for shell script
19317 usage; portable applications will have to use charmaps.

19318 FUTURE DIRECTIONS
19319 None.

19320 SEE ALSO
19321 gencat

19322 CHANGE HISTORY
19323 First released in Issue 3.

19324 Issue 4
19325 Format reorganized.

19326 Utility Syntax Guidelines support mandated.

19327 Internationalized environment variable support mandated.

19328 Issue 6
19329 This utility has been rewritten to align with the IEEE P1003.2b draft standard. Specifically, the
19330 ability to use charmap files for conversion has been added.

2716 Technical Standard (2000) (Draft July 31, 2000)

Utilities id

19331 NAME
19332 id — return user identity

19333 SYNOPSIS
19334 id [user]

19335 id −G[−n] [user]

19336 id −g[−nr] [user]

19337 id −u[−nr] [user]

19338 DESCRIPTION
19339 If no user operand is provided, the id utility shall write the user and group IDs and the
19340 corresponding user and group names of the invoking process to standard output. If the effective
19341 and real IDs do not match, both shall be written. If multiple groups are supported by the
19342 underlying system (see the description of {NGROUPS_MAX} in the System Interfaces volume of
19343 IEEE Std. 1003.1-200x), the supplementary group affiliations of the invoking process shall also be
19344 written.

19345 If a user operand is provided and the process has the appropriate privileges, the user and group
19346 IDs of the selected user shall be written. In this case, effective IDs shall be assumed to be
19347 identical to real IDs. If the selected user has more than one allowable group membership listed
19348 in the group database, these shall be written in the same manner as the supplementary groups
19349 described in the preceding paragraph.

19350 OPTIONS
19351 The id utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
19352 Utility Syntax Guidelines. |

19353 The following options shall be supported:

19354 −G Output all different group IDs (effective, real, and supplementary) only, using the
19355 format "%u\n" . If there is more than one distinct group affiliation, output each
19356 such affiliation, using the format " %u" , before the <newline> character is output.

19357 −g Output only the effective group ID, using the format "%u\n" .

19358 −n Output the name in the format %s instead of the numeric ID using the format %u.

19359 −r Output the real ID instead of the effective ID.

19360 −u Output only the effective user ID, using the format "%u\n" .

19361 OPERANDS
19362 The following operand shall be supported:

19363 user The login name for which information is to be written.

19364 STDIN
19365 Not used.

19366 INPUT FILES
19367 None.

19368 ENVIRONMENT VARIABLES
19369 The following environment variables shall affect the execution of id:

19370 LANG Provide a default value for the internationalization variables that are unset or null.
19371 If LANG is unset or null, the corresponding value from the implementation- |
19372 defined default locale shall be used. If any of the internationalization variables |
19373 contains an invalid setting, the utility shall behave as if none of the variables had

Shell and Utilities, Issue 6 2717

id Utilities

19374 been defined.

19375 LC_ALL If set to a non-empty string value, override the values of all the other
19376 internationalization variables.

19377 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
19378 characters (for example, single-byte as opposed to multi-byte characters in
19379 arguments).

19380 LC_MESSAGES
19381 Determine the locale that should be used to affect the format and contents of
19382 diagnostic messages written to standard error and informative messages written to
19383 standard output.

19384 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

19385 ASYNCHRONOUS EVENTS
19386 Default.

19387 STDOUT
19388 The following formats shall be used when the LC_MESSAGES locale category specifies the
19389 POSIX locale. In other locales, the strings uid , gid , euid , egid , and groups may be replaced with
19390 more appropriate strings corresponding to the locale.

19391 "uid=%u(%s) gid=%u(%s)\n", < real user ID >, < user-name >,
19392 <real group ID >, < group-name >

19393 If the effective and real user IDs do not match, the following shall be inserted immediately
19394 before the ’\n’ character in the previous format:

19395 " euid=%u(%s)"

19396 with the following arguments added at the end of the argument list:

19397 "effective user ID", < effective user-name >

19398 If the effective and real group IDs do not match, the following shall be inserted directly before
19399 the ’\n’ character in the format string (and after any addition resulting from the effective and
19400 real user IDs not matching):

19401 " egid=%u(%s)"

19402 with the following arguments added at the end of the argument list:

19403 <effective group-ID >, < effective group name >

19404 If the process has supplementary group affiliations or the selected user is allowed to belong to
19405 multiple groups, the first shall be added directly before the <newline> character in the format
19406 string:

19407 " groups=%u(%s)"

19408 with the following arguments added at the end of the argument list:

19409 <supplementary group ID >, < supplementary group name >

19410 and the necessary number of the following added after that for any remaining supplementary
19411 group IDs:

19412 ",%u(%s)"

19413 and the necessary number of the following arguments added at the end of the argument list:

2718 Technical Standard (2000) (Draft July 31, 2000)

Utilities id

19414 <supplementary group ID >, < supplementary group name >

19415 If any of the user ID, group ID, effective user ID, effective group ID, or supplementary/multiple
19416 group IDs cannot be mapped by the system into printable user or group names, the
19417 corresponding (%s) and name argument is omitted from the corresponding format string.

19418 When any of the options are specified, the output format shall be as described in the OPTIONS
19419 section.

19420 STDERR
19421 Used only for diagnostic messages.

19422 OUTPUT FILES
19423 None.

19424 EXTENDED DESCRIPTION
19425 None.

19426 EXIT STATUS
19427 The following exit values shall be returned:

19428 0 Successful completion.

19429 >0 An error occurred.

19430 CONSEQUENCES OF ERRORS
19431 Default.

19432 APPLICATION USAGE
19433 Output produced by the −G option and by the default case could potentially produce very long
19434 lines on systems that support large numbers of supplementary groups. (On systems with user
19435 and group IDs that are 32-bit integers and with group names with a maximum of 8 bytes per
19436 name, 93 supplementary groups plus distinct effective and real group and user IDs could
19437 theoretically overflow the 2 048-byte {LINE_MAX} text file line limit on the default output case.
19438 It would take about 186 supplementary groups to overflow the 2 048-byte barrier using id −G).
19439 This is not expected to be a problem in practice, but in cases where it is a concern, applications
19440 should consider using fold −s before postprocessing the output of id.

19441 EXAMPLES
19442 None.

19443 RATIONALE
19444 The functionality provided by the 4 BSD groups utility can be simulated using:

19445 id −Gn [user]

19446 The 4 BSD command groups was considered, but it was not included because it did not provide
19447 the functionality of the id utility of the SVID. Also, it was thought that it would be easier to
19448 modify id to provide the additional functionality necessary to systems with multiple groups
19449 than to invent another command.

19450 The options −u, −g, −n, and −r were added to ease the use of id with shell commands
19451 substitution. Without these options it is necessary to use some preprocessor such as sed to select
19452 the desired piece of information. Since output such as that produced by:

19453 id −u −n

19454 is frequently wanted, it seemed desirable to add the options.

Shell and Utilities, Issue 6 2719

id Utilities

19455 FUTURE DIRECTIONS
19456 None.

19457 SEE ALSO
19458 fold , logname , who , the System Interfaces volume of IEEE Std. 1003.1-200x, getgid(), getgroups(),
19459 getuid()

19460 CHANGE HISTORY
19461 First released in Issue 2.

19462 Issue 4
19463 Aligned with the ISO/IEC 9945-2: 1993 standard.

2720 Technical Standard (2000) (Draft July 31, 2000)

Utilities ipcrm

19464 NAME
19465 ipcrm — remove an XSI message queue, semaphore set, or shared memory segment identifier

19466 SYNOPSIS
19467 XSI ipcrm [−q msgid | −Q msgkey | −s semid | −S semkey |
19468 −m shmid | −M shmkey] ...
19469

19470 DESCRIPTION
19471 The ipcrm utility shall remove zero or more message queues, semaphore sets, or shared memory
19472 segments. The interprocess communication facilities to be removed are specified by the options.

19473 Only a user with appropriate privilege shall be allowed to remove an interprocess
19474 communication facility that was not created by or owned by the user invoking ipcrm.

19475 OPTIONS
19476 The ipcrm facility supports the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
19477 Utility Syntax Guidelines. |

19478 The following options shall be supported:

19479 −q msgid Remove the message queue identifier msgid from the system and destroy the
19480 message queue and data structure associated with it.

19481 −m shmid Remove the shared memory identifier shmid from the system. The shared memory
19482 segment and data structure associated with it shall be destroyed after the last
19483 detach.

19484 −s semid Remove the semaphore identifier semid from the system and destroy the set of
19485 semaphores and data structure associated with it.

19486 −Q msgkey Remove the message queue identifier, created with key msgkey, from the system
19487 and destroy the message queue and data structure associated with it.

19488 −M shmkey Remove the shared memory identifier, created with key shmkey, from the system.
19489 The shared memory segment and data structure associated with it shall be
19490 destroyed after the last detach.

19491 −S semkey Remove the semaphore identifier, created with key semkey, from the system and
19492 destroy the set of semaphores and data structure associated with it.

19493 OPERANDS
19494 None.

19495 STDIN
19496 Not used.

19497 INPUT FILES
19498 None.

19499 ENVIRONMENT VARIABLES
19500 The following environment variables shall affect the execution of ipcrm:

19501 LANG Provide a default value for the internationalization variables that are unset or null.
19502 If LANG is unset or null, the corresponding value from the implementation- |
19503 defined default locale shall be used. If any of the internationalization variables |
19504 contain an invalid setting, the utility behaves as if none of the variables had been
19505 set.

19506 LC_ALL If set to a non-empty string value, override the values of all the other
19507 internationalization variables.

Shell and Utilities, Issue 6 2721

ipcrm Utilities

19508 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
19509 characters (for example, single-byte as opposed to multi-byte characters in
19510 arguments).

19511 LC_MESSAGES
19512 Determine the locale that should be used to affect the format and contents of
19513 diagnostic messages written to standard error.

19514 NLSPATH
19515 Determine the location of message catalogs for the processing of LC_MESSAGES.

19516 ASYNCHRONOUS EVENTS
19517 Default.

19518 STDOUT
19519 Not used.

19520 STDERR
19521 Used only for diagnostic messages.

19522 OUTPUT FILES
19523 None.

19524 EXTENDED DESCRIPTION
19525 None.

19526 EXIT STATUS
19527 The following exit values shall be returned:

19528 0 Successful completion.

19529 >0 An error occurred.

19530 CONSEQUENCES OF ERRORS
19531 Default.

19532 APPLICATION USAGE
19533 None.

19534 EXAMPLES
19535 None.

19536 RATIONALE
19537 None.

19538 FUTURE DIRECTIONS
19539 None.

19540 SEE ALSO
19541 ipcs , the System Interfaces volume of IEEE Std. 1003.1-200x, msgctl(), semctl(), shmctl()

19542 CHANGE HISTORY
19543 First released in Issue 5.

2722 Technical Standard (2000) (Draft July 31, 2000)

Utilities ipcs

19544 NAME
19545 ipcs — report XSI interprocess communication facilities status

19546 SYNOPSIS
19547 XSI ipcs [−qms][−a | −bcopt]
19548

19549 DESCRIPTION
19550 The ipcs utility shall write information about active interprocess communication facilities.

19551 Without options, information shall be written in short format for message queues, shared
19552 memory segments, and semaphores sets that are currently active in the system. Otherwise, the
19553 information that is displayed is controlled by the options specified.

19554 OPTIONS
19555 The ipcs facility supports the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
19556 Utility Syntax Guidelines. |

19557 The ipcs utility accepts the following options:

19558 −q Write information about active message queues.

19559 −m Write information about active shared memory segments.

19560 −s Write information about active semaphores sets.

19561 If −q, −m, or −s are specified, only information about those facilities shall be written. If none of
19562 these three are specified, information about all three shall be written subject to the following
19563 options:

19564 −a Use all print options. (This is a shorthand notation for −b, −c, −o, −p, and −t.)

19565 −b Write information on maximum allowable size. (Maximum number of bytes in
19566 messages on queue for message queues, size of segments for shared memory, and
19567 number of semaphores in each set for semaphores.)

19568 −c Write creator’s user name and group name; see below.

19569 −o Write information on outstanding usage. (Number of messages on queue and total
19570 number of bytes in messages on queue for message queues, and number of
19571 processes attached to shared memory segments.)

19572 −p Write process number information. (Process ID of last process to send a message
19573 and process ID of last process to receive a message on message queues, process ID
19574 of creating process, and process ID of last process to attach or detach on shared
19575 memory segments.)

19576 −t Write time information. (Time of the last control operation that changed the access
19577 permissions for all facilities, time of last msgsnd() and msgrcv() operations on
19578 message queues, time of last shmat() and shmdt() operations on shared memory,
19579 and time of last semop() operation on semaphores.)

19580 OPERANDS
19581 None.

19582 STDIN
19583 Not used.

Shell and Utilities, Issue 6 2723

ipcs Utilities

19584 INPUT FILES

19585 • The group database

19586 • The user database

19587 ENVIRONMENT VARIABLES
19588 The following environment variables shall affect the execution of ipcs:

19589 LANG Provide a default value for the internationalization variables that are unset or null.
19590 If LANG is unset or null, the corresponding value from the implementation- |
19591 defined default locale shall be used. If any of the internationalization variables |
19592 contain an invalid setting, the utility behaves as if none of the variables had been
19593 set.

19594 LC_ALL If set to a non-empty string value, override the values of all the other
19595 internationalization variables.

19596 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
19597 characters (for example, single-byte as opposed to multi-byte characters in
19598 arguments).

19599 LC_MESSAGES
19600 Determine the locale that should be used to affect the format and contents of
19601 diagnostic messages written to standard error.

19602 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

19603 TZ Determine the timezone for the time strings written by ipcs.

19604 ASYNCHRONOUS EVENTS
19605 Default.

19606 STDOUT
19607 An introductory line shall be written with the format:

19608 "IPC status from %s as of %s\n", < source >, < date >

19609 where <source> indicates the source used to gather the statistics and <date> is the information
19610 that would be produced by the date command when invoked in the POSIX locale.

19611 The ipcs utility then shall create up to three reports depending upon the −q, −m, and −s options.
19612 The first report shall indicate the status of message queues, the second report shall indicate the
19613 status of shared memory segments, and the third report shall indicate the status of semaphore
19614 sets.

19615 If the corresponding facility is not installed or has not been used since the last reboot, then the
19616 report shall be written out in the format:

19617 "%s facility not in system.\n", < facility >

19618 where <facility> is Message Queue, Shared Memory, or Semaphore, as appropriate. If the facility has
19619 been installed and has been used since the last reboot, column headings separated by one or
19620 more spaces and followed by a <newline> shall be written as indicated below followed by the
19621 facility name written out using the format:

19622 "%s:\n", < facility >

19623 where <facility> is Message Queues, Shared Memory, or Semaphores, as appropriate. On the second
19624 and third reports the column headings need not be written if the last column headings written
19625 already provide column headings for all information in that report.

2724 Technical Standard (2000) (Draft July 31, 2000)

Utilities ipcs

19626 The column headings provided in the first column below and the meaning of the information in
19627 those columns shall be given in order below; the letters in parentheses indicate the options that
19628 shall cause the corresponding column to appear; ‘‘all’’ means that the column shall always
19629 appear. Each column is separated by one or more <space> characters. Note that these options
19630 only determine what information is provided for each report; they do not determine which
19631 reports are written.

19632 T (all) Type of facility:

19633 q Message queue.

19634 m Shared memory segment.

19635 s Semaphore.

19636 This field is a single character written using the format %c.

19637 ID (all) The identifier for the facility entry. This field shall be written using the format
19638 %d.

19639 KEY (all) The key used as an argument to msgget(), semget(), or shmget() to create the
19640 facility entry.

19641 Note: The key of a shared memory segment is changed to IPC_PRIVATE
19642 when the segment has been removed until all processes attached
19643 to the segment detach it.

19644 This field shall be written using the format 0x%x.

19645 MODE (all) The facility access modes and flags. The mode shall consist of 11 characters
19646 that are interpreted as follows.

19647 The first character shall be:

19648 S If a process is waiting on a msgsnd() operation.

19649 − If the above is not true.

19650 The second character shall be:

19651 R If a process is waiting on a msgrcv() operation.

19652 C or − If the associated shared memory segment is to be cleared when the
19653 first attach operation is executed.

19654 − If none of the above is true.

19655 The next nine characters shall be interpreted as three sets of three bits each.
19656 The first set refers to the owner’s permissions; the next to permissions of
19657 others in the usergroup of the facility entry; and the last to all others. Within
19658 each set, the first character indicates permission to read, the second character
19659 indicates permission to write or alter the facility entry, and the last character is
19660 a minus sign (’ −’).

19661 The permissions shall be indicated as follows:

19662 r If read permission is granted.

19663 w If write permission is granted.

19664 a If alter permission is granted.

19665 − If the indicated permission is not granted.

Shell and Utilities, Issue 6 2725

ipcs Utilities

19666 The first character following the permissions specifies if there is an alternate
19667 or additional access control method associated with the facility. If there is no
19668 alternate or additional access control method associated with the facility, a
19669 single <space> character shall be written; otherwise, another printable
19670 character is written.

19671 OWNER (all) The user name of the owner of the facility entry. If the user name of the owner
19672 is found in the user database, at least the first eight column positions of the
19673 name shall be written using the format %s. Otherwise, the user ID of the
19674 owner shall be written using the format %d.

19675 GROUP (all) The group name of the owner of the facility entry. If the group name of the
19676 owner is found in the group database, at least the first eight column positions
19677 of the name shall be written using the format %s. Otherwise, the group ID of
19678 the owner shall be written using the format %d.

19679 The following nine columns shall be only written out for message queues:

19680 CREATOR (a,c) The user name of the creator of the facility entry. If the user name of the
19681 creator is found in the user database, at least the first eight column positions
19682 of the name shall be written using the format %s. Otherwise, the user ID of
19683 the creator shall be written using the format %d.

19684 CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
19685 creator is found in the group database, at least the first eight column positions
19686 of the name shall be written using the format %s. Otherwise, the group ID of
19687 the creator shall be written using the format %d.

19688 CBYTES (a,o) The number of bytes in messages currently outstanding on the associated
19689 message queue. This field shall be written using the format %d.

19690 QNUM (a,o) The number of messages currently outstanding on the associated message
19691 queue. This field shall be written using the format %d.

19692 QBYTES (a,b) The maximum number of bytes allowed in messages outstanding on the
19693 associated message queue. This field shall be written using the format %d.

19694 LSPID (a,p) The process ID of the last process to send a message to the associated queue.
19695 This field shall be written using the format:

19696 "%d", < pid >

19697 where <pid> is 0 if no message has been sent to the corresponding message
19698 queue; otherwise, <pid> shall be the process ID of the last process to send a
19699 message to the queue.

19700 LRPID (a,p) The process ID of the last process to receive a message from the associated
19701 queue. This field shall be written using the format:

19702 "%d", < pid >

19703 where <pid> is 0 if no message has been received from the corresponding
19704 message queue; otherwise, <pid> shall be the process ID of the last process to
19705 receive a message from the queue.

19706 STIME (a,t) The time the last message was sent to the associated queue. If a message has
19707 been sent to the corresponding message queue, the hour, minute, and second
19708 of the last time a message was sent to the queue shall be written using the
19709 format %d:%2.2d:%2.2d. Otherwise, the format " no-entry" shall be written.

2726 Technical Standard (2000) (Draft July 31, 2000)

Utilities ipcs

19710 RTIME (a,t) The time the last message was received from the associated queue. If a
19711 message has been received from the corresponding message queue, the hour,
19712 minute, and second of the last time a message was received from the queue
19713 shall be written using the format %d:%2.2d:%2.2d. Otherwise, the format
19714 " no-entry" shall be written.

19715 The following eight columns shall be only written out for shared memory segments.

19716 CREATOR (a,c) The user of the creator of the facility entry. If the user name of the creator is
19717 found in the user database, at least the first eight column positions of the
19718 name shall be written using the format %s. Otherwise, the user ID of the
19719 creator shall be written using the format %d.

19720 CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
19721 creator is found in the group database, at least the first eight column positions
19722 of the name shall be written using the format %s. Otherwise, the group ID of
19723 the creator shall be written using the format %d.

19724 NATTCH (a,o) The number of processes attached to the associated shared memory segment.
19725 This field shall be written using the format %d.

19726 SEGSZ (a,b) The size of the associated shared memory segment. This field shall be written
19727 using the format %d.

19728 CPID (a,p) The process ID of the creator of the shared memory entry. This field shall be
19729 written using the format %d.

19730 LPID (a,p) The process ID of the last process to attach or detach the shared memory
19731 segment. This field shall be written using the format:

19732 "%d", < pid >

19733 where <pid> is 0 if no process has attached the corresponding shared memory
19734 segment; otherwise, <pid> shall be the process ID of the last process to attach
19735 or detach the segment.

19736 ATIME (a,t) The time the last attach on the associated shared memory segment was
19737 completed. If the corresponding shared memory segment has ever been
19738 attached, the hour, minute, and second of the last time the segment was
19739 attached shall be written using the format %d:%2.2d:%2.2d. Otherwise, the
19740 format " no-entry" shall be written.

19741 DTIME (a,t) The time the last detach on the associated shared memory segment was
19742 completed. If the corresponding shared memory segment has ever been
19743 detached, the hour, minute, and second of the last time the segment was
19744 detached shall be written using the format %d:%2.2d:%2.2d. Otherwise, the
19745 format " no-entry" shall be written.

19746 The following four columns shall be only written out for semaphore sets:

19747 CREATOR (a,c) The user of the creator of the facility entry. If the user name of the creator is
19748 found in the user database, at least the first eight column positions of the
19749 name shall be written using the format %s . Otherwise, the user ID of the
19750 creator shall be written using the format %d.

19751 CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
19752 creator is found in the group database, at least the first eight column positions
19753 of the name shall be written using the format %s. Otherwise, the group ID of
19754 the creator shall be written using the format %d.

Shell and Utilities, Issue 6 2727

ipcs Utilities

19755 NSEMS (a,b) The number of semaphores in the set associated with the semaphore entry.
19756 This field shall be written using the format %d.

19757 OTIME (a,t) The time the last semaphore operation on the set associated with the
19758 semaphore entry was completed. If a semaphore operation has ever been
19759 performed on the corresponding semaphore set, the hour, minute, and second
19760 of the last semaphore operation on the semaphore set shall be written using
19761 the format %d:%2.2d:%2.2d. Otherwise, the format " no-entry" shall be
19762 written.

19763 The following column shall be written for all three reports when it is requested:

19764 CTIME (a,t) The time the associated entry was created or changed. The hour, minute, and
19765 second of the time when the associated entry was created shall be written
19766 using the format %d:%2.2d:%2.2d.

19767 STDERR
19768 Used only for diagnostic messages.

19769 OUTPUT FILES
19770 None.

19771 EXTENDED DESCRIPTION
19772 None.

19773 EXIT STATUS
19774 The following exit values shall be returned:

19775 0 Successful completion.

19776 >0 An error occurred.

19777 CONSEQUENCES OF ERRORS
19778 Default.

19779 APPLICATION USAGE
19780 Things can change while ipcs is running; the information it gives is guaranteed to be accurate
19781 only when it was retrieved.

19782 EXAMPLES
19783 None.

19784 RATIONALE
19785 None.

19786 FUTURE DIRECTIONS
19787 None.

19788 SEE ALSO
19789 The System Interfaces volume of IEEE Std. 1003.1-200x, msgop(), msgrcv(), msgsnd(), semget(),
19790 semop(), shmat(), shmdt(), shmget(), shmop()

19791 CHANGE HISTORY
19792 First released in Issue 5.

19793 Issue 6
19794 The Open Group corrigenda item U020/1 has been applied, correcting the SYNOPSIS.

19795 The Open Group corrigenda items U032/1 and U032/2 have been applied, clarifying the output
19796 format.

2728 Technical Standard (2000) (Draft July 31, 2000)

Utilities ipcs

19797 The Open Group Base Resolution bwg98-004 is applied.

Shell and Utilities, Issue 6 2729

jobs Utilities

19798 NAME
19799 jobs — display status of jobs in the current session

19800 SYNOPSIS
19801 UP jobs [−l| −p][job_id ...]
19802

19803 DESCRIPTION
19804 The jobs utility shall display the status of jobs that were started in the current shell environment;
19805 see Section 2.13 (on page 2273).

19806 When jobs reports the termination status of a job, the shell shall remove its process ID from the
19807 list of those ‘‘known in the current shell execution environment’’; see Section 2.9.3.1 (on page
19808 2259).

19809 OPTIONS
19810 The jobs utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
19811 12.2, Utility Syntax Guidelines. |

19812 The following options shall be supported:

19813 −l (The letter ell.) Provide more information about each job listed. This information
19814 shall include the job number, current job, process group ID, state, and the
19815 command that formed the job.

19816 −p Display only the process IDs for the process group leaders of the selected jobs.

19817 By default, the jobs utility shall display the status of all stopped jobs, running background jobs
19818 and all jobs whose status has changed and have not been reported by the shell.

19819 OPERANDS
19820 The following operand shall be supported:

19821 job_id Specifies the jobs for which the status is to be displayed. If no job_id is given, the
19822 status information for all jobs shall be displayed. The format of job_id is described |
19823 in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.205, Job Control |
19824 Job ID. |

19825 STDIN
19826 Not used.

19827 INPUT FILES
19828 None.

19829 ENVIRONMENT VARIABLES
19830 The following environment variables shall affect the execution of jobs:

19831 LANG Provide a default value for the internationalization variables that are unset or null.
19832 If LANG is unset or null, the corresponding value from the implementation- |
19833 defined default locale shall be used. If any of the internationalization variables |
19834 contains an invalid setting, the utility shall behave as if none of the variables had
19835 been defined.

19836 LC_ALL If set to a non-empty string value, override the values of all the other
19837 internationalization variables.

19838 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
19839 characters (for example, single-byte as opposed to multi-byte characters in
19840 arguments).

2730 Technical Standard (2000) (Draft July 31, 2000)

Utilities jobs

19841 LC_MESSAGES
19842 Determine the locale that should be used to affect the format and contents of
19843 diagnostic messages written to standard error and informative messages written to
19844 standard output.

19845 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

19846 ASYNCHRONOUS EVENTS
19847 Default.

19848 STDOUT
19849 If the −p option is specified, the output shall consist of one line for each process ID:

19850 "%d\n", < process ID >

19851 Otherwise, if the −l option is not specified, the output shall be a series of lines of the form:

19852 "[%d] %c %s %s\n", < job-number >, < current >, < state >, < command>

19853 where the fields shall be as follows:

19854 <current> The character ’+’ identifies the job that would be used as a default for the fg or bg
19855 utilities; this job can also be specified using the job_id %+ or "%%". The character |
19856 ’ −’ identifies the job that would become the default if the current default job were
19857 to exit; this job can also be specified using the job_id %−. For other jobs, this field is |
19858 a <space> character. At most one job can be identified with ’+’ and at most one |
19859 job can be identified with ’ −’ . If there is any suspended job, then the current job
19860 shall be a suspended job. If there are at least two suspended jobs, then the previous
19861 job also shall be a suspended job.

19862 <job-number> A number that can be used to identify the process group to the wait, fg, bg, and kill
19863 utilities. Using these utilities, the job can be identified by prefixing the job number
19864 with ’%’ .

19865 <state> One of the following strings (in the POSIX locale):

19866 Running Indicates that the job has not been suspended by a signal and has not
19867 exited.

19868 Done Indicates that the job completed and returned exit status zero.

19869 Done(code) Indicates that the job completed normally and that it exited with the
19870 specified non-zero exit status, code , expressed as a decimal number.

19871 Stopped Indicates that the job was suspended by the SIGTSTP signal.

19872 Stopped (SIGTSTP)
19873 Indicates that the job was suspended by the SIGTSTP signal.

19874 Stopped (SIGSTOP)
19875 Indicates that the job was suspended by the SIGSTOP signal.

19876 Stopped (SIGTTIN)
19877 Indicates that the job was suspended by the SIGTTIN signal.

19878 Stopped (SIGTTOU)
19879 Indicates that the job was suspended by the SIGTTOU signal.

19880 The implementation may substitute the string Suspended in place of Stopped. If
19881 the job was terminated by a signal, the format of <state> is unspecified, but it shall
19882 be visibly distinct from all of the other <state> formats shown here and shall
19883 indicate the name or description of the signal causing the termination.

Shell and Utilities, Issue 6 2731

jobs Utilities

19884 <command> The associated command that was given to the shell.

19885 If the −l option is specified, a field containing the process group ID shall be inserted before the
19886 <state> field. Also, more processes in a process group may be output on separate lines, using
19887 only the process ID and <command> fields.

19888 STDERR
19889 Used only for diagnostic messages.

19890 OUTPUT FILES
19891 None.

19892 EXTENDED DESCRIPTION
19893 None.

19894 EXIT STATUS
19895 The following exit values shall be returned:

19896 0 Successful completion.

19897 >0 An error occurred.

19898 CONSEQUENCES OF ERRORS
19899 Default.

19900 APPLICATION USAGE
19901 The −p option is the only portable way to find out the process group of a job because different
19902 implementations have different strategies for defining the process group of the job. Usage such
19903 as $(jobs −p) provides a way of referring to the process group of the job in an implementation-
19904 independent way.

19905 The jobs utility does not work as expected when it is operating in its own utility execution
19906 environment because that environment has no applicable jobs to manipulate. See the
19907 APPLICATION USAGE section for bg (on page 2422). For this reason, jobs is generally
19908 implemented as a shell regular built-in. |

19909 EXAMPLES
19910 None.

19911 RATIONALE
19912 Both "%%" and "%+" are used to refer to the current job. Both forms are of equal validity—the
19913 "%%" mirroring "$$" and "%+" mirroring the output of jobs. Both forms reflect historical
19914 practice of the KornShell and the C shell with job control.

19915 The job control features provided by bg, fg, and jobs are based on the KornShell. The standard |
19916 developers examined the characteristics of the C shell versions of these utilities and found that |
19917 differences exist. Despite widespread use of the C shell, the KornShell versions were selected for
19918 this volume of IEEE Std. 1003.1-200x to maintain a degree of uniformity with the rest of the
19919 KornShell features selected (such as the very popular command line editing features).

19920 The jobs utility is not dependent on the job control option, as are the seemingly related bg and fg
19921 utilities because jobs is useful for examining background jobs, regardless of the condition of job
19922 control. When the user has invoked a set +m command and job control has been turned off, jobs
19923 can still be used to examine the background jobs associated with that current session. Similarly,
19924 kill can then be used to kill background jobs with kill% <background job number>.

19925 The output for terminated jobs is left unspecified to accommodate various historical systems.
19926 The following formats have been witnessed:

2732 Technical Standard (2000) (Draft July 31, 2000)

Utilities jobs

19927 1. Killed(signal name)

19928 2. signal name

19929 3. signal name(coredump)

19930 4. signal description− core dumped

19931 Most users should be able to understand these formats, although it means that applications have
19932 trouble parsing them.

19933 The calculation of job IDs was not described since this would suggest an implementation, which
19934 may impose unnecessary restrictions.

19935 In an early proposal, a −n option was included to ‘‘Display the status of jobs that have changed,
19936 exited, or stopped since the last status report’’. It was removed because the shell always writes
19937 any changed status of jobs before each prompt.

19938 FUTURE DIRECTIONS
19939 None.

19940 SEE ALSO
19941 bg, fg , kill , wait

19942 CHANGE HISTORY
19943 First released in Issue 4.

19944 Issue 6
19945 This utility is now marked as part of the User Portability Utilities option.

19946 The JC shading is removed as job control is mandatory in this issue.

Shell and Utilities, Issue 6 2733

join Utilities

19947 NAME
19948 join — relational database operator

19949 SYNOPSIS
19950 join [−a file_number | −v file_number][−e string][−o list][−t char]
19951 [−1 field][−2 field] file1 file2

19952 DESCRIPTION
19953 The join utility shall perform an equality join on the files file1 and file2 . The joined files shall be
19954 written to the standard output.

19955 The join field is a field in each file on which the files are compared. By default, join shall write
19956 one line in the output for each pair of lines in file1 and file2 that have identical join fields. The
19957 output line by default shall consist of the join field, then the remaining fields from file1 , then the
19958 remaining fields from file2 . This format can be changed by using the −o option (see below). The
19959 −a option can be used to add unmatched lines to the output. The −v option can be used to output
19960 only unmatched lines.

19961 Notes to Reviewers
19962 This section with side shading will not appear in the final copy. - Ed.

19963 D1, XCU, ERN 265 proposes to add the following text here: "If the same key appears more than
19964 once in either file, all possible pairwise combinations are output, in unspecified order".

19965 By default, the files file1 and file2 should be ordered in the collating sequence of sort −b on the
19966 fields on which they shall be joined, by default the first in each line. All selected output shall be
19967 written in the same collating sequence.

19968 The default input field separators shall be <blank> characters. In this case, multiple separators
19969 shall count as one field separator, and leading separators shall be ignored. The default output
19970 field separator shall be a <space> character.

19971 The field separator and collating sequence can be changed by using the −t option (see below).

19972 If the input files are not in the appropriate collating sequence, the results are unspecified.

19973 OPTIONS
19974 The join utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
19975 12.2, Utility Syntax Guidelines. |

19976 The following options shall be supported:

19977 −a file_number
19978 Produce a line for each unpairable line in file file_number, where file_number is 1 or
19979 2, in addition to the default output. If both −a1 and −a2 are specified, all unpairable
19980 lines shall be output.

19981 −e string Replace empty output fields in the list selected by −o with the string string.

19982 −o list Construct the output line to comprise the fields specified in list , each element of
19983 which shall have one of the following two forms:

19984 1. file_number.field, where file_number is a file number and field is a decimal
19985 integer field number

19986 2. 0 (zero), representing the join field

19987 The elements of list shall be either comma-separated or <blank>-separated, as |
19988 specified in Guideline 8 of the Base Definitions volume of IEEE Std. 1003.1-200x, |
19989 Section 12.2, Utility Syntax Guidelines. The fields specified by list shall be written |

2734 Technical Standard (2000) (Draft July 31, 2000)

Utilities join

19990 for all selected output lines. Fields selected by list that do not appear in the input
19991 shall be treated as empty output fields. (See the −e option.) Only specifically
19992 requested fields shall be written. The application shall ensure that list is a single
19993 command line argument.

19994 −t char Use character char as a separator, for both input and output. Every appearance of
19995 char in a line shall be significant. When this option is specified, the collating
19996 sequence should be the same as sort without the −b option.

19997 −v file_number
19998 Instead of the default output, produce a line only for each unpairable line in
19999 file_number, where file_number is 1 or 2. If both −v1 and −v2 are specified, all
20000 unpairable lines shall be output.

20001 −1 field Join on the field th field of file 1. Fields are decimal integers starting with 1.

20002 −2 field Join on the field th field of file 2. Fields are decimal integers starting with 1.

20003 OPERANDS
20004 The following operands shall be supported:

20005 file1, file2
20006 A path name of a file to be joined. If either of the file1 or file2 operands is ’ −’ , the
20007 standard input shall be used in its place.

20008 STDIN
20009 The standard input shall be used only if the file1 or file2 operand is ’ −’ . See the INPUT FILES
20010 section.

20011 INPUT FILES
20012 The input files shall be text files.

20013 ENVIRONMENT VARIABLES
20014 The following environment variables shall affect the execution of join:

20015 LANG Provide a default value for the internationalization variables that are unset or null.
20016 If LANG is unset or null, the corresponding value from the implementation- |
20017 defined default locale shall be used. If any of the internationalization variables |
20018 contains an invalid setting, the utility shall behave as if none of the variables had
20019 been defined.

20020 LC_ALL If set to a non-empty string value, override the values of all the other
20021 internationalization variables.

20022 LC_COLLATE
20023 Determine the locale of the collating sequence join expects to have been used when
20024 the input files were sorted.

20025 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
20026 characters (for example, single-byte as opposed to multi-byte characters in
20027 arguments and input files).

20028 LC_MESSAGES
20029 Determine the locale that should be used to affect the format and contents of
20030 diagnostic messages written to standard error.

20031 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Shell and Utilities, Issue 6 2735

join Utilities

20032 ASYNCHRONOUS EVENTS
20033 Default.

20034 STDOUT
20035 The join utility output shall be a concatenation of selected character fields. When the −o option
20036 is not specified, the output shall be:

20037 "%s%s%s\n", < join field >, < other file1 fields >,
20038 <other file2 fields >

20039 If the join field is not the first field in a file, the <other file fields> for that file shall be:

20040 <fields preceding join field >, < fields following join field >

20041 When the −o option is specified, the output format shall be:

20042 "%s\n", < concatenation of fields >

20043 where the concatenation of fields is described by the −o option, above.

20044 For either format, each field (except the last) shall be written with its trailing separator character.
20045 If the separator is the default (<blank> characters), a single <space> character shall be written
20046 after each field (except the last).

20047 STDERR
20048 Used only for diagnostic messages.

20049 OUTPUT FILES
20050 None.

20051 EXTENDED DESCRIPTION
20052 None.

20053 EXIT STATUS
20054 The following exit values shall be returned:

20055 0 All input files were output successfully.

20056 >0 An error occurred.

20057 CONSEQUENCES OF ERRORS
20058 Default.

20059 APPLICATION USAGE
20060 Path names consisting of numeric digits or of the form string.string should not be specified
20061 directly following the −o list.

20062 EXAMPLES
20063 The −o 0 field essentially selects the union of the join fields. For example, given file phone:

20064 !Name Phone Number
20065 Don +1 123-456-7890
20066 Hal +1 234-567-8901
20067 Yasushi +2 345-678-9012

20068 and file fax:

20069 !Name Fax Number
20070 Don +1 123-456-7899
20071 Keith +1 456-789-0122
20072 Yasushi +2 345-678-9011

2736 Technical Standard (2000) (Draft July 31, 2000)

Utilities join

20073 (where the large expanses of white space are meant to each represent a single <tab> character),
20074 the command:

20075 join −t "<tab>" −a 1 −a 2 −e ’(unknown)’ −o 0,1.2,2.2 phone fax

20076 would produce:

20077 !Name Phone Number Fax Number
20078 Don +1 123-456-7890 +1 123-456-7899
20079 Hal +1 234-567-8901 (unknown)
20080 Keith (unknown) +1 456-789-0122
20081 Yasushi +2 345-678-9012 +2 345-678-9011

20082 Notes to Reviewers
20083 This section with side shading will not appear in the final copy. - Ed.

20084 D1, XCU, ERN 265 proposes to add the following example.

20085 The following:

20086 fa:
20087 a x
20088 a y
20089 a z
20090 fb:
20091 a p
20092 a q

20093 would produce:

20094 a x p
20095 a x q
20096 a y p
20097 a y q
20098 a z p
20099 a z q

20100 RATIONALE
20101 The −e option is only effective when used with −o because, unless specific fields are identified |
20102 using −o, join is not aware of what fields might be empty. The exception to this is the join field,
20103 but identifying an empty join field with the −e string is not historical practice and some scripts
20104 might break if this were changed.

20105 The 0 field in the −o list was adopted from the Tenth Edition version of join to satisfy
20106 international objections that the join in the base documents do not support the ‘‘full join’’ or
20107 ‘‘outer join’’ described in relational database literature. Although it has been possible to include
20108 a join field in the output (by default, or by field number using −o), the join field could not be
20109 included for an unpaired line selected by −a. The −o 0 field essentially selects the union of the
20110 join fields.

20111 This sort of outer join was not possible with the join commands in the base documents. The −o 0
20112 field was chosen because it is an upward-compatible change for applications. An alternative was
20113 considered: have the join field represent the union of the fields in the files (where they are
20114 identical for matched lines, and one or both are null for unmatched lines). This was not adopted
20115 because it would break some historical applications.

20116 The ability to specify file2 as − is not historical practice; it was added for completeness. |

Shell and Utilities, Issue 6 2737

join Utilities

20117 The −v option is not historical practice, but was considered necessary because it permitted the
20118 writing of only those lines that do not match on the join field, as opposed to the −a option, which
20119 prints both lines that do and do not match. This additional facility is parallel with the −v option
20120 of grep.

20121 Some historical implementations have been encountered where a blank line in one of the input
20122 files was considered to be the end of the file; the description in this volume of
20123 IEEE Std. 1003.1-200x does not cite this as an allowable case.

20124 FUTURE DIRECTIONS
20125 None.

20126 SEE ALSO
20127 awk , comm, sort , uniq

20128 CHANGE HISTORY
20129 First released in Issue 2.

20130 Issue 4
20131 Aligned with the ISO/IEC 9945-2: 1993 standard.

20132 Issue 6
20133 The obsolescent −j options and the multi-argument −o option are withdrawn in this issue.

20134 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2738 Technical Standard (2000) (Draft July 31, 2000)

Utilities kill

20135 NAME
20136 kill — terminate or signal processes

20137 SYNOPSIS
20138 kill −s signal_name pid ...

20139 kill −l [exit_status]

20140 DESCRIPTION
20141 The kill utility shall send a signal to the process or processes specified by each pid operand.

20142 For each pid operand, the kill utility shall perform actions equivalent to the kill () function
20143 defined in the System Interfaces volume of IEEE Std. 1003.1-200x called with the following
20144 arguments:

20145 • The value of the pid operand shall be used as the pid argument.

20146 • The sig argument is the value specified by the −s option, −signal_number option, or the
20147 −signal_name option, or by SIGTERM, if none of these options is specified.

20148 OPTIONS
20149 The kill utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
20150 12.2, Utility Syntax Guidelines. |

20151 The following options shall be supported:

20152 −l (The letter ell.) Write all values of signal_name supported by the implementation, if
20153 no operand is given. If an exit_status operand is given and it is a value of the ’?’
20154 shell special parameter (see Section 2.5.2 (on page 2241) and wait (on page 3254))
20155 corresponding to a process that was terminated by a signal, the signal_name
20156 corresponding to the signal that terminated the process shall be written. If an
20157 exit_status operand is given and it is the unsigned decimal integer value of a signal
20158 number, the signal_name (the symbolic constant name without the SIG prefix |
20159 defined in the Base Definitions volume of IEEE Std. 1003.1-200x) corresponding to |
20160 that signal shall be written. Otherwise, the results are unspecified. |

20161 −s signal_name
20162 Specify the signal to send, using one of the symbolic names defined in the
20163 <signal.h> header defined in the Base Definitions volume of IEEE Std. 1003.1-200x, |
20164 Chapter 13, Headers. Values of signal_name shall be recognized in a case- |
20165 independent fashion, without the SIG prefix. In addition, the symbolic name 0
20166 shall be recognized, representing the signal value zero. The corresponding signal
20167 shall be sent instead of SIGTERM.

20168 OPERANDS
20169 The following operands shall be supported:

20170 pid One of the following:

20171 1. A decimal integer specifying a process or process group to be signaled. The
20172 process or processes selected by positive, negative and zero values of the pid
20173 operand shall be as described for the kill () function defined in the System
20174 Interfaces volume of IEEE Std. 1003.1-200x. If process number 0 is specified,
20175 all processes in the current process group are signaled. For the effects of
20176 negative pid numbers, see the kill () function defined in the System Interfaces
20177 volume of IEEE Std. 1003.1-200x. If the first pid operand is negative, it should
20178 be preceded by " −−" to keep it from being interpreted as an option.

Shell and Utilities, Issue 6 2739

kill Utilities

20179 2. A job control job ID (see the Base Definitions volume of |
20180 IEEE Std. 1003.1-200x, Section 3.205, Job Control Job ID) that identifies a |
20181 background process group to be signaled. The job control job ID notation is |
20182 applicable only for invocations of kill in the current shell execution
20183 environment; see Section 2.13 (on page 2273).

20184 exit_status A decimal integer specifying a signal number or the exit status of a process
20185 terminated by a signal.

20186 STDIN
20187 Not used.

20188 INPUT FILES
20189 None.

20190 ENVIRONMENT VARIABLES
20191 The following environment variables shall affect the execution of kill:

20192 LANG Provide a default value for the internationalization variables that are unset or null.
20193 If LANG is unset or null, the corresponding value from the implementation- |
20194 defined default locale shall be used. If any of the internationalization variables |
20195 contains an invalid setting, the utility shall behave as if none of the variables had
20196 been defined.

20197 LC_ALL If set to a non-empty string value, override the values of all the other
20198 internationalization variables.

20199 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
20200 characters (for example, single-byte as opposed to multi-byte characters in
20201 arguments).

20202 LC_MESSAGES
20203 Determine the locale that should be used to affect the format and contents of
20204 diagnostic messages written to standard error.

20205 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

20206 ASYNCHRONOUS EVENTS
20207 Default.

20208 STDOUT
20209 When the −l option is not specified, the standard output shall not be used.

20210 When the −l option is specified, the symbolic name of each signal shall be written in the
20211 following format:

20212 "%s%c", < signal_name >, < separator >

20213 where the <signal_name> is in uppercase, without the SIG prefix, and the <separator> shall be
20214 either a <newline> character or a <space> character. For the last signal written, <separator> shall
20215 be a <newline> character.

20216 When both the −l option and exit_status operand are specified, the symbolic name of the
20217 corresponding signal shall be written in the following format:

20218 "%s\n", < signal_name >

2740 Technical Standard (2000) (Draft July 31, 2000)

Utilities kill

20219 STDERR
20220 Used only for diagnostic messages.

20221 OUTPUT FILES
20222 None.

20223 EXTENDED DESCRIPTION
20224 None.

20225 EXIT STATUS
20226 The following exit values shall be returned:

20227 0 At least one matching process was found for each pid operand, and the specified signal was
20228 successfully processed for at least one matching process.

20229 >0 An error occurred.

20230 CONSEQUENCES OF ERRORS
20231 Default.

20232 APPLICATION USAGE
20233 Process numbers can be found by using ps.

20234 The job control job ID notation is not required to work as expected when kill is operating in its
20235 own utility execution environment. In either of the following examples:

20236 nohup kill %1 &
20237 system("kill %1");

20238 the kill operates in a different environment and does not share the shell’s understanding of job
20239 numbers.

20240 EXAMPLES
20241 Any of the commands:

20242 kill −s kill 100 −165
20243 kill −s KILL 100 −165

20244 sends the SIGKILL signal to the process whose process ID is 100 and to all processes whose
20245 process group ID is 165, assuming the sending process has permission to send that signal to the
20246 specified processes, and that they exist.

20247 The System Interfaces volume of IEEE Std. 1003.1-200x and this volume of IEEE Std. 1003.1-200x
20248 do not require specific signal numbers for any signal_names . Even the −signal_number option
20249 provides symbolic (although numeric) names for signals. If a process is terminated by a signal,
20250 its exit status indicates the signal that killed it, but the exact values are not specified. The kill −l
20251 option, however, can be used to map decimal signal numbers and exit status values into the
20252 name of a signal. The following example reports the status of a terminated job:

20253 job
20254 stat=$?
20255 if [$stat −eq 0]
20256 then
20257 echo job completed successfully.
20258 elif [$stat −gt 128]
20259 then
20260 echo job terminated by signal SIG$(kill −l $stat).
20261 else
20262 echo job terminated with error code $stat.
20263 fi

Shell and Utilities, Issue 6 2741

kill Utilities

20264 To avoid an ambiguity of an initial negative number argument specifying either a signal number
20265 or a process group, the ISO/IEC 9945-2: 1993 standard mandates that it always be considered the
20266 former. Therefore, to send the default signal to a process group (say 123), an application should
20267 use a command similar to one of the following:

20268 kill −TERM −123
20269 kill −− −123

20270 RATIONALE
20271 The −l option originated from the C shell, and is also implemented in the KornShell. The C shell
20272 output can consist of multiple output lines because the signal names do not always fit on a
20273 single line on some terminal screens. The KornShell output also included the implementation- |
20274 defined signal numbers and was considered by the standard developers to be too difficult for |
20275 scripts to parse conveniently. The specified output format is intended not only to accommodate
20276 the historical C shell output, but also to permit an entirely vertical or entirely horizontal listing
20277 on systems for which this is appropriate.

20278 An early proposal invented the name SIGNULL as a signal_name for signal 0 (used by the System
20279 Interfaces volume of IEEE Std. 1003.1-200x to test for the existence of a process without sending
20280 it a signal). Since the signal_name 0 can be used in this case unambiguously, SIGNULL has been
20281 removed.

20282 An early proposal also required symbolic signal_names to be recognized with or without the SIG
20283 prefix. Historical versions of kill have not written the SIG prefix for the −l option and have not
20284 recognized the SIG prefix on signal_names. Since neither applications portability nor ease-of-use |
20285 would be improved by requiring this extension, it is no longer required. |

20286 This volume of IEEE Std. 1003.1-200x contains no utility that browses for process IDs. Values for
20287 pid are available via the ’!’ and ’$’ parameters of the shell command language.

20288 The −s option was added in response to international interest in providing some form of kill that
20289 meets the Utility Syntax Guidelines.

20290 The job control job ID notation is not required to work as expected when kill is operating in its
20291 own utility execution environment. In either of the following examples:

20292 nohup kill %1 &
20293 system("kill %1");

20294 the kill operates in a different environment and does not understand how the shell has managed
20295 its job numbers.

20296 FUTURE DIRECTIONS
20297 None.

20298 SEE ALSO
20299 ps, wait , the System Interfaces volume of IEEE Std. 1003.1-200x, kill (), <signal.h>

CHANGE20300 HISTORY
20301 First released in Issue 2.

20302 Issue 4
20303 Aligned with the ISO/IEC 9945-2: 1993 standard.

20304 Issue 6
20305 The obsolescent versions of the SYNOPSIS are withdrawn in this issue.

2742 Technical Standard (2000) (Draft July 31, 2000)

Utilities lex

20306 NAME
20307 lex — generate programs for lexical tasks (DEVELOPMENT)

20308 SYNOPSIS
20309 CD lex −c [−t][−n| −v][file ...]
20310

20311 DESCRIPTION
20312 The lex utility shall generate C programs to be used in lexical processing of character input, and
20313 that can be used as an interface to yacc. The C programs shall be generated from lex source code
20314 and conform to the ISO C standard. Usually, the lex utility shall write the program it generates to
20315 the file lex.yy.c; the state of this file is unspecified if lex exits with a non-zero exit status. See the
20316 EXTENDED DESCRIPTION section for a complete description of the lex input language.

20317 OPTIONS
20318 The lex utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
20319 12.2, Utility Syntax Guidelines. |

20320 The following options shall be supported:

20321 −n Suppress the summary of statistics usually written with the −v option. If no table
20322 sizes are specified in the lex source code and the −v option is not specified, then −n
20323 is implied.

20324 −t Write the resulting program to standard output instead of lex.yy.c.

20325 −v Write a summary of lex statistics to the standard output. (See the discussion of lex
20326 table sizes in Definitions in lex (on page 2745).) If the −t option is specified and
20327 −n is not specified, this report shall be written to standard error. If table sizes are
20328 specified in the lex source code, and if the −n option is not specified, the −v option
20329 may be enabled.

20330 OPERANDS
20331 The following operand shall be supported:

20332 file A path name of an input file. If more than one such file is specified, all files shall be
20333 concatenated to produce a single lex program. If no file operands are specified, or if
20334 a file operand is ’ −’ , the standard input shall be used.

20335 STDIN
20336 The standard input shall be used if no file operands are specified, or if a file operand is ’ −’ . See
20337 INPUT FILES.

20338 INPUT FILES
20339 The input files shall be text files containing lex source code, as described in the EXTENDED
20340 DESCRIPTION section.

20341 ENVIRONMENT VARIABLES
20342 If this variable is not set to the POSIX locale, the results are unspecified.

20343 The following environment variables shall affect the execution of lex:

20344 LANG Provide a default value for the internationalization variables that are unset or null.
20345 If LANG is unset or null, the corresponding value from the implementation- |
20346 defined default locale shall be used. If any of the internationalization variables |
20347 contains an invalid setting, the utility shall behave as if none of the variables had
20348 been defined.

20349 LC_ALL If set to a non-empty string value, override the values of all the other
20350 internationalization variables.

Shell and Utilities, Issue 6 2743

lex Utilities

20351 LC_COLLATE
20352 Determine the locale for the behavior of ranges, equivalence classes and multi-
20353 character collating elements within regular expressions. If this variable is not set to
20354 the POSIX locale, the results are unspecified.

20355 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
20356 characters (for example, single-byte as opposed to multi-byte characters in
20357 arguments and input files), and the behavior of character classes within regular
20358 expressions. If this variable is not set to the POSIX locale, the results are
20359 unspecified.

20360 LC_MESSAGES
20361 Determine the locale that should be used to affect the format and contents of
20362 diagnostic messages written to standard error.

20363 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

20364 ASYNCHRONOUS EVENTS
20365 Default.

20366 STDOUT
20367 If the −t option is specified, the text file of C source code output of lex shall be written to
20368 standard output.

20369 If the −t option is not specified:

20370 • Implementation-defined informational, error, and warning messages concerning the contents |
20371 of lex source code input shall be written to either the standard output or standard error.

20372 • If the −v option is specified and the −n option is not specified, lex statistics shall also be
20373 written to either the standard output or standard error, in an implementation-defined format. |
20374 These statistics may also be generated if table sizes are specified with a ’%’ operator in the |
20375 Definitions section, as long as the −n option is not specified.

20376 STDERR
20377 If the −t option is specified, implementation-defined informational, error, and warning messages |
20378 concerning the contents of lex source code input shall be written to the standard error.

20379 If the −t option is not specified:

20380 1. Implementation-defined informational, error, and warning messages concerning the |
20381 contents of lex source code input shall be written to either the standard output or standard
20382 error.

20383 2. If the −v option is specified and the −n option is not specified, lex statistics shall also be
20384 written to either the standard output or standard error, in an implementation-defined |
20385 format. These statistics may also be generated if table sizes are specified with a ’%’ |
20386 operator in the Definitions section, as long as the −n option is not specified.

20387 OUTPUT FILES
20388 A text file containing C source code shall be written to lex.yy.c, or to the standard output if the
20389 −t option is present.

20390 EXTENDED DESCRIPTION
20391 Each input file contains lex source code, which is a table of regular expressions with
20392 corresponding actions in the form of C program fragments.

20393 When lex.yy.c is compiled and linked with the lex library (using the −l l operand with c99 or cc), |
20394 the resulting program reads character input from the standard input and partitions it into strings
20395 that match the given expressions.

2744 Technical Standard (2000) (Draft July 31, 2000)

Utilities lex

20396 When an expression is matched, these actions shall occur:

20397 • The input string that was matched is left in yytext as a null-terminated string; yytext is either
20398 an external character array or a pointer to a character string. As explained in Definitions in
20399 lex, the type can be explicitly selected using the %array or %pointer declarations, but the |
20400 default is implementation-defined. |

20401 • The external int yyleng is set to the length of the matching string.

20402 • The expression’s corresponding program fragment, or action, is executed.

20403 During pattern matching, lex shall search the set of patterns for the single longest possible
20404 match. Among rules that match the same number of characters, the rule given first shall be
20405 chosen.

20406 The general format of lex source shall be:

20407 Definitions
20408 %%
20409 Rules
20410 %%
20411 UserSubroutines

20412 The first "%%" is required to mark the beginning of the rules (regular expressions and actions);
20413 the second "%%" is required only if user subroutines follow.

20414 Any line in the Definitions section beginning with a <blank> character shall be assumed to be a C
20415 program fragment and shall be copied to the external definition area of the lex.yy.c file.
20416 Similarly, anything in the Definitions section included between delimiter lines containing only
20417 "%{" and "%}" shall also be copied unchanged to the external definition area of the lex.yy.c file.

20418 Any such input (beginning with a <blank> character or within "%{" and "%}" delimiter lines)
20419 appearing at the beginning of the Rules section before any rules are specified shall be written to
20420 lex.yy.c after the declarations of variables for the yylex function and before the first line of code
20421 in yylex . Thus, user variables local to yylex can be declared here, as well as application code to
20422 execute upon entry to yylex .

20423 The action taken by lex when encountering any input beginning with a <blank> character or
20424 within "%{" and "%}" delimiter lines appearing in the Rules section but coming after one or
20425 more rules is undefined. The presence of such input may result in an erroneous definition of the
20426 yylex function.

20427 Definitions in lex

20428 Definitions appear before the first "%%" delimiter. Any line in this section not contained between
20429 "%{" and "%}" lines and not beginning with a <blank> character shall be assumed to define a
20430 lex substitution string. The format of these lines shall be:

20431 name substitute

20432 If a name does not meet the requirements for identifiers in the ISO C standard, the result is
20433 undefined. The string substitute shall replace the string {name} when it is used in a rule. The name
20434 string shall be recognized in this context only when the braces are provided and when it does
20435 not appear within a bracket expression or within double-quotes.

20436 In the Definitions section, any line beginning with a ’%’ (percent sign) character and followed by
20437 an alphanumeric word beginning with either ’s’ or ’S’ shall define a set of start conditions.
20438 Any line beginning with a ’%’ followed by a word beginning with either ’x’ or ’X’ shall define
20439 a set of exclusive start conditions. When the generated scanner is in a "%s" state, patterns with

Shell and Utilities, Issue 6 2745

lex Utilities

20440 no state specified shall be also active; in a "%x" state, such patterns shall not be active. The rest
20441 of the line, after the first word, shall be considered to be one or more <blank> character-
20442 separated names of start conditions. Start condition names shall be constructed in the same way
20443 as definition names. Start conditions can be used to restrict the matching of regular expressions
20444 to one or more states as described in Regular Expressions in lex (on page 2747).

20445 Implementations shall accept either of the following two mutually exclusive declarations in the
20446 Definitions section:

20447 %array Declare the type of yytext to be a null-terminated character array.

20448 %pointer Declare the type of yytext to be a pointer to a null-terminated character string.

20449 The default type of yytext is implementation-defined. If an application refers to yytext outside of |
20450 the scanner source file (that is, via an extern), the application shall include the appropriate
20451 %array or %pointer declaration in the scanner source file.

20452 Implementations shall accept declarations in the Definitions section for setting certain internal
20453 table sizes. The declarations are shown in the following table.

20454 Table 4-9 Table Size Declarations in lex
__

20455 Declaration Description Minimum Value__
20456 %p n Number of positions 2 500
20457 %n n Number of states 500
20458 %a n Number of transitions 2 000
20459 %e n Number of parse tree nodes 1 000
20460 %k n Number of packed character classes 1 000
20461 %o n Size of the output array 3 000__L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

20462 In the table, n represents a positive decimal integer, preceded by one or more <blank>
20463 characters. The exact meaning of these table size numbers is implementation-defined. The |
20464 implementation shall document how these numbers affect the lex utility and how they are |
20465 related to any output that may be generated by the implementation should space limitations be
20466 encountered during the execution of lex. It shall be possible to determine from this output which
20467 of the table size values needs to be modified to permit lex to successfully generate tables for the
20468 input language. The values in the column Minimum Value represent the lowest values
20469 conforming implementations shall provide.

20470 Rules in lex

20471 The rules in lex source files are a table in which the left column contains regular expressions and
20472 the right column contains actions (C program fragments) to be executed when the expressions
20473 are recognized.

20474 ERE action
20475 ERE action
20476 ...

20477 The extended regular expression (ERE) portion of a row shall be separated from action by one or
20478 more <blank> characters. A regular expression containing <blank> characters shall be
20479 recognized under one of the following conditions:

20480 • The entire expression appears within double-quotes.

20481 • The <blank> characters appear within double-quotes or square brackets.

2746 Technical Standard (2000) (Draft July 31, 2000)

Utilities lex

20482 • Each <blank> character is preceded by a backslash character.

20483 User Subroutines in lex

20484 Anything in the user subroutines section shall be copied to lex.yy.c following yylex .

20485 Regular Expressions in lex

20486 The lex utility shall support the set of extended regular expressions (see the Base Definitions |
20487 volume of IEEE Std. 1003.1-200x, Section 9.4, Extended Regular Expressions), with the following |
20488 additions and exceptions to the syntax: |

20489 "..." Any string enclosed in double-quotes shall represent the characters within the
20490 double-quotes as themselves, except that backslash escapes (which appear in the
20491 following table) shall be recognized. Any backslash-escape sequence shall be
20492 terminated by the closing quote. For example, "\01""1" represents a single
20493 string: the octal value 1 followed by the character ’1’ .

20494 <state>r, <state1,state2,. . .>r
20495 The regular expression r shall be matched only when the program is in one of the
20496 start conditions indicated by state , state1 , and so on; see Actions in lex (on page
20497 2749). (As an exception to the typographical conventions of the rest of this volume
20498 of IEEE Std. 1003.1-200x, in this case <state> does not represent a metavariable, but
20499 the literal angle-bracket characters surrounding a symbol.) The start condition
20500 shall be recognized as such only at the beginning of a regular expression.

20501 r/x The regular expression r shall be matched only if it is followed by an occurrence of
20502 regular expression x (x is the instance of trailing context, further defined below).
20503 The token returned in yytext shall only match r. If the trailing portion of r matches
20504 the beginning of x , the result is unspecified. The r expression cannot include
20505 further trailing context or the ’$’ (match-end-of-line) operator; x cannot include
20506 the ’ˆ’ (match-beginning-of-line) operator, nor trailing context, nor the ’$’
20507 operator. That is, only one occurrence of trailing context is allowed in a lex regular
20508 expression, and the ’ˆ’ operator only can be used at the beginning of such an
20509 expression.

20510 {name} When name is one of the substitution symbols from the Definitions section, the
20511 string, including the enclosing braces, shall be replaced by the substitute value. The
20512 substitute value shall be treated in the extended regular expression as if it were
20513 enclosed in parentheses. No substitution shall occur if {name} occurs within a
20514 bracket expression or within double-quotes.

20515 Within an ERE, a backslash character shall be considered to begin an escape sequence as |
20516 specified in the table in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, File |
20517 Format Notation (’\\’ , ’\a’ , ’\b’ , ’\f’ , ’\n’ , ’\r’ , ’\t’ , ’\v’). In addition, the escape |
20518 sequences in the following table shall be recognized.

20519 A literal <newline> character cannot occur within an ERE; the escape sequence ’\n’ can be
20520 used to represent a <newline> character. A <newline> character shall not be matched by a
20521 period operator.

Shell and Utilities, Issue 6 2747

lex Utilities

20522 Table 4-10 Escape Sequences in lex

20523 Escape
20524 Sequence Description Meaning___
20525 A backslash character followed
20526 by the longest sequence of one,
20527 two, or three octal-digit
20528 characters (01234567). If all of
20529 the digits are 0 (that is,
20530 representation of the NUL
20531 character), the behavior is
20532 undefined.

The character whose encoding is
represented by the one, two, or
three-digit octal integer. If the
size of a byte on the system is
greater than nine bits, the valid
escape sequence used to
represent a byte is
implementation-defined. Multi-

20533 byte characters require multiple,
20534 concatenated escape sequences
20535 of this type, including the
20536 leading ’\’ for each byte.

\ digits

20537 A backslash character followed
20538 by the longest sequence of
20539 hexadecimal-digit characters
20540 (01234567abcdefABCDEF). If all
20541 of the digits are 0 (that is,
20542 representation of the NUL
20543 character), the behavior is
20544 undefined.

The character whose encoding is
represented by the hexadecimal
integer.

\x digits

20545 A backslash character followed
20546 by any character not described
20547 in this table or in the table in the
20548 Base Definitions volume of
20549 IEEE Std. 1003.1-200x, Chapter
20550 5, File Format Notation (’\\’ ,
20551 ’\a’ , ’\b’ , ’\f’ , ’\n’ , ’\r’ ,
20552 ’\t’ , ’\v’).

The character ’c’ , unchanged.\c

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

20553 Notes to Reviewers |
20554 This section with side shading will not appear in the final copy. - Ed. |

20555 D3, XCU, ERN 120, re length limitation for hex, suggests adding a note: "Note: If a hexadecimal |
20556 escape sequence which is followed by a hexadecimal digit is required, either the character in hex |
20557 or the following character may be parenthesized using \(and \)." |

20558 The order of precedence given to extended regular expressions for lex differs from that specified |
20559 in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 9.4, Extended Regular |
20560 Expressions. The order of precedence for lex shall be as shown in the following table, from high |
20561 to low.

20562 Note: The escaped characters entry is not meant to imply that these are operators, but they
20563 are included in the table to show their relationships to the true operators. The start
20564 condition, trailing context, and anchoring notations have been omitted from the table
20565 because of the placement restrictions described in this section; they can only appear
20566 at the beginning or ending of an ERE.

2748 Technical Standard (2000) (Draft July 31, 2000)

Utilities lex

20567 Table 4-11 ERE Precedence in lex
__

20568 Extended Regular Expression Precedence__
20569 collation-related bracket symbols [= =] [: :] [. .]
20570 escaped characters \< special character >
20571 bracket expression []
20572 quoting "..."
20573 grouping ()
20574 definition { name}
20575 single-character RE duplication * + ?
20576 concatenation
20577 interval expression {m,n}
20578 alternation |__LL

L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

20579 The ERE anchoring operators ’ˆ’ and ’$’) do not appear in the table. With lex regular
20580 expressions, these operators are restricted in their use: the ’ˆ’ operator can only be used at the
20581 beginning of an entire regular expression, and the ’$’ operator only at the end. The operators
20582 apply to the entire regular expression. Thus, for example, the pattern "(ˆabc)|(def$)" is
20583 undefined; it can instead be written as two separate rules, one with the regular expression
20584 "ˆabc" and one with "def$" , which share a common action via the special ’|’ action (see
20585 below). If the pattern were written "ˆabc|def$" , it would match either "abc" or "def" on a
20586 line by itself.

20587 Unlike the general ERE rules, embedded anchoring is not allowed by most historical lex
20588 implementations. An example of embedded anchoring would be for patterns such as
20589 "(ˆ|)foo(|$)" to match "foo" when it exists as a complete word. This functionality can
20590 be obtained using existing lex features:

20591 ^foo/[\n] |
20592 " foo"/[\n] /* Found foo as a separate word. */

20593 Note also that ’$’ is a form of trailing context (it is equivalent to "/\n") and as such cannot be
20594 used with regular expressions containing another instance of the operator (see the preceding
20595 discussion of trailing context).

20596 The additional regular expressions trailing-context operator ’/’ can be used as an ordinary
20597 character if presented within double-quotes, "/" ; preceded by a backslash, "\/" ; or within a
20598 bracket expression, "[/]" . The start-condition ’<’ and ’>’ operators shall be special only in a
20599 start condition at the beginning of a regular expression; elsewhere in the regular expression they
20600 shall be treated as ordinary characters.

20601 Actions in lex

20602 The action to be taken when an ERE is matched can be a C program fragment or the special
20603 actions described below; the program fragment can contain one or more C statements, and can
20604 also include special actions. The empty C statement ’;’ shall be a valid action; any string in the
20605 lex.yy.c input that matches the pattern portion of such a rule is effectively ignored or skipped.
20606 However, the absence of an action shall not be valid, and the action lex takes in such a condition
20607 is undefined.

20608 The specification for an action, including C statements and special actions, can extend across
20609 several lines if enclosed in braces:

20610 ERE <one or more blanks > { program statement
20611 program statement }

Shell and Utilities, Issue 6 2749

lex Utilities

20612 The default action when a string in the input to a lex.yy.c program is not matched by any
20613 expression shall be to copy the string to the output. Because the default behavior of a program
20614 generated by lex is to read the input and copy it to the output, a minimal lex source program that
20615 has just "%%" shall generate a C program that simply copies the input to the output unchanged.

20616 Four special actions shall be available:

20617 | ECHO; REJECT; BEGIN

20618 | The action ’|’ means that the action for the next rule is the action for this rule.
20619 Unlike the other three actions, ’|’ cannot be enclosed in braces or be semicolon-
20620 terminated; the application shall ensure that it is specified alone, with no other
20621 actions.

20622 ECHO; Write the contents of the string yytext on the output.

20623 REJECT; Usually only a single expression is matched by a given string in the input. REJECT
20624 means ‘‘continue to the next expression that matches the current input’’, and shall
20625 cause whatever rule was the second choice after the current rule to be executed for
20626 the same input. Thus, multiple rules can be matched and executed for one input
20627 string or overlapping input strings. For example, given the regular expressions
20628 "xyz" and "xy" and the input "xyz" , usually only the regular expression "xyz"
20629 would match. The next attempted match would start after z. If the last action in the
20630 "xyz" rule is REJECT, both this rule and the "xy" rule would be executed. The
20631 REJECT action may be implemented in such a fashion that flow of control does not
20632 continue after it, as if it were equivalent to a goto to another part of yylex . The use
20633 of REJECT may result in somewhat larger and slower scanners.

20634 BEGIN The action:

20635 BEGIN newstate ;

20636 switches the state (start condition) to newstate. If the string newstate has not been
20637 declared previously as a start condition in the Definitions section, the results are
20638 unspecified. The initial state is indicated by the digit ’0’ or the token INITIAL.

20639 The functions or macros described below are accessible to user code included in the lex input. It
20640 is unspecified whether they appear in the C code output of lex, or are accessible only through the
20641 −l l operand to c99 or cc (the lex library). |

20642 int yylex(void)
20643 Performs lexical analysis on the input; this is the primary function generated by the lex
20644 utility. The function shall return zero when the end of input is reached; otherwise, it shall
20645 return non-zero values (tokens) determined by the actions that are selected.

20646 int yymore(void)
20647 When called, indicates that when the next input string is recognized, it is to be appended to
20648 the current value of yytext rather than replacing it; the value in yyleng shall be adjusted
20649 accordingly.

20650 int yyless(int n)
20651 Retains n initial characters in yytext , NUL-terminated, and treats the remaining characters
20652 as if they had not been read; the value in yyleng shall be adjusted accordingly.

20653 int input(void)
20654 Returns the next character from the input, or zero on end-of-file. It shall obtain input from
20655 the stream pointer yyin , although possibly via an intermediate buffer. Thus, once scanning
20656 has begun, the effect of altering the value of yyin is undefined. The character read is
20657 removed from the input stream of the scanner without any processing by the scanner.

2750 Technical Standard (2000) (Draft July 31, 2000)

Utilities lex

20658 int unput(int c)
20659 Returns the character ’c’ to the input; yytext and yyleng are undefined until the next
20660 expression is matched. The result of using unput for more characters than have been input is
20661 unspecified.

20662 The following functions appear only in the lex library accessible through the −l l operand; they
20663 can therefore be redefined by a portable application:

20664 int yywrap(void)
20665 Called by yylex at end-of-file; the default yywrap always shall return 1. If the application
20666 requires yylex to continue processing with another source of input, then the application can
20667 include a function yywrap , which associates another file with the external variable FILE*yyin
20668 and shall return a value of zero.

20669 int main(int argc, char *argv[])
20670 Calls yylex to perform lexical analysis, then exits. The user code can contain main to perform
20671 application-specific operations, calling yylex as applicable.

20672 Except for input , unput, and main , all external and static names generated by lex shall begin with
20673 the prefix yy or YY.

20674 EXIT STATUS
20675 The following exit values shall be returned:

20676 0 Successful completion.

20677 >0 An error occurred.

20678 CONSEQUENCES OF ERRORS
20679 Default.

20680 APPLICATION USAGE
20681 Portable applications are warned that in the Rules section, an ERE without an action is not
20682 acceptable, but need not be detected as erroneous by lex. This may result in compilation or
20683 runtime errors.

20684 The purpose of input is to take characters off the input stream and discard them as far as the
20685 lexical analysis is concerned. A common use is to discard the body of a comment once the
20686 beginning of a comment is recognized.

20687 The lex utility is not fully internationalized in its treatment of regular expressions in the lex
20688 source code or generated lexical analyzer. It would seem desirable to have the lexical analyzer
20689 interpret the regular expressions given in the lex source according to the environment specified
20690 when the lexical analyzer is executed, but this is not possible with the current lex technology.
20691 Furthermore, the very nature of the lexical analyzers produced by lex must be closely tied to the
20692 lexical requirements of the input language being described, which is frequently locale-specific
20693 anyway. (For example, writing an analyzer that is used for French text is not automatically
20694 useful for processing other languages.)

20695 EXAMPLES
20696 The following is an example of a lex program that implements a rudimentary scanner for a
20697 Pascal-like syntax:

20698 %{
20699 /* Need this for the call to atof() below. */
20700 #include <math.h>
20701 /* Need this for printf(), fopen(), and stdin below. */
20702 #include <stdio.h>
20703 %}

Shell and Utilities, Issue 6 2751

lex Utilities

20704 DIGIT [0 −9]
20705 ID [a −z][a −z0 −9]*

20706 %%

20707 {DIGIT}+ {
20708 printf("An integer: %s (%d)\n", yytext,
20709 atoi(yytext));
20710 }

20711 {DIGIT}+"."{DIGIT}* {
20712 printf("A float: %s (%g)\n", yytext,
20713 atof(yytext));
20714 }

20715 if|then|begin|end|procedure|function {
20716 printf("A keyword: %s\n", yytext);
20717 }

20718 {ID} printf("An identifier: %s\n", yytext);

20719 "+"|" −"|"*"|"/" printf("An operator: %s\n", yytext);

20720 "{"[ˆ}\n]*"}" /* Eat up one-line comments. */

20721 [\t\n]+ /* Eat up white space. */

20722 . printf("Unrecognized character: %s\n", yytext);

20723 %%

20724 int main(int argc, char *argv[])
20725 {
20726 ++argv, −−argc; /* Skip over program name. */
20727 if (argc > 0)
20728 yyin = fopen(argv[0], "r");
20729 else
20730 yyin = stdin;

20731 yylex();
20732 }

20733 RATIONALE
20734 Even though the −c option and references to the C language are retained in this description, lex
20735 may be generalized to other languages, as was done at one time for EFL, the Extended
20736 FORTRAN Language. Since the lex input specification is essentially language-independent,
20737 versions of this utility could be written to produce Ada, Modula-2, or Pascal code, and there are
20738 known historical implementations that do so.

20739 The current description of lex bypasses the issue of dealing with internationalized EREs in the lex
20740 source code or generated lexical analyzer. If it follows the model used by awk (the source code is
20741 assumed to be presented in the POSIX locale, but input and output are in the locale specified by
20742 the environment variables), then the tables in the lexical analyzer produced by lex would
20743 interpret EREs specified in the lex source in terms of the environment variables specified when
20744 lex was executed. The desired effect would be to have the lexical analyzer interpret the EREs
20745 given in the lex source according to the environment specified when the lexical analyzer is
20746 executed, but this is not possible with the current lex technology.

20747 The description of octal and hexadecimal-digit escape sequences agrees with the ISO C standard
20748 use of escape sequences. See the RATIONALE for ed (on page 2546) for a discussion of bytes

2752 Technical Standard (2000) (Draft July 31, 2000)

Utilities lex

20749 larger than 9 bits being represented by octal values. Hexadecimal values can represent larger
20750 bytes and multi-byte characters directly, using as many digits as required.

20751 There is no detailed output format specification. The observed behavior of lex under four
20752 different historical implementations was that none of these implementations consistently
20753 reported the line numbers for error and warning messages. Furthermore, there was a desire that
20754 lex be allowed to output additional diagnostic messages. Leaving message formats unspecified
20755 avoids these formatting questions and problems with internationalization.

20756 Although the %x specifier for exclusive start conditions is not historical practice, it is believed to
20757 be a minor change to historical implementations and greatly enhances the usability of lex
20758 programs since it permits an application to obtain the expected functionality with fewer
20759 statements.

20760 The %array and %pointer declarations were added as a compromise between historical systems.
20761 The System V-based lex copies the matched text to a yytext array. The flex program, supported in
20762 BSD and GNU systems, uses a pointer. In the latter case, significant performance improvements
20763 are available for some scanners. Most historical programs should require no change in porting
20764 from one system to another because the string being referenced is null-terminated in both cases.
20765 (The method used by flex in its case is to null-terminate the token in place by remembering the
20766 character that used to come right after the token and replacing it before continuing on to the next
20767 scan.) Multi-file programs with external references to yytext outside the scanner source file
20768 should continue to operate on their historical systems, but would require one of the new
20769 declarations to be considered strictly portable.

20770 The description of EREs avoids unnecessary duplication of ERE details because their meanings
20771 within a lex ERE are the same as that for the ERE in this volume of IEEE Std. 1003.1-200x.

20772 The reason for the undefined condition associated with text beginning with a <blank> or within
20773 "%{" and "%}" delimiter lines appearing in the Rules section is historical practice. Both the BSD
20774 and System V lex copy the indented (or enclosed) input in the Rules section (except at the
20775 beginning) to unreachable areas of the yylex function (the code is written directly after a break
20776 statement). In some cases, the System V lex generates an error message or a syntax error,
20777 depending on the form of indented input.

20778 The intention in breaking the list of functions into those that may appear in lex.yy.c versus those
20779 that only appear in libl.a is that only those functions in libl.a can be reliably redefined by a
20780 portable application.

20781 The descriptions of standard output and standard error are somewhat complicated because
20782 historical lex implementations chose to issue diagnostic messages to standard output (unless −t
20783 was given). This standard allows this behavior, but leaves an opening for the more expected
20784 behavior of using standard error for diagnostics. Also, the System V behavior of writing the
20785 statistics when any table sizes are given is allowed, while BSD-derived systems can avoid it. The
20786 programmer can always precisely obtain the desired results by using either the −t or −n options.

20787 The OPERANDS section does not mention the use of − as a synonym for standard input; not all
20788 historical implementations support such usage for any of the file operands.

20789 A description of the translation table was deleted from early proposals because of its relatively
20790 low usage in historical applications.

20791 The change to the definition of the input function that allows buffering of input presents the
20792 opportunity for major performance gains in some applications.

20793 The following examples clarify the differences between lex regular expressions and regular
20794 expressions appearing elsewhere in this volume of IEEE Std. 1003.1-200x. For regular
20795 expressions of the form "r/x" , the string matching r is always returned; confusion may arise

Shell and Utilities, Issue 6 2753

lex Utilities

20796 when the beginning of x matches the trailing portion of r. For example, given the regular
20797 expression "a*b/cc" and the input "aaabcc" , yytext would contain the string "aaab" on this
20798 match. But given the regular expression "x*/xy" and the input "xxxy" , the token xxx, not xx,
20799 is returned by some implementations because xxx matches "x*" .

20800 In the rule "ab*/bc" , the "b*" at the end of r extends r’s match into the beginning of the
20801 trailing context, so the result is unspecified. If this rule were "ab/bc" , however, the rule
20802 matches the text "ab" when it is followed by the text "bc" . In this latter case, the matching of r
20803 cannot extend into the beginning of x , so the result is specified.

20804 FUTURE DIRECTIONS
20805 None.

20806 SEE ALSO
20807 c99 , yacc |

20808 CHANGE HISTORY
20809 First released in Issue 2.

20810 Issue 4
20811 Aligned with the ISO/IEC 9945-2: 1993 standard.

20812 Issue 6
20813 This utility is now marked as part of the C-Language Development Utilities option.

20814 The obsolescent −c option is withdrawn in this issue.

20815 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2754 Technical Standard (2000) (Draft July 31, 2000)

Utilities link

20816 NAME
20817 link — call link () function

20818 SYNOPSIS
20819 XSI link file1 file2
20820

20821 DESCRIPTION
20822 The link utility shall perform the function call:

20823 link(file1 , file2);

20824 A user may need appropriate privilege to invoke the link utility.

20825 OPTIONS
20826 None.

20827 OPERANDS
20828 The following operands shall be supported:

20829 file1 The path name of an existing file.

20830 file2 The path name of the new directory entry to be created.

20831 STDIN
20832 Not used.

20833 INPUT FILES
20834 Not used.

20835 ENVIRONMENT VARIABLES
20836 The following environment variables shall affect the execution of link:

20837 LANG Provide a default value for the internationalization variables that are unset or null.
20838 If LANG is unset or null, the corresponding value from the implementation- |
20839 defined default locale shall be used. If any of the internationalization variables |
20840 contain an invalid setting, the utility behaves as if none of the variables had been
20841 set.

20842 LC_ALL If set to a non-empty string value, override the values of all the other
20843 internationalization variables.

20844 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
20845 characters (for example, single-byte as opposed to multi-byte characters in
20846 arguments).

20847 LC_MESSAGES
20848 Determine the locale that should be used to affect the format and contents of
20849 diagnostic messages written to standard error.

20850 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

20851 ASYNCHRONOUS EVENTS
20852 Default.

20853 STDOUT
20854 None.

Shell and Utilities, Issue 6 2755

link Utilities

20855 STDERR
20856 Used only for diagnostic messages.

20857 OUTPUT FILES
20858 None.

20859 EXTENDED DESCRIPTION
20860 None.

20861 EXIT STATUS
20862 The following exit values shall be returned:

20863 0 Successful completion.

20864 >0 An error occurred.

20865 CONSEQUENCES OF ERRORS
20866 Default.

20867 APPLICATION USAGE
20868 None.

20869 EXAMPLES
20870 None.

20871 RATIONALE
20872 None.

20873 FUTURE DIRECTIONS
20874 None.

20875 SEE ALSO
20876 ln , unlink , the System Interfaces volume of IEEE Std. 1003.1-200x, link ()

20877 CHANGE HISTORY
20878 First released in Issue 5.

2756 Technical Standard (2000) (Draft July 31, 2000)

Utilities ln

20879 NAME
20880 ln — link files

20881 SYNOPSIS
20882 ln [−fs] source_file target_file

20883 ln [−fs] source_file ... target_dir

20884 DESCRIPTION
20885 In the first synopsis form, the ln utility shall create a new directory entry (link), or if the −s
20886 option is specified a symbolic link, for the file specified by the source_file operand, at the
20887 destination path specified by the target_file operand. This first synopsis form shall be assumed
20888 when the final operand does not name an existing directory; if more than two operands are
20889 specified and the final is not an existing directory, an error shall result.

20890 In the second synopsis form, the ln utility shall create a new directory entry (link), or if the −s
20891 option is specified a symbolic link, for each file specified by a source_file operand, at a destination
20892 path in the existing directory named by target_dir .

20893 If the last operand specifies an existing file of a type not specified by the System Interfaces |
20894 volume of IEEE Std. 1003.1-200x, the behavior is implementation-defined. |

20895 The corresponding destination path for each source_file shall be the concatenation of the target
20896 directory path name, a slash character, and the last path name component of the source_file . The
20897 second synopsis form shall be assumed when the final operand names an existing directory.

20898 For each source_file :

20899 1. If the destination path exists:

20900 a. If the −f option is not specified, ln shall write a diagnostic message to standard error,
20901 do nothing more with the current source_file , and go on to any remaining source_files .

20902 b. Actions shall be performed equivalent to the unlink() function defined in the System
20903 Interfaces volume of IEEE Std. 1003.1-200x, called using destination as the path
20904 argument. If this fails for any reason, ln shall write a diagnostic message to standard
20905 error, do nothing more with the current source_file , and go on to any remaining
20906 source_files .

20907 2. If the −s option is specified, ln shall create a symbolic link named by the destination path
20908 and containing as its path name source_file . The ln utility shall do nothing more with
20909 source_file and shall go on to any remaining files.

20910 3. If source_file is a symbolic link, actions shall be performed equivalent to the link () function
20911 using the object that source_file references as the path1 argument and the destination path
20912 as the path2 argument. The ln utility shall do nothing more with source_file and shall go on
20913 to any remaining files.

20914 4. Actions shall be performed equivalent to the link () function defined in the System
20915 Interfaces volume of IEEE Std. 1003.1-200x using source_file as the path1 argument, and the
20916 destination path as the path2 argument.

20917 OPTIONS
20918 The ln utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
20919 Utility Syntax Guidelines. |

20920 The following option shall be supported:

20921 −f Force existing destination path names to be removed to allow the link.

Shell and Utilities, Issue 6 2757

ln Utilities

20922 −s Create symbolic links instead of hard links.

20923 OPERANDS
20924 The following operands shall be supported:

20925 source_file A path name of a file to be linked. If the −s option is specified, no restrictions on
20926 the type of file or on its existence shall be made. If the −s option is not specified,
20927 whether a directory can be linked is implementation-defined. |

20928 target_file The path name of the new directory entry to be created.

20929 target_dir A path name of an existing directory in which the new directory entries are
20930 created.

20931 STDIN
20932 Not used.

20933 INPUT FILES
20934 None.

20935 ENVIRONMENT VARIABLES
20936 The following environment variables shall affect the execution of ln:

20937 LANG Provide a default value for the internationalization variables that are unset or null.
20938 If LANG is unset or null, the corresponding value from the implementation- |
20939 defined default locale shall be used. If any of the internationalization variables |
20940 contains an invalid setting, the utility shall behave as if none of the variables had
20941 been defined.

20942 LC_ALL If set to a non-empty string value, override the values of all the other
20943 internationalization variables.

20944 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
20945 characters (for example, single-byte as opposed to multi-byte characters in
20946 arguments).

20947 LC_MESSAGES
20948 Determine the locale that should be used to affect the format and contents of
20949 diagnostic messages written to standard error.

20950 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

20951 ASYNCHRONOUS EVENTS
20952 Default.

20953 STDOUT
20954 Not used.

20955 STDERR
20956 Used only for diagnostic messages.

20957 OUTPUT FILES
20958 None.

20959 EXTENDED DESCRIPTION
20960 None.

20961 EXIT STATUS
20962 The following exit values shall be returned:

20963 0 All the specified files were linked successfully.

2758 Technical Standard (2000) (Draft July 31, 2000)

Utilities ln

20964 >0 An error occurred.

20965 CONSEQUENCES OF ERRORS
20966 Default.

20967 APPLICATION USAGE
20968 None.

20969 EXAMPLES
20970 None.

20971 RATIONALE
20972 Some historic versions of ln (including the one specified by the SVID, unlink the destination file,
20973 if it exists, by default. If the mode does not permit writing, these versions prompt for
20974 confirmation before attempting the unlink. In these versions the −f option causes ln not to
20975 attempt to prompt for confirmation.

20976 This allows ln to succeed in creating links when the target file already exists, even if the file itself
20977 is not writable (although the directory must be). Early proposals specified this functionality.

20978 This volume of IEEE Std. 1003.1-200x does not allow the ln utility to unlink existing destination
20979 paths by default for the following reasons:

20980 • The ln utility has historically been used to provide locking for shell applications, a usage that
20981 is incompatible with ln unlinking the destination path by default. There was no
20982 corresponding technical advantage to adding this functionality.

20983 • This functionality gave ln the ability to destroy the link structure of files, which changes the
20984 historical behavior of ln.

20985 • This functionality is easily replicated with a combination of rm and ln.

20986 • It is not historical practice in many systems; BSD and BSD-derived systems do not support
20987 this behavior. Unfortunately, whichever behavior is selected can cause scripts written
20988 expecting the other behavior to fail.

20989 • It is preferable that ln perform in the same manner as the link () function, which does not
20990 permit the target to exist already.

20991 This volume of IEEE Std. 1003.1-200x retains the −f option to provide support for shell scripts
20992 depending on the SVID semantics. It seems likely that shell scripts would not be written to
20993 handle prompting by ln and would therefore have specified the −f option.

20994 The −f option is an undocumented feature of many historical versions of the ln utility, allowing
20995 linking to directories. These versions require modification.

20996 Early proposals of this volume of IEEE Std. 1003.1-200x also required an −i option, which
20997 behaved like the −i options in cp and mv, prompting for confirmation before unlinking existing
20998 files. This was not historical practice for the ln utility and has been omitted.

20999 FUTURE DIRECTIONS
21000 None.

21001 SEE ALSO
21002 chmod , find , pax , rm, the System Interfaces volume of IEEE Std. 1003.1-200x, link ()

21003 CHANGE HISTORY
21004 First released in Issue 2.

Shell and Utilities, Issue 6 2759

ln Utilities

21005 Issue 4
21006 Aligned with the ISO/IEC 9945-2: 1993 standard.

21007 Issue 6
21008 The ln utility is updated to include symbolic link processing as defined in the IEEE P1003.2b
21009 draft standard.

2760 Technical Standard (2000) (Draft July 31, 2000)

Utilities locale

21010 NAME
21011 locale — get locale-specific information

21012 SYNOPSIS
21013 locale [−a| −m]

21014 locale [−ck] name...

21015 DESCRIPTION
21016 The locale utility shall write information about the current locale environment, or all public
21017 locales, to the standard output. For the purposes of this section, a public locale is one provided by
21018 the implementation that is accessible to the application.

21019 When locale is invoked without any arguments, it shall summarize the current locale
21020 environment for each locale category as determined by the settings of the environment variables |
21021 defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21022 When invoked with operands, it shall write values that have been assigned to the keywords in
21023 the locale categories, as follows:

21024 • Specifying a keyword name shall select the named keyword and the category containing that
21025 keyword.

21026 • Specifying a category name shall select the named category and all keywords in that
21027 category.

21028 OPTIONS
21029 The locale utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
21030 12.2, Utility Syntax Guidelines. |

21031 The following options shall be supported:

21032 −a Write information about all available public locales. The available locales shall
21033 include POSIX, representing the POSIX locale. The manner in which the
21034 implementation determines what other locales are available is implementation- |
21035 defined. |

21036 −c Write the names of selected locale categories; see the STDOUT section. The −c
21037 option increases readability when more than one category is selected (for example,
21038 via more than one keyword name or via a category name). It is valid both with
21039 and without the −k option.

21040 −k Write the names and values of selected keywords. The implementation may omit
21041 values for some keywords; see the OPERANDS section.

21042 −m Write names of available charmaps; see the Base Definitions volume of |
21043 IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set. |

21044 OPERANDS
21045 The following operand shall be supported:

21046 name The name of a locale category as defined in the Base Definitions volume of |
21047 IEEE Std. 1003.1-200x, Chapter 7, Locale, the name of a keyword in a locale |
21048 category, or the reserved name charmap. The named category or keyword shall be
21049 selected for output. If a single name represents both a locale category name and a
21050 keyword name in the current locale, the results are unspecified. Otherwise, both
21051 category and keyword names can be specified as name operands, in any sequence. |
21052 It is implementation-defined whether any keyword values are written for the |
21053 categories LC_CTYPE and LC_COLLATE.

Shell and Utilities, Issue 6 2761

locale Utilities

21054 STDIN
21055 Not used.

21056 INPUT FILES
21057 None.

21058 ENVIRONMENT VARIABLES
21059 The following environment variables shall affect the execution of locale:

21060 LANG Provide a default value for the internationalization variables that are unset or null.
21061 If LANG is unset or null, the corresponding value from the implementation- |
21062 defined default locale shall be used. If any of the internationalization variables |
21063 contains an invalid setting, the utility shall behave as if none of the variables had
21064 been defined.

21065 LC_ALL If set to a non-empty string value, override the values of all the other
21066 internationalization variables.

21067 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
21068 characters (for example, single-byte as opposed to multi-byte characters in
21069 arguments and input files).

21070 LC_MESSAGES
21071 Determine the locale that should be used to affect the format and contents of
21072 diagnostic messages written to standard error.

21073 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

21074 XSI The application shall ensure that the LANG, LC_*, and NLSPATH environment variables specify
21075 the current locale environment to be written out; they shall be used if the −a option is not
21076 specified.

21077 ASYNCHRONOUS EVENTS
21078 Default.

21079 STDOUT
21080 If locale is invoked without any options or operands, the names and values of the LANG and
21081 LC_* environment variables described in this volume of IEEE Std. 1003.1-200x shall be written to
21082 the standard output, one variable per line, with LANG first, and each line using the following
21083 format. Only those variables set in the environment and not overridden by LC_ALL shall be
21084 written using this format:

21085 "%s=%s\n", < variable_name >, < value >

21086 The names of those LC_* variables associated with locale categories defined in this volume of
21087 IEEE Std. 1003.1-200x that are not set in the environment or are overridden by LC_ALL shall be
21088 written in the following format:

21089 "%s=\""%s\""\n", < variable_name >, < implied value >

21090 The <implied value> shall be the name of the locale that has been selected for that category by the
21091 implementation, based on the values in LANG and LC_ALL, as described in the Base Definitions |
21092 volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

21093 The <value> and <implied value> shown above shall be properly quoted for possible later reentry
21094 to the shell. The <value> shall not be quoted using double-quotes (so that it can be distinguished
21095 by the user from the <implied value> case, which always requires double-quotes).

21096 The LC_ALL variable shall be written last, using the first format shown above. If it is not set, it
21097 shall be written as:

2762 Technical Standard (2000) (Draft July 31, 2000)

Utilities locale

21098 "LC_ALL=\n"

21099 If any arguments are specified:

21100 1. If the −a option is specified, the names of all the public locales shall be written, each in the
21101 following format:

21102 "%s\n", < locale name >

21103 2. If the −c option is specified, the names of all selected categories shall be written, each in the
21104 following format:

21105 "%s\n", < category name >

21106 If keywords are also selected for writing (see following items), the category name output
21107 shall precede the keyword output for that category.

21108 If the −c option is not specified, the names of the categories shall not be written; only the
21109 keywords, as selected by the <name> operand, shall be written.

21110 3. If the −k option is specified, the names and values of selected keywords shall be written. If
21111 a value is non-numeric, it shall be written in the following format:

21112 "%s=\"%s\"\n", < keyword name >, < keyword value >

21113 If the keyword was charmap, the name of the charmap (if any) that was specified via the
21114 localedef −f option when the locale was created shall be written, with the word charmap as
21115 <keyword name>.

21116 If a value is numeric, it shall be written in one of the following formats:

21117 "%s=%d\n", < keyword name >, < keyword value >

21118 "%s=%c%o\n", < keyword name >, < escape character >, < keyword value >

21119 "%s=%cx%x\n", < keyword name >, < escape character >, < keyword value >

21120 where the <escape character> is that identified by the escape_char keyword in the current |
21121 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 7.3, Locale |
21122 Definition. |

21123 Compound keyword values (list entries) shall be separated in the output by semicolons.
21124 When included in keyword values, the semicolon, the double-quote, the backslash, and
21125 any control character shall be preceded (escaped) with the escape character.

21126 4. If the −k option is not specified, selected keyword values shall be written, each in the
21127 following format:

21128 "%s\n", < keyword value >

21129 If the keyword was charmap, the name of the charmap (if any) that was specified via the
21130 localedef −f option when the locale was created shall be written.

21131 5. If the −m option is specified, then a list of all available charmaps shall be written, each in
21132 the format:

21133 "%s\n", < charmap >

21134 where <charmap> is in a format suitable for use as the option-argument to the localedef −f
21135 option.

Shell and Utilities, Issue 6 2763

locale Utilities

21136 STDERR
21137 Used only for diagnostic messages.

21138 OUTPUT FILES
21139 None.

21140 EXTENDED DESCRIPTION
21141 None.

21142 EXIT STATUS
21143 The following exit values shall be returned:

21144 0 All the requested information was found and output successfully.

21145 >0 An error occurred.

21146 CONSEQUENCES OF ERRORS
21147 Default.

21148 APPLICATION USAGE
21149 If the LANG environment variable is not set or set to an empty value, or one of the LC_*
21150 environment variables is set to an unrecognized value, the actual locales assumed (if any) are |
21151 implementation-defined as described in the Base Definitions volume of IEEE Std. 1003.1-200x, |
21152 Chapter 8, Environment Variables. |

21153 Implementations are not required to write out the actual values for keywords in the categories
21154 LC_CTYPE and LC_COLLATE; however, they must write out the categories (allowing an
21155 application to determine, for example, which character classes are available).

21156 EXAMPLES
21157 In the following examples, the assumption is that locale environment variables are set as
21158 follows:

21159 LANG=locale_x
21160 LC_COLLATE=locale_y

21161 The command locale would result in the following output:

21162 LANG=locale_x
21163 LC_CTYPE="locale_x"
21164 LC_COLLATE=locale_y
21165 LC_TIME="locale_x"
21166 LC_NUMERIC="locale_x"
21167 LC_MONETARY="locale_x"
21168 LC_MESSAGES="locale_x"
21169 LC_ALL=

21170 The order of presentation of the categories is not specified by this volume of
21171 IEEE Std. 1003.1-200x.

21172 The command:

21173 LC_ALL=POSIX locale −ck decimal_point

21174 would produce:

21175 LC_NUMERIC
21176 decimal_point="."

21177 The following command shows an application of locale to determine whether a user-supplied
21178 response is affirmative:

2764 Technical Standard (2000) (Draft July 31, 2000)

Utilities locale

21179 if printf "%s\n" "$response" | grep −Eq "$(locale yesexpr)"
21180 then
21181 affirmative processing goes here
21182 else
21183 non-affirmative processing goes here
21184 fi

21185 RATIONALE
21186 The output for categories LC_CTYPE and LC_COLLATE has been made implementation-defined |
21187 because there is a questionable value in having a shell script receive an entire array of characters. |
21188 It is also difficult to return a logical collation description, short of returning a complete localedef
21189 source.

21190 The −m option was included to allow applications to query for the existence of charmaps. The
21191 output is a list of the charmaps (implementation-supplied and user-supplied, if any) on the
21192 system.

21193 The −c option was included for readability when more than one category is selected (for
21194 example, via more than one keyword name or via a category name). It is valid both with and
21195 without the −k option.

21196 The charmap keyword, which returns the name of the charmap (if any) that was used when the
21197 current locale was created, was included to allow applications needing the information to
21198 retrieve it.

21199 FUTURE DIRECTIONS
21200 None.

21201 SEE ALSO
21202 localedef , the Base Definitions volume of IEEE Std. 1003.1-200x, Section 7.3, Locale Definition |

21203 CHANGE HISTORY
21204 First released in Issue 4.

21205 Issue 5
21206 FUTURE DIRECTIONS section added.

21207 Issue 6
21208 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2765

localedef Utilities

21209 NAME
21210 localedef — define locale environment

21211 SYNOPSIS
21212 localedef [−c][−f charmap][−i sourcefile][−u code_set_name] name

21213 DESCRIPTION
21214 The localedef utility shall convert source definitions for locale categories into a format usable by
21215 the functions and utilities whose operational behavior is determined by the setting of the locale
21216 environment variables defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter |
21217 7, Locale. It is implementation-defined whether users have the capability to create new locales, |
21218 in addition to those supplied by the implementation. If the symbolic constant
21219 XSI POSIX2_LOCALEDEF is defined, the system supports the creation of new locales. On XSI-
21220 conformant systems, the symbolic constant POSIX2_LOCALEDEF shall be defined.

21221 The utility shall read source definitions for one or more locale categories belonging to the same
21222 locale from the file named in the −i option (if specified) or from standard input.

21223 The name operand identifies the target locale. The utility shall support the creation of public , or
21224 generally accessible locales, as well as private , or restricted-access locales. Implementations may
21225 restrict the capability to create or modify public locales to users with the appropriate privileges.

21226 Each category source definition shall be identified by the corresponding environment variable
21227 name and terminated by an END category-name statement. The following categories shall be
21228 supported. In addition, the input may contain source for implementation-defined categories. |

21229 LC_CTYPE Defines character classification and case conversion.

21230 LC_COLLATE
21231 Defines collation rules.

21232 LC_MONETARY
21233 Defines the format and symbols used in formatting of monetary information.

21234 LC_NUMERIC
21235 Defines the decimal delimiter, grouping, and grouping symbol for non-monetary
21236 numeric editing.

21237 LC_TIME Defines the format and content of date and time information.

21238 LC_MESSAGES
21239 Defines the format and values of affirmative and negative responses.

21240 OPTIONS
21241 The localedef utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, |
21242 Section 12.2, Utility Syntax Guidelines. |

21243 The following options shall be supported:

21244 −c Create permanent output even if warning messages have been issued.

21245 −f charmap Specify the path name of a file containing a mapping of character symbols and
21246 collating element symbols to actual character encodings. The format of the
21247 charmap is described under the Base Definitions volume of IEEE Std. 1003.1-200x, |
21248 Section 6.4, Character Set Description File. The application shall ensure that this |
21249 option is specified if symbolic names (other than collating symbols defined in a
21250 collating-symbol keyword) are used. If the −f option is not present, an |
21251 implementation-defined character mapping shall be used. |

2766 Technical Standard (2000) (Draft July 31, 2000)

Utilities localedef

21252 −i inputfile The path name of a file containing the source definitions. If this option is not
21253 present, source definitions shall be read from standard input. The format of the
21254 inputfile is described in the Base Definitions volume of IEEE Std. 1003.1-200x, |
21255 Section 7.3, Locale Definition. |

21256 −u code_set_name Specify the name of a codeset used as the target mapping of character symbols
21257 and collating element symbols whose encoding values are defined in terms of the
21258 ISO/IEC 10646-1: 1993 standard position constant values.

21259 OPERANDS
21260 The following operand shall be supported:

21261 name Identifies the locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, |
21262 Chapter 7, Locale for a description of the use of this name. If the name contains one |
21263 or more slash characters, name shall be interpreted as a path name where the
21264 created locale definitions shall be stored. If name does not contain any slash
21265 characters, the interpretation of the name is implementation-defined and the locale |
21266 shall be public. This capability may be restricted to users with appropriate |
21267 privileges. (As a consequence of specifying one name, although several categories
21268 can be processed in one execution, only categories belonging to the same locale can
21269 be processed.)

21270 STDIN
21271 Unless the −i option is specified, the standard input shall be a text file containing one or more
21272 locale category source definitions, as described in the Base Definitions volume of |
21273 IEEE Std. 1003.1-200x, Section 7.3, Locale Definition. When lines are continued using the escape |
21274 character mechanism, there is no limit to the length of the accumulated continued line. |

21275 INPUT FILES
21276 The character set mapping file specified as the charmap option-argument is described under the |
21277 Base Definitions volume of IEEE Std. 1003.1-200x, Section 6.4, Character Set Description File. If a |
21278 locale category source definition contains a copy statement, as defined in the Base Definitions |
21279 volume of IEEE Std. 1003.1-200x, Chapter 7, Locale, and the copy statement names a valid, |
21280 existing locale, then localedef shall behave as if the source definition had contained a valid
21281 category source definition for the named locale.

21282 ENVIRONMENT VARIABLES
21283 The following environment variables shall affect the execution of localedef:

21284 LANG Provide a default value for the internationalization variables that are unset or null.
21285 If LANG is unset or null, the corresponding value from the implementation- |
21286 defined default locale shall be used. If any of the internationalization variables |
21287 contains an invalid setting, the utility shall behave as if none of the variables had
21288 been defined.

21289 LC_ALL If set to a non-empty string value, override the values of all the other
21290 internationalization variables.

21291 LC_COLLATE
21292 (This variable has no affect on localedef; the POSIX locale is used for this category.)

21293 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
21294 characters (for example, single-byte as opposed to multi-byte characters in
21295 arguments and input files). This variable has no affect on the processing of localedef
21296 input data; the POSIX locale is used for this purpose, regardless of the value of this
21297 variable.

Shell and Utilities, Issue 6 2767

localedef Utilities

21298 LC_MESSAGES
21299 Determine the locale that should be used to affect the format and contents of
21300 diagnostic messages written to standard error.

21301 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

21302 ASYNCHRONOUS EVENTS
21303 Default.

21304 STDOUT
21305 The utility shall report all categories successfully processed, in an unspecified format.

21306 STDERR
21307 Used only for diagnostic messages.

21308 OUTPUT FILES
21309 The format of the created output is unspecified. If the name operand does not contain a slash, the
21310 existence of an output file for the locale is unspecified.

21311 EXTENDED DESCRIPTION
21312 When the −u option is used, the code_set_name option-argument shall be interpreted as an |
21313 implementation-defined name of a codeset to which the ISO/IEC 10646-1: 1993 standard |
21314 position constant values shall be converted via an implementation-defined method. Both the |
21315 ISO/IEC 10646-1: 1993 standard position constant values and other formats (decimal, |
21316 hexadecimal, or octal) shall be valid as encoding values within the charmap file. The codeset |
21317 represented by the implementation-defined name can be any codeset that is supported by the |
21318 implementation.

21319 When conflicts occur between the charmap specification of <code_set_name>, <mb_cur_max>, or |
21320 <mb_cur_min> and the implementation-defined interpretation of these respective items for the |
21321 codeset represented by the −u option-argument code_set_name, the result is unspecified.

21322 When conflicts occur between the charmap encoding values specified for symbolic names of
21323 characters of the portable character set and the implementation-defined assignment of character |
21324 encoding values, the result is unspecified.

21325 If a non-printable character in the charmap has a width specified that is not −1, localedef shall
21326 generate a warning.

21327 EXIT STATUS
21328 The following exit values shall be returned:

21329 0 No errors occurred and the locales were successfully created.

21330 1 Warnings occurred and the locales were successfully created.

21331 2 The locale specification exceeded implementation limits or the coded character set or sets
21332 used were not supported by the implementation, and no locale was created.

21333 3 The capability to create new locales is not supported by the implementation.

21334 >3 Warnings or errors occurred and no output was created.

21335 CONSEQUENCES OF ERRORS
21336 If an error is detected, no permanent output shall be created.

21337 If warnings occur, permanent output shall be created if the −c option was specified. The
21338 following conditions shall cause warning messages to be issued:

21339 • If a symbolic name not found in the charmap file is used for the descriptions of the LC_CTYPE
21340 or LC_COLLATE categories (for other categories, this shall be an error condition).

2768 Technical Standard (2000) (Draft July 31, 2000)

Utilities localedef

21341 • If the number of operands to the order keyword exceeds the {COLL_WEIGHTS_MAX} limit.

21342 • If optional keywords not supported by the implementation are present in the source.

21343 • If a non-printable character has a width specified other than −1.

21344 Other implementation-defined conditions may also cause warnings. |

21345 APPLICATION USAGE
21346 The charmap definition is optional, and is contained outside the locale definition. This allows
21347 both completely self-defined source files, and generic sources (applicable to more than one
21348 codeset). To aid portability, all charmap definitions must use the same symbolic names for the
21349 portable character set. As explained in the Base Definitions volume of IEEE Std. 1003.1-200x, |
21350 Section 6.4, Character Set Description File, it is implementation-defined whether or not users or |
21351 applications can provide additional character set description files. Therefore, the −f option might |
21352 be operable only when an implementation-defined charmap is named. |

21353 EXAMPLES
21354 None.

21355 RATIONALE
21356 The output produced by the localedef utility is implementation-defined. The name operand is |
21357 used to identify the specific locale. (As a consequence, although several categories can be
21358 processed in one execution, only categories belonging to the same locale can be processed.)

21359 FUTURE DIRECTIONS
21360 None.

21361 SEE ALSO
21362 locale , the Base Definitions volume of IEEE Std. 1003.1-200x, Section 7.3, Locale Definition |

21363 CHANGE HISTORY
21364 First released in Issue 4.

21365 Issue 6
21366 The −u option is added, as specified in the IEEE P1003.2b draft standard.

21367 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2769

logger Utilities

21368 NAME
21369 logger — log messages

21370 SYNOPSIS
21371 logger string ...

21372 DESCRIPTION
21373 The logger utility saves a message, in an unspecified manner and format, containing the string
21374 operands provided by the user. The messages are expected to be evaluated later by personnel
21375 performing system administration tasks.

21376 It is implementation-defined whether messages written in locales other than the POSIX locale |
21377 are effective.

21378 OPTIONS
21379 None.

21380 OPERANDS
21381 The following operand shall be supported:

21382 string One of the string arguments whose contents are concatenated together, in the
21383 order specified, separated by single <space> characters.

21384 STDIN
21385 Not used.

21386 INPUT FILES
21387 None.

21388 ENVIRONMENT VARIABLES
21389 The following environment variables shall affect the execution of logger:

21390 LANG Provide a default value for the internationalization variables that are unset or null.
21391 If LANG is unset or null, the corresponding value from the implementation- |
21392 defined default locale shall be used. If any of the internationalization variables |
21393 contains an invalid setting, the utility shall behave as if none of the variables had
21394 been defined.

21395 LC_ALL If set to a non-empty string value, override the values of all the other
21396 internationalization variables.

21397 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
21398 characters (for example, single-byte as opposed to multi-byte characters in
21399 arguments).

21400 LC_MESSAGES
21401 Determine the locale that should be used to affect the format and contents of
21402 diagnostic messages written to standard error. (This means diagnostics from logger
21403 to the user or application, not diagnostic messages that the user is sending to the
21404 system administrator.)

21405 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

21406 ASYNCHRONOUS EVENTS
21407 Default.

21408 STDOUT
21409 Not used.

2770 Technical Standard (2000) (Draft July 31, 2000)

Utilities logger

21410 STDERR
21411 Used only for diagnostic messages.

21412 OUTPUT FILES
21413 Unspecified.

21414 EXTENDED DESCRIPTION
21415 None.

21416 EXIT STATUS
21417 The following exit values shall be returned:

21418 0 Successful completion.

21419 >0 An error occurred.

21420 CONSEQUENCES OF ERRORS
21421 Default.

21422 APPLICATION USAGE
21423 This utility allows logging of information for later use by a system administrator or programmer
21424 in determining why non-interactive utilities have failed. The locations of the saved messages,
21425 their format, and retention period are all unspecified. There is no method for a portable
21426 application to read messages, once written.

21427 EXAMPLES
21428 A batch application, running non-interactively, tries to read a configuration file and fails; it may
21429 attempt to notify the system administrator with:

21430 logger myname: unable to read file foo. [timestamp]

21431 RATIONALE
21432 The standard developers believed strongly that some method of alerting administrators to errors
21433 was necessary. The obvious example is a batch utility, running non-interactively, that is unable
21434 to read its configuration files or that is unable to create or write its results file. However, the
21435 standard developers did not wish to define the format or delivery mechanisms as they have
21436 historically been (and will probably continue to be) very system-specific, as well as involving
21437 functionality clearly outside of the scope of this volume of IEEE Std. 1003.1-200x.

21438 The text with LC_MESSAGES about diagnostic messages means diagnostics from logger to the
21439 user or application, not diagnostic messages that the user is sending to the system administrator.

21440 Multiple string arguments are allowed, similar to echo, for ease-of-use.

21441 Like the utilities mailx and lp, logger is admittedly difficult to test. This was not deemed sufficient
21442 justification to exclude these utilities from this volume of IEEE Std. 1003.1-200x. It is also
21443 arguable that they are, in fact, testable, but that the tests themselves are not portable.

21444 FUTURE DIRECTIONS
21445 None.

21446 SEE ALSO
21447 mailx , write

21448 CHANGE HISTORY
21449 First released in Issue 4.

Shell and Utilities, Issue 6 2771

logname Utilities

21450 NAME
21451 logname — return the user’s login name

21452 SYNOPSIS
21453 logname

21454 DESCRIPTION
21455 The logname utility shall write the user’s login name to standard output. The login name shall be
21456 the string that would be returned by the getlogin () function defined in the System Interfaces
21457 volume of IEEE Std. 1003.1-200x. Under the conditions where the getlogin () function would fail,
21458 the logname utility shall write a diagnostic message to standard error and exit with a non-zero
21459 exit status.

21460 OPTIONS
21461 None.

21462 OPERANDS
21463 None.

21464 STDIN
21465 Not used.

21466 INPUT FILES
21467 None.

21468 ENVIRONMENT VARIABLES
21469 The following environment variables shall affect the execution of logname:

21470 LANG Provide a default value for the internationalization variables that are unset or null.
21471 If LANG is unset or null, the corresponding value from the implementation- |
21472 defined default locale shall be used. If any of the internationalization variables |
21473 contains an invalid setting, the utility shall behave as if none of the variables had
21474 been defined.

21475 LC_ALL If set to a non-empty string value, override the values of all the other
21476 internationalization variables.

21477 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
21478 characters (for example, single-byte as opposed to multi-byte characters in
21479 arguments).

21480 LC_MESSAGES
21481 Determine the locale that should be used to affect the format and contents of
21482 diagnostic messages written to standard error.

21483 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

21484 ASYNCHRONOUS EVENTS
21485 Default.

21486 STDOUT
21487 The logname utility output shall be a single line consisting of the user’s login name:

21488 "%s\n", < login name >

21489 STDERR
21490 Used only for diagnostic messages.

2772 Technical Standard (2000) (Draft July 31, 2000)

Utilities logname

21491 OUTPUT FILES
21492 None.

21493 EXTENDED DESCRIPTION
21494 None.

21495 EXIT STATUS
21496 The following exit values shall be returned:

21497 0 Successful completion.

21498 >0 An error occurred.

21499 CONSEQUENCES OF ERRORS
21500 Default.

21501 APPLICATION USAGE
21502 The logname utility explicitly ignores the LOGNAME environment variable because environment
21503 changes could produce erroneous results.

21504 EXAMPLES
21505 None.

21506 RATIONALE
21507 The passwd file is not listed as required because the implementation may have other means of
21508 mapping login names.

21509 FUTURE DIRECTIONS
21510 None.

21511 SEE ALSO
21512 id , who

21513 CHANGE HISTORY
21514 First released in Issue 2.

21515 Issue 4
21516 Aligned with the ISO/IEC 9945-2: 1993 standard.

Shell and Utilities, Issue 6 2773

lp Utilities

21517 NAME
21518 lp — send files to a printer

21519 SYNOPSIS
21520 lp [−c][−d dest][−n copies][−msw][−o option] ... [−t title][file ...] |

21521 DESCRIPTION |
21522 The lp utility shall copy the input files to an output destination in an unspecified manner. The
21523 default output destination should be to a hardcopy device, such as a printer or microfilm
21524 recorder, that produces non-volatile, human-readable documents. If such a device is not
21525 available to the application, or if the system provides no such device, the lp utility shall exit with
21526 a non-zero exit status.

21527 The actual writing to the output device may occur some time after the lp utility successfully
21528 exits. During the portion of the writing that corresponds to each input file, the implementation
21529 shall guarantee exclusive access to the device.

21530 The lp utility shall associate a unique request ID with each request. |

21531 Normally, a banner page is produced to separate and identify each print job. This page may be |
21532 suppressed by implementation-defined conditions, such as an operator command or one of the |
21533 −o option values. |

21534 OPTIONS
21535 The lp utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
21536 Utility Syntax Guidelines. |

21537 The following options shall be supported:

21538 −c Exit only after further access to any of the input files is no longer required. The
21539 application can then safely delete or modify the files without affecting the output
21540 operation. Normally, files are not copied, but are linked whenever possible. If the
21541 −c option is not given, then the user should be careful not to remove any of the
21542 files before the request has been printed in its entirety. It should also be noted that
21543 in the absence of the −c option, any changes made to the named files after the
21544 request is made but before it is printed are reflected in the printed output. On some
21545 systems, −c may be on by default.

21546 −d dest Specify a string that names the destination (dest). If dest is a printer, the request |
21547 shall be printed only on that specific printer. If dest is a class of printers, the request
21548 shall be printed on the first available printer that is a member of the class. Under
21549 certain conditions (printer unavailability, file space limitation, and so on), requests
21550 for specific destinations need not be accepted. Destination names vary between
21551 systems. |

21552 If −d is not specified, and neither the LPDEST nor PRINTER environment variable
21553 is set, an unspecified destination is used. The −d dest option shall take precedence
21554 over LPDEST, which in turn shall take precedence over PRINTER. Results are
21555 undefined when dest contains a value that is not a valid destination name. |

21556 −m Send mail (see mailx (on page 2794)) after the files have been printed. By default, |
21557 no mail is sent upon normal completion of the print request. |

21558 −n copies Write copies number of copies of the files, where copies is a positive decimal integer.
21559 The methods for producing multiple copies and for arranging the multiple copies
21560 when multiple file operands are used are unspecified, except that each file shall be
21561 output as an integral whole, not interleaved with portions of other files. |

2774 Technical Standard (2000) (Draft July 31, 2000)

Utilities lp

21562 −o option Specify printer-dependent or class-dependent options. Several such options may be |
21563 collected by specifying the −o option more than once. |

21564 −s Suppress messages from lp. |

21565 −t title Write title on the banner page of the output. |

21566 −w Write a message on the user’s terminal after the files have been printed. If the user |
21567 is not logged in, then mail shall be sent instead. |

21568 OPERANDS
21569 The following operand shall be supported:

21570 file A path name of a file to be output. If no file operands are specified, or if a file
21571 operand is ’ −’ , the standard input shall be used. If a file operand is used, but the
21572 −c option is not specified, the process performing the writing to the output device
21573 may have user and group permissions that differ from that of the process invoking
21574 lp.

21575 STDIN
21576 The standard input is used only if no file operands are specified, or if a file operand is ’ −’ . See
21577 the INPUT FILES section.

21578 INPUT FILES
21579 The input files shall be text files.

21580 ENVIRONMENT VARIABLES
21581 The following environment variables shall affect the execution of lp:

21582 LANG Provide a default value for the internationalization variables that are unset or null.
21583 If LANG is unset or null, the corresponding value from the implementation- |
21584 defined default locale shall be used. If any of the internationalization variables |
21585 contains an invalid setting, the utility shall behave as if none of the variables had
21586 been defined.

21587 LC_ALL If set to a non-empty string value, override the values of all the other
21588 internationalization variables.

21589 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
21590 characters (for example, single-byte as opposed to multi-byte characters in
21591 arguments and input files).

21592 LC_MESSAGES
21593 Determine the locale that should be used to affect the format and contents of
21594 diagnostic messages written to standard error and informative messages written to
21595 standard output. |

21596 LC_TIME Determine the format and contents of date and time strings displayed in the lp |
21597 banner page, if any. |

21598 LPDEST Determine the destination. If the LPDEST environment variable is not set, the
21599 PRINTER environment variable shall be used. The −d dest option takes precedence
21600 over LPDEST. Results are undefined when −d is not specified and LPDEST
21601 contains a value that is not a valid destination name.

21602 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

21603 PRINTER Determine the output device or destination. If the LPDEST and PRINTER
21604 environment variables are not set, an unspecified output device is used. The −d
21605 dest option and the LPDEST environment variable shall take precedence over

Shell and Utilities, Issue 6 2775

lp Utilities

21606 PRINTER. Results are undefined when −d is not specified, LPDEST is unset, and
21607 PRINTER contains a value that is not a valid device or destination name.

21608 ASYNCHRONOUS EVENTS
21609 Default.

21610 STDOUT
21611 The lp utility shall write a request ID to the standard output, unless −s is specified. The format of |
21612 the message is unspecified. The request ID can be used on systems supporting the historical
21613 cancel and lpstat utilities. |

21614 STDERR
21615 Used only for diagnostic messages.

21616 OUTPUT FILES
21617 None.

21618 EXTENDED DESCRIPTION
21619 None.

21620 EXIT STATUS
21621 The following exit values shall be returned:

21622 0 All input files were processed successfully.

21623 >0 No output device was available, or an error occurred.

21624 CONSEQUENCES OF ERRORS
21625 Default.

21626 APPLICATION USAGE
21627 The pr and fold utilities can be used to achieve reasonable formatting for the implementation’s
21628 default page size.

21629 A portable application can use one of the file operands only with the −c option or if the file is
21630 publicly readable and guaranteed to be available at the time of printing. This is because the
21631 standard gives the implementation the freedom to queue up the request for printing at some
21632 later time by a different process that might not be able to access the file.

21633 EXAMPLES

21634 1. To print file file :

21635 lp −c file

21636 2. To print multiple files with headers:

21637 pr file1 file2 | lp

21638 RATIONALE
21639 The lp utility was designed to be a basic version of a utility that is already available in many
21640 historical implementations. The standard developers considered that it should be implementable
21641 simply as:

21642 cat "$@" > /dev/lp

21643 after appropriate processing of options, if that is how the implementation chose to do it and if
21644 exclusive access could be granted (so that two users did not write to the device simultaneously).
21645 Although in the future the standard developers may add other options to this utility, it should
21646 always be able to execute with no options or operands and send the standard input to an
21647 unspecified output device.

2776 Technical Standard (2000) (Draft July 31, 2000)

Utilities lp

21648 This volume of IEEE Std. 1003.1-200x makes no representations concerning the format of the
21649 printed output, except that it must be ‘‘human-readable’’ and ‘‘non-volatile’’. Thus, writing by
21650 default to a disk or tape drive or a display terminal would not qualify. (Such destinations are not
21651 prohibited when −d dest, LPDEST, or PRINTER are used, however.)

21652 This volume of IEEE Std. 1003.1-200x is worded such that a ‘‘print job’’ consisting of multiple
21653 input files, possibly in multiple copies, is guaranteed to print so that any one file is not
21654 intermixed with another, but there is no statement that all the files or copies have to print out
21655 together.

21656 The −c option may imply a spooling operation, but this is not required. The utility can be
21657 implemented to wait until the printer is ready and then wait until it is finished. Because of that,
21658 there is no attempt to define a queuing mechanism (priorities, classes of output, and so on).

21659 On some historical systems, the request ID reported on the STDOUT can be used to later cancel
21660 or find the status of a request using utilities not defined in this volume of IEEE Std. 1003.1-200x.

21661 Although the historical System V lp and BSD lpr utilities have provided similar functionality,
21662 they used different names for the environment variable specifying the destination printer. Since
21663 the name of the utility here is lp, LPDEST (used by the System V lp utility) was given precedence
21664 over PRINTER (used by the BSD lpr utility). Since environments of users frequently contain one
21665 or the other environment variable, the lp utility is required to recognize both. If this was not
21666 done, many applications would send output to unexpected output devices when users moved
21667 from system to system.

21668 Some have commented that lp has far too little functionality to make it worthwhile. Requests
21669 have proposed additional options or operands or both that added functionality. The requests
21670 included:

21671 • Wording requiring the output to be ‘‘hardcopy’’

21672 • A requirement for multiple printers

21673 • Options for supporting various page-description languages

21674 Given that a compliant system is not required to even have a printer, placing further restrictions
21675 upon the behavior of the printer is not useful. Since hardcopy format is so application-
21676 dependent, it is difficult, if not impossible, to select a reasonable subset of functionality that
21677 should be required on all compliant systems.

21678 The term ‘‘unspecified’’ is used in this section in lieu of ‘‘implementation-defined’’ as most |
21679 known implementations would not be able to make definitive statements in their conformance |
21680 documents: the existence and usage of printers is very dependent on how the system
21681 administrator configures each individual system.

21682 Since the default destination, device type, queuing mechanisms, and acceptable forms of input
21683 are all unspecified, usage guidelines for what a portable application can do are as follows:

21684 • Use the command in a pipeline, or with −c, so that there are no permission problems and the
21685 files can be safely deleted or modified.

21686 • Limit output to text files of reasonable line lengths and printable characters and include no
21687 device-specific formatting information, such as a page description language. The meaning of
21688 ‘‘reasonable’’ in this context can only be answered as a quality-of-implementation issue, but
21689 it should be apparent from historical usage patterns in the industry and the locale. The pr and
21690 fold utilities can be used to achieve reasonable formatting for the default page size of the
21691 implementation.

Shell and Utilities, Issue 6 2777

lp Utilities

21692 Alternatively, the application can arrange its installation in such a way that it requires the
21693 system administrator or operator to provide the appropriate information on lp options and
21694 environment variable values.

21695 At a minimum, having this utility in this volume of IEEE Std. 1003.1-200x tells the industry that
21696 portable applications require a means to print output and provides at least a command name
21697 and LPDEST routing mechanism that can be used for discussions between vendors, application
21698 writers, and users. The use of ‘‘should’’ in the DESCRIPTION of lp clearly shows the intent of
21699 the standard developers, even if they cannot mandate that all systems (such as laptops) have
21700 printers.

21701 This volume of IEEE Std. 1003.1-200x does not specify what the ownership of the process
21702 performing the writing to the output device may be. If −c is not used, it is unspecified whether
21703 the process performing the writing to the output device has permission to read file if there are
21704 any restrictions in place on who may read file until after it is printed. Also, if −c is not used, the
21705 results of deleting file before it is printed are unspecified.

21706 FUTURE DIRECTIONS
21707 None.

21708 SEE ALSO
21709 mailx

21710 CHANGE HISTORY
21711 First released in Issue 2.

21712 Issue 4
21713 Aligned with the ISO/IEC 9945-2: 1993 standard.

21714 Issue 6
21715 The following new requirements on POSIX implementations derive from alignment with the
21716 Single UNIX Specification:

21717 • In the DESCRIPTION, the requirement to associate a unique request ID, and the normal
21718 generation of a banner page is added.

21719 • In the OPTIONS section:

21720 — The −d dest description is expanded, but references to lpstat are removed.

21721 — The −m, −o, −s, −t, and −w options are added.

21722 • In the ENVIRONMENT VARIABLES section, LC_TIME may now affect the execution.

21723 • The STDOUT section is added.

21724 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2778 Technical Standard (2000) (Draft July 31, 2000)

Utilities ls

21725 NAME
21726 ls — list directory contents

21727 SYNOPSIS
21728 XSI ls [−CFRacdilqrtu1][−H | −L] [−fgmnopsx][file ...]

21729 DESCRIPTION
21730 For each operand that names a file of a type other than directory or symbolic link to a directory,
21731 ls shall write the name of the file as well as any requested, associated information. For each
21732 operand that names a file of type directory, ls shall write the names of files contained within the
21733 directory as well as any requested, associated information. If one of the −d, −F, or −l options are
21734 specified, and one of the −H or −L options are not specified, for each operand that names a file of
21735 type symbolic link to a directory, ls shall write the name of the file as well as any requested,
21736 associated information. If none of the −d, −F, or −l options are specified, or the −H or −L options
21737 are specified, for each operand that names a file of type symbolic link to a directory, ls shall write
21738 the names of files contained within the directory as well as any requested, associated
21739 information.

21740 If no operands are specified, ls shall write the contents of the current directory. If more than one
21741 operand is specified, ls shall write non-directory operands first; it shall sort directory and non-
21742 directory operands separately according to the collating sequence in the current locale.

21743 The ls utility shall detect infinite loops; that is, entering a previously visited directory that is an
21744 ancestor of the last file encountered. When it detects an infinite loop, ls shall write a diagnostic
21745 message to standard error and shall either recover its position in the hierarchy or terminate.

21746 OPTIONS
21747 The ls utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
21748 Utility Syntax Guidelines. |

21749 The following options shall be supported:

21750 −C Write multi-text-column output with entries sorted down the columns, according
21751 to the collating sequence. The number of text columns and the column separator
21752 characters are unspecified, but should be adapted to the nature of the output
21753 device.

21754 −F Do not follow symbolic links named as operands unless the −H or −L options are |
21755 specified. Write a slash (’/’) immediately after each path name that is a directory,
21756 an asterisk (’*’) after each that is executable, a vertical bar (’|’) after each that is
21757 a FIFO, and an at sign (’@’) after each that is a symbolic link. For other file types, |
21758 other symbols may be written. |

21759 −H If a symbolic link referencing a file of type directory is specified on the command
21760 line, ls shall evaluate the file information and file type to be those of the file
21761 referenced by the link, and not the link itself; however, ls shall write the name of
21762 the link itself and not the file referenced by the link.

21763 −L Evaluate the file information and file type for all symbolic links (whether named
21764 on the command line or encountered in a file hierarchy) to be those of the file
21765 referenced by the link, and not the link itself; however, ls shall write the name of
21766 the link itself and not the file referenced by the link. When −L is used with −l, write
21767 the contents of symbolic links in the long format (see the STDOUT section).

21768 −R Recursively list subdirectories encountered.

21769 −a Write out all directory entries, including those whose names begin with a period
21770 (’.’). Entries beginning with a period shall not be written out unless explicitly

Shell and Utilities, Issue 6 2779

ls Utilities

21771 referenced, the −a option is supplied, or an implementation-defined condition shall |
21772 cause them to be written.

21773 −c Use time of last modification of the file status information (see <sys/stat.h> in the
21774 System Interfaces volume of IEEE Std. 1003.1-200x) instead of last modification of
21775 the file itself for sorting (−t) or writing (−l).

21776 −d Do not follow symbolic links named as operands unless the −H or −L options are
21777 specified. Do not treat directories differently than other types of files. The use of −d
21778 with −R produces unspecified results.

21779 XSI −f Force each argument to be interpreted as a directory and list the name found in
21780 each slot. This option shall turn off −l, −t, −s, and −r, and shall turn on −a; the order
21781 is the order in which entries appear in the directory.

21782 XSI −g The same as −l, except that the owner shall not be written.

21783 −i For each file, write the file’s file serial number (see stat() in the System Interfaces
21784 volume of IEEE Std. 1003.1-200x).

21785 −l (The letter ell.) Do not follow symbolic links named as operands unless the −H or
21786 −L options are specified. Write out in long format (see the STDOUT section). When
21787 −l (ell) is specified, −1 (one) shall be assumed.

21788 XSI −m Stream output format; list files across the page, separated by commas.

21789 XSI −n The same as −l, except that the owner’s UID and GID numbers are written, rather
21790 than the associated character strings.

21791 XSI −o The same as −l, except that the group is not written.

21792 XSI −p Write a slash (’/’) after each file name if that file is a directory.

21793 −q Force each instance of non-printable file name characters and <tab> characters to
21794 be written as the question-mark (’?’) character. Implementations may provide
21795 this option by default if the output is to a terminal device.

21796 −r Reverse the order of the sort to get reverse collating sequence or oldest first.

21797 XSI −s Indicate the total number of file system blocks consumed by each file displayed. |
21798 The block size is implementation-defined. |

21799 −t Sort by time modified (most recently modified first) before sorting the operands by
21800 the collating sequence.

21801 −u Use time of last access (see <sys/stat.h> in the System Interfaces volume of
21802 IEEE Std. 1003.1-200x) instead of last modification of the file for sorting (−t) or
21803 writing (−l).

21804 XSI −x The same as −C, except that the multi-text-column output is produced with entries
21805 sorted across, rather than down, the columns. |

21806 −1 (The numeric digit one.) Force output to be one entry per line. |

21807 Specifying more than one of the options in the following mutually exclusive pairs shall not be
21808 XSI considered an error: −C and −l (ell), −m and −l (ell), −x and −l (ell), −C and −1 (one), −H and −L,
21809 −c and −u. The last option specified in each pair shall determine the output format.

2780 Technical Standard (2000) (Draft July 31, 2000)

Utilities ls

21810 OPERANDS
21811 The following operand shall be supported:

21812 file A path name of a file to be written. If the file specified is not found, a diagnostic
21813 message shall be output on standard error.

21814 STDIN
21815 Not used.

21816 INPUT FILES
21817 None.

21818 ENVIRONMENT VARIABLES
21819 The following environment variables shall affect the execution of ls:

21820 COLUMNS Determine the user’s preferred column position width for writing multiple text-
21821 column output. If this variable contains a string representing a decimal integer, the
21822 ls utility shall calculate how many path name text columns to write (see −C) based
21823 on the width provided. If COLUMNS is not set or invalid, an implementation- |
21824 defined number of column positions shall be assumed, based on the |
21825 implementation’s knowledge of the output device. The column width chosen to
21826 write the names of files in any given directory shall be constant. File names shall
21827 not be truncated to fit into the multiple text-column output.

21828 LANG Provide a default value for the internationalization variables that are unset or null.
21829 If LANG is unset or null, the corresponding value from the implementation- |
21830 defined default locale shall be used. If any of the internationalization variables |
21831 contains an invalid setting, the utility shall behave as if none of the variables had
21832 been defined.

21833 LC_ALL If set to a non-empty string value, override the values of all the other
21834 internationalization variables.

21835 LC_COLLATE
21836 Determine the locale for character collation information in determining the path
21837 name collation sequence.

21838 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
21839 characters (for example, single-byte as opposed to multi-byte characters in
21840 arguments) and which characters are defined as printable (character class print).

21841 LC_MESSAGES
21842 Determine the locale that should be used to affect the format and contents of
21843 diagnostic messages written to standard error.

21844 LC_TIME Determine the format and contents for date and time strings written by ls.

21845 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

21846 TZ Determine the timezone for date and time strings written by ls.

21847 ASYNCHRONOUS EVENTS
21848 Default.

21849 STDOUT
21850 The default format shall be to list one entry per line to standard output; the exceptions are to
21851 XSI terminals or when one of the −C, −m, or −x options is specified. If the output is to a terminal, the
21852 format is implementation-defined. |

Shell and Utilities, Issue 6 2781

ls Utilities

21853 XSI When −m is specified, the format used shall be:

21854 "%s, %s, ...\n", < filename1 >, < filename2 >

21855 where the largest number of file names shall be written without exceeding the length of the line.

21856 If the −i option is specified, the file’s file serial number (see <sys/stat.h> in the System Interfaces
21857 volume of IEEE Std. 1003.1-200x) shall be written in the following format before any other
21858 output for the corresponding entry:

21859 %u ", < file serial number >

21860 If the −l option is specified without −L, the following information shall be written:

21861 "%s %u %s %s %u %s %s\n", <file mode >, < number of links >,
21862 <owner name >, < group name >, < number of bytes in the file >,
21863 <date and time >, < pathname >

21864 If the file is a symbolic link, this information shall be about the link itself and the <pathname>
21865 field shall be of the form:

21866 "%s −> %s", < pathname of link >, < contents of link >

21867 If both −l and −L are specified, the following information shall be written:

21868 "%s %u %s %s %u %s %s0, <file mode >, < number of links >,
21869 <owner name >, < group name >, < number of bytes in the file >,
21870 <date and time >, < pathname of link >

21871 where all fields except <pathname of link> shall be for the file resolved from the symbolic link.

21872 XSI The −g, −n, and −o options use the same format as −l, but with omitted items and their
21873 associated <blank> characters. See the OPTIONS section.

21874 XSI In both the preceding −l forms, If <owner name> or <group name> cannot be determined, or if −n
21875 is given,they shall be replaced with their associated numeric values using the format %u.

21876 The <date and time>, field shall contain the appropriate date and timestamp of when the file was
21877 last modified. In the POSIX locale, the field shall be the equivalent of the output of the following
21878 date command:

21879 date "+%b %e %H:%M"

21880 if the file has been modified in the last six months, or:

21881 date "+%b %e %Y"

21882 (where two <space> characters are used between %e and %Y) if the file has not been modified in
21883 the last six months or if the modification date is in the future, except that, in both cases, the final
21884 <newline> character produced by date shall not be included and the output shall be as if the date
21885 command were executed at the time of the last modification date of the file rather than the
21886 current time. When the LC_TIME locale category is not set to the POSIX locale, a different format
21887 and order of presentation of this field may be used.

21888 If the file is a character special or block special file, the size of the file may be replaced with |
21889 implementation-defined information associated with the device in question. |

21890 If the path name was specified as a file operand, it shall be written as specified.

21891 XSI The file mode written under the −l,−g, −n, and −ooptions shall consist of the following format:

21892 "%c%s%s%s%c", <entry type >, < owner permissions >,
21893 <group permissions >, < other permissions >,

2782 Technical Standard (2000) (Draft July 31, 2000)

Utilities ls

21894 <optional alternate access method flag >

21895 The <optional alternate access method flag> shall be a single <space> character if there is no
21896 alternate or additional access control method associated with the file; otherwise, a printable
21897 character shall be used.

21898 The <entry type> character shall describe the type of file, as follows:

21899 d Directory.

21900 b Block special file.

21901 c Character special file.

21902 l (ell) Symbolic link.

21903 p FIFO.

21904 − Regular file.

21905 Implementations may add other characters to this list to represent other implementation-defined |
21906 file types. |

21907 The next three fields shall be three characters each:

21908 <owner permissions>
21909 Permissions for the file owner class (see the Base Definitions volume of |
21910 IEEE Std. 1003.1-200x, Section 4.1, File Access Permissions). |

21911 <group permissions>
21912 Permissions for the file group class.

21913 <other permissions>
21914 Permissions for the file other class.

21915 Each field shall have three character positions:

21916 1. If ’r’ , the file is readable; if ’ −’ , the file is not readable.

21917 2. If ’w’ , the file is writable; if ’ −’ , the file is not writable.

21918 3. The first of the following that applies:

21919 S If in <owner permissions>, the file is not executable and set-user-ID mode is set. If in
21920 <group permissions>, the file is not executable and set-group-ID mode is set.

21921 s If in <owner permissions>, the file is executable and set-user-ID mode is set. If in
21922 <group permissions>, the file is executable and set-group-ID mode is set.

21923 x The file is executable or the directory is searchable.

21924 − None of the attributes of ’S’ , ’s’ , or ’x’ applies.

21925 Implementations may add other characters to this list for the third character position. Such
21926 additions shall, however, be written in lowercase if the file is executable or searchable, and
21927 in uppercase if it is not.

21928 XSI If any of the −l,−g, −n, −o, or −s options is specified, each list of files within the directory shall be
21929 preceded by a status line indicating the number of file system blocks occupied by files in the
21930 directory in 512-byte units, rounded up to the next integral number of units, if necessary. In the
21931 POSIX locale, the format shall be:

21932 "total %u\n", < number of units in the directory >

Shell and Utilities, Issue 6 2783

ls Utilities

21933 If more than one directory, or a combination of non-directory files and directories are written,
21934 either as a result of specifying multiple operands, or the −R option, each list of files within a
21935 directory shall be preceded by:

21936 "\n%s:\n", < directory name >

21937 If this string is the first thing to be written, the first <newline> character shall not be written.
21938 This output shall precede the number of units in the directory.

21939 XSI If the −s option is given, each file shall be written with the number of blocks used by the file.
21940 Along with −C, −1, −m, or −x, the number and a <space> character shall precede the file name;
21941 with −g, −l, −n, or −o, they shall precede each line describing a file.

21942 STDERR
21943 Used only for diagnostic messages.

21944 OUTPUT FILES
21945 None.

21946 EXTENDED DESCRIPTION
21947 None.

21948 EXIT STATUS
21949 The following exit values shall be returned:

21950 0 Successful completion.

21951 >0 An error occurred.

21952 CONSEQUENCES OF ERRORS
21953 Default.

21954 APPLICATION USAGE
21955 Many implementations use the equal sign (’=’) and the at sign (’@’) to denote sockets bound to
21956 the file system and symbolic links, respectively, for the −F option. Similarly, many historical
21957 implementations use the ’s’ character and the ’l’ character to denote sockets and symbolic
21958 links, respectively, as the entry type characters for the −l option.

21959 It is difficult for an application to use every part of the file modes field of ls −l in a portable
21960 manner. Certain file types and executable bits are not guaranteed to be exactly as shown, as
21961 implementations may have extensions. Applications can use this field to pass directly to a user
21962 printout or prompt, but actions based on its contents should generally be deferred, instead, to
21963 the test utility.

21964 The output of ls (with the −l and related options) contains information that logically could be
21965 used by utilities such as chmod and touch to restore files to a known state. However, this
21966 information is presented in a format that cannot be used directly by those utilities or be easily
21967 translated into a format that can be used. A character has been added to the end of the
21968 permissions string so that applications at least have an indication that they may be working in
21969 an area they do not understand instead of assuming that they can translate the permissions
21970 string into something that can be used. Future issues or related documents may define one or
21971 more specific characters to be used based on different standard additional or alternative access
21972 control mechanisms.

21973 As with many of the utilities that deal with file names, the output of ls for multiple files or in one
21974 of the long listing formats must be used carefully on systems where file names can contain
21975 embedded white space. Systems and system administrators should institute policies and user
21976 training to limit the use of such file names.

2784 Technical Standard (2000) (Draft July 31, 2000)

Utilities ls

21977 The number of disk blocks occupied by the file that it reports varies depending on underlying
21978 file system type, block size units reported, and the method of calculating the number of blocks.
21979 On some file system types, the number is the actual number of blocks occupied by the file
21980 (counting indirect blocks and ignoring holes in the file); on others it is calculated based on the
21981 file size (usually making an allowance for indirect blocks, but ignoring holes).

21982 EXAMPLES
21983 An example of a small directory tree being fully listed with ls −laRF a in the POSIX locale:

21984 total 11
21985 drwxr-xr-x 3 hlj prog 64 Jul 4 12:07 ./
21986 drwxrwxrwx 4 hlj prog 3264 Jul 4 12:09 ../
21987 drwxr-xr-x 2 hlj prog 48 Jul 4 12:07 b/
21988 -rwxr--r-- 1 hlj prog 572 Jul 4 12:07 foo*

21989 a/b:
21990 total 4
21991 drwxr-xr-x 2 hlj prog 48 Jul 4 12:07 ./
21992 drwxr-xr-x 3 hlj prog 64 Jul 4 12:07 ../
21993 -rw-r--r-- 1 hlj prog 700 Jul 4 12:07 bar

21994 RATIONALE
21995 Some historical implementations of the ls utility show all entries in a directory except dot and
21996 dot-dot when a superuser invokes ls without specifying the −a option. When ‘‘normal’’ users
21997 invoke ls without specifying −a, they should not see information about any files with names
21998 beginning with period unless they were named as file operands. |

21999 Implementations are expected to traverse arbitrary depths when processing the −R option. The
22000 only limitation on depth should be based on running out of physical storage for keeping track of
22001 untraversed directories.

22002 The −1 (one) option is currently found in BSD and BSD-derived implementations only. It is
22003 required in this volume of IEEE Std. 1003.1-200x so that portable applications might ensure that
22004 output is one entry per line, even if the output is to a terminal.

22005 Generally, this volume of IEEE Std. 1003.1-200x is silent about what happens when options are
22006 given multiple times. In the cases of −C, −l, and −1, however, it does specify the results of these
22007 overlapping options. Since ls is one of the most aliased commands, it is important that the
22008 implementation perform intuitively. For example, if the alias were:

22009 alias ls="ls −C"

22010 and the user typed ls −1, single-text-column output should result, not an error.

22011 The BSD ls provides a −A option (like −a, but dot and dot-dot are not written out). The small
22012 difference from −a did not seem important enough to require both.

22013 Implementations are allowed to make −q the default for terminals to prevent trojan horse
22014 attacks on terminals with special escape sequences. This is not required because:

22015 • Some control characters may be useful on some terminals; for example, a system might write
22016 them as "\001" or "ˆA" .

22017 • Special behavior for terminals is not relevant to application portability.

22018 An early proposal specified that the optional alternate access method flag had to be ’+’ if there
22019 was an alternate access method used on the file or <space> if there was not. This was changed to
22020 be <space> if there is not and a single printable character if there is. This was done for three
22021 reasons:

Shell and Utilities, Issue 6 2785

ls Utilities

22022 1. There are historical implementations using characters other than ’+’ .

22023 2. There are implementations that vary this character used in that position to distinguish
22024 between various alternate access methods in use.

22025 3. The standard developers did not want to preclude futures specifications that might need a
22026 way to specify more than one alternate access method.

22027 Nonetheless, implementations providing a single alternate access method are encouraged to use
22028 ’+’ .

22029 In an early proposal, the units used to specify the number of blocks occupied by files in a
22030 directory in an ls −l listing was implementation-defined. This was because BSD systems have |
22031 historically used 1 024-byte units and System V systems have historically used 512-byte units. It
22032 was pointed out by BSD developers that their system has used 512-byte units in some places and
22033 1 024-byte units in other places. (System V has consistently used 512.) Therefore, this volume of
22034 IEEE Std. 1003.1-200x usually specifies 512. Future releases of BSD are expected to consistently
22035 provide 512 bytes as a default with a way of specifying 1 024-byte units where appropriate.

22036 The <date and time> field in the −l format is specified only for the POSIX locale. As noted, the
22037 format can be different in other locales. No mechanism for defining this is present in this volume
22038 of IEEE Std. 1003.1-200x, as the appropriate vehicle is a messaging system; that is, the format
22039 should be specified as a ‘‘message’’.

22040 FUTURE DIRECTIONS
22041 The −s uses implementation-defined units and cannot be used portably; it may be withdrawn in |
22042 a future issue.

22043 SEE ALSO
22044 chmod , find , the System Interfaces volume of IEEE Std. 1003.1-200x, <sys/stat.h>

CHANGE22045 HISTORY
22046 First released in Issue 2.

22047 Issue 4
22048 Aligned with the ISO/IEC 9945-2: 1993 standard.

22049 Issue 5
22050 Second FUTURE DIRECTION added.

22051 Issue 6
22052 The following new requirements on POSIX implementations derive from alignment with the
22053 Single UNIX Specification:

22054 • In the −F option, other symbols are allowed for other file types.

22055 Treatment of symbolic links is added, as defined in the IEEE P1003.2b draft standard.

2786 Technical Standard (2000) (Draft July 31, 2000)

Utilities m4

22056 NAME
22057 m4 — macro processor (DEVELOPMENT)

22058 SYNOPSIS
22059 XSI m4 [−s][−D name[=val]] ... [−U name] ... file ...
22060

22061 DESCRIPTION
22062 The m4 utility is a macro processor that shall read one or more text files, process them according
22063 to their included macro statements, and write the results to standard output.

22064 OPTIONS
22065 The m4 utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
22066 12.2, Utility Syntax Guidelines, except that the order of the −D and −U options shall be |
22067 significant.

22068 The following options shall be supported:

22069 −s Enable line synchronization output for the c99 preprocessor phase (that is, #line |
22070 directives).

22071 −D name[=val]
22072 Define name to val or to null if =val is omitted.

22073 −U name Undefine name.

22074 OPERANDS
22075 The following operand shall be supported:

22076 file A path name of a text file to be processed. If no file is given, or if it is ’ −’ , the
22077 standard input shall be read.

22078 STDIN
22079 The standard input shall be a text file that is used if no file operand is given, or if it is ’ −’ .

22080 INPUT FILES
22081 The input file named by the file operand shall be a text file.

22082 ENVIRONMENT VARIABLES
22083 The following environment variables shall affect the execution of m4:

22084 LANG Provide a default value for the internationalization variables that are unset or null.
22085 If LANG is unset or null, the corresponding value from the implementation- |
22086 defined default locale shall be used. If any of the internationalization variables |
22087 contains an invalid setting, the utility shall behave as if none of the variables had
22088 been defined.

22089 LC_ALL If set to a non-empty string value, override the values of all the other
22090 internationalization variables.

22091 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
22092 characters (for example, single-byte as opposed to multi-byte characters in
22093 arguments and input files).

22094 LC_MESSAGES
22095 Determine the locale that should be used to affect the format and contents of
22096 diagnostic messages written to standard error.

22097 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Shell and Utilities, Issue 6 2787

m4 Utilities

22098 ASYNCHRONOUS EVENTS
22099 Default.

22100 STDOUT
22101 The standard output shall be the same as the input files, after being processed for macro
22102 expansion.

22103 STDERR
22104 Used to display strings with the errprint macro, macro tracing enabled by the traceon macro, the
22105 defined text for macros written by the dumpdef macro, or for diagnostic messages.

22106 OUTPUT FILES
22107 None.

22108 EXTENDED DESCRIPTION
22109 The m4 utility shall compare each token from the input against the set of built-in and user-
22110 defined macros. If the token matches the name of a macro, then the token shall be replaced by
22111 the macros defining text, if any, and rescanned for matching macro names. Once no portion of
22112 the token matches the name of a macro, it shall be written to standard output. Macros may have
22113 arguments, in which case the arguments shall be substituted into the defining text before it is
22114 rescanned.

22115 Macro calls have the form:

22116 name(arg1 , arg2 , ..., argn)

22117 Macro names shall consist of letters, digits, and underscores, where the first character is not a
22118 digit. Tokens not of this form shall not be treated as macro names.

22119 The application shall ensure that the left parenthesis immediately follows the name of the
22120 macro. If a token matching the name of a macro is not followed by a left parenthesis, it is
22121 handled as a use of that macro without arguments.

22122 If a macro name is followed by a left parenthesis, its arguments are the comma-separated tokens
22123 between the left parenthesis and the matching right parenthesis. Unquoted <blank> and
22124 <newline> characters preceding each argument shall be ignored. All other characters, including
22125 trailing <blank> and <newline> characters, are retained. Commas enclosed between left and
22126 right parenthesis characters do not delimit arguments.

22127 Arguments are positionally defined and referenced. The string "$1" in the defining text shall be
22128 replaced by the first argument. Systems shall support at least nine arguments; only the first nine
22129 can be referenced, using the strings "$1" to "$9" , inclusive. The string "$0" is replaced with
22130 the name of the macro. The string "$#" is replaced by the number of arguments as a string. The
22131 string "$*" is replaced by a list of all of the arguments, separated by commas. The string "$@"
22132 is replaced by a list of all of the arguments separated by commas, and each argument is quoted
22133 using the current left and right quoting strings.

22134 If fewer arguments are supplied than are in the macro definition, the omitted arguments are
22135 taken to be null. It is not an error if more arguments are supplied than are in the macro
22136 definition.

22137 No special meaning is given to any characters enclosed between matching left and right quoting
22138 strings, but the quoting strings are themselves discarded. By default, the left quoting string
22139 consists of a grave accent (’‘’) and the right quoting string consists of an acute accent (’’’) see
22140 also the changequote macro.

22141 Comments are written but not scanned for matching macro names; by default, the begin-
22142 comment string consists of the number sign character and the end-comment string consists of a
22143 <newline> character. See also the changecom and dnl macros.

2788 Technical Standard (2000) (Draft July 31, 2000)

Utilities m4

22144 The m4 utility makes available the following built-in macros. They can be redefined, but once
22145 this is done the original meaning is lost. Their values are null unless otherwise stated. In the
22146 descriptions below, the term defining text refers to the value of the macro: the second argument
22147 to the define macro, among other things. Except for the first argument to the eval macro, all |
22148 numeric built-in macro arguments shall be interpreted as decimal values. The string values |
22149 produced as the defining text of the decr, divnum, incr, index, len, and sysval built-in macros |
22150 shall be in the form of a decimal-constant as defined in the C language. |

22151 changecom The changecom macro sets the begin-comment and end-comment strings. With no
22152 arguments, the comment mechanism is disabled. With a single argument, that
22153 argument becomes the begin-comment string and the <newline> character
22154 becomes the end-comment string. With two arguments, the first argument
22155 becomes the begin-comment string and the second argument becomes the end-
22156 comment string. Systems support comment strings of at least five characters.

22157 changequote The changequote macro sets the begin-quote and end-quote strings. With no
22158 arguments, the quote strings are set to the default values (that is, ‘ ’). With a
22159 single argument, that argument becomes the begin-quote string and the <newline>
22160 character becomes the end-quote string. With two arguments, the first argument
22161 becomes the begin-quote string and the second argument becomes the end-quote
22162 string. Systems support quote strings of at least five characters.

22163 decr The defining text of the decr macro is its first argument decremented by 1. It is an
22164 error to specify an argument containing any non-numeric characters. |

22165 define The second argument is specified as the defining text of the macro whose name is
22166 the first argument.

22167 defn The defining text of the defn macro is the quoted definition (using the current
22168 quoting strings) of its arguments.

22169 divert The m4 utility maintains ten temporary buffers, numbered 0 to 9, inclusive.

22170 Notes to Reviewers
22171 This section with side shading will not appear in the final copy. - Ed.

22172 Re D1, XCU, ERN 286: Buffer 0 seems strange: it’s one of the 10 buffers, and thus
22173 should be a diversion buffer, but at 19704 it implies that it’s the name of the main
22174 output. What is it (or are there really only 9 diversion buffers?) Also, see austin-
22175 group mail sequence #295.
22176 When the last of the input has been processed, any output that has been placed in
22177 these buffers is written to standard output in buffer-numerical order. The divert
22178 macro diverts future output to the buffer specified by its argument. Specifying no
22179 argument or an argument of 0 resumes the normal output process. Output
22180 diverted to a stream other than 0 to 9 is discarded. It is an error to specify an
22181 argument containing any non-numeric characters.

22182 divnum The defining text of the divnum macro is the number of the current output stream
22183 as a string.

22184 dnl The dnl macro shall cause m4 to discard all input characters up to and including
22185 the next <newline> character.

22186 dumpdef The dumpdef macro writes the defined text to standard error for each of the
22187 macros specified as arguments, or, if no arguments are specified, for all macros.

Shell and Utilities, Issue 6 2789

m4 Utilities

22188 errprint The errprint macro writes its arguments to standard error.

22189 eval The eval macro evaluates its first argument as an arithmetic expression, using 32-
22190 bit signed integer arithmetic. All of the C-language operators are supported, except |
22191 for: |

22192 [] |
22193 −> |
22194 ++ |
22195 − − |
22196 (type) |
22197 unary * |
22198 sizeof |
22199 , |
22200 . |
22201 ?: |
22202 unary & |

22203 and all assignment operators. It is an error to specify any of these operators. |
22204 Precedence and associativity are as in C. Systems support octal and hexadecimal
22205 numbers as in C. The second argument, if specified, sets the radix for the result; the
22206 default is 10. The third argument, if specified, sets the minimum number of digits
22207 in the result. It is an error to specify the second or third argument containing any
22208 non-numeric characters.

22209 ifdef If the first argument to the ifdef macro is defined, the defining text is the second
22210 argument. Otherwise, the defining text is the third argument, if specified, or the
22211 null string, if not.

22212 ifelse If the first argument (or the defining text of the first argument if it is a macro
22213 name) to the ifelse macro is the same as the second argument (or the defining text
22214 of the second argument if it is a macro name), then the defining text is the third
22215 argument.

22216 Notes to Reviewers
22217 This section with side shading will not appear in the final copy. - Ed.

22218 D1, XCU, ERN 287 (as modified by email #297) suggests the following replacement
22219 text for ifelse: "This function takes 3n+0 or 3n+1 arguments. For each group of 3
22220 arguments, if the first and second are the same, the result is the third of the group.
22221 If the strings are not equal, and no arguments remain, the defining text is null. If
22222 one argument remains, it becomes the defining text. If three or more arguments
22223 remain, the process is repeated with the new group of three arguments. If 3n+2
22224 arguments are provided, the evaluation proceeds as above, but a warning is
22225 generated and the last argument ignored.
22226 If there are more than four arguments, the initial comparison of the first and
22227 second arguments are repeated for each group of three arguments. If no match is
22228 found, the defining text is the argument following the last set of three compared;
22229 otherwise, it is null.

22230 include The defining text for the include macro is the contents of the file named by the first
22231 argument. It is an error if the file cannot be read.

22232 incr The defining text of the incr macro is its first argument incremented by 1. It is an
22233 error to specify an argument containing any non-numeric characters.

2790 Technical Standard (2000) (Draft July 31, 2000)

Utilities m4

22234 index The defining text of the index macro is the first character position (as a string) in
22235 the first argument where a string matching the second argument begins (zero |
22236 origin), or −1 if the second argument does not occur. |

22237 len The defining text of the len macro is the length (as a string) of the first argument.

22238 m4exit Exit from the m4 utility. If the first argument is specified, it is the exit code. The
22239 default is zero. It is an error to specify an argument containing any non-numeric
22240 characters.

22241 m4wrap The first argument is processed when EOF is reached. If the m4wrap macro is used
22242 multiple times, the arguments specified are processed in the order in which the
22243 m4wrap macros were processed.

22244 maketemp The defining text is the first argument, with any trailing ’X’ characters replaced
22245 with the current process ID as a string.

22246 popdef The popdef macro deletes the current definition of its arguments, replacing that |
22247 definition with the previous one. If there is no previous definition, the macro is |
22248 undefined. |

22249 pushdef The pushdef macro is identical to the define macro with the exception that it
22250 preserves any current definition for future retrieval using the popdef macro.

22251 shift The defining text for the shift macro is all of its arguments except for the first one.

22252 sinclude The sinclude macro is identical to the include macro, except that it is not an error
22253 if the file is inaccessible.

22254 substr The defining text for the substr macro is the substring of the first argument
22255 beginning at the zero-offset character position specified by the second argument.
22256 The third argument, if specified, is the number of characters to select; if not
22257 specified, the characters from the starting point to the end of the first argument
22258 become the defining text. It is not an error to specify a starting point beyond the
22259 end of the first argument and the defining text is null. It is an error to specify an
22260 argument containing any non-numeric characters.

22261 syscmd The syscmd macro interprets its first argument as a shell command line. The
22262 defining text is the string result of that command. No output redirection is
22263 performed by the m4 utility. The exit status value from the command can be
22264 retrieved using the sysval macro.

22265 sysval The defining text of the sysval macro is the exit value of the utility last invoked by
22266 the syscmd macro (as a string).

22267 traceon The traceon macro enables tracing for the macros specified as arguments, or, if no
22268 arguments are specified, for all macros. The trace output is written to standard
22269 error in an unspecified format.

22270 traceoff The traceoff macro disables tracing for the macros specified as arguments, or, if no
22271 arguments are specified, for all macros.

22272 translit The defining text of the translit macro is the first argument with every character
22273 that occurs in the second argument replaced with the corresponding character
22274 from the third argument.

22275 undefine The undefine macro deletes all definitions (including those preserved using the
22276 pushdef macro) of the macros named by its arguments.

Shell and Utilities, Issue 6 2791

m4 Utilities

22277 undivert The undivert macro shall cause immediate output of any text in temporary buffers
22278 named as arguments, or all temporary buffers if no arguments are specified.
22279 Buffers can be undiverted into other temporary buffers. Undiverting discards the
22280 contents of the temporary buffer. It is an error to specify an argument containing
22281 any non-numeric characters.

22282 EXIT STATUS
22283 The following exit values shall be returned:

22284 0 Successful completion.

22285 >0 An error occurred

22286 If the m4exit macro is used, the exit value can be specified by the input file.

22287 CONSEQUENCES OF ERRORS
22288 Default.

22289 APPLICATION USAGE
22290 The defn macro is useful for renaming macros, especially built-ins.

22291 EXAMPLES
22292 An example of a single m4 input file capable of generating two output files follows. The file
22293 file1.m4 could contain lines such as:

22294 if(VER, 1, do_something)
22295 if(VER, 2, do_something)

22296 The makefile for the program might include:

22297 file1.1.c : file1.m4
22298 m4 −D VER=1 file1.m4 > file1.1.c
22299 ...
22300 file1.2.c : file1.m4
22301 m4 −D VER=2 file1.m4 > file1.2.c
22302 ...

22303 The −U option can be used to undefine VER. If file1.m4 contains:

22304 if(VER, 1, do_something)
22305 if(VER, 2, do_something)
22306 ifndef(VER, do_something)

22307 then the makefile would contain:

22308 file1.0.c : file1.m4
22309 m4 −U VER file1.m4 > file1.0.c
22310 ...
22311 file1.1.c : file1.m4
22312 m4 −D VER=1 file1.m4 > file1.1.c
22313 ...
22314 file1.2.c : file1.m4
22315 m4 −D VER=2 file1.m4 > file1.2.c
22316 ...

22317 RATIONALE
22318 None.

2792 Technical Standard (2000) (Draft July 31, 2000)

Utilities m4

22319 FUTURE DIRECTIONS
22320 None.

22321 SEE ALSO
22322 c99 |

22323 CHANGE HISTORY
22324 First released in Issue 2.

22325 Issue 4
22326 Format reorganized.

22327 Utility Syntax Guideline support mandated.

22328 Internationalized environment variable support mandated.

22329 Issue 5
22330 The phrase ‘‘the defined text for macros written by the dumpdef macro’’ is added to the
22331 description of STDERR, and the description of dumpdef is updated to indicate that output is
22332 written to standard error. The description of eval is updated to indicate that the list of excluded
22333 C operators excludes unary ’&’ and ’.’ . In the description of ifdef, the phrase ‘‘and it is not
22334 defined to be zero’’ is deleted.

22335 Issue 6
22336 In the EXTENDED DESCRIPTION, the eval text is updated to include a ’&’ character in the
22337 excepted list.

22338 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

22339 The Open Group Base Resolution bwg2000-006 is applied. |

Shell and Utilities, Issue 6 2793

mailx Utilities

22340 NAME
22341 mailx — process messages

22342 SYNOPSIS

22343 Send Mode

22344 mailx [−s subject] address ...

22345 Receive Mode

22346 mailx −e

22347 mailx [−HiNn][−F][−u user]

22348 mailx −f [−HiNn][−F][file]

22349 DESCRIPTION
22350 The mailx utility provides a message sending and receiving facility. It has two major modes,
22351 selected by the options used: Send Mode and Receive Mode.

22352 On systems that do not support the User Portability Utilities option, an application using mailx
22353 shall have the ability to send messages in an unspecified manner (Send Mode). Unless the first
22354 character of one or more lines is tilde (’˜’), all characters in the input message shall appear in
22355 the delivered message, but additional characters may be inserted in the message before it is
22356 retrieved.

22357 On systems supporting the User Portability Utilities option, mail-receiving capabilities and other
22358 interactive features, Receive Mode, described below, also shall be enabled.

22359 Send Mode

22360 Send Mode can be used by applications or users to send messages from the text in standard
22361 input.

22362 Receive Mode

22363 Receive Mode is more oriented to interactive users. Mail can be read and sent in this interactive
22364 mode.

22365 When reading mail, mailx provides commands to facilitate saving, deleting, and responding to
22366 messages. When sending mail, mailx allows editing, reviewing, and other modification of the
22367 message as it is entered.

22368 Incoming mail shall be stored in one or more unspecified locations for each user, collectively
22369 called the system mailbox for that user. When mailx is invoked in Receive Mode, the system
22370 mailbox shall be the default place to find new mail. As messages are read, they shall be marked
22371 to be moved to a secondary file for storage, unless specific action is taken. This secondary file is
22372 called the mbox and is normally located in the directory referred to by the HOME environment
22373 variable (see MBOX in the ENVIRONMENT VARIABLES section for a description of this file).
22374 Messages shall remain in this file until explicitly removed. When the −f option is used to read
22375 mail messages from secondary files, messages shall be retained in those files unless specifically
22376 removed. All three of these locations—system mailbox, mbox, and secondary file—are referred
22377 to in this section as simply ‘‘mailboxes’’, unless more specific identification is required.

2794 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

22378 OPTIONS
22379 The mailx utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section
22380 12.2, Utility Syntax Guidelines.

22381 The following options shall be supported. (Only the −s subject option shall be required on all
22382 systems. The other options are required only on systems supporting the User Portability Utilities
22383 option.)

22384 −e Test for the presence of mail in the system mailbox. The mailx utility shall write
22385 nothing and exit with a successful return code if there is mail to read.

22386 −f Read messages from the file named by the file operand instead of the system
22387 mailbox. (See also folder.) If no file operand is specified, read messages from the
22388 mbox instead of the system mailbox.

22389 −F Record the message in a file named after the first recipient. The name is the login-
22390 name portion of the address found first on the To: line in the mail header.
22391 Overrides the record variable, if set (see Internal Variables in mailx (on page
22392 2801).)

22393 −H Write a header summary only.

22394 −i Ignore interrupts. (See also ignore).

22395 −n Do not initialize from the system default start-up file. See the EXTENDED
22396 DESCRIPTION section.

22397 −N Do not write an initial header summary.

22398 −s subject Set the Subject header field to subject. All characters in the subject string shall
22399 appear in the delivered message. The results are unspecified if subject is longer
22400 than {LINE_MAX} − 10 bytes or contains a <newline> character.

22401 −u user Read the system mailbox of the login name user. This shall only be successful if
22402 the invoking user has the appropriate privileges to read the system mailbox of that
22403 user.

22404 OPERANDS
22405 The following operands shall be supported:

22406 address Addressee of message. When −n is specified and no user start-up files are accessed
22407 (see the EXTENDED DESCRIPTION section), the user or application shall ensure
22408 this is an address to pass to the mail delivery system. Any system or user start-up
22409 files may enable aliases (see alias under Commands in mailx (on page 2804)) that
22410 may modify the form of address before it is passed to the mail delivery system.

22411 file A path name of a file to be read instead of the system mailbox when −f is specified.
22412 The meaning of the file option-argument shall be affected by the contents of the
22413 folder internal variable; see Internal Variables in mailx (on page 2801).

22414 STDIN
22415 When mailx is invoked in Send Mode (the first synopsis line), standard input shall be the
22416 message to be delivered to the specified addresses. When in Receive Mode, user commands are
22417 accepted from stdin . If the User Portability Utilities option is not supported, standard input lines
22418 beginning with a tilde (’˜’) character produce unspecified results.

22419 If the User Portability Utilities option is supported, then in both Send and Receive Modes,
22420 standard input lines beginning with the escape character (usually tilde (’˜’)) affect processing
22421 as described in Command Escapes in mailx (on page 2812).

Shell and Utilities, Issue 6 2795

mailx Utilities

22422 INPUT FILES
22423 When mailx is used as described by this volume of IEEE Std. 1003.1-200x, the file option-
22424 argument (see the −f option) and the mbox shall be text files containing mail messages,
22425 formatted as described in the OUTPUT FILES section. The nature of the system mailbox is
22426 unspecified; it need not be a file.

22427 ENVIRONMENT VARIABLES
22428 The following environment variables shall affect the execution of mailx:

22429 DEAD Determine the path name of the file in which to save partial messages in case of
22430 interrupts or delivery errors. The default shall be dead.letter in the directory
22431 named by the HOME variable. The behavior of mailx in saving partial messages is
22432 unspecified if the User Portability Utilities option is not supported and DEAD is
22433 not defined with the value /dev/null.

22434 EDITOR Determine the name of a utility to invoke when the edit (see Commands in mailx
22435 (on page 2804)) or ˜e (see Command Escapes in mailx (on page 2812)) command is
22436 XSI used. The default editor is unspecified. On XSI-conformant systems it is ed. The
22437 effects of this variable are unspecified if the User Portability Utilities option is not
22438 supported.

22439 HOME Determine the path name of the user’s home directory.

22440 LANG Provide a default value for the internationalization variables that are unset or null.
22441 If LANG is unset or null, the corresponding value from the implementation-
22442 defined default locale shall be used. If any of the internationalization variables
22443 contains an invalid setting, the utility shall behave as if none of the variables had
22444 been defined.

22445 LC_ALL If set to a non-empty string value, override the values of all the other
22446 internationalization variables.

22447 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
22448 characters (for example, single-byte as opposed to multi-byte characters in
22449 arguments and input files) and the handling of case-insensitive address and
22450 header-field comparisons.

22451 LC_TIME Determine the format and contents of the date and time strings written by mailx.

22452 LC_MESSAGES
22453 Determine the locale that should be used to affect the format and contents of
22454 diagnostic messages written to standard error and informative messages written to
22455 standard output.

22456 LISTER Determine a string representing the command for writing the contents of the
22457 folder directory to standard output when the folders command is given (see
22458 folders in Commands in mailx (on page 2804)). Any string acceptable as a
22459 command_string operand to the sh −c command shall be valid. If this variable is null
22460 or not set, the output command shall be ls. The effects of this variable are
22461 unspecified if the User Portability Utilities option is not supported.

22462 MAILRC Determine the path name of the start-up file. The default shall be .mailrc in the
22463 directory referred to by the HOME environment variable. The behavior of mailx is
22464 unspecified if the User Portability Utilities option is not supported and MAILRC is
22465 not defined with the value /dev/null.

22466 MBOX Determine a path name of the file to save messages from the system mailbox that
22467 have been read. The exit command shall override this function, as shall saving the

2796 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

22468 message explicitly in another file. The default shall be mbox in the directory
22469 named by the HOME variable. The effects of this variable are unspecified if the
22470 User Portability Utilities option is not supported.

22471 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

22472 PAGER Determine a string representing an output filtering or pagination command for
22473 writing the output to the terminal. Any string acceptable as a command_string
22474 operand to the sh −c command shall be valid. When standard output is a terminal
22475 device, the message output shall be piped through the command if the mailx
22476 internal variable crt is set to a value less the number of lines in the message; see
22477 Internal Variables in mailx (on page 2801). If the PAGER variable is null or not
22478 set, the paginator shall be either more or another paginator utility documented in
22479 the system documentation. The effects of this variable are unspecified if the User
22480 Portability Utilities option is not supported.

22481 SHELL Determine the name of a preferred command interpreter. The default shall be sh.
22482 The effects of this variable are unspecified if the User Portability Utilities option is
22483 not supported.

22484 TERM Determine the name of the terminal type, to indicate in an unspecified manner, if
22485 the internal variable screen is not specified, the number of lines in a screenful of
22486 headers. If TERM is not set or is set to null, an unspecified default terminal type
22487 shall be used and the value of a screenful is unspecified. The effects of this variable
22488 are unspecified if the User Portability Utilities option is not supported.

22489 VISUAL Determine a path name of a utility to invoke when the visual command (see
22490 Commands in mailx (on page 2804)) or ˜v command-escape (see Command
22491 Escapes in mailx (on page 2812)) is used. If this variable is null or not set, the full-
22492 screen editor shall be vi. The effects of this variable are unspecified if the User
22493 Portability Utilities option is not supported.

22494 ASYNCHRONOUS EVENTS
22495 When mailx is in Send Mode and standard input is not a terminal, it shall take the standard
22496 action for all signals.

22497 In Receive Mode, or in Send Mode when standard input is a terminal, if a SIGINT signal is
22498 received:

22499 1. If in command mode, the current command, if there is one, shall be aborted, and a
22500 command-mode prompt shall be written.

22501 2. If in input mode:

22502 a. If ignore is set, mailx shall write "@\n" , discard the current input line, and continue
22503 processing, bypassing the message-abort mechanism described in item 2b.

22504 b. If the interrupt was received while sending mail, either when in Receive Mode or in
22505 Send Mode, a message shall be written, and another subsequent interrupt, with no
22506 other intervening characters typed, shall be required to abort the mail message. If in
22507 Receive Mode and another interrupt is received, a command-mode prompt shall be
22508 written. If in Send Mode and another interrupt is received, mailx shall terminate with
22509 a non-zero status.

22510 In both cases listed in item b, if the message is not empty:

22511 i. If save is enabled and the file named by DEAD can be created, the message
22512 shall be written to the file named by DEAD. If the file exists, the message shall
22513 be written to replace the contents of the file.

Shell and Utilities, Issue 6 2797

mailx Utilities

22514 ii. If save is not enabled, or the file named by DEAD cannot be created, the
22515 message shall not be saved.

22516 The mailx utility shall take the standard action for all other signals.

22517 STDOUT
22518 In command and input modes, all output, including prompts and messages, shall be written to
22519 standard output.

22520 STDERR
22521 Used only for diagnostic messages.

22522 OUTPUT FILES
22523 Various mailx commands and command escapes can create or add to files, including the mbox,
22524 the dead-letter file, and secondary mailboxes. When mailx is used as described in this volume of
22525 IEEE Std. 1003.1-200x, these files shall be text files, formatted as follows:

22526 line beginning with From<space>
22527 [one or more header-lines ; see Commands in mailx (on page 2804)]
22528 empty line
22529 [zero or more body lines
22530 empty line]
22531 [line beginning with From<space>...]

22532 where each message begins with the From <space> line shown, preceded by the beginning of
22533 the file or an empty line. (The From <space> line is considered to be part of the message header,
22534 but not one of the header-lines referred to in Commands in mailx (on page 2804); thus, it shall
22535 not be affected by the discard, ignore, or retain commands.) The formats of the remainder of the
22536 From <space> line and any additional header lines are unspecified, except that none shall be
22537 empty. The format of a message body line is also unspecified, except that no line following an
22538 empty line shall start with From <space>; mailx shall modify any such user-entered message
22539 body lines (following an empty line and beginning with From <space>) by adding one or more
22540 characters to precede the ’F’ ; it may add these characters to From <space> lines that are not
22541 preceded by an empty line.

22542 When a message from the system mailbox or entered by the user is not a text file, it is
22543 implementation-defined how such a message is stored in files written by mailx.

22544 EXTENDED DESCRIPTION
22545 The entire EXTENDED DESCRIPTION section shall apply only to implementations supporting
22546 the User Portability Utilities option.

22547 The mailx utility cannot guarantee support for all character encodings in all circumstances. For
22548 example, inter-system mail may be restricted to 7-bit data by the underlying network, 8-bit data
22549 need not be portable to non-internationalized systems, and so on. Under these circumstances, it
22550 is recommended that only characters defined in the ISO/IEC 646: 1991 standard International
22551 Reference Version (equivalent to ASCII) 7-bit range of characters be used.

22552 When mailx is invoked using one of the Receive Mode synopsis forms, it shall write a page of
22553 header-summary lines (if −N was not specified and there are messages, see below), followed by
22554 a prompt indicating that mailx can accept regular commands (see Commands in mailx (on page
22555 2804)); this is termed command mode. The page of header-summary lines shall contain the first
22556 new message if there are new messages, or the first unread message if there are unread
22557 messages, or the first message. When mailx is invoked using the Send Mode synopsis and
22558 standard input is a terminal, if no subject is specified on the command line and the asksub
22559 variable is set, a prompt for the subject shall be written. At this point, mailx is in input mode.
22560 This input mode is also entered when using one of the Receive Mode synopsis forms and a reply

2798 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

22561 or new message is composed using the reply, Reply, followup, Followup, or mail commands
22562 and standard input is a terminal. When the message is typed and the end of message is
22563 encountered, the message shall be passed to the mail delivery software. Commands can be
22564 entered by beginning a line with the escape character (by default, tilde (’˜’)) followed by a
22565 single command letter and optional arguments. See Commands in mailx (on page 2804) for a
22566 summary of these commands. It is unspecified what effect these commands will have if
22567 standard input is not a terminal when a message is entered using either the Send Mode synopsis,
22568 or the Read Mode commands reply, Reply, followup, Followup, or mail.

22569 Note: For notational convenience, this section uses the default escape character, tilde, in all
22570 references and examples.

22571 At any time, the behavior of mailx shall be governed by a set of environmental and internal
22572 variables. These are flags and valued parameters that can be set and cleared via the mailx set
22573 and unset commands.

22574 Regular commands are of the form:

22575 [command] [msglist] [argument ...]

22576 If no command is specified in command mode, next shall be assumed. In input mode, commands
22577 shall be recognized by the escape character, and lines not treated as commands shall be taken as
22578 input for the message.

22579 In command mode, each message shall be assigned a sequential number, starting with 1.

22580 All messages have a state that affects how they are displayed in the header summary and how
22581 they are retained or deleted upon termination of mailx. There is at any time the notion of a
22582 current message, marked by a ’>’ at the beginning of a line in the header summary. When mailx
22583 is invoked using one of the Receive Mode synopsis forms, the current message shall be the first
22584 new message, if there is a new message, or the first unread message if there is an unread
22585 message, or the first message if there are any messages, or unspecified if there are no messages
22586 in the mailbox. Each command that takes an optional list of messages (msglist) or an optional
22587 single message (message) on which to operate shall leave the current message set to the highest-
22588 numbered message of the messages specified, unless the command deletes messages, in which
22589 case the current message shall be set to the first undeleted message (that is, a message not in the
22590 deleted state) after the highest-numbered message deleted by the command, if one exists, or the
22591 first undeleted message before the highest-numbered message deleted by the command, if one
22592 exists, or to an unspecified value if there are no remaining undeleted messages. All messages are
22593 in one of the following states:

22594 new The message is present in the system mailbox and has not been viewed by the user
22595 or moved to any other state. Messages in state new when mailx quits shall be
22596 retained in the system mailbox.

22597 unread The message has been present in the system mailbox for more than one invocation
22598 of mailx and has not been viewed by the user or moved to any other state.
22599 Messages in state unread when mailx quits shall be retained in the system mailbox.

22600 read The message has been processed by one of the following commands: ˜f, ˜m, ˜F, ˜M,
22601 copy, mbox, next, pipe, print, Print, top, type, Type, undelete. The delete, dp, and
22602 dt commands may also cause the next message to be marked as read , depending on
22603 the value of the autoprint variable. Messages that are in the system mailbox and in
22604 state read when mailx quits shall be saved in the mbox, unless the internal variable
22605 hold was set. Messages that are in the mbox or in a secondary mailbox and in state
22606 read when mailx quits shall be retained in their current location.

Shell and Utilities, Issue 6 2799

mailx Utilities

22607 deleted The message has been processed by one of the following commands: delete, dp,
22608 dt. Messages in state deleted when mailx quits shall be deleted. Deleted messages
22609 shall be ignored until mailx quits or changes mailboxes or they are specified to the
22610 undelete command; for example, the message specification /string shall only
22611 search the subject lines of messages that have not yet been deleted, unless the
22612 command operating on the list of messages is undelete. No deleted message or
22613 deleted message header shall be displayed by any mailx command other than
22614 undelete.

22615 preserved The message has been processed by a preserve command. When mailx quits, the
22616 message shall be retained in its current location.

22617 saved The message has been processed by one of the following commands: save or
22618 write. If the current mailbox is the system mailbox, and the internal variable
22619 keepsave is set, messages in the state saved shall be saved to the file designated by
22620 the MBOX variable (see the ENVIRONMENT VARIABLES section). If the current
22621 mailbox is the system mailbox, messages in the state saved shall be deleted from
22622 the current mailbox, when the quit or file command is used to exit the current
22623 mailbox.

22624 The header-summary line for each message shall indicate the state of the message.

22625 Many commands take an optional list of messages (msglist) on which to operate, which defaults
22626 to the current message. A msglist is a list of message specifications separated by <blank>
22627 characters, which can include:

22628 n Message number n.

22629 + The next undeleted message, or the next deleted message for the undelete command.

22630 − The next previous undeleted message, or the next previous deleted message for the
22631 undelete command.

22632 . The current message.

22633 ^ The first undeleted message, or the first deleted message for the undelete command.

22634 $ The last message.

22635 * All messages.

22636 n-m An inclusive range of message numbers.

22637 address All messages from address; any address as shown in a header summary shall be
22638 matchable in this form.

22639 /string All messages with string in the subject line (case ignored).

22640 :c All messages of type c, where c shall be one of:

22641 d Deleted messages.

22642 n New messages.

22643 o Old messages (any not in state read or new).

22644 r Read messages.

22645 u Unread messages.

22646 Other commands take an optional message (message) on which to operate, which defaults to the
22647 current message. All of the forms allowed for msglist are also allowed for message, but if more
22648 than one message is specified, only the first shall be operated on.

2800 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

22649 Other arguments are usually arbitrary strings whose usage depends on the command involved.

22650 Start-Up in mailx

22651 At start-up time, mailx shall take the following steps in sequence:

22652 1. Establish all variables at their stated default values.

22653 2. Process command line options, overriding corresponding default values.

22654 3. Import any of the DEAD, EDITOR, MBOX, LISTER, PAGER, SHELL, or VISUAL variables
22655 that are present in the environment, overriding the corresponding default values.

22656 4. Read mailx commands from an unspecified system start-up file, unless the −n option is
22657 given, to initialize any internal mailx variables and aliases.

22658 5. Process the start-up file of mailx commands named in the user MAILRC variable.

22659 Most regular mailx commands are valid inside start-up files, the most common use being to set
22660 up initial display options and alias lists. The following commands shall be invalid in the start-up
22661 file: !, edit, hold, mail, preserve, reply, Reply, shell, visual, Copy, followup, and Followup. |
22662 Any errors in the start-up file shall either cause mailx to terminate with a diagnostic message and
22663 a non-zero status or to continue after writing a diagnostic message, ignoring the remainder of
22664 the lines in the start-up file.

22665 A blank line in a start-up file shall be ignored.

22666 Internal Variables in mailx

22667 The following variables are internal mailx variables. Each internal variable can be set via the
22668 mailx set command at any time. The unset and set no name commands can be used to erase
22669 variables.

22670 In the following list, variables shown as:

22671 variable

22672 represent Boolean values. Variables shown as:

22673 variable= value

22674 shall be assigned string or numeric values. For string values, the rules in Commands in mailx
22675 (on page 2804) concerning file names and quoting also apply.

22676 The defaults specified here may be changed by the implementation-defined system start-up file |
22677 unless the user specifies the −n option. |

22678 allnet All network names whose login name components match are treated as identical. |
22679 This shall cause the msglist message specifications to behave similarly. The default
22680 shall be noallnet. See also the alternates command and the metoo variable. |

22681 append Append messages to the end of the mbox file upon termination instead of placing
22682 them at the beginning. The default shall be noappend. This variable shall not
22683 affect the save command when saving to the mbox.

22684 ask, asksub
22685 Prompt for a subject line on outgoing mail if one is not specified on the command
22686 line with the −s option. The ask and asksub forms are synonyms; the system shall
22687 refer to asksub and noasksub in its messages, but shall accept ask and noask as
22688 user input to mean asksub and noasksub. It shall not be possible to set both ask
22689 and noasksub, or noask and asksub. The default shall be asksub, but no

Shell and Utilities, Issue 6 2801

mailx Utilities

22690 prompting shall be done if standard input is not a terminal.

22691 askbcc Prompt for the blind copy list. The default shall be noaskbcc.

22692 askcc Prompt for the copy list. The default shall be noaskcc.

22693 autoprint Enable automatic writing of messages after delete and undelete commands. The
22694 default shall be noautoprint.

22695 bang Enable the special-case treatment of exclamation marks (’!’) in escape command |
22696 lines; see the escape command and Command Escapes in mailx (on page 2812).
22697 The default shall be nobang, disabling the expansion of ’!’ in the command
22698 argument to the ˜! command and the ˜<!command escape.

22699 cmd=command
22700 Set the default command to be invoked by the pipe command. The default shall be
22701 nocmd.

22702 crt=number Pipe messages having more than number lines through the command specified by
22703 the value of the PAGER variable. The default shall be nocrt. If it is set to null, the |
22704 value used is implementation-defined. |

22705 XSI debug Enable verbose diagnostics for debugging. Messages are not delivered. The
22706 default shall be nodebug.

22707 dot When dot is set, a period on a line by itself during message input from a terminal
22708 shall also signify end-of-file (in addition to normal end-of-file). The default shall be
22709 nodot. If ignoreeof is set (see below), a setting of nodot shall be ignored and the |
22710 period is the only method to terminate input mode.

22711 escape=c Set the command escape character to be the character ’c’ . By default, the
22712 command escape character shall be tilde. If escape is unset, tilde shall be used; if it
22713 is set to null, command escaping shall be disabled.

22714 flipr Reverse the meanings of the R and r commands. The default shall be noflipr.

22715 folder=directory
22716 The default directory for saving mail files. User-specified file names beginning
22717 with a plus sign (’+’) shall be expanded by preceding the file name with this
22718 directory name to obtain the real path name. If directory does not start with a slash
22719 (’/’), the contents of HOME shall be prefixed to it. The default shall be nofolder.
22720 If folder is unset or set to null, user-specified file names beginning with ’+’ shall
22721 refer to files in the current directory that begin with the literal ’+’ character. See
22722 also outfolder below. The folder value need not affect the processing of the files
22723 named in MBOX and DEAD.

22724 header Enable writing of the header summary when entering mailx in Receive Mode. The
22725 default shall be header.

22726 hold Preserve all messages that are read in the system mailbox instead of putting them
22727 in the mbox save file. The default shall be nohold.

22728 ignore Ignore interrupts while entering messages. The default shall be noignore. |

22729 ignoreeof Ignore normal end-of-file during message input. Input can be terminated only by |
22730 entering a period (’.’) on a line by itself or by the ˜. command escape. The default
22731 shall be noignoreeof. See also dot above.

22732 indentprefix=string
22733 A string that shall be added as a prefix to each line that is inserted into the message

2802 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

22734 by the ˜m command escape. This variable shall default to one <tab> character.

22735 keep When a system mailbox, secondary mailbox, or mbox is empty, truncate it to zero
22736 length instead of removing it. The default shall be nokeep.

22737 keepsave Keep the messages that have been saved from the system mailbox into other files
22738 in the file designated by the variable MBOX, instead of deleting them. The default
22739 shall be nokeepsave.

22740 metoo Suppress the deletion of the login name of the user from the recipient list when
22741 replying to a message or sending to a group. The default shall be nometoo.

22742 XSI onehop When responding to a message that was originally sent to several recipients, the
22743 other recipient addresses are normally forced to be relative to the originating
22744 author’s machine for the response. This flag disables alteration of the recipients’
22745 addresses, improving efficiency in a network where all machines can send directly
22746 to all other machines (that is, one hop away). The default shall be noonehop.

22747 outfolder Cause the files used to record outgoing messages to be located in the directory
22748 specified by the folder variable unless the path name is absolute. The default shall
22749 be nooutfolder. See the record variable.

22750 page Insert a <form-feed> after each message sent through the pipe created by the pipe
22751 command. The default shall be nopage.

22752 prompt=string
22753 Set the command-mode prompt to string. If string is null or if noprompt is set, no
22754 prompting shall occur. The default shall be to prompt with the string "? " .

22755 quiet Refrain from writing the opening message and version when entering mailx. The
22756 default shall be noquiet.

22757 record=file Record all outgoing mail in the file with the path name file . The default shall be
22758 norecord. See also outfolder above.

22759 save Enable saving of messages in the dead-letter file on interrupt or delivery error. See
22760 the variable DEAD for the location of the dead-letter file. The default shall be save.

22761 screen=number
22762 Set the number of lines in a screenful of headers for the headers and z commands.
22763 If screen is not specified, a value based on the terminal type identified by the
22764 TERM environment variable, the window size, the baud rate, or some combination
22765 of these shall be used. |

22766 sendwait Wait for the background mailer to finish before returning. The default shall be |
22767 nosendwait. |

22768 showto When the sender of the message was the user who is invoking mailx, write the
22769 information from the To: line instead of the From: line in the header summary.
22770 The default shall be noshowto.

22771 sign=string Set the variable inserted into the text of a message when the ˜a command escape is
22772 given. The default shall be nosign. The character sequences ’\t’ and ’\n’ shall
22773 be recognized in the variable as <tab> and <newline> characters, respectively. (See
22774 also ˜i in Command Escapes in mailx (on page 2812).)

22775 Sign=string Set the variable inserted into the text of a message when the ˜A command escape is
22776 given. The default shall be noSign. The character sequences ’\t’ and ’\n’ shall
22777 be recognized in the variable as <tab> and <newline> characters, respectively.

Shell and Utilities, Issue 6 2803

mailx Utilities

22778 toplines=number
22779 Set the number of lines of the message to write with the top command. The default
22780 shall be 5.

22781 Commands in mailx

22782 The following mailx commands shall be provided. In the following list, header refers to lines
22783 from the message header, as shown in the OUTPUT FILES section. Header-line refers to lines
22784 within the header that begin with one or more non-white-space characters, immediately
22785 followed by a colon and white space and continuing until the next line beginning with a non-
22786 white-space character or an empty line. Header-field refers to the portion of a header line prior
22787 to the first colon in that line.

22788 For each of the commands listed below, the command can be entered as the abbreviation (those
22789 characters in the Synopsis command word preceding the ’[’), the full command (all characters
22790 shown for the command word, omitting the ’[’ and ’]’), or any truncation of the full
22791 command down to the abbreviation. For example, the exit command (shown as ex[it] in the
22792 Synopsis) can be entered as ex, exi, or exit.

22793 The arguments to commands can be quoted, using the following methods:

22794 • An argument can be enclosed between paired double-quotes (" ") or single-quotes (’ ’); any |
22795 white space, shell word expansion, or backslash characters within the quotes shall be treated
22796 literally as part of the argument. A double-quote shall be treated literally within single-
22797 quotes and vice versa. These special properties of the quote marks shall occur only when they
22798 are paired at the beginning and end of the argument.

22799 • A backslash outside of the enclosing quotes shall be discarded and the following character
22800 treated literally as part of the argument.

22801 • An unquoted backslash at the end of a command line shall be discarded and the next line
22802 shall continue the command.

22803 File names, where expected, shall be subjected to the process of shell word expansions (see
22804 Section 2.6 (on page 2244)); if more than a single path name results and the command is
22805 expecting one file, the effects are unspecified. If the file name begins with an unquoted plus sign,
22806 it shall not be expanded, but treated as the named file (less the leading plus) in the folder
22807 directory. (See the folder variable.)

22808 Declare Aliases

22809 Synopsis: a[lias] [alias [address ...]]
22810 g[roup] [alias [address ...]]

22811 Add the given addresses to the alias specified by alias . The names shall be substituted when
22812 alias is used as a recipient address specified by the user in an outgoing message (that is, other
22813 recipients addressed indirectly through the reply command shall not be substituted in this
22814 manner). Mail address alias substitution shall apply only when the alias string is used as a full
22815 address; for example, when hlj is an alias, hlj@posix.com does not trigger the alias substitution. If
22816 no arguments are given, write a listing of the current aliases to standard output. If only an alias
22817 argument is given, write a listing of the specified alias to standard output. These listings need
22818 not reflect the same order of addresses that were entered.

2804 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

22819 Declare Alternatives

22820 Synopsis: alt [ernates] name...

22821 (See also the metoo command.) Declare a list of alternative names for the user’s login. When
22822 responding to a message, these names shall be removed from the list of recipients for the
22823 response. The comparison of names shall be in a case-insensitive manner. With no arguments,
22824 alternates shall write the current list of alternative names.

22825 Change Current Directory

22826 Synopsis: cd [directory]
22827 ch [dir] [directory]

22828 Change directory. If directory is not specified, the contents of HOME shall be used.

22829 Copy Messages

22830 Synopsis: c [opy] [file]
22831 c [opy] [msglist] file
22832 C[opy] [msglist]

22833 Copy messages to the file named by the path name file without marking the messages as saved.
22834 Otherwise, it shall be equivalent to the save command.

22835 In the capitalized form, save the specified messages in a file whose name is derived from the |
22836 author of the message to be saved, without marking the messages as saved. Otherwise, it shall
22837 be equivalent to the Save command. |

22838 Delete Messages

22839 Synopsis: d[elete] [msglist]

22840 Mark messages for deletion from the mailbox. The deletions shall not occur until mailx quits (see
22841 the quit command) or changes mailboxes (see the folder command). If autoprint is set and there
22842 are messages remaining after the delete command, the current message shall be written as
22843 described for the print command (see the print command); otherwise, the mailx prompt shall be
22844 written.

22845 Discard Header Fields

22846 Synopsis: di [scard] [header-field ...]
22847 ig [nore] [header-field ...]

22848 Suppress the specified header fields when writing messages. Specified header-fields shall be
22849 added to the list of suppressed header fields. Examples of header fields to ignore are status and
22850 cc. The fields shall be included when the message is saved. The Print and Type commands shall
22851 override this command. The comparison of header fields shall be in a case-insensitive manner. If
22852 no arguments are specified, write a list of the currently suppressed header fields to standard
22853 output; the listing need not reflect the same order of header fields that were entered.

22854 If both retain and discard commands are given, discard commands shall be ignored.

Shell and Utilities, Issue 6 2805

mailx Utilities

22855 Delete Messages and Display

22856 Synopsis: dp [msglist]
22857 dt [msglist]

22858 Delete the specified messages as described for the delete command, except that the autoprint
22859 variable shall have no effect, and the current message shall be written only if it was set to a
22860 message after the last message deleted by the command. Otherwise, an informational message
22861 to the effect that there are no further messages in the mailbox shall be written, followed by the
22862 mailx prompt.

22863 Echo a String

22864 Synopsis: |ec [ho] string ...

22865 Echo the given strings, equivalent to the shell echo utility. |

22866 Edit Messages

22867 Synopsis: e[dit] [msglist]

22868 Edit the given messages. The messages shall be placed in a temporary file and the utility named
22869 by the EDITOR variable is invoked to edit each file in sequence. The default EDITOR is
22870 unspecified.

22871 The edit command does not modify the contents of those messages in the mailbox.

22872 Exit

22873 Synopsis: ex [it]
22874 x [it]

22875 Exit from mailx without changing the mailbox. No messages shall be saved in the mbox (see also
22876 quit).

22877 Change Folder

22878 Synopsis: fi [le] [file]
22879 fold [er] [file]

22880 Quit (see the quit command) from the current file of messages and read in the file named by the
22881 path name file . If no argument is given, the name and status of the current mailbox shall be
22882 written.

22883 Several unquoted special characters shall be recognized when used as file names, with the
22884 following substitutions:

22885 % The system mailbox for the invoking user.

22886 %user The system mailbox for user.

22887 # The previous file.

22888 & The current mbox.

22889 +file The named file in the folder directory. (See the folder variable.)

22890 The default file shall be the current mailbox.

2806 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

22891 Display List of Folders

22892 Synopsis: folders

22893 Write the names of the files in the directory set by the folder variable. The command specified by
22894 the LISTER environment variable shall be used (see the ENVIRONMENT VARIABLES section).

22895 Follow Up Specified Messages

22896 Notes to Reviewers
22897 This section with side shading will not appear in the final copy. - Ed.

22898 D1, XCU, ERN 300 says that it appears the second sentence below applies to both forms. |

22899 Synopsis: |fo [llowup] [message]
22900 F[ollowup] [msglist]

22901 In the lowercase form, respond to a message, recording the response in a file whose name is
22902 derived from the author of the message. Overrides the record variable, if set. See also the save
22903 and copy commands and outfolder.

22904 In the capitalized form, respond to the first message in the msglist , sending the message to the
22905 author of each message in the msglist . The subject line shall be taken from the first message and
22906 the response shall be recorded in a file whose name is derived from the author of the first
22907 message. See also the Save and Copy commands and outfolder. |

22908 Display Header Summary for Specified Messages

22909 Synopsis: f [rom] [msglist]

22910 Write the header summary for the specified messages.

22911 Display Header Summary

22912 Synopsis: h[eaders] [message]

22913 Write the page of headers that includes the message specified. If the message argument is not
22914 specified, the current message shall not change. However, if the message argument is specified,
22915 the current message shall become the message that appears at the top of the page of headers that
22916 includes the message specified. The screen variable sets the number of headers per page. See
22917 also the z command.

22918 Help

22919 Synopsis: hel [p]
22920 ?

22921 Write a summary of commands.

22922 Hold Messages

22923 Synopsis: ho [ld] [msglist]
22924 pre [serve] [msglist]

22925 Mark the messages in msglist to be retained in the mailbox when mailx terminates. This shall
22926 override any commands that might previously have marked the messages to be deleted. During
22927 the current invocation of mailx, only the delete, dp, or dt commands shall remove the preserve
22928 marking of a message.

Shell and Utilities, Issue 6 2807

mailx Utilities

22929 Execute Commands Conditionally

22930 Synopsis: i [f] s|r
22931 mail-command s
22932 el [se]
22933 mail-command s
22934 en [dif]

22935 Execute commands conditionally, where if s executes the following mail-commands, up to an
22936 else or endif, if the program is in Send Mode, and if r shall cause the mail-commands to be
22937 executed only in Receive Mode.

22938 List Available Commands

22939 Synopsis: l [ist]

22940 Write a list of all commands available. No explanation shall be given.

22941 Mail a Message

22942 Synopsis: m[ail] address ...

22943 Mail a message to the specified addresses or aliases.

22944 Direct Messages to mbox

22945 Synopsis: mb[ox] [msglist]

22946 Arrange for the given messages to end up in the mbox save file when mailx terminates normally.
22947 See MBOX. See also the exit and quit commands.

22948 Process Next Specified Message

22949 Synopsis: n[ext] [message]

22950 If the current message has not been written (for example, by the print command) since mailx
22951 started or since any other message was the current message, behave as if the print command
22952 was entered. Otherwise, if there is an undeleted message after the current message, make it the
22953 current message and behave as if the print command was entered. Otherwise, an informational
22954 message to the effect that there are no further messages in the mailbox shall be written, followed
22955 by the mailx prompt.

22956 Pipe Message

22957 Synopsis: pi [pe] [[msglist] command]
22958 | [[msglist] command]

22959 Pipe the messages through the given command by invoking the command interpreter specified
22960 by SHELL with two arguments: −c and command . (See also sh −c.) The application shall ensure
22961 that the command is given as a single argument. Quoting, described previously, can be used to
22962 accomplish this. If no arguments are given, the current message shall be piped through the
22963 command specified by the value of the cmd variable. If the page variable is set, a <form-feed>
22964 character shall be inserted after each message.

2808 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

22965 Display Message with Headers

22966 Synopsis: P[rint] [msglist]
22967 T[ype] [msglist]

22968 Write the specified messages, including all header lines, to standard output. Override
22969 suppression of lines by the discard, ignore, and retain commands. If crt is set, the messages
22970 longer than the number of lines specified by the crt variable shall be paged through the
22971 command specified by the PAGER environment variable.

22972 Display Message

22973 Synopsis: p[rint] [msglist]
22974 t [ype] [msglist]

22975 Write the specified messages to standard output. If crt is set, the messages longer than the
22976 number of lines specified by the crt variable shall be paged through the command specified by
22977 the PAGER environment variable.

22978 Quit

22979 Synopsis: q[uit]
22980 end-of-file

22981 Terminate mailx, storing messages that were read in mbox (if the current mailbox is the system
22982 mailbox and unless hold is set), deleting messages that have been explicitly saved (unless
22983 keepsave is set), discarding messages that have been deleted, and saving all remaining messages
22984 in the mailbox.

22985 Reply to a Message List

22986 Synopsis: R[eply] [msglist]
22987 R[espond] [msglist]

22988 Mail a reply message to the sender of each message in the msglist . The subject line shall be
22989 formed by concatenating Re:<space> (unless it already begins with that string) and the subject
22990 from the first message. If record is set to a file name, the response shall be saved at the end of
22991 that file.

22992 See also the flipr variable.

22993 Reply to a Message

22994 Synopsis: r [eply] [message]
22995 r [espond] [message]

22996 Mail a reply message to all recipients included in the header of the message. The subject line
22997 shall be formed by concatenating Re:<space> (unless it already begins with that string) and the
22998 subject from the message. If record is set to a file name, the response shall be saved at the end of
22999 that file.

23000 See also the flipr variable.

Shell and Utilities, Issue 6 2809

mailx Utilities

23001 Retain Header Fields

23002 Synopsis: ret [ain] [header-field ...]

23003 Retain the specified header fields when writing messages. This command shall override all
23004 discard and ignore commands. The comparison of header fields shall be in a case-insensitive
23005 manner. If no arguments are specified, write a list of the currently retained header fields to
23006 standard output; the listing need not reflect the same order of header fields that were entered.

23007 Save Messages

23008 Synopsis: s [ave] [file]
23009 s [ave] [msglist] file
23010 S[ave] [msglist]

23011 Save the specified messages in the file named by the path name file , or the mbox if the file
23012 argument is omitted. The file shall be created if it does not exist; otherwise, the messages shall be
23013 appended to the file. The message shall be put in the state saved , and shall behave as specified in
23014 the description of the saved state when the current mailbox is exited by the quit or file
23015 command.

23016 In the capitalized form, save the specified messages in a file whose name is derived from the |
23017 author of the first message. The name of the file shall be taken to be the author’s name with all
23018 network addressing stripped off. See also the Copy, followup, and Followup commands and
23019 outfolder variable. |

23020 Set Variables

23021 Synopsis: se [t] [name[=[string]] ...] [name=number ...] [noname ...]

23022 Define one or more variables called name. The variable can be given a null, string, or numeric
23023 value. Quoting and backslash escapes can occur anywhere in string, as described previously, as
23024 if the string portion of the argument were the entire argument. The forms name and name= shall
23025 be equivalent to name="" for variables that take string values. The set command without
23026 arguments shall write a list of all defined variables and their values. The no name form shall be
23027 equivalent to unset name.

23028 Invoke a Shell

23029 Synopsis: sh [ell]

23030 Invoke an interactive command interpreter (see also SHELL).

23031 Display Message Size

23032 Synopsis: si [ze] [msglist]

23033 Write the size in bytes of each of the specified messages.

23034 Read mailx Commands From a File

23035 Synopsis: so [urce] file

23036 Read and execute commands from the file named by the path name file and return to command
23037 mode.

2810 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

23038 Display Beginning of Messages

23039 Synopsis: to [p] [msglist]

23040 Write the top few lines of each of the specified messages. If the toplines variable is set, it is taken
23041 as the number of lines to write. The default shall be 5.

23042 Touch Messages

23043 Synopsis: tou [ch] [msglist]

23044 Touch the specified messages. If any message in msglist is not specifically deleted nor saved in a
23045 file, it shall be placed in the mbox upon normal termination. See exit and quit.

23046 Delete Aliases

23047 Synopsis: una [lias] [alias] ...

23048 Delete the specified alias names. If a specified alias does not exist, the results are unspecified.

23049 Undelete Messages

23050 Synopsis: u[ndelete] [msglist]

23051 Change the state of the specified messages from deleted to read. If autoprint is set, the last
23052 message of those restored shall be written. If msglist is not specified, the message shall be
23053 selected as follows:

23054 • If there are any deleted messages that follow the current message, the first of these shall be
23055 chosen.

23056 • Otherwise, the last deleted message that also precedes the current message shall be chosen.

23057 Unset Variables

23058 Synopsis: uns [et] name...

23059 Cause the specified variables to be erased.

23060 Edit Message with Full-Screen Editor

23061 Synopsis: v [isual] [msglist]

23062 Edit the given messages with a screen editor. Each message shall be placed in a temporary file,
23063 and the utility named by the VISUAL variable shall be invoked to edit each file in sequence. The
23064 default editor shall be vi.

23065 The visual command does not modify the contents of those messages in the mailbox.

23066 Write Messages to a File

23067 Synopsis: w[rite] [msglist] file

23068 Write the given messages to the file specified by the path name file , minus the message header.
23069 Otherwise, it shall be equivalent to the save command.

Shell and Utilities, Issue 6 2811

mailx Utilities

23070 Scroll Header Display

23071 Synopsis: z [+| −]

23072 Scroll the header display forward (if ’+’ is specified or if no option is specified) or backward (if
23073 ’ −’ is specified) one screenful. The number of headers written shall be set by the screen
23074 variable.

23075 Invoke Shell Command

23076 Synopsis: ! command

23077 Invoke the command interpreter specified by SHELL with two arguments: −c and command .
23078 (See also sh −c.) If the bang variable is set, each unescaped occurrence of ’!’ in command shall
23079 be replaced with the command executed by the previous ! command or ˜! command escape.

23080 Null Command

23081 Synopsis: # comment

23082 This null command (comment) shall be ignored by mailx.

23083 Display Current Message Number

23084 Synopsis: =

23085 Write the current message number.

23086 Command Escapes in mailx

23087 The following commands can be entered only from input mode, by beginning a line with the
23088 escape character (by default, tilde (’˜’)). See the escape variable description for changing this
23089 special character. The format for the commands shall be:

23090 <ESC><command-char ><separator >[<arguments >]

23091 where the <separator> can be zero or more <blank> characters.

23092 In the following descriptions, the application shall ensure that the argument command (but not
23093 mailx-command) is a shell command string. Any string acceptable to the command interpreter
23094 specified by the SHELL variable when it is invoked as SHELL −c command_string shall be valid.
23095 The command can be presented as multiple arguments (that is, quoting is not required).

23096 Command escapes that are listed with msglist or mailx-command arguments are invalid in Send
23097 Mode and produce unspecified results.

23098 ~! command Invoke the command interpreter specified by SHELL with two arguments: −c and
23099 command ; and then return to input mode. If the bang variable is set, each
23100 unescaped occurrence of ’!’ in command shall be replaced with the command
23101 executed by the previous ! command or ˜! command escape.

23102 ~. Simulate end-of-file (terminate message input).

23103 ~: mailx-command, ˜_ mailx-command
23104 Perform the command-level request.

23105 ~? Write a summary of command escapes.

23106 ~A This shall be equivalent to ˜i Sign.

23107 ~a This shall be equivalent to ˜i sign.

2812 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

23108 ~b name. . . Add the names to the blind carbon copy (Bcc) list.

23109 ~c name. . . Add the names to the carbon copy (Cc) list.

23110 ~d Read in the dead-letter file. See DEAD for a description of this file.

23111 ~e Invoke the editor, as specified by the EDITOR environment variable, on the partial
23112 message.

23113 ~f [msglist] Forward the specified messages. The specified messages shall be inserted into the
23114 current message without alteration. This command escape also shall insert
23115 message headers into the message with field selection affected by the discard,
23116 ignore, and retain commands.

23117 ~F [msglist] This shall be the equivalent of the ˜f command escape, except that all headers shall
23118 be included in the message, regardless of previous discard, ignore, and retain
23119 commands.

23120 ~h If standard input is a terminal, prompt for a Subject line and the To, Cc, and Bcc |
23121 lists. Other implementation-defined headers may also be presented for editing. If |
23122 the field is written with an initial value, it can be edited as if it had just been typed.

23123 ~i string Insert the value of the named variable, followed by a <newline> character, into the
23124 text of the message. If the string is unset or null, the message shall not be changed.

23125 ~m [msglist] Insert the specified messages into the message, prefixing non-empty lines with the
23126 string in the indentprefix variable. This command escape also shall insert message
23127 headers into the message, with field selection affected by the discard, ignore, and
23128 retain commands.

23129 ~M [msglist] This shall be the equivalent of the ˜m command escape, except that all headers
23130 shall be included in the message, regardless of previous discard, ignore, and retain
23131 commands.

23132 ~p Write the message being entered. If the message is longer than crt lines (see
23133 Internal Variables in mailx (on page 2801)), the output shall be paginated as
23134 described for the PAGER variable.

23135 ~q Quit (see the quit command) from input mode by simulating an interrupt. If the
23136 body of the message is not empty, the partial message shall be saved in the dead-
23137 letter file. See DEAD for a description of this file.

23138 "˜r file, ˜< file, ˜r !command, ˜< !command"
23139 Read in the file specified by the path name file . If the argument begins with an |
23140 exclamation mark (’!’), the rest of the string shall be taken as an arbitrary system |
23141 command; the command interpreter specified by SHELL shall be invoked with two
23142 arguments: −c and command . The standard output of command shall be inserted
23143 into the message.

23144 ~s string Set the subject line to string.

23145 ~t name. . . Add the given names to the To list.

23146 ~v Invoke the full-screen editor, as specified by the VISUAL environment variable, on
23147 the partial message.

23148 ~w file Write the partial message, without the header, onto the file named by the path
23149 name file . The file shall be created or the message shall be appended to it if the file
23150 exists.

Shell and Utilities, Issue 6 2813

mailx Utilities

23151 ~x Exit as with ˜q, except the message shall not be saved in the dead-letter file.

23152 ~| command Pipe the body of the message through the given command by invoking the
23153 command interpreter specified by SHELL with two arguments: −c and command .
23154 If the command returns a successful exit status, the standard output of the
23155 command shall replace the message. Otherwise, the message shall remain
23156 unchanged. If the command fails, an error message giving the exit status shall be
23157 written.

23158 EXIT STATUS
23159 When the −e option is specified, the following exit values are returned:

23160 0 Mail was found.

23161 >0 Mail was not found or an error occurred.

23162 Otherwise, the following exit values are returned:

23163 0 Successful completion; note that this status implies that all messages were sent, but it gives
23164 no assurances that any of them were actually delivered .

23165 >0 An error occurred.

23166 CONSEQUENCES OF ERRORS
23167 When in input mode (Receive Mode) or Send Mode:

23168 • If an error is encountered processing a command escape (see Command Escapes in mailx
23169 (on page 2812)), a diagnostic message shall be written to standard error, and the message
23170 being composed may be modified, but this condition shall not prevent the message from
23171 being sent.

23172 • Other errors shall prevent the sending of the message.

23173 When in command mode:

23174 • Default.

23175 APPLICATION USAGE
23176 Delivery of messages to remote systems requires the existence of communication paths to such
23177 systems. These need not exist.

23178 Input lines are limited to {LINE_MAX} bytes, but mailers between systems may impose more
23179 severe line-length restrictions. This volume of IEEE Std. 1003.1-200x does not place any
23180 restrictions on the length of messages handled by mailx, and for delivery of local messages the
23181 only limitations should be the normal problems of available disk space for the target mail file.
23182 When sending messages to external machines, applications are advised to limit messages to less
23183 than 100 kilobytes because some mail gateways impose message-length restrictions.

23184 The format of the system mailbox is intentionally unspecified. Not all systems implement
23185 system mailboxes as flat files, particularly with the advent of multimedia mail messages. Some
23186 system mailboxes may be multiple files, others records in a database. The internal format of the
23187 messages themselves are specified with the historical format from Version 7, but only after they
23188 have been saved in some file other than the system mailbox. This was done so that many
23189 historical applications expecting text-file mailboxes are not broken.

23190 Some new formats for messages can be expected in the future, probably including binary data,
23191 bit maps, and various multimedia objects. As described here, mailx is not prohibited from
23192 handling such messages, but it must store them as text files in secondary mailboxes (unless
23193 some extension, such as a variable or command line option, is used to change the stored format). |
23194 Its method of doing so is implementation-defined and might include translating the data into |

2814 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

23195 text file-compatible or readable form or omitting certain portions of the message from the stored
23196 output.

23197 The discard and ignore commands are not inverses of the retain command. The retain
23198 command discards all header-fields except those explicitly retained. The discard command
23199 keeps all header-fields except those explicitly discarded. If headers exist on the retained header
23200 list, discard and ignore commands are ignored.

23201 EXAMPLES
23202 None.

23203 RATIONALE
23204 The standard developers felt strongly that a method for applications to send messages to
23205 specific users was necessary. The obvious example is a batch utility, running non-interactively,
23206 that wishes to communicate errors or results to a user. However, the actual format, delivery
23207 mechanism, and method of reading the message are clearly beyond the scope of this volume of
23208 IEEE Std. 1003.1-200x.

23209 The intent of this command is to provide a simple, portable interface for sending messages non-
23210 interactively. It merely defines a ‘‘front-end’’ to the historical mail system. It is suggested that
23211 implementations explicitly denote the sender and recipient in the body of the delivered message.
23212 Further specification of formats for either the message envelope or the message itself were
23213 deliberately not made, as the industry is in the midst of changing from the current standards to a
23214 more internationalized standard and it is probably incorrect, at this time, to require either one.

23215 Implementations are encouraged to conform to the various delivery mechanisms described in
23216 the CCITT X.400 standards or to the equivalent Internet standards, described in Internet Request
23217 for Comment (RFC) documents RFC 819, RFC 822, RFC 920, RFC 921, and RFC 1123.

23218 Many historical systems modified each body line that started with From by prefixing the ’F’
23219 with ’>’ . It is unnecessary, but allowed, to do that when the string does not follow a blank line
23220 because it cannot be confused with the next header.

23221 The edit and visual commands merely edit the specified messages in a temporary file. They do |
23222 not modify the contents of those messages in the mailbox; such a capability could be added as an
23223 extension, such as by using different command names.

23224 The restriction on a subject line being {LINE_MAX}−10 bytes is based on the historical format
23225 that consumes 10 bytes for Subject: and the trailing <newline>. Many historical mailers that a
23226 message may encounter on other systems are not able to handle lines that long, however.

23227 Like the utilities logger and lp, mailx admittedly is difficult to test. This was not deemed sufficient
23228 justification to exclude this utility from this volume of IEEE Std. 1003.1-200x. It is also arguable
23229 that it is, in fact, testable, but that the tests themselves are not portable.

23230 When mailx is being used by an application that wishes to receive the results as if none of the
23231 User Portability Utilities option features were supported, the DEAD environment variable must
23232 be set to /dev/null. Otherwise, it may be subject to the file creations described in mailx
23233 ASYNCHRONOUS EVENTS. Similarly, if the MAILRC environment variable is not set to
23234 /dev/null, historical versions of mailx and Mail read initialization commands from a file before
23235 processing begins. Since the initialization that a user specifies could alter the contents of
23236 messages an application is trying to send, such applications must set MAILRC to /dev/null.

23237 The description of LC_TIME uses ‘‘may affect’’ because many historical implementations do not
23238 or cannot manipulate the date and time strings in the incoming mail headers. Some headers
23239 found in incoming mail do not have enough information to determine the timezone in which the
23240 mail originated, and, therefore, mailx cannot convert the date and time strings into the internal
23241 form that then is parsed by routines like strftime() that can take LC_TIME settings into account.

Shell and Utilities, Issue 6 2815

mailx Utilities

23242 Changing all these times to a user-specified format is allowed, but not required.

23243 The paginator selected when PAGER is null or unset is partially unspecified to allow the System
23244 V historical practice of using pg as the default. Bypassing the pagination function, such as by
23245 declaring that cat is the paginator, would not meet with the intended meaning of this
23246 description. However, any ‘‘portable user’’ would have to set PAGER explicitly to get his or her
23247 preferred paginator on all systems. The paginator choice was made partially unspecified, unlike
23248 the VISUAL editor choice (mandated to be vi) because most historical pagers follow a common
23249 theme of user input, whereas editors differ dramatically.

23250 Options to specify addresses as cc (carbon copy) or bcc (blind carbon copy) were considered to
23251 be format details and were omitted.

23252 A zero exit status implies that all messages were sent, but it gives no assurances that any of them
23253 were actually delivered . The reliability of the delivery mechanism is unspecified and is an
23254 appropriate marketing distinction between systems.

23255 In order to conform to the Utility Syntax Guidelines, a solution was required to the optional file
23256 option-argument to −f. By making file an operand, the guidelines are satisfied and users remain
23257 portable. However, it does force implementations to support usage such as:

23258 mailx −fin mymail.box

23259 The no name method of unsetting variables is not present in all historical systems, but it is in
23260 System V and provides a logical set of commands corresponding to the format of the display of
23261 options from the mailx set command without arguments.

23262 The ask and asksub variables are the names selected by BSD and System V, respectively, for the
23263 same feature. They are synonyms in this volume of IEEE Std. 1003.1-200x.

23264 The mailx echo command was not documented in the BSD version and has been omitted here
23265 because it is not obviously useful for interactive users.

23266 The default prompt on the System V mailx is a question mark, on BSD Mail an ampersand. Since
23267 this volume of IEEE Std. 1003.1-200x chose the mailx name, it kept the System V default,
23268 assuming that BSD users would not have difficulty with this minor incompatibility (that they
23269 can override).

23270 The meanings of r and R are reversed between System V mailx and SunOS Mail. Once again,
23271 since this volume of IEEE Std. 1003.1-200x chose the mailx name, it kept the System V default,
23272 but allows the SunOS user to achieve the desired results using flipr, an internal variable in
23273 System V mailx, although it has not been documented in the SVID

23274 The indentprefix variable, the retain and unalias commands, and the ˜F and ˜M command
23275 escapes were adopted from 4.3 BSD Mail.

23276 The version command was not included because no sufficiently general specification of the
23277 version information could be devised that would still be useful to a portable user. This
23278 command name should be used by suppliers who wish to provide version information about the
23279 mailx command.

23280 The ‘‘implementation-specific (unspecified) system start-up file’’ historically has been named
23281 /etc/mailx.rc, but this specific name and location are not required.

23282 The intent of the wording for the next command is that if any command has already displayed
23283 the current message it should display a following message, but, otherwise, it should display the
23284 current message. Consider the command sequence:

23285 next 3
23286 delete 3

2816 Technical Standard (2000) (Draft July 31, 2000)

Utilities mailx

23287 next

23288 where the autoprint option was not set. The normative text specifies that the second next
23289 command should display a message following the third message, because even though the
23290 current message has not been displayed since it was set by the delete command, it has been
23291 displayed since the current message was anything other than message number 3. This does not
23292 always match historical practice in some implementations, where the command file address
23293 followed by next (or the default command) would skip the message for which the user had
23294 searched.

23295 FUTURE DIRECTIONS
23296 None.

23297 SEE ALSO
23298 ed, ls , more, vi

23299 CHANGE HISTORY
23300 First released in Issue 2.

23301 Issue 4
23302 Aligned with the ISO/IEC 9945-2: 1993 standard.

23303 This utility is now mandatory; it is optional in Issue 3.

23304 Issue 5
23305 The description of the EDITOR environment variable is changed to indicate that ed is the default
23306 editor if this variable is not set. In previous issues, this default was not stated explicitly at this
23307 point but was implied further down in the text.

23308 FUTURE DIRECTIONS section added.

23309 Issue 6
23310 The following new requirements on POSIX implementations derive from alignment with the
23311 Single UNIX Specification:

23312 • The −F option is added.

23313 • The allnet, debug, and sendwait internal variables are added.

23314 • The C, ec, fo, F, and S mailx commands are added.

23315 In the DESCRIPTION and ENVIRONMENT VARIABLES sections, text stating ‘‘HOME
23316 directory’’ is replaced by ‘‘directory referred to by the HOME environment variable’’.

23317 The mailx utility is aligned with the IEEE P1003.2b draft standard, which included various
23318 clarifications to resolve IEEE PASC Interpretations submitted for the ISO POSIX-2: 1993 |
23319 standard. In particular, the changes here address IEEE PASC Interpretations 1003.2 #10, #11, |
23320 #103, #106, #108, #114, #115, #122, and #129. |

23321 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2817

make Utilities

23322 NAME
23323 make — maintain, update, and regenerate groups of programs (DEVELOPMENT)

23324 SYNOPSIS
23325 SD make [−einpqrst][−f makefile] ... [−k| −S][macro =value] ...
23326 [target_name ...]
23327

23328 DESCRIPTION
23329 The make utility can be used as a part of software development to update files that are derived
23330 from other files. A typical case is one where object files are derived from the corresponding
23331 source files. The make utility examines time relationships and updates those derived files (called
23332 targets) that have modified times earlier than the modified times of the files (called
23333 prerequisites) from which they are derived. A description file (makefile) contains a description
23334 of the relationships between files, and the commands that need to be executed to update the |
23335 targets to reflect changes in their prerequisites. Each specification, or rule, shall consist of a |
23336 target, optional prerequisites, and optional commands to be executed when a prerequisite is |
23337 newer than the target. There are two types of rule: |

23338 1. Inference rules, which have one target name with at least one period (’.’) and no slash
23339 (’/’)

23340 2. Target rules, which can have more than one target name

23341 In addition, make shall have a collection of built-in macros and inference rules that infer
23342 prerequisite relationships to simplify maintenance of programs.

23343 To receive exactly the behavior described in this section, the user shall ensure that a portable
23344 makefile:

23345 • Includes the special target .POSIX

23346 • Omits any special target reserved for implementations (a leading period followed by
23347 uppercase letters) that has not been specified by this section

23348 The behavior of make is unspecified if either or both of these conditions are not met.

23349 OPTIONS
23350 The make utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
23351 12.2, Utility Syntax Guidelines. |

23352 The following options shall be supported:

23353 −e Cause environment variables, including those with null values, to override macro
23354 assignments within makefiles.

23355 −f makefile Specify a different makefile. The argument makefile is a path name of a description
23356 file, which is also referred to as the makefile . A path name of ’ −’ shall denote the
23357 standard input. There can be multiple instances of this option, and they shall be
23358 processed in the order specified. The effect of specifying the same option-
23359 argument more than once is unspecified.

23360 −i Ignore error codes returned by invoked commands. This mode is the same as if the
23361 special target .IGNORE were specified without prerequisites.

23362 −k Continue to update other targets that do not depend on the current target if a non-
23363 ignored error occurs while executing the commands to bring a target up-to-date.

23364 −n Write commands that would be executed on standard output, but do not execute
23365 them. However, lines with a plus sign (’+’) prefix shall be executed. In this mode,

2818 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

23366 lines with an at sign (’@’) character prefix shall be written to standard output.

23367 −p Write to standard output the complete set of macro definitions and target
23368 descriptions. The output format is unspecified.

23369 −q Return a zero exit value if the target file is up-to-date; otherwise, return an exit
23370 value of 1. Targets shall not be updated if this option is specified. However, a
23371 makefile command line (associated with the targets) with a plus sign (’+’) prefix
23372 shall be executed.

23373 −r Clear the suffix list and does not use the built-in rules.

23374 −S Terminate make if an error occurs while executing the commands to bring a target
23375 up-to-date. This shall be the default and the opposite of −k.

23376 −s Do not write makefile command lines or touch messages (see −t) to standard
23377 output before executing. This mode shall be the same as if the special target
23378 .SILENT were specified without prerequisites.

23379 −t Update the modification time of each target as though a touch target had been
23380 executed. Targets that have prerequisites but no commands (see Target Rules (on
23381 page 2822)), or that are already up-to-date, shall not be touched in this manner.
23382 Write messages to standard output for each target file indicating the name of the
23383 file and that it was touched. Normally, the makefile command lines associated
23384 with each target are not executed. However, a command line with a plus sign
23385 (’+’) prefix shall be executed.

23386 Any options specified in the MAKEFLAGS environment variable shall be evaluated before any
23387 options specified on the make utility command line. If the −k and −S options are both specified
23388 on the make utility command line or by the MAKEFLAGS environment variable, the last option
23389 specified shall take precedence. If the −f or −p options appear in the MAKEFLAGS environment
23390 variable, the result is undefined.

23391 OPERANDS
23392 The following operands shall be supported:

23393 target_name Target names, as defined in the EXTENDED DESCRIPTION section. If no target is
23394 specified, while make is processing the makefiles, the first target that make
23395 encounters that is not a special target or an inference rule shall be used.

23396 macro=value Macro definitions, as defined in Macros (on page 2824).

23397 If the target_name and macro=value operands are intermixed on the make utility command line,
23398 the results are unspecified.

23399 STDIN
23400 The standard input shall be used only if the makefile option-argument is ’ −’ . See the INPUT
23401 FILES section.

23402 INPUT FILES
23403 The input file, otherwise known as the makefile, is a text file containing rules, macro definitions,
23404 and comments.

23405 ENVIRONMENT VARIABLES
23406 The following environment variables shall affect the execution of make:

23407 LANG Provide a default value for the internationalization variables that are unset or null.
23408 If LANG is unset or null, the corresponding value from the implementation- |
23409 defined default locale shall be used. If any of the internationalization variables |
23410 contains an invalid setting, the utility shall behave as if none of the variables had

Shell and Utilities, Issue 6 2819

make Utilities

23411 been defined.

23412 LC_ALL If set to a non-empty string value, override the values of all the other
23413 internationalization variables.

23414 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
23415 characters (for example, single-byte as opposed to multi-byte characters in
23416 arguments and input files).

23417 LC_MESSAGES
23418 Determine the locale that should be used to affect the format and contents of
23419 diagnostic messages written to standard error.

23420 MAKEFLAGS
23421 This variable shall be interpreted as a character string representing a series of
23422 option characters to be used as the default options. The implementation shall
23423 accept both of the following formats (but need not accept them when intermixed):

23424 • The characters are option letters without the leading hyphens or <blank>
23425 character separation used on a make utility command line.

23426 • The characters are formatted in a manner similar to a portion of the make utility
23427 command line: options are preceded by hyphens and <blank> character- |
23428 separated as described in the Base Definitions volume of IEEE Std. 1003.1-200x, |
23429 Section 12.2, Utility Syntax Guidelines. The macro=value macro definition |
23430 operands can also be included. The difference between the contents of
23431 MAKEFLAGS and the make utility command line is that the contents of the
23432 variable shall not be subjected to the word expansions (see Section 2.6 (on page
23433 2244)) associated with parsing the command line values.

23434 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES. |

23435 XSI PROJECTDIR
23436 Provide a directory to be used to search for SCCS files not found in the current
23437 directory. In all of the following cases, the search for SCCS files is made in the
23438 directory SCCS in the identified directory. If the value of PROJECTDIR begins
23439 with a slash, it shall be considered an absolute path name; otherwise, the value of
23440 PROJECTDIR is treated as a user name and that user’s initial working directory
23441 shall be examined for a subdirectory src or source. If such a directory is found, it
23442 shall be used. Otherwise, the value is used as a relative path name.

23443 If PROJECTDIR is not set or has a null value, the search for SCCS files shall be
23444 made in the directory SCCS in the current directory.

23445 The setting of PROJECTDIR affects all files listed in the remainder of this utility
23446 description for files with a component named SCCS.

23447 The value of the SHELL environment variable shall not be used as a macro and shall not be
23448 modified by defining the SHELL macro in a makefile or on the command line. All other
23449 environment variables, including those with null values, shall be used as macros, as defined in
23450 Macros (on page 2824).

23451 ASYNCHRONOUS EVENTS
23452 If not already ignored, make shall trap SIGHUP, SIGTERM, SIGINT, and SIGQUIT and remove
23453 the current target unless the target is a directory or the target is a prerequisite of the special
23454 target .PRECIOUS or unless one of the −n, −p, or −q options was specified. Any targets removed
23455 in this manner shall be reported in diagnostic messages of unspecified format, written to
23456 standard error. After this cleanup process, if any, make shall take the standard action for all other

2820 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

23457 signals.

23458 STDOUT
23459 The make utility shall write all commands to be executed to standard output unless the −s option
23460 was specified, the command is prefixed with an at sign, or the special target .SILENT has either
23461 the current target as a prerequisite or has no prerequisites. If make is invoked without any work
23462 needing to be done, it shall write a message to standard output indicating that no action was
23463 taken. If the −t option is present and a file is touched, make shall write to standard output a
23464 message of unspecified format indicating that the file was touched, including the file name of
23465 the file.

23466 STDERR
23467 Used only for diagnostic messages.

23468 OUTPUT FILES
23469 Files can be created when the −t option is present. Additional files can also be created by the
23470 utilities invoked by make.

23471 EXTENDED DESCRIPTION
23472 The make utility attempts to perform the actions required to ensure that the specified targets are
23473 up-to-date. A target is considered out-of-date if it is older than any of its prerequisites or if it
23474 does not exist. The make utility shall treat all prerequisites as targets themselves and recursively
23475 ensure that they are up-to-date, processing them in the order in which they appear in the rule.
23476 The make utility shall use the modification times of files to determine whether the corresponding
23477 targets are out-of-date.

23478 After make has ensured that all of the prerequisites of a target are up-to-date and if the target is
23479 out-of-date, the commands associated with the target entry shall be executed. If there are no
23480 commands listed for the target, the target shall be treated as up-to-date.

23481 Makefile Syntax

23482 A makefile can contain rules, macro definitions (see Macros (on page 2824)), and comments.
23483 There are two kinds of rules: inference rules and target rules. The make utility shall contain a set of
23484 built-in inference rules. If the −r option is present, the built-in rules shall not be used and the
23485 suffix list shall be cleared. Additional rules of both types can be specified in a makefile. If a rule
23486 is defined more than once, the value of the rule shall be that of the last one specified. Macros can
23487 also be defined more than once, and the value of the macro is specified in Macros (on page
23488 2824). Comments start with a number sign (’#’) and continue until an unescaped <newline>
23489 character is reached.

23490 By default, the following files shall be tried in sequence: ./makefile and ./Makefile. If neither |
23491 XSI ./makefile or ./Makefile are found, other implementation-defined files may also be tried. On |
23492 XSI-conformant systems, the additional files ./s.makefile, SCCS/s.makefile, ./s.Makefile, and |
23493 SCCS/s.Makefile shall also be tried. |

23494 The −f option shall direct make to ignore any of these default files and use the specified argument
23495 as a makefile instead. If the ’ −’ argument is specified, standard input shall be used.

23496 The term makefile is used to refer to any rules provided by the user, whether in ./makefile or its
23497 variants, or specified by the −f option.

23498 The rules in makefiles shall consist of the following types of lines: target rules, including special
23499 targets (see Target Rules (on page 2822)), inference rules (see Inference Rules (on page 2825)),
23500 macro definitions (see Macros (on page 2824)), empty lines, and comments. |

23501 When an escaped <newline> (one preceded by a backslash) is found anywhere in the makefile
23502 except in a command line, it shall be replaced, along with any leading white space on the

Shell and Utilities, Issue 6 2821

make Utilities

23503 following line, with a single <space>. When an escaped <newline> is found in a command line
23504 in a makefile, the command line shall contain the backslash, the <newline>, and the next line,
23505 except that the first character of the next line shall not be included if it is a <tab>.

23506 Makefile Execution

23507 Makefile command lines shall be processed one at a time by writing the makefile command line
23508 to the standard output (unless one of the conditions listed under ’@’ suppresses the writing)
23509 and executing the command(s) in the line. A <tab> character may precede the command to
23510 standard output. Command execution shall be as if the makefile command line were the
23511 argument to the system() function. The environment for the command being executed shall
23512 contain all of the variables in the environment of make.

23513 By default, when make receives a non-zero status from the execution of a command, it terminates
23514 with an error message to standard error.

23515 Makefile command lines can have one or more of the following prefixes: a hyphen (’ −’), an at
23516 sign (’@’), or a plus sign (’+’). These modify the way in which make processes the command.
23517 When a command is written to standard output, the prefix shall not be included in the output.

23518 − If the command prefix contains a hyphen, or the −i option is present, or the special target
23519 .IGNORE has either the current target as a prerequisite or has no prerequisites, any error
23520 found while executing the command shall be ignored.

23521 @ If the command prefix contains an at sign and the make utility command line −n option is
23522 not specified, or the −s option is present, or the special target .SILENT has either the current
23523 target as a prerequisite or has no prerequisites, the command shall not be written to
23524 standard output before it is executed.

23525 + If the command prefix contains a plus sign, this indicates a makefile command line that
23526 shall be executed even if −n, −q, or −t is specified.

23527 Target Rules

23528 Target rules are formatted as follows:

23529 target [target ...] : [prerequisite ...][; command]
23530 [<tab> command
23531 <tab> command
23532 ...]

23533 line that does not begin with <tab>

23534 Target entries are specified by a <blank> character-separated, non-null list of targets, then a
23535 colon, then a <blank> character-separated, possibly empty list of prerequisites. Text following a
23536 semicolon, if any, and all following lines that begin with a <tab> character, are makefile
23537 command lines to be executed to update the target. The first non-empty line that does not begin
23538 with a <tab> character or ’#’ shall begin a new entry. An empty or blank line, or a line
23539 beginning with ’#’ , may begin a new entry.

23540 Applications shall select target names from the set of characters consisting solely of periods,
23541 underscores, digits, and alphabetics from the portable character set (see the Base Definitions |
23542 volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). Implementations may |
23543 allow other characters in target names as extensions. The interpretation of targets containing the |
23544 characters ’%’ and ’"’ is implementation-defined. |

23545 A target that has prerequisites, but does not have any commands, can be used to add to the
23546 prerequisite list for that target. Only one target rule for any given target can contain commands.

2822 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

23547 Lines that begin with one of the following are called special targets and control the operation of
23548 make:

23549 .DEFAULT If the makefile uses this special target, the application shall ensure that it is
23550 specified with commands, but without prerequisites. The commands shall be used
23551 by make if there are no other rules available to build a target.

23552 .IGNORE Prerequisites of this special target are targets themselves; this shall cause errors
23553 from commands associated with them to be ignored in the same manner as
23554 specified by the −i option. Subsequent occurrences of .IGNORE shall add to the
23555 list of targets ignoring command errors. If no prerequisites are specified, make shall
23556 behave as if the −i option had been specified and errors from all commands
23557 associated with all targets shall be ignored.

23558 .POSIX The application shall ensure that this special target is specified without |
23559 prerequisites or commands. If it appears as the first non-comment line in the |
23560 makefile, make shall process the makefile as specified by this section; otherwise, the
23561 behavior of make is unspecified.

23562 .PRECIOUS Prerequisites of this special target shall not be removed if make receives one of the
23563 asynchronous events explicitly described in the ASYNCHRONOUS EVENTS
23564 section. Subsequent occurrences of .PRECIOUS shall add to the list of precious
23565 files. If no prerequisites are specified, all targets in the makefile shall be treated as
23566 if specified with .PRECIOUS.

23567 XSI .SCCS_GET The application shall ensure that this special target is specified without
23568 prerequisites. If this special target is included in a makefile, the commands
23569 specified with this target shall replace the default commands associated with this
23570 special target (see Default Rules (on page 2828)). The commands specified with
23571 this target are used to get all SCCS files that are not found in the current directory.

23572 When source files are named in a dependency list, make treats them just like any
23573 other target. Because the source file is presumed to be present in the directory,
23574 there is no need to add an entry for it to the makefile. When a target has no
23575 dependencies, but is present in the directory, make assumes that that file is up-to-
23576 date. If, however, an SCCS file named SCCS/s.source_file is found for a target
23577 source_file , make does some additional checking to assure that the target is up-to-
23578 date. If the target is missing, or if the SCCS file is newer, make automatically issues
23579 the commands specified for the .SCCS_GET special target to retrieve the most
23580 recent version. However, if the target is writable by anyone, make does not retrieve
23581 a new version.

23582 .SILENT Prerequisites of this special target are targets themselves; this shall cause
23583 commands associated with them to not be written to the standard output before
23584 they are executed. Subsequent occurrences of .SILENT shall add to the list of
23585 targets with silent commands. If no prerequisites are specified, make shall behave
23586 as if the −s option had been specified and no commands or touch messages
23587 associated with any target shall be written to standard output.

23588 .SUFFIXES Prerequisites of .SUFFIXES shall be appended to the list of known suffixes and are
23589 used in conjunction with the inference rules (see Inference Rules (on page 2825)).
23590 If .SUFFIXES does not have any prerequisites, the list of known suffixes shall be
23591 cleared.

23592 The special targets .IGNORE, .POSIX, .PRECIOUS, .SILENT, and .SUFFIXES shall be specified
23593 without commands.

Shell and Utilities, Issue 6 2823

make Utilities

23594 Targets with names consisting of a leading period followed by the uppercase letters "POSIX"
23595 and then any other characters are reserved for future standardization. Targets with names
23596 consisting of a leading period followed by one or more uppercase letters are reserved for
23597 implementation extensions.

23598 Macros

23599 Macro definitions are in the form:

23600 string1 = [string2]

23601 The macro named string1 is defined as having the value of string2 , where string2 is defined as all
23602 characters, if any, after the equal sign, up to a comment character (’#’) or an unescaped
23603 <newline> character. Any <blank> characters immediately before or after the equal sign shall be
23604 ignored.

23605 Applications shall select macro names from the set of characters consisting solely of periods,
23606 underscores, digits, and alphabetics from the portable character set (see the Base Definitions |
23607 volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). A macro name shall not |
23608 contain an equals sign. Implementations may allow other characters in macro names as |
23609 extensions.

23610 Macros can appear anywhere in the makefile. $(string1) or ${string1} shall be replaced by
23611 string2 , as follows:

23612 • Macros in target lines shall be evaluated when the target line is read.

23613 • Macros in makefile command lines shall be evaluated when the command is executed.

23614 • Macros in the string before the equals sign in a macro definition shall be evaluated when the
23615 macro assignment is made.

23616 • Macros after the equals sign in a macro definition shall not be evaluated until the defined
23617 macro is used in a rule or command, or before the equals sign in a macro definition.

23618 The parentheses or braces are optional if string1 is a single character. The macro $$ shall be
23619 replaced by the single character ’$’ .

23620 The forms $(string1[:subst1=[subst2]]) or ${string1[:subst1=[subst2]]} can be used to replace all
23621 occurrences of subst1 with subst2 when the macro substitution is performed. The subst1 to be
23622 replaced shall be recognized when it is a suffix at the end of a word in string1 (where a word , in
23623 this context, is defined to be a string delimited by the beginning of the line, a <blank> or
23624 <newline> character).

23625 Macro definitions shall be taken from the following sources, in the following logical order,
23626 before the makefile(s) are read.

23627 1. Macros specified on the make utility command line, in the order specified on the command
23628 line. It is unspecified whether the internal macros defined in Internal Macros (on page
23629 2826) are accepted from this source.

23630 2. Macros defined by the MAKEFLAGS environment variable, in the order specified in the
23631 environment variable. It is unspecified whether the internal macros defined in Internal
23632 Macros (on page 2826) are accepted from this source.

23633 3. The contents of the environment, excluding the MAKEFLAGS and SHELL variables and
23634 including the variables with null values.

23635 4. Macros defined in the inference rules built into make.

2824 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

23636 Macro definitions from these sources shall not override macro definitions from a lower-
23637 numbered source. Macro definitions from a single source (for example, the make utility
23638 command line, the MAKEFLAGS environment variable, or the other environment variables) shall
23639 override previous macro definitions from the same source.

23640 Macros defined in the makefile(s) shall override macro definitions that occur before them in the
23641 makefile(s) and macro definitions from source 4. If the −e option is not specified, macros defined
23642 in the makefile(s) shall override macro definitions from source 3. Macros defined in the |
23643 makefile(s) shall not override macro definitions from source 1 or source 2. |

23644 Before the makefile(s) are read, all of the make utility command line options (except −f and −p)
23645 and make utility command line macro definitions (except any for the MAKEFLAGS macro), not
23646 already included in the MAKEFLAGS macro, shall be added to the MAKEFLAGS macro. Other |
23647 implementation-defined options and macros may also be added to the MAKEFLAGS macro. If |
23648 this modifies the value of the MAKEFLAGS macro, or, if the MAKEFLAGS macro is modified at
23649 any subsequent time, the MAKEFLAGS environment variable shall be modified to match the
23650 new value of the MAKEFLAGS macro.

23651 Before the makefile(s) are read, all of the make utility command line macro definitions (except the
23652 MAKEFLAGS macro or the SHELL macro) shall be added to the environment of make. Other |
23653 implementation-defined variables may also be added to the environment of make. |

23654 The SHELL macro shall be treated specially. It shall be provided by make and set to the path
23655 name of the shell command language interpreter (see sh (on page 3060)). The SHELL
23656 environment variable shall not affect the value of the SHELL macro. If SHELL is defined in the
23657 makefile or is specified on the command line, it shall replace the original value of the SHELL
23658 macro, but shall not affect the SHELL environment variable. Other effects of defining SHELL in |
23659 the makefile or on the command line are implementation-defined. |

23660 Inference Rules

23661 Inference rules are formatted as follows:

23662 target :
23663 <tab> command
23664 [<tab> command]
23665 ...

23666 line that does not begin with <tab> or #

23667 The application shall ensure that the target portion is a valid target name (see Target Rules (on
23668 page 2822)) of the form .s2 or .s1.s2 (where .s1 and .s2 are suffixes that have been given as
23669 prerequisites of the .SUFFIXES special target and s1 and s2 do not contain any slashes or
23670 periods.) If there is only one period in the target, it is a single-suffix inference rule. Targets with
23671 two periods are double-suffix inference rules. Inference rules can have only one target before the
23672 colon.

23673 The application shall ensure that the makefile does not specify prerequisites for inference rules;
23674 no characters other than white space shall follow the colon in the first line, except when creating
23675 the empty rule, described below. Prerequisites are inferred, as described below.

23676 Inference rules can be redefined. A target that matches an existing inference rule shall overwrite
23677 the old inference rule. An empty rule can be created with a command consisting of simply a
23678 semicolon (that is, the rule still exists and is found during inference rule search, but since it is
23679 empty, execution has no effect). The empty rule also can be formatted as follows:

23680 rule : ;

Shell and Utilities, Issue 6 2825

make Utilities

23681 where zero or more <blank> characters separate the colon and semicolon.

23682 The make utility uses the suffixes of targets and their prerequisites to infer how a target can be
23683 made up-to-date. A list of inference rules defines the commands to be executed. By default, make
23684 contains a built-in set of inference rules. Additional rules can be specified in the makefile.

23685 The special target .SUFFIXES contains as its prerequisites a list of suffixes that shall be used by
23686 the inference rules. The order in which the suffixes are specified defines the order in which the
23687 inference rules for the suffixes are used. New suffixes shall be appended to the current list by
23688 specifying a .SUFFIXES special target in the makefile. A .SUFFIXES target with no prerequisites
23689 shall clear the list of suffixes. An empty .SUFFIXES target followed by a new .SUFFIXES list is
23690 required to change the order of the suffixes.

23691 Normally, the user would provide an inference rule for each suffix. The inference rule to update
23692 a target with a suffix .s1 from a prerequisite with a suffix .s2 is specified as a target .s2.s1. The
23693 internal macros provide the means to specify general inference rules (see Internal Macros).

23694 When no target rule is found to update a target, the inference rules shall be checked. The suffix
23695 of the target (.s1) to be built is compared to the list of suffixes specified by the .SUFFIXES special
23696 targets. If the .s1 suffix is found in .SUFFIXES, the inference rules shall be searched in the order
23697 defined for the first .s2.s1 rule whose prerequisite file ($*.s2) exists. If the target is out-of-date
23698 with respect to this prerequisite, the commands for that inference rule shall be executed.

23699 If the target to be built does not contain a suffix and there is no rule for the target, the single
23700 suffix inference rules shall be checked. The single-suffix inference rules define how to build a
23701 target if a file is found with a name that matches the target name with one of the single suffixes
23702 appended. A rule with one suffix .s2 is the definition of how to build target from target.s2. The
23703 other suffix (.s1) is treated as null.

23704 XSI A tilde (’˜’) in the above rules refers to an SCCS file in the current directory. Thus, the rule .c˜.o
23705 would transform an SCCS C-language source file into an object file (.o). Because the s. of the
23706 SCCS files is a prefix, it is incompatible with make’s suffix point of view. Hence, the ’˜’ is a way
23707 of changing any file reference into an SCCS file reference.

23708 Libraries

23709 If a target or prerequisite contains parentheses, it shall be treated as a member of an archive
23710 library. For the lib(member.o) expression lib refers to the name of the archive library and member.o
23711 to the member name. The application shall ensure that the member is an object file with the .o
23712 suffix. The modification time of the expression is the modification time for the member as kept
23713 in the archive library; see ar (on page 2348). The .a suffix refers to an archive library. The .s2.a
23714 rule is used to update a member in the library from a file with a suffix .s2.

23715 Internal Macros

23716 The make utility shall maintain five internal macros that can be used in target and inference rules.
23717 In order to clearly define the meaning of these macros, some clarification of the terms target rule,
23718 inference rule, target , and prerequisite is necessary.

23719 Target rules are specified by the user in a makefile for a particular target. Inference rules are
23720 user-specified or make-specified rules for a particular class of target name. Explicit prerequisites
23721 are those prerequisites specified in a makefile on target lines. Implicit prerequisites are those
23722 prerequisites that are generated when inference rules are used. Inference rules are applied to
23723 implicit prerequisites or to explicit prerequisites that do not have target rules defined for them in
23724 the makefile. Target rules are applied to targets specified in the makefile.

2826 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

23725 Before any target in the makefile is updated, each of its prerequisites (both explicit and implicit)
23726 shall be updated. This shall be accomplished by recursively processing each prerequisite. Upon
23727 recursion, each prerequisite shall become a target itself. Its prerequisites in turn shall be
23728 processed recursively until a target is found that has no prerequisites, at which point the
23729 recursion stops. The recursion then shall back up, updating each target as it goes.

23730 In the definitions that follow, the word target refers to one of:

23731 • A target specified in the makefile

23732 • An explicit prerequisite specified in the makefile that becomes the target when make
23733 processes it during recursion

23734 • An implicit prerequisite that becomes a target when make processes it during recursion

23735 In the definitions that follow, the word prerequisite refers to one of the following:

23736 • An explicit prerequisite specified in the makefile for a particular target

23737 • An implicit prerequisite generated as a result of locating an appropriate inference rule and
23738 corresponding file that matches the suffix of the target

23739 The five internal macros are:

23740 $@ The $@ shall evaluate to the full target name of the current target, or the archive file
23741 name part of a library archive target. It shall be evaluated for both target and inference
23742 rules.

23743 For example, in the .c.a inference rule, $@ represents the out-of-date .a file to be built.
23744 Similarly, in a makefile target rule to build lib.a from file.c, $@ represents the out-of-
23745 date lib.a.

23746 $% The $% macro shall be evaluated only when the current target is an archive library
23747 member of the form libname(member.o). In these cases, $@ shall evaluate to libname and
23748 $% shall evaluates to member.o. The $% macro shall be evaluated for both target and
23749 inference rules.

23750 For example, in a makefile target rule to build lib.a(file.o), $% represents file.o, as
23751 opposed to $@, which represents lib.a.

23752 $? The $? macro shall evaluate to the list of prerequisites that are newer than the current
23753 target. It shall be evaluated for both target and inference rules.

23754 For example, in a makefile target rule to build prog from file1.o, file2.o, and file3.o, and
23755 where prog is not out of date with respect to file1.o, but is out of date with respect to
23756 file2.o and file3.o, $? represents file2.o and file3.o.

23757 $< In an inference rule, the $< macro shall evaluate to the file name whose existence
23758 allowed the inference rule to be chosen for the target. In the .DEFAULT rule, the $<
23759 macro shall evaluate to the current target name. The meaning of the $< macro is |
23760 otherwise unspecified. |

23761 For example, in the .c.a inference rule, $< represents the prerequisite .c file.

23762 $* The $* macro shall evaluate to the current target name with its suffix deleted. It shall be
23763 evaluated at least for inference rules.

23764 For example, in the .c.a inference rule, $*.o represents the out-of-date .o file that
23765 corresponds to the prerequisite .c file.

23766 Each of the internal macros has an alternative form. When an uppercase ’D’ or ’F’ is appended
23767 to any of the macros, the meaning is changed to the directory part for ’D’ and file name part for

Shell and Utilities, Issue 6 2827

make Utilities

23768 ’F’ . The directory part is the path prefix of the file without a trailing slash; for the current
23769 directory, the directory part is ’.’ . When the $? macro contains more than one prerequisite file
23770 name, the $(?D) and $(?F) (or ${?D} and ${?F}) macros expand to a list of directory name parts
23771 and file name parts respectively.

23772 For the target lib(member.o) and the s2.a rule, the internal macros are defined as:

23773 $< member.s2

23774 $* member

23775 $@ lib

23776 $? member.s2

23777 $% member.o

23778 Default Rules

23779 The default rules for make shall achieve results that are the same as if the following were used.
23780 Implementations that do not support the C-Language Development Utilities option may omit
23781 CC, CFLAGS, YACC, YFLAGS, LEX, LFLAGS, LDFLAGS, and the .c, .y, and .l inference rules.
23782 Implementations that do not support FORTRAN may omit FC, FFLAGS, and the .f inference
23783 rules. Implementations may provide additional macros and rules.

23784 SPECIAL TARGETS

23785 XSI .SCCS_GET: sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@
23786

23787 XSI .SUFFIXES: .o .c .y .l .a .sh .f .c˜ .y˜ .l˜ .sh˜ .f˜

23788 MACROS

23789 MAKE=make
23790 AR=ar
23791 ARFLAGS=−rv
23792 YACC=yacc
23793 YFLAGS=
23794 LEX=lex
23795 LFLAGS=
23796 LDFLAGS=
23797 CC=c99
23798 CFLAGS=−O
23799 FC=fort77
23800 FFLAGS=−O 1
23801 XSI GET=get
23802 GFLAGS=
23803 SCCSFLAGS=
23804 SCCSGETFLAGS=−s
23805

23806 SINGLE SUFFIX RULES

23807 .c:
23808 $(CC) $(CFLAGS) $(LDFLAGS) −o $@ $<

23809 .f:
23810 $(FC) $(FFLAGS) $(LDFLAGS) −o $@ $<

2828 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

23811 .sh:
23812 cp $< $@
23813 chmod a+x $@

23814 XSI .c˜:
23815 $(GET) $(GFLAGS) −p $< > $*.c
23816 $(CC) $(CFLAGS) $(LDFLAGS) −o $@ $*.c

23817 .f˜:
23818 $(GET) $(GFLAGS) −p $< > $*.f
23819 $(FC) $(FFLAGS) $(LDFLAGS) −o $@ $*.f

23820 .sh˜:
23821 $(GET) $(GFLAGS) −p $< > $*.sh
23822 cp $*.sh $@
23823 chmod a+x $@
23824

23825 DOUBLE SUFFIX RULES

23826 .c.o:
23827 $(CC) $(CFLAGS) −c $<

23828 .f.o:
23829 $(FC) $(FFLAGS) −c $<

23830 .y.o:
23831 $(YACC) $(YFLAGS) $<
23832 $(CC) $(CFLAGS) −c y.tab.c
23833 rm −f y.tab.c
23834 mv y.tab.o $@

23835 .l.o:
23836 $(LEX) $(LFLAGS) $<
23837 $(CC) $(CFLAGS) −c lex.yy.c
23838 rm −f lex.yy.c
23839 mv lex.yy.o $@

23840 .y.c:
23841 $(YACC) $(YFLAGS) $<
23842 mv y.tab.c $@

23843 .l.c:
23844 $(LEX) $(LFLAGS) $<
23845 mv lex.yy.c $@

23846 XSI .c˜.o:
23847 $(GET) $(GFLAGS) −p $< > $*.c
23848 $(CC) $(CFLAGS) −c $*.c

23849 .f˜.o:
23850 $(GET) $(GFLAGS) −p $< > $*.f
23851 $(FC) $(FFLAGS) −c $*.f

23852 .y˜.o:
23853 $(GET) $(GFLAGS) −p $< > $*.y
23854 $(YACC) $(YFLAGS) $*.y
23855 $(CC) $(CFLAGS) −c y.tab.c
23856 rm −f y.tab.c

Shell and Utilities, Issue 6 2829

make Utilities

23857 mv y.tab.o $@

23858 .l˜.o:
23859 $(GET) $(GFLAGS) −p $< > $*.l
23860 $(LEX) $(LFLAGS) $*.l
23861 $(CC) $(CFLAGS) −c lex.yy.c
23862 rm −f lex.yy.c
23863 mv lex.yy.o $@

23864 .y˜.c:
23865 $(GET) $(GFLAGS) −p $< > $*.y
23866 $(YACC) $(YFLAGS) $*.y
23867 mv y.tab.c $@

23868 .l˜.c:
23869 $(GET) $(GFLAGS) −p $< > $*.l
23870 $(LEX) $(LFLAGS) $*.l
23871 mv lex.yy.c $@
23872

23873 .c.a:
23874 $(CC) −c $(CFLAGS) $<
23875 $(AR) $(ARFLAGS) $@ $*.o
23876 rm −f $*.o

23877 .f.a:
23878 $(FC) −c $(FFLAGS) $<
23879 $(AR) $(ARFLAGS) $@ $*.o
23880 rm −f $*.o

23881 EXIT STATUS
23882 When the −q option is specified, the make utility shall exit with one of the following values:

23883 0 Successful completion.

23884 1 The target was not up-to-date.

23885 >1 An error occurred.

23886 When the −q option is not specified, the make utility shall exit with one of the following values:

23887 0 Successful completion.

23888 >0 An error occurred.

23889 CONSEQUENCES OF ERRORS
23890 Default.

23891 APPLICATION USAGE
23892 If there is a source file (such as ./source.c) and there are two SCCS files corresponding to it
23893 (./s.source.c and ./SCCS/s.source.c), on XSI-conformant systems make uses the SCCS file in the
23894 current directory. However, users are advised to use the underlying SCCS utilities (admin, delta,
23895 get, and so on) or the sccs utility for all source files in a given directory. If both forms are used for
23896 a given source file, future developers are very likely to be confused.

23897 It is incumbent upon portable makefiles to specify the .POSIX special target in order to
23898 guarantee that they are not affected by local extensions.

23899 The −k and −S options are both present so that the relationship between the command line, the
23900 MAKEFLAGS variable, and the makefile can be controlled precisely. If the k flag is passed in

2830 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

23901 MAKEFLAGS and a command is of the form:

23902 $(MAKE) −S foo

23903 then the default behavior is restored for the child make.

23904 When the −n option is specified, it is always added to MAKEFLAGS. This allows a recursive
23905 make −n target to be used to see all of the action that would be taken to update target .

23906 Because of widespread historical practice, interpreting a ’#’ number sign inside a variable as
23907 the start of a comment has the unfortunate side effect of making it impossible to place a number
23908 sign in a variable, thus forbidding something like:

23909 CFLAGS = "−D COMMENT_CHAR=’#’"

23910 Many historical make utilities stop chaining together inference rules when an intermediate target
23911 is nonexistent. For example, it might be possible for a make to determine that both .y.c and .c.o
23912 could be used to convert a .y to a .o. Instead, in this case, make requires the use of a .y.o rule.

23913 The best way to provide portable makefiles is to include all of the rules needed in the makefile
23914 itself. The rules provided use only features provided by other parts of this volume of
23915 IEEE Std. 1003.1-200x. The default rules include rules for optional commands in this volume of
23916 IEEE Std. 1003.1-200x. Only rules pertaining to commands that are provided are needed in an
23917 implementation’s default set.

23918 Macros used within other macros are evaluated when the new macro is used rather than when
23919 the new macro is defined. Therefore:

23920 MACRO =value1
23921 NEW = $(MACRO)
23922 MACRO =value2

23923 target:
23924 echo $(NEW)

23925 would produce value2 and not value1 since NEW was not expanded until it was needed in the
23926 echo command line.

23927 Some historical applications have been known to intermix target_name and macro=name operands
23928 on the command line, expecting that all of the macros are processed before any of the targets are
23929 dealt with. Portable applications do not do this, although some backward compatibility support
23930 may be included in some implementations.

23931 The following characters in file names may give trouble: ’=’ , ’:’ , ’‘’ , ’’’ , and ’@’ . For
23932 inference rules, the description of $< and $? seem similar. However, an example shows the
23933 minor difference. In a makefile containing:

23934 foo.o: foo.h

23935 if foo.h is newer than foo.o, yet foo.c is older than foo.o, the built-in rule to make foo.o from
23936 foo.c is used, with $< equal to foo.c and $? equal to foo.h. If foo.c is also newer than foo.o, $< is
23937 equal to foo.c and $? is equal to foo.h foo.c.

23938 EXAMPLES

23939 1. The following command:

23940 make

23941 makes the first target found in the makefile.

Shell and Utilities, Issue 6 2831

make Utilities

23942 2. The following command:

23943 make junk

23944 makes the target junk.

23945 3. The following makefile says that pgm depends on two files, a.o and b.o, and that they in
23946 turn depend on their corresponding source files (a.c and b.c), and a common file incl.h:

23947 pgm: a.o b.o
23948 c99 a.o b.o −o pgm
23949 a.o: incl.h a.c
23950 c99 −c a.c
23951 b.o: incl.h b.c
23952 c99 −c b.c

23953 4. An example for making optimized .o files from .c files is:

23954 .c.o:
23955 c99 −c −O $*.c

23956 or:

23957 .c.o:
23958 c99 −c −O $<

23959 5. The most common use of the archive interface follows. Here, it is assumed that the source
23960 files are all C-language source:

23961 lib: lib(file1.o) lib(file2.o) lib(file3.o)
23962 @echo lib is now up-to-date

23963 The .c.a rule is used to make file1.o, file2.o, and file3.o and insert them into lib.

23964 The treatment of escaped <newline> characters throughout the makefile is historical
23965 practice. For example, the inference rule:

23966 .c.o\
23967 :

23968 works, and the macro:

23969 f= bar baz\
23970 biz
23971 a:
23972 echo ==$f==

23973 echoes "==bar baz biz==" .

23974 If $? were:

23975 /usr/include/stdio.h /usr/include/unistd.h foo.h

23976 then $(?D) would be:

23977 /usr/include /usr/include .

23978 and $(?F) would be:

23979 stdio.h unistd.h foo.h

23980 6. The contents of the built-in rules can be viewed by running:

2832 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

23981 make −p −f /dev/null 2>/dev/null

23982 RATIONALE
23983 The make utility described in this volume of IEEE Std. 1003.1-200x is intended to provide the
23984 means for changing portable source code into executables that can be run on a
23985 IEEE Std. 1003.1-200x-conforming system. It reflects the most common features present in
23986 System V and BSD makes.

23987 Historically, the make utility has been an especially fertile ground for vendor and research
23988 organization-specific syntax modifications and extensions. Examples include:

23989 • Syntax supporting parallel execution (such as from various multiprocessor vendors, GNU,
23990 and others)

23991 • Additional ‘‘operators’’ separating targets and their prerequisites (System V, BSD, and
23992 others)

23993 • Specifying that command lines containing the strings ${MAKE} and $(MAKE) are executed
23994 when the −n option is specified (GNU and System V)

23995 • Modifications of the meaning of internal macros when referencing libraries (BSD and others)

23996 • Using a single instance of the shell for all of the command lines of the target (BSD and others)

23997 • Allowing spaces as well as tabs to delimit command lines (BSD)

23998 • Adding C preprocessor-style ‘‘include’’ and ‘‘ifdef’’ constructs (System V, GNU, BSD, and
23999 others)

24000 • Remote execution of command lines (Sprite and others)

24001 • Specifying additional special targets (BSD, System V, and most others)

24002 Additionally, many vendors and research organizations have rethought the basic concepts of
24003 make, creating vastly extended, as well as completely new, syntaxes. Each of these versions of
24004 make fulfills the needs of a different community of users; it is unreasonable for this volume of
24005 IEEE Std. 1003.1-200x to require behavior that would be incompatible (and probably inferior) to
24006 historical practice for such a community.

24007 In similar circumstances, when the industry has enough sufficiently incompatible formats as to
24008 make them irreconcilable, this volume of IEEE Std. 1003.1-200x has followed one or both of two
24009 courses of action. Commands have been renamed (cksum, echo, and pax) and/or command line
24010 options have been provided to select the desired behavior (grep, od, and pax).

24011 Because the syntax specified for the make utility is, by and large, a subset of the syntaxes
24012 accepted by almost all versions of make, it was decided that it would be counter-productive to
24013 change the name. And since the makefile itself is a basic unit of portability, it would not be
24014 completely effective to reserve a new option letter, such as make −P, to achieve the portable
24015 behavior. Therefore, the special target .POSIX was added to the makefile, allowing users to
24016 specify ‘‘standard’’ behavior. This special target does not preclude extensions in the make utility,
24017 nor does it preclude such extensions being used by the makefile specifying the target; it does,
24018 however, preclude any extensions from being applied that could alter the behavior of previously
24019 valid syntax; such extensions must be controlled via command line options or new special
24020 targets. It is incumbent upon portable makefiles to specify the .POSIX special target in order to
24021 guarantee that they are not affected by local extensions.

24022 The portable version of make described in this reference page is not intended to be the state-of-
24023 the-art software generation tool and, as such, some newer and more leading-edge features have
24024 not been included. An attempt has been made to describe the portable makefile in a manner that
24025 does not preclude such extensions as long as they do not disturb the portable behavior described

Shell and Utilities, Issue 6 2833

make Utilities

24026 here.

24027 When the −n option is specified, it is always added to MAKEFLAGS. This allows a recursive
24028 make −n target to be used to see all of the action that would be taken to update target .

24029 The definition of MAKEFLAGS allows both the System V letter string and the BSD command line
24030 formats. The two formats are sufficiently different to allow implementations to support both
24031 without ambiguity.

24032 Early proposals stated that an ‘‘unquoted’’ number sign was treated as the start of a comment.
24033 The make utility does not pay any attention to quotes. A number sign starts a comment
24034 regardless of its surroundings.

24035 The text about ‘‘other implementation-defined path names may also be tried’’ in addition to |
24036 ./makefile and ./Makefile is to allow such extensions as SCCS/s.Makefile and other variations. |
24037 It was made an implementation-defined requirement (as opposed to unspecified behavior) to |
24038 highlight surprising implementations that might select something unexpected like
24039 /etc/Makefile. XSI-conformant systems also try ./s.makefile, SCCS/s.makefile, ./s.Makefile, |
24040 and SCCS/s.Makefile. |

24041 Early proposals contained the macro NPROC as a means of specifying that make should use n
24042 processes to do the work required. While this feature is a valuable extension for many systems, it
24043 is not common usage and could require other non-trivial extensions to makefile syntax. This
24044 extension is not required by this volume of IEEE Std. 1003.1-200x, but could be provided as a
24045 compatible extension. The macro PARALLEL is used by some historical systems with essentially
24046 the same meaning (but without using a name that is a common system limit value). It is
24047 suggested that implementors recognize the existing use of NPROC and/or PARALLEL as
24048 extensions to make.

24049 The default rules are based on System V. The default CC= value is c99 instead of cc because this |
24050 volume of IEEE Std. 1003.1-200x does not standardize the utility named cc. Thus, every
24051 conforming application would be required to define CC=c99 to expect to run. There is no |
24052 advantage conferred by the hope that the makefile might hit the ‘‘preferred’’ compiler because
24053 this cannot be guaranteed to work. Also, since the portable makescript can only use the c99 |
24054 options, no advantage is conferred in terms of what the script can do. It is a quality-of-
24055 implementation issue as to whether c99 is as valuable as cc. |

24056 The −d option to make is frequently used to produce debugging information, but is too |
24057 implementation-defined to add to this volume of IEEE Std. 1003.1-200x. |

24058 The −p option is not passed in MAKEFLAGS on most historical implementations and to change
24059 this would cause many implementations to break without sufficiently increased portability.

24060 Commands that begin with a plus sign (’+’) are executed even if the −n option is present. Based
24061 on the GNU version of make, the behavior of −n when the plus-sign prefix is encountered has
24062 been extended to apply to −q and −t as well. However, the System V convention of forcing
24063 command execution with −n when the command line of a target contains either of the strings
24064 $(MAKE) or ${MAKE} has not been adopted. This functionality appeared in early proposals, but
24065 the danger of this approach was pointed out with the following example of a portion of a
24066 makefile:

24067 subdir:
24068 cd subdir; rm all_the_files; $(MAKE)

24069 The loss of the System V behavior in this case is well-balanced by the safety afforded to other
24070 makefiles that were not aware of this situation. In any event, the command line plus-sign prefix
24071 can provide the desired functionality.

2834 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

24072 The double colon in the target rule format is supported in BSD systems to allow more than one
24073 target line containing the same target name to have commands associated with it. Since this is
24074 not functionality described in the SVID or XPG3 it has been allowed as an extension, but not
24075 mandated.

24076 The default rules are provided with text specifying that the built-in rules shall be the same as if
24077 the listed set were used. The intent is that implementations should be able to use the rules
24078 without change, but will be allowed to alter them in ways that do not affect the primary
24079 behavior.

24080 The best way to provide portable makefiles is to include all of the rules needed in the makefile
24081 itself. The rules provided use only features provided by other portions of this volume of
24082 IEEE Std. 1003.1-200x. The default rules include rules for optional commands in this volume of
24083 IEEE Std. 1003.1-200x. Only rules pertaining to commands that are provided are needed in the
24084 default set of an implementation.

24085 One point of discussion was whether to drop the default rules list from this volume of
24086 IEEE Std. 1003.1-200x. They provide convenience, but do not enhance portability of applications.
24087 The prime benefit is in portability of users who wish to type make command and have the
24088 command build from a command.c file.

24089 The historical MAKESHELL feature was omitted. In some implementations it is used to let a user
24090 override the shell to be used to run make commands. This was confusing; for a portable make, the
24091 shell should be chosen by the makefile writer or specified on the make command line and not by
24092 a user running make.

24093 The make utilities in most historical implementations process the prerequisites of a target in left-
24094 to-right order, and the makefile format requires this. It supports the standard idiom used in
24095 many makefiles that produce yacc programs; for example:

24096 foo: y.tab.o lex.o main.o
24097 $(CC) $(CFLAGS) −o $@ t.tab.o lex.o main.o

24098 In this example, if make chose any arbitrary order, the lex.o might not be made with the correct
24099 y.tab.h. Although there may be better ways to express this relationship, it is widely used
24100 historically. Implementations that desire to update prerequisites in parallel should require an
24101 explicit extension to make or the makefile format to accomplish it, as described previously.

24102 The algorithm for determining a new entry for target rules is partially unspecified. Some
24103 historical makes allow blank, empty, or comment lines within the collection of commands
24104 marked by leading <tab>s. A conforming makefile must ensure that each command starts with
24105 a <tab>, but implementations are free to ignore blank, empty, and comment lines without
24106 triggering the start of a new entry.

24107 The ASYNCHRONOUS EVENTS section includes having SIGTERM and SIGHUP, along with
24108 the more traditional SIGINT and SIGQUIT, remove the current target unless directed not to do
24109 so. SIGTERM and SIGHUP were added to parallel other utilities that have historically cleaned
24110 up their work as a result of these signals. When make receives any signal other than SIGQUIT, it
24111 is required to resend itself the signal it received so that it exits with a status that reflects the
24112 signal. The results from SIGQUIT are partially unspecified because, on systems that create core
24113 files upon receipt of SIGQUIT, the core from make would conflict with a core file from the
24114 command that was running when the SIGQUIT arrived. The main concern was to prevent
24115 damaged files from appearing up-to-date when make is rerun.

24116 The .PRECIOUS special target was extended to affect all targets globally (by specifying no
24117 prerequisites). The .IGNORE and .SILENT special targets were extended to allow prerequisites;
24118 it was judged to be more useful in some cases to be able to turn off errors or echoing for a list of

Shell and Utilities, Issue 6 2835

make Utilities

24119 targets than for the entire makefile. These extensions to the make in System V were made to
24120 match historical practice from the BSD make.

24121 Macros are not exported to the environment of commands to be run. This was never the case in
24122 any historical make and would have serious consequences. The environment is the same as the
24123 environment to make except that MAKEFLAGS and macros defined on the make command line
24124 are added.

24125 Some implementations do not use system() for all command lines, as required by the portable
24126 makefile format; as a performance enhancement, they select lines without shell metacharacters
24127 for direct execution by execve(). There is no requirement that system() be used specifically, but
24128 merely that the same results be achieved. The metacharacters typically used to bypass the direct
24129 execve() execution have been any of:

24130 = | ˆ () ; & < > * ? [] : $ ‘ ’ " \ \n

24131 The default in some advanced versions of make is to group all the command lines for a target and
24132 execute them using a single shell invocation; the System V method is to pass each line
24133 individually to a separate shell. The single-shell method has the advantages in performance and
24134 the lack of a requirement for many continued lines. However, converting to this newer method
24135 has caused portability problems with many historical makefiles, so the behavior with the POSIX
24136 makefile is specified to be the same as that of System V. It is suggested that the special target
24137 .ONESHELL be used as an implementation extension to achieve the single-shell grouping for a
24138 target or group of targets.

24139 Novice users of make have had difficulty with the historical need to start commands with a
24140 <tab> character. Since it is often difficult to discern differences between <tab> and <space>
24141 characters on terminals or printed listings, confusing bugs can arise. In early proposals, an
24142 attempt was made to correct this problem by allowing leading <blank>s instead of <tab>s.
24143 However, implementors reported many makefiles that failed in subtle ways following this
24144 change, and it is difficult to implement a make that unambiguously can differentiate between
24145 macro and command lines. There is extensive historical practice of allowing leading spaces
24146 before macro definitions. Forcing macro lines into column 1 would be a significant backwards-
24147 compatibility problem for some makefiles. Therefore, historical practice was restored.

24148 The System V INCLUDE feature was considered, but not included. This would treat a line that
24149 began in the first column and contained INCLUDE <filename> as an indication to read <filename>
24150 at that point in the makefile. This is difficult to use in a portable way, and it raises concerns
24151 about nesting levels and diagnostics. System V, BSD, GNU, and others have used different
24152 methods for including files.

24153 The System V dynamic dependency feature was not included. It would support:

24154 cat: $$@.c

24155 that would expand to;

24156 cat: cat.c

24157 This feature exists only in the new version of System V make and, while useful, is not in wide
24158 usage. This means that macros are expanded twice for prerequisites: once at makefile parse time
24159 and once at target update time.

24160 Consideration was given to adding metarules to the POSIX make. This would make %.o: %.c the
24161 same as .c.o:. This is quite useful and available from some vendors, but it would cause too many
24162 changes to this make to support. It would have introduced rule chaining and new substitution
24163 rules. However, the rules for target names have been set to reserve the ’%’ and ’"’ characters. |
24164 These are traditionally used to implement metarules and quoting of target names, respectively.

2836 Technical Standard (2000) (Draft July 31, 2000)

Utilities make

24165 Implementors are strongly encouraged to use these characters only for these purposes.

24166 A request was made to extend the suffix delimiter character from a period to any character. The
24167 metarules feature in newer makes solves this problem in a more general way. This volume of
24168 IEEE Std. 1003.1-200x is staying with the more conservative historical definition.

24169 The standard output format for the −p option is not described because it is primarily a
24170 debugging option and because the format is not generally useful to programs. In historical
24171 implementations the output is not suitable for use in generating makefiles. The −p format has
24172 been variable across historical implementations. Therefore, the definition of −p was only to
24173 provide a consistently named option for obtaining make script debugging information.

24174 Some historical implementations have not cleared the suffix list with −r.

24175 Implementations should be aware that some historical applications have intermixed target_name
24176 and macro=value operands on the command line, expecting that all of the macros are processed
24177 before any of the targets are dealt with. Portable applications do not do this, but some
24178 backwards-compatibility support may be warranted.

24179 Empty inference rules are specified with a semicolon command rather than omitting all
24180 commands, as described in an early proposal. The latter case has no traditional meaning and is
24181 reserved for implementation extensions, such as in GNU make.

24182 FUTURE DIRECTIONS
24183 None.

24184 SEE ALSO
24185 ar , c99 , get, lex , sh, yacc , the System Interfaces volume of IEEE Std. 1003.1-200x, system() |

24186 CHANGE HISTORY
24187 First released in Issue 2.

24188 Issue 4
24189 Aligned with the ISO/IEC 9945-2: 1993 standard.

24190 Issue 4, Version 2
24191 Under Default Rules, the string " −G$@"is deleted from the line referencing sccs.

24192 Issue 5
24193 FUTURE DIRECTIONS section added.

24194 Issue 6
24195 This utility is now marked as part of the Software Development Utilities option.

24196 The Open Group corrigenda item U029/1 has been applied, correcting a typographical error in
24197 the SPECIAL TARGETS section.

24198 In the ENVIRONMENT VARIABLES section, the PROJECTDIR description is updated from
24199 ‘‘otherwise, the home directory of a user of that name is examined’’ to ‘‘otherwise, the value of
24200 PROJECTDIR is treated as a user name and that user’s initial working directory is examined’’.

24201 It is specified whether the command line is related to the makefile or to the make command, and
24202 the macro processing rules are updated to align with the IEEE P1003.2b draft standard.

24203 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2837

man Utilities

24204 NAME
24205 man — display system documentation

24206 SYNOPSIS
24207 man [−k] name...

24208 DESCRIPTION
24209 The man utility shall write information about each of the name operands. If name is the name of a
24210 standard utility, man at a minimum shall write a message describing the syntax used by the
24211 standard utility, its options, and operands. If more information is available, the man utility shall |
24212 provide it in an implementation-defined manner. |

24213 An implementation may provide information for values of name other than the standard utilities.
24214 Standard utilities that are listed as optional and that are not supported by the implementation
24215 either shall cause a brief message indicating that fact to be displayed or shall cause a full display
24216 of information as described previously.

24217 OPTIONS
24218 The man utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
24219 12.2, Utility Syntax Guidelines. |

24220 The following option shall be supported:

24221 −k Interpret name operands as keywords to be used in searching a utilities summary
24222 database that contains a brief purpose entry for each standard utility and write lines
24223 from the summary database that match any of the keywords. The keyword search shall
24224 produce results that are the equivalent of the output of the following command:

24225 grep −Ei ’
24226 name
24227 name
24228 ...
24229 ’ summary-database

24230 This assumes that the summary-database is a text file with a single entry per line; this
24231 organization is not required and the example using grep −Ei is merely illustrative of the
24232 type of search intended. The purpose entry to be included in the database shall consist
24233 of a terse description of the purpose of the utility.

24234 OPERANDS
24235 The following operand shall be supported:

24236 name A keyword or the name of a standard utility. When −k is not specified and name
24237 does not represent one of the standard utilities, the results are unspecified.

24238 STDIN
24239 Not used.

24240 INPUT FILES
24241 None.

24242 ENVIRONMENT VARIABLES
24243 The following environment variables shall affect the execution of man:

24244 LANG Provide a default value for the internationalization variables that are unset or null.
24245 If LANG is unset or null, the corresponding value from the implementation- |
24246 defined default locale shall be used. If any of the internationalization variables |
24247 contains an invalid setting, the utility shall behave as if none of the variables had
24248 been defined.

2838 Technical Standard (2000) (Draft July 31, 2000)

Utilities man

24249 LC_ALL If set to a non-empty string value, override the values of all the other
24250 internationalization variables.

24251 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
24252 characters (for example, single-byte as opposed to multi-byte characters in
24253 arguments and in the summary database). The value of LC_CTYPE need not affect
24254 the format of the information written about the name operands.

24255 LC_MESSAGES
24256 Determine the locale that should be used to affect the format and contents of
24257 diagnostic messages written to standard error and informative messages written to
24258 standard output.

24259 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

24260 PAGER Determine an output filtering command for writing the output to a terminal. Any
24261 string acceptable as a command_string operand to the sh −c command shall be valid.
24262 When standard output is a terminal device, the reference page output shall be
24263 piped through the command. If the PAGER variable is null or not set, the
24264 command shall be either more or another paginator utility documented in the
24265 system documentation.

24266 ASYNCHRONOUS EVENTS
24267 Default.

24268 STDOUT
24269 The man utility shall write text describing the syntax of the utility name, its options and its
24270 operands, or, when −k is specified, lines from the summary database. The format of this text is |
24271 implementation-defined. |

24272 STDERR
24273 Used only for diagnostic messages.

24274 OUTPUT FILES
24275 None.

24276 EXTENDED DESCRIPTION
24277 None.

24278 EXIT STATUS
24279 The following exit values shall be returned:

24280 0 Successful completion.

24281 >0 An error occurred.

24282 CONSEQUENCES OF ERRORS
24283 Default.

24284 APPLICATION USAGE
24285 None.

24286 EXAMPLES
24287 None.

24288 RATIONALE
24289 It is recognized that the man utility is only of minimal usefulness as specified. The opinion of the
24290 standard developers was strongly divided as to how much or how little information man should
24291 be required to provide. They considered, however, that the provision of some portable way of
24292 accessing documentation would aid user portability. The arguments against a fuller

Shell and Utilities, Issue 6 2839

man Utilities

24293 specification were:

24294 • Large quantities of documentation should not be required on a system that does not have
24295 excess disk space.

24296 • The current manual system does not present information in a manner that greatly aids user
24297 portability.

24298 • A ‘‘better help system’’ is currently an area in which vendors feel that they can add value to
24299 their POSIX implementations.

24300 The −f option was considered, but due to implementation differences, it was not included in this
24301 volume of IEEE Std. 1003.1-200x.

24302 The description was changed to be more specific about what has to be displayed for a utility.
24303 The standard developers considered it insufficient to allow a display of only the synopsis
24304 without giving a short description of what each option and operand does.

24305 The ‘‘purpose’’ entry to be included in the database can be similar to the section title (less the
24306 numeric prefix) from this volume of IEEE Std. 1003.1-200x for each utility. These titles are
24307 similar to those used in historical systems for this purpose.

24308 See mailx for rationale concerning the default paginator.

24309 The caveat in the LC_CTYPE description was added because it is not a requirement that an
24310 implementation provide reference pages for all of its supported locales on each system;
24311 changing LC_CTYPE does not necessarily translate the reference page into another language.
24312 This is equivalent to the current state of LC_MESSAGES in IEEE Std. 1003.1-200x—locale-specific
24313 messages are not yet a requirement.

24314 The historical MANPATH variable is not included in POSIX because no attempt is made to
24315 specify naming conventions for reference page files, nor even to mandate that they are files at
24316 all. In some systems they could be a true database, a hypertext file, or even fixed strings within
24317 the man executable. The standard developers considered the portability of reference pages to be
24318 outside their scope of work (and more appropriate to the POSIX.7 working group developing
24319 application-installation tools). However, users should be aware that MANPATH is implemented
24320 on a number of historical systems and that it can be used to tailor the search pattern for reference
24321 pages from the various categories (utilities, functions, file formats, and so on) when the system
24322 administrator reveals the location and conventions for reference pages on the system.

24323 The keyword search can rely on at least the text of the section titles from these utility
24324 descriptions, and the implementation may add more keywords. The term ‘‘section titles’’ refers
24325 to the strings such as:

24326 man — Display system documentation
24327 ps — Report process status

24328 FUTURE DIRECTIONS
24329 None.

24330 SEE ALSO
24331 more

24332 CHANGE HISTORY
24333 First released in Issue 4.

2840 Technical Standard (2000) (Draft July 31, 2000)

Utilities man

24334 Issue 5
24335 FUTURE DIRECTIONS section added.

Shell and Utilities, Issue 6 2841

mesg Utilities

24336 NAME
24337 mesg — permit or deny messages

24338 SYNOPSIS
24339 UP mesg [y|n]
24340

24341 DESCRIPTION
24342 The mesg utility shall control whether other users are allowed to send messages via write, talk, or
24343 other utilities to a terminal device. The terminal device affected shall be determined by searching
24344 for the first terminal in the sequence of devices associated with standard input, standard output,
24345 and standard error, respectively. With no arguments, mesg shall report the current state without
24346 changing it. Processes with appropriate privileges may be able to send messages to the terminal
24347 independent of the current state.

24348 OPTIONS
24349 None.

24350 OPERANDS
24351 The following operands shall be supported in the POSIX locale:

24352 y Grant permission to other users to send messages to the terminal device.

24353 n Deny permission to other users to send messages to the terminal device.

24354 STDIN
24355 Not used.

24356 INPUT FILES
24357 None.

24358 ENVIRONMENT VARIABLES
24359 The following environment variables shall affect the execution of mesg:

24360 LANG Provide a default value for the internationalization variables that are unset or null.
24361 If LANG is unset or null, the corresponding value from the implementation- |
24362 defined default locale shall be used. If any of the internationalization variables |
24363 contains an invalid setting, the utility shall behave as if none of the variables had
24364 been defined.

24365 LC_ALL If set to a non-empty string value, override the values of all the other
24366 internationalization variables.

24367 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
24368 characters (for example, single-byte as opposed to multi-byte characters in
24369 arguments).

24370 LC_MESSAGES
24371 Determine the locale that should be used to affect the format and contents of
24372 diagnostic messages written (by mesg) to standard error.

24373 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

24374 ASYNCHRONOUS EVENTS
24375 Default.

24376 STDOUT
24377 If no operand is specified, mesg shall display the current terminal state in an unspecified format.

2842 Technical Standard (2000) (Draft July 31, 2000)

Utilities mesg

24378 STDERR
24379 Used only for diagnostic messages.

24380 OUTPUT FILES
24381 None.

24382 EXTENDED DESCRIPTION
24383 None.

24384 EXIT STATUS
24385 The following exit values shall be returned:

24386 0 Receiving messages is allowed.

24387 1 Receiving messages is not allowed.

24388 >1 An error occurred.

24389 CONSEQUENCES OF ERRORS
24390 Default.

24391 APPLICATION USAGE
24392 The mechanism by which the message status of the terminal is changed is unspecified.
24393 Therefore, unspecified actions may cause the status of the terminal to change after mesg has
24394 successfully completed. These actions may include, but are not limited to: another invocation of
24395 the mesg utility, login procedures; invocation of the stty utility, invocation of the chmod utility or
24396 chmod() function, and so on. |

24397 EXAMPLES
24398 None.

24399 RATIONALE
24400 The terminal changed by mesg is that associated with the standard input, output, or error, rather
24401 than the controlling terminal for the session. This is because users logged in more than once
24402 should be able to change any of their login terminals without having to stop the job running in
24403 those sessions. This is not a security problem involving the terminals of other users because
24404 appropriate privileges would be required to affect the terminal of another user.

24405 The method of checking each of the first three file descriptors in sequence until a terminal is
24406 found was adopted from System V.

24407 The file /dev/tty is not specified for the terminal device because it was thought to be too
24408 restrictive. Typical environment changes for the n operand are that write permissions are
24409 removed for others and group from the appropriate device. It was decided to leave the actual
24410 description of what is done as unspecified because of potential differences between
24411 implementations.

24412 The format for standard output is unspecified because of differences between historical
24413 implementations. This output is generally not useful to shell scripts (they can use the exit
24414 status), so exact parsing of the output is unnecessary.

24415 FUTURE DIRECTIONS
24416 None.

24417 SEE ALSO
24418 talk , write

Shell and Utilities, Issue 6 2843

mesg Utilities

24419 CHANGE HISTORY
24420 First released in Issue 2.

24421 Issue 4
24422 Aligned with the ISO/IEC 9945-2: 1993 standard.

24423 Issue 6
24424 This utility is now marked as part of the User Portability Utilities option.

2844 Technical Standard (2000) (Draft July 31, 2000)

Utilities mkdir

24425 NAME
24426 mkdir — make directories

24427 SYNOPSIS
24428 mkdir [−p][−m mode] dir ...

24429 DESCRIPTION
24430 The mkdir utility shall create the directories specified by the operands, in the order specified.

24431 For each dir operand, the mkdir utility shall perform actions equivalent to the mkdir() function
24432 defined in the System Interfaces volume of IEEE Std. 1003.1-200x, called with the following
24433 arguments:

24434 1. The dir operand is used as the path argument.

24435 2. The value of the bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO is used as
24436 the mode argument. (If the −m option is specified, the mode option-argument overrides this
24437 default.)

24438 OPTIONS
24439 The mkdir utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
24440 12.2, Utility Syntax Guidelines. |

24441 The following options shall be supported:

24442 −m mode Set the file permission bits of the newly-created directory to the specified mode
24443 value. The mode option-argument shall be the same as the mode operand defined
24444 for the chmod utility. In the symbolic_mode strings, the op characters ’+’ and ’ −’
24445 shall be interpreted relative to an assumed initial mode of a=rwx; ’+’ shall add
24446 permissions to the default mode, ’ −’ shall delete permissions from the default
24447 mode.

24448 −p Create any missing intermediate path name components.

24449 For each dir operand that does not name an existing directory, effects equivalent to
24450 those caused by the following command shall occur:

24451 mkdir −p −m $(umask −S),u+wx $(dirname dir) &&
24452 mkdir [−m mode] dir

24453 where the −m mode option represents that option supplied to the original
24454 invocation of mkdir, if any.

24455 Each dir operand that names an existing directory shall be ignored without error.

24456 OPERANDS
24457 The following operand shall be supported:

24458 dir A path name of a directory to be created.

24459 STDIN
24460 Not used.

24461 INPUT FILES
24462 None.

24463 ENVIRONMENT VARIABLES
24464 The following environment variables shall affect the execution of mkdir:

24465 LANG Provide a default value for the internationalization variables that are unset or null.
24466 If LANG is unset or null, the corresponding value from the implementation- |
24467 defined default locale shall be used. If any of the internationalization variables |

Shell and Utilities, Issue 6 2845

mkdir Utilities

24468 contains an invalid setting, the utility shall behave as if none of the variables had
24469 been defined.

24470 LC_ALL If set to a non-empty string value, override the values of all the other
24471 internationalization variables.

24472 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
24473 characters (for example, single-byte as opposed to multi-byte characters in
24474 arguments).

24475 LC_MESSAGES
24476 Determine the locale that should be used to affect the format and contents of
24477 diagnostic messages written to standard error.

24478 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

24479 ASYNCHRONOUS EVENTS
24480 Default.

24481 STDOUT
24482 Not used.

24483 STDERR
24484 Used only for diagnostic messages.

24485 OUTPUT FILES
24486 None.

24487 EXTENDED DESCRIPTION
24488 None.

24489 EXIT STATUS
24490 The following exit values shall be returned:

24491 0 All the specified directories were created successfully or the −p option was specified and all
24492 the specified directories now exist.

24493 >0 An error occurred.

24494 CONSEQUENCES OF ERRORS
24495 Default.

24496 APPLICATION USAGE
24497 The default file mode for directories is a=rwx (777 on most systems) with selected permissions
24498 removed in accordance with the file mode creation mask. For intermediate path name
24499 components created by mkdir, the mode is the default modified by u+wx so that the
24500 subdirectories can always be created regardless of the file mode creation mask; if different
24501 ultimate permissions are desired for the intermediate directories, they can be changed
24502 afterwards with chmod.

24503 Note that some of the requested directories may have been created even if an error occurs.

24504 EXAMPLES
24505 None.

24506 RATIONALE
24507 The System V −m option was included to control the file mode.

24508 The System V −p option was included to create any needed intermediate directories and to
24509 complement the functionality provided by rmdir for removing directories in the path prefix as
24510 they become empty. Because no error is produced if any path component already exists, the −p

2846 Technical Standard (2000) (Draft July 31, 2000)

Utilities mkdir

24511 option is also useful to ensure that a particular directory exists.

24512 The functionality of mkdir is described substantially through a reference to the mkdir() function
24513 in the System Interfaces volume of IEEE Std. 1003.1-200x. For example, by default, the mode of
24514 the directory is affected by the file mode creation mask in accordance with the specified
24515 behavior of the mkdir() function. In this way, there is less duplication of effort required for
24516 describing details of the directory creation.

24517 FUTURE DIRECTIONS
24518 None.

24519 SEE ALSO
24520 rm, rmdir, umask , the System Interfaces volume of IEEE Std. 1003.1-200x, mkdir()

24521 CHANGE HISTORY
24522 First released in Issue 2.

24523 Issue 4
24524 Aligned with the ISO/IEC 9945-2: 1993 standard.

24525 Issue 5
24526 FUTURE DIRECTIONS section added.

Shell and Utilities, Issue 6 2847

mkfifo Utilities

24527 NAME
24528 mkfifo — make FIFO special files

24529 SYNOPSIS
24530 mkfifo [−m mode] file ...

24531 DESCRIPTION
24532 The mkfifo utility shall create the FIFO special files specified by the operands, in the order
24533 specified.

24534 For each file operand, the mkfifo utility shall perform actions equivalent to the mkfifo () function
24535 defined in the System Interfaces volume of IEEE Std. 1003.1-200x, called with the following
24536 arguments:

24537 1. The file operand is used as the path argument.

24538 2. The value of the bitwise-inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP,
24539 S_IROTH, and S_IWOTH is used as the mode argument. (If the −m option is specified, the
24540 value of the mkfifo () mode argument is unspecified, but the FIFO shall at no time have
24541 permissions less restrictive than the −m mode option-argument.)

24542 OPTIONS
24543 The mkfifo utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
24544 12.2, Utility Syntax Guidelines. |

24545 The following option shall be supported:

24546 −m mode Set the file permission bits of the newly-created FIFO to the specified mode value.
24547 The mode option-argument shall be the same as the mode operand defined for the
24548 chmod utility. In the symbolic_mode strings, the op characters ’+’ and ’ −’ shall be
24549 interpreted relative to an assumed initial mode of a=rw.

24550 OPERANDS
24551 The following operand shall be supported:

24552 file A path name of the FIFO special file to be created.

24553 STDIN
24554 Not used.

24555 INPUT FILES
24556 None.

24557 ENVIRONMENT VARIABLES
24558 The following environment variables shall affect the execution of mkfifo:

24559 LANG Provide a default value for the internationalization variables that are unset or null.
24560 If LANG is unset or null, the corresponding value from the implementation- |
24561 defined default locale shall be used. If any of the internationalization variables |
24562 contains an invalid setting, the utility shall behave as if none of the variables had
24563 been defined.

24564 LC_ALL If set to a non-empty string value, override the values of all the other
24565 internationalization variables.

24566 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
24567 characters (for example, single-byte as opposed to multi-byte characters in
24568 arguments).

24569 LC_MESSAGES
24570 Determine the locale that should be used to affect the format and contents of

2848 Technical Standard (2000) (Draft July 31, 2000)

Utilities mkfifo

24571 diagnostic messages written to standard error.

24572 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

24573 ASYNCHRONOUS EVENTS
24574 Default.

24575 STDOUT
24576 Not used.

24577 STDERR
24578 Used only for diagnostic messages.

24579 OUTPUT FILES
24580 None.

24581 EXTENDED DESCRIPTION
24582 None.

24583 EXIT STATUS
24584 The following exit values shall be returned:

24585 0 All the specified FIFO special files were created successfully.

24586 >0 An error occurred.

24587 CONSEQUENCES OF ERRORS
24588 Default.

24589 APPLICATION USAGE
24590 None.

24591 EXAMPLES
24592 None.

24593 RATIONALE
24594 This new utility was added to permit shell applications to create FIFO special files.

24595 The −m option was added to control the file mode, for consistency with the similar functionality
24596 provided the mkdir utility.

24597 Early proposals included a −p option similar to the mkdir −p option that created intermediate
24598 directories leading up to the FIFO specified by the final component. This was removed because
24599 it is not commonly needed and is not common practice with similar utilities.

24600 The functionality of mkfifo is described substantially through a reference to the mkfifo () function
24601 in the System Interfaces volume of IEEE Std. 1003.1-200x. For example, by default, the mode of
24602 the FIFO file is affected by the file mode creation mask in accordance with the specified behavior
24603 of the mkfifo () function. In this way, there is less duplication of effort required for describing
24604 details of the file creation.

24605 FUTURE DIRECTIONS
24606 None.

24607 SEE ALSO
24608 umask , the System Interfaces volume of IEEE Std. 1003.1-200x, mkfifo ()

24609 CHANGE HISTORY
24610 First released in Issue 3.

Shell and Utilities, Issue 6 2849

mkfifo Utilities

24611 Issue 4
24612 Aligned with the ISO/IEC 9945-2: 1993 standard.

2850 Technical Standard (2000) (Draft July 31, 2000)

Utilities more

24613 NAME
24614 more — display files on a page-by-page basis

24615 SYNOPSIS
24616 UP more [−ceisu][−n number][−p command][−t tagstring][file ...]
24617

24618 DESCRIPTION
24619 The more utility shall read files and either write them to the terminal on a page-by-page basis or
24620 filter them to standard output. If standard output is not a terminal device, all input files shall be
24621 copied to standard output in their entirety, without modification, except as specified for the −s
24622 option. If standard output is a terminal device, the files shall be written a number of lines (one
24623 screenful) at a time under the control of user commands. See the EXTENDED DESCRIPTION
24624 section.

24625 Certain block-mode terminals do not have all the capabilities necessary to support the complete
24626 more definition; they are incapable of accepting commands that are not terminated with a
24627 <newline> character. Implementations that support such terminals shall provide an operating
24628 mode to more in which all commands can be terminated with a <newline> character on those
24629 terminals. This mode:

24630 • Shall be documented in the system documentation

24631 • Shall, at invocation, inform the user of the terminal deficiency that requires the <newline>
24632 character usage and provide instructions on how this warning can be suppressed in future
24633 invocations

24634 • Shall not be required for implementations supporting only fully capable terminals

24635 • Shall not affect commands already requiring <newline> characters

24636 • Shall not affect users on the capable terminals from using more as described in this volume of
24637 IEEE Std. 1003.1-200x

24638 OPTIONS
24639 The more utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
24640 12.2, Utility Syntax Guidelines. |

24641 The following options shall be supported:

24642 −c If a screen is to be written that has no lines in common with the current screen, or
24643 more is writing its first screen, more does not scroll the screen, but instead redraws
24644 each line of the screen in turn, from the top of the screen to the bottom. In addition,
24645 if more is writing its first screen, the screen is cleared. This option may be silently
24646 ignored on devices with insufficient terminal capabilities.

24647 −e By default, more shall exit immediately after writing the last line of the last file in
24648 the argument list. If the −e option is specified:

24649 1. If there is only a single file in the argument list and that file was completely
24650 displayed on a single screen, more shall exit immediately after writing the last
24651 line of that file.

24652 2. Otherwise, more shall exit only after reaching end-of-file on the last file in the
24653 argument list twice without an intervening operation. See the EXTENDED
24654 DESCRIPTION section.

24655 −i Perform pattern matching in searches without regard to case; see the Base |
24656 Definitions volume of IEEE Std. 1003.1-200x, Section 9.2, Regular Expression |
24657 General Requirements . |

Shell and Utilities, Issue 6 2851

more Utilities

24658 −n number Specify the number of lines per screenful. The number argument is a positive
24659 decimal integer. The −n option shall override any values obtained from any other
24660 source.

24661 −p command Each time a screen from a new file is displayed or redisplayed (including as a
24662 result of more commands; for example, :p), execute the more command(s) in the
24663 command arguments in the order specified, as if entered by the user after the first
24664 screen has been displayed. No intermediate results shall be displayed (that is, if the
24665 command is a movement to a screen different than the normal first screen, only the
24666 screen resulting from the command shall be displayed.) If any of the commands
24667 fail for any reason, an informational message to this effect shall be written, and no
24668 further commands specified using the −p option shall be executed for this file.

24669 −s Behave as if consecutive empty lines were a single empty line.

24670 −t tagstring Write the screenful of the file containing the tag named by the tagstring argument.
24671 See the ctags utility. The tags feature represented by −t tagstring and the :t
24672 command is optional. It shall be provided on any system that also provides a
24673 conforming implementation of ctags; otherwise, the use of −t produces undefined
24674 results.

24675 The file name resulting from the −t option shall be logically added as a prefix to the
24676 list of command line files, as if specified by the user. If the tag named by the
24677 tagstring argument is not found, it shall be an error, and more shall take no further
24678 action.

24679 If the tag specifies a line number, the first line of the display shall contain the
24680 beginning of that line. If the tag specifies a pattern, the first line of the display shall
24681 contain the beginning of the matching text from the first line of the file that
24682 contains that pattern. If the line does not exist in the file or matching text is not
24683 found, an informational message to this effect shall be displayed, and more shall
24684 display the default screen as if −t had not been specified.

24685 If both the −t tagstring and −p command options are given, the −t tagstring shall be
24686 processed first; that is, the file and starting line for the display shall be as specified
24687 by −t, and then the −p more command shall be executed. If the line (matching text)
24688 specified by the −t command does not exist (is not found), no −p more command
24689 shall be executed for this file at any time.

24690 −u Treat a <backspace> character as a printable control character, displayed as an |
24691 implementation-defined character sequence (see the EXTENDED DESCRIPTION |
24692 section), suppressing backspacing and the special handling that produces
24693 underlined or standout mode text on some terminal types. Also, do not ignore a
24694 <carriage-return> character at the end of a line.

24695 OPERANDS
24696 The following operand shall be supported:

24697 file A path name of an input file. If no file operands are specified, the standard input
24698 shall be used. If a file is ’ −’ , the standard input shall be read at that point in the
24699 sequence.

24700 STDIN
24701 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ .

2852 Technical Standard (2000) (Draft July 31, 2000)

Utilities more

24702 INPUT FILES
24703 The input files being examined shall be text files. If standard output is a terminal, standard error |
24704 shall be used to read commands from the user. If standard output is a terminal, standard error is
24705 not readable, and command input is needed, more may attempt to obtain user commands from
24706 the controlling terminal (for example, /dev/tty); otherwise, more shall terminate with an error
24707 indicating that it was unable to read user commands. If standard output is not a terminal, no
24708 error shall result if standard error cannot be opened for reading.

24709 ENVIRONMENT VARIABLES
24710 The following environment variables shall affect the execution of more:

24711 COLUMNS Override the system-selected horizontal screen size. See the Base Definitions |
24712 volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables for valid |
24713 values and results when it is unset or null.

24714 EDITOR Used by the v command to select an editor. See the EXTENDED DESCRIPTION
24715 section.

24716 LANG Provide a default value for the internationalization variables that are unset or null.
24717 If LANG is unset or null, the corresponding value from the implementation- |
24718 defined default locale shall be used. If any of the internationalization variables |
24719 contains an invalid setting, the utility shall behave as if none of the variables had
24720 been defined.

24721 LC_ALL If set to a non-empty string value, override the values of all the other
24722 internationalization variables.

24723 LC_COLLATE
24724 Determine the locale for the behavior of ranges, equivalence classes, and multi-
24725 character collating elements within regular expressions.

24726 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
24727 characters (for example, single-byte as opposed to multi-byte characters in
24728 arguments and input files) and the behavior of character classes within regular
24729 expressions.

24730 LC_MESSAGES
24731 Determine the locale that should be used to affect the format and contents of
24732 diagnostic messages written to standard error and informative messages written to
24733 standard output.

24734 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

24735 LINES Override the system-selected vertical screen size, used as the number of lines in a |
24736 screenful. See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, |
24737 Environment Variables for valid values and results when it is unset or null. The −n |
24738 option shall take precedence over the LINES variable for determining the number
24739 of lines in a screenful.

24740 MORE Determine a string containing options described in the OPTIONS section preceded
24741 with hyphens and <blank> character-separated as on the command line. Any
24742 command line options shall be processed after those in the MORE variable, as if
24743 the command line were:

24744 more $MORE options operands

24745 The MORE variable shall take precedence over the TERM and LINES variables for
24746 determining the number of lines in a screenful.

Shell and Utilities, Issue 6 2853

more Utilities

24747 TERM Determine the name of the terminal type. If this variable is unset or null, an
24748 unspecified default terminal type is used.

24749 ASYNCHRONOUS EVENTS
24750 Default.

24751 STDOUT
24752 The standard output shall be used to write the contents of the input files.

24753 STDERR
24754 Used for diagnostic messages and user commands (see the INPUT FILES section), and, if
24755 standard output is a terminal device, to write a prompting string. The prompting string shall |
24756 appear on the screen line below the last line of the file displayed in the current screenful. The |
24757 prompt shall contain the name of the file currently being examined and shall contain an end-of-
24758 file indication and the name of the next file, if any, when prompting at the end-of-file. If an error
24759 or informational message is displayed, it is unspecified whether it is contained in the prompt. If
24760 it is not contained in the prompt, it shall be displayed and then the user shall be prompted for a
24761 continuation character, at which point another message or the user prompt may be displayed.
24762 The prompt is otherwise unspecified. It is unspecified whether informational messages are
24763 written for other user commands.

24764 OUTPUT FILES
24765 None.

24766 EXTENDED DESCRIPTION
24767 The following subsection describes the behavior of more when the standard output is a terminal
24768 device. If the standard output is not a terminal device, no options other than −s shall have any
24769 effect, and all input files shall be copied to standard output otherwise unmodified, at which time
24770 more shall exit without further action.

24771 The number of lines available per screen shall be determined by the −n option, if present, or by
24772 examining values in the environment (see the ENVIRONMENT VARIABLES section). If neither
24773 method yields a number, an unspecified number of lines shall be used.

24774 The maximum number of lines written shall be one less than this number, because the screen
24775 line after the last line written shall be used to write a user prompt and user input. If the number
24776 of lines in the screen is less than two, the results are undefined. It is unspecified whether user
24777 input is permitted to be longer than the remainder of the single line where the prompt has been
24778 written.

24779 The number of columns available per line shall be determined by examining values in the
24780 environment (see the ENVIRONMENT VARIABLES section), with a default value as described |
24781 in Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

24782 Lines that are longer than the display shall be folded; the length at which folding occurs is
24783 unspecified, but should be appropriate for the output device. Folding may occur between glyphs
24784 of single characters that take up multiple display columns.

24785 When standard output is a terminal and −u is not specified, more shall treat <backspace>
24786 characters and <carriage-return> characters specially:

24787 • A character, followed first by a sequence of n <backspace> characters (where n is the same as
24788 the number of column positions that the character occupies), then by n underscore characters
24789 (’_’), shall cause that character to be written as underlined text, if the terminal type
24790 supports that. The n underscore characters, followed first by n <backspace> characters, then
24791 any character with n column positions, shall also cause that character to be written as
24792 underlined text, if the terminal type supports that.

2854 Technical Standard (2000) (Draft July 31, 2000)

Utilities more

24793 • A sequence of n <backspace> characters (where n is the same as the number of column
24794 positions that the previous character occupies) that appears between two identical printable
24795 characters shall cause the first of those two characters to be written as emboldened text (that
24796 is, visually brighter, standout mode, or inverse-video mode), if the terminal type supports
24797 that, and the second to be discarded. Immediately subsequent occurrences of
24798 <backspace>/character pairs for that same character also shall be discarded. (For example,
24799 the sequence "a\ba\ba\ba" is interpreted as a single emboldened ’a’ .)

24800 • The more utility shall logically discard all other <backspace> characters from the line as well
24801 as the character which precedes them, if any.

24802 • A <carriage-return> character at the end of a line shall be ignored, rather than being written
24803 as a non-printable character, as described in the next paragraph.

24804 It is implementation-defined how other non-printable characters are written. Implementations |
24805 should use the same format that they use for the ex print command; see the OPTIONS section
24806 within the ed utility. It is unspecified whether a multi-column character shall be separated if it
24807 crosses a logical line boundary; it shall not be discarded. The behavior is unspecified if the
24808 number of columns on the display is less than the number of columns any single character in the
24809 line being displayed would occupy.

24810 When each new file is displayed (or redisplayed), more shall write the first screen of the file.
24811 Once the initial screen has been written, more shall prompt for a user command. If the execution
24812 of the user command results in a screen that has lines in common with the current screen, and
24813 the device has sufficient terminal capabilities, more shall scroll the screen; otherwise, it is
24814 unspecified whether the screen is scrolled or redrawn.

24815 For all files but the last (including standard input if no file was specified, and for the last file as
24816 well, if the −e option was not specified), when more has written the last line in the file, more shall
24817 prompt for a user command. This prompt shall contain the name of the next file as well as an
24818 indication that more has reached end-of-file. If the user command is f, <control>-F, <space>, j,
24819 <newline>, d, <control>-D, or s, more shall display the next file. Otherwise, if displaying the last
24820 file, more shall exit. Otherwise, more shall execute the user command specified.

24821 Several of the commands described in this section display a previous screen from the input
24822 stream. In the case that text is being taken from a non-rewindable stream, such as a pipe, it is |
24823 implementation-defined how much backwards motion is supported. If a command cannot be |
24824 executed because of a limitation on backwards motion, an error message to this effect shall be
24825 displayed, the current screen shall not change, and the user shall be prompted for another
24826 command.

24827 If a command cannot be performed because there are insufficient lines to display, more shall alert
24828 the terminal. If a command cannot be performed because there are insufficient lines to display or
24829 a / command fails: if the input is the standard input, the last screen in the file may be displayed;
24830 otherwise, the current file and screen shall not change, and the user shall be prompted for
24831 another command.

24832 The interactive commands in the following sections shall be supported. Some commands can be
24833 preceded by a decimal integer, called count in the following descriptions. If not specified with
24834 the command, count shall default to 1. In the following descriptions, pattern is a basic regular
24835 expression, as described in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 9.3, |
24836 Basic Regular Expressions. The term ‘‘examine’’ is historical usage meaning ‘‘open the file for |
24837 viewing’’; for example, more foo would be expressed as examining file foo. In the following
24838 descriptions, unless otherwise specified, line is a logical line in the more display, not a line from
24839 the file being examined.

Shell and Utilities, Issue 6 2855

more Utilities

24840 In the following descriptions, the current position refers to two things:

24841 1. The position of the current line on the screen

24842 2. The line number (in the file) of the current line on the screen

24843 Usually, the line on the screen corresponding to the current position is the third line on the
24844 screen. If this is not possible (there are fewer than three lines to display or this is the first page of
24845 the file, or it is the last page of the file), then the current position is either the first or last line on
24846 the screen as described later.

24847 Help

24848 Synopsis: h

24849 Write a summary of these commands and other implementation-defined commands. The |
24850 behavior shall be as if the more utility were executed with the −e option on a file that contained
24851 the summary information. The user shall be prompted as described earlier in this section when
24852 end-of-file is reached. If the user command is one of those specified to continue to the next file,
24853 more shall return to the file and screen state from which the h command was executed.

24854 Scroll Forward One Screenful

24855 Synopsis: [count] f
24856 [count] <control>-F

24857 Scroll forward count lines, with a default of one screenful. If count is more than the screen size,
24858 only the final screenful shall be written.

24859 Scroll Backward One Screenful

24860 Synopsis: [count] b
24861 [count] <control>-B

24862 Scroll backward count lines, with a default of one screenful (see the −n option). If count is more
24863 than the screen size, only the final screenful shall be written.

24864 Scroll Forward One Line

24865 Synopsis: [count] <space>
24866 [count] j
24867 [count] <newline>

24868 Scroll forward count lines. The default count for the <space> character shall be one screenful; for j
24869 and <newline> character, one line. The entire count lines shall be written, even if count is more
24870 than the screen size.

24871 Scroll Backward One Line

24872 Synopsis: [count] k

24873 Scroll backward count lines. The entire count lines shall be written, even if count is more than the
24874 screen size.

2856 Technical Standard (2000) (Draft July 31, 2000)

Utilities more

24875 Scroll Forward One Half Screenful

24876 Synopsis: [count] d
24877 [count] <control>-D

24878 Scroll forward count lines, with a default of one half of the screen size. If count is specified, it
24879 shall become the new default for subsequent d, <control>-D, and u commands.

24880 Skip Forward One Line

24881 Synopsis: [count] s

24882 Display the screenful beginning with the line count lines after the last line on the current screen.
24883 If count would cause the current position to be such that less than one screenful would be
24884 written, the last screenful in the file shall be written.

24885 Scroll Backward One Half Screenful

24886 Synopsis: [count] u
24887 [count] <control>-U

24888 Scroll backward count lines, with a default of one half of the screen size. If count is specified, it
24889 shall become the new default for subsequent d, <control>−D, u, and <control>−U commands.
24890 The entire count lines shall be written, even if count is more than the screen size.

24891 Go to Beginning of File

24892 Synopsis: [count] g

24893 Display the screenful beginning with line count .

24894 Go to End-of-File

24895 Synopsis: [count] G

24896 If count is specified, display the screenful beginning with the line count . Otherwise, display the
24897 last screenful of the file.

24898 Refresh the Screen

24899 Synopsis: r
24900 <control>-L

24901 Refresh the screen.

24902 Discard and Refresh

24903 Synopsis: R

24904 Refresh the screen, discarding any buffered input. If the current file is non-seekable, buffered
24905 input shall not be discarded and the R command is equivalent to the r command.

Shell and Utilities, Issue 6 2857

more Utilities

24906 Mark Position

24907 Synopsis: mletter

24908 Mark the current position with the letter named by letter, where letter represents the name of one
24909 of the lowercase letters of the portable character set. When a new file is examined, all marks may
24910 be lost.

24911 Return to Mark

24912 Synopsis: ’ letter

24913 Return to the position that was previously marked with the letter named by letter, making that
24914 line the current position.

24915 Return to Previous Position

24916 Synopsis: ’’

24917 Return to the position from which the last large movement command was executed (where a
24918 ‘‘large movement’’ is defined as any movement of more than a screenful of lines). If no such
24919 movements have been made, return to the beginning of the file.

24920 Search Forward for Pattern

24921 Synopsis: [count] / [!] pattern <newline>

24922 Display the screenful beginning with the countth line containing the pattern. The search shall
24923 start after the first line currently displayed. The null regular expression (’/’ followed by a
24924 <newline> character) shall repeat the search using the previous regular expression, with a
24925 default count . If the character ’!’ is included, the matching lines shall be those that do not
24926 contain the pattern . If no match is found for the pattern , a message to that effect shall be
24927 displayed.

24928 Search Backward for Pattern

24929 Synopsis: [count] ?[!] pattern <newline>

24930 Display the screenful beginning with the countth previous line containing the pattern. The
24931 search shall start on the last line before the first line currently displayed. The null regular
24932 expression (’?’ followed by a <newline> character) shall repeat the search using the previous
24933 regular expression, with a default count . If the character ’!’ is included, matching lines shall be
24934 those that do not contain the pattern .

24935 If no match is found for the pattern , a message to that effect shall be displayed.

24936 Repeat Search

24937 Synopsis: [count] n

24938 Repeat the previous search for countth line containing the last pattern (or not containing the last
24939 pattern , if the previous search was "/!" or "?!").

2858 Technical Standard (2000) (Draft July 31, 2000)

Utilities more

24940 Repeat Search in Reverse

24941 Synopsis: [count] N

24942 Repeat the search in the opposite direction of the previous search for the countth line containing
24943 the last pattern (or not containing the last pattern , if the previous search was "/!" or "?!").

24944 Examine New File

24945 Synopsis: :e [filename] <newline>

24946 Examine a new file. If the filename argument is not specified, the current file (see the :n and :p
24947 commands below) shall be re-examined. The filename shall be subjected to the process of shell
24948 word expansions (see Section 2.6 (on page 2244)); if more than a single path name results, the
24949 effects are unspecified. If filename is a number sign (’#’), the previously examined file shall be
24950 re-examined. If filename is not accessible for any reason (including that it is a non-seekable file),
24951 an error message to this effect shall be displayed and the current file and screen shall not change.

24952 Examine Next File

24953 Synopsis: [count] :n

24954 Examine the next file. If a number count is specified, the countth next file shall be examined. If
24955 filename refers to a non-seekable file, the results are unspecified.

24956 Examine Previous File

24957 Synopsis: [count] :p

24958 Examine the previous file. If a number count is specified, the countth previous file shall be
24959 examined. If filename refers to a non-seekable file, the results are unspecified.

24960 Go to Tag

24961 Synopsis: :t tagstring <newline>

24962 If the file containing the tag named by the tagstring argument is not the current file, examine the
24963 file, as if the :e command was executed with that file as the argument. Otherwise, or in addition,
24964 display the screenful beginning with the tag, as described for the −t option (see the OPTIONS
24965 section). If the ctags utility is not supported by the system, the use of :t produces undefined
24966 results.

24967 Invoke Editor

24968 Synopsis: v

24969 Invoke an editor to edit the current file being examined. If standard input is being examined, the
24970 results are unspecified. The name of the editor shall be taken from the environment variable
24971 EDITOR, or shall default to vi. If the last path name component in EDITOR is either vi or ex, the
24972 editor shall be invoked with a −c linenumber command line argument, where linenumber is the |
24973 line number of the physical line containing the logical line currently displayed as the first line of
24974 the screen. It is implementation-defined whether line-setting options are passed to editors other |
24975 than vi and ex.

24976 When the editor exits, more shall resume with the same file and screen as when the editor was
24977 invoked.

Shell and Utilities, Issue 6 2859

more Utilities

24978 Display Position

24979 Synopsis: =
24980 <control>-G

24981 Write a message for which the information references the first byte of the line after the last line of
24982 the file on the screen. This message shall include the name of the file currently being examined,
24983 its number relative to the total number of files there are to examine, the physical line number,
24984 the byte number and the total bytes in the file, and what percentage of the file precedes the
24985 current position. If more is reading from standard input, or the file is shorter than a single screen,
24986 the line number, the byte number, the total bytes, and the percentage need not be written.

24987 Quit

24988 Synopsis: q
24989 :q
24990 ZZ

24991 Exit more.

24992 EXIT STATUS
24993 The following exit values shall be returned:

24994 0 Successful completion.

24995 >0 An error occurred.

24996 CONSEQUENCES OF ERRORS
24997 If an error is encountered accessing a file when using the :n command, more shall attempt to
24998 examine the next file in the argument list, but the final exit status shall be affected. If an error is
24999 encountered accessing a file via the :p command, more shall attempt to examine the previous file
25000 in the argument list, but the final exit status shall be affected. If an error is encountered accessing
25001 a file via the :e command, more shall remain in the current file and the final exit status shall not
25002 be affected.

25003 APPLICATION USAGE
25004 When the standard output is not a terminal, only the −s filter-modification option is effective.
25005 This is based on historical practice. For example, a typical implementation of man pipes its
25006 output through more −s to squeeze excess white space for terminal users. When man is piped to
25007 lp, however, it is undesirable for this squeezing to happen. |

25008 EXAMPLES
25009 The −p allows arbitrary commands to be executed at the start of each file. Examples are:

25010 more −p G file1 file2
25011 Examine each file starting with its last screenful.

25012 more −p 100 file1 file2
25013 Examine each file starting with line 100 in the current position (usually the third line, so line
25014 98 would be the first line written).

25015 more −p /100 file1 file2
25016 Examine each file starting with the first line containing the string "100" in the current
25017 position

25018 RATIONALE
25019 The more utility, available in BSD and BSD-derived systems, was chosen as the prototype for the
25020 POSIX file display program since it is more widely available than either the public-domain
25021 program less or than pg, a pager provided in System V. The 4.4 BSD more is the model for the

2860 Technical Standard (2000) (Draft July 31, 2000)

Utilities more

25022 features selected; it is almost fully upward-compatible from the 4.3 BSD version in wide use and
25023 has become more amenable for vi users. Several features originally derived from various file
25024 editors, found in both less and pg, have been added to this volume of IEEE Std. 1003.1-200x as
25025 they have proved extremely popular with users.

25026 There are inconsistencies between more and vi that result from historical practice. For example,
25027 the single-character commands h, f, b, and <space> are screen movers in more, but cursor
25028 movers in vi. These inconsistencies were maintained because the cursor movements are not
25029 applicable to more and the powerful functionality achieved without the use of the control key
25030 justifies the differences.

25031 The tags interface has been included in a program that is not a text editor because it promotes
25032 another degree of consistent operation with vi. It is conceivable that the paging environment of
25033 more would be superior for browsing source code files in some circumstances.

25034 The operating mode referred to for block-mode terminals effectively adds a <newline> to each
25035 Synopsis line that currently has none. So, for example, d<newline> would page one screenful.
25036 The mode could be triggered by a command line option, environment variable, or some other
25037 method. The details are not imposed by this volume of IEEE Std. 1003.1-200x because there are
25038 so few systems known to support such terminals. Nevertheless, it was considered that all
25039 systems should be able to support more given the exception cited for this small community of
25040 terminals because, in comparison to vi, the cursor movements are few and the command set
25041 relatively amenable to the optional <newline>s.

25042 Some versions of more provide a shell escaping mechanism similar to the ex ! command. The
25043 standard developers did not consider that this was necessary in a paginator, particularly given
25044 the wide acceptance of multiple window terminals and job control features. (They chose to
25045 retain such features in the editors and mailx because the shell interaction also gives an
25046 opportunity to modify the editing buffer, which is not applicable to more).

25047 The −p (position) option replaces the + command because of the Utility Syntax Guidelines. In
25048 early proposals, it took a pattern argument, but historical less provided the more general facility of
25049 a command. It would have been desirable to use the same −c as ex and vi, but the letter was
25050 already in use.

25051 The text stating ‘‘from a non-rewindable stream . . . implementations may limit the amount of
25052 backwards motion supported’’ would allow an implementation that permitted no backwards
25053 motion beyond text already on the screen. It was not possible to require a minimum amount of
25054 backwards motion that would be effective for all conceivable device types. The implementation
25055 should allow the user to back up as far as possible, within device and reasonable memory
25056 allocation constraints.

25057 Historically, non-printable characters were displayed using the ARPA standard mappings,
25058 which are as follows:

25059 1. Printable characters are left alone.

25060 2. Control characters less than \177 are represented as followed by the character offset from
25061 the ’@’ character in the ASCII map; for example, \007 is represented as ’G’ .

25062 3. \177 is represented as followed by ’?’ .

25063 The display of characters having their eighth bit set was less standard. Existing implementations
25064 use hex (0x00), octal (\000), and a meta-bit display. (The latter displayed characters with their
25065 eighth bit set as the two characters "M−," followed by the seven bit display as described
25066 previously.) The latter probably has the best claim to historical practice because it was used with
25067 the −v option of 4 BSD and 4 BSD-derived versions of the cat utility since 1980.

Shell and Utilities, Issue 6 2861

more Utilities

25068 No specific display format is required by IEEE Std. 1003.1-200x. Implementations are
25069 encouraged to conform to historic practice in the absence of any strong reason to diverge.

25070 FUTURE DIRECTIONS
25071 None.

25072 SEE ALSO
25073 ctags , ed, ex, vi

25074 CHANGE HISTORY
25075 First released in Issue 4.

25076 Issue 5
25077 FUTURE DIRECTIONS section added.

25078 Issue 6
25079 This utility is now marked as part of the User Portability Utilities option.

25080 The obsolescent SYNOPSIS is removed.

25081 The utility has been extensively reworked for alignment with the IEEE P1003.2b draft standard:

25082 • Changes have been made as result of IEEE PASC Interpretations 1003.2 #37 and #109. |

25083 • The more utility should be able to handle underlined and emboldened displays of characters
25084 that are wider than a single column position.

2862 Technical Standard (2000) (Draft July 31, 2000)

Utilities mv

25085 NAME
25086 mv — move files

25087 SYNOPSIS
25088 mv [−fi] source_file target_file

25089 mv [−fi] source_file ... target_file

25090 DESCRIPTION
25091 In the first synopsis form, the mv utility shall move the file named by the source_file operand to
25092 the destination specified by the target_file . This first synopsis form is assumed when the final
25093 operand does not name an existing directory and is not a symbolic link referring to an existing
25094 directory.

25095 In the second synopsis form, mv shall move each file named by a source_file operand to a
25096 destination file in the existing directory named by the target_dir operand, or referenced if
25097 target_dir is a symbolic link referring to an existing directory. The destination path for each
25098 source_file shall be the concatenation of the target directory, a single slash character, and the last
25099 path name component of the source_file . This second form is assumed when the final operand
25100 names an existing directory.

25101 If any operand specifies an existing file of a type not specified by the System Interfaces volume |
25102 of IEEE Std. 1003.1-200x, the behavior is implementation-defined. |

25103 For each source_file the following steps shall be taken:

25104 1. If the destination path exists, the −f option is not specified, and either of the following
25105 conditions is true:

25106 a. The permissions of the destination path do not permit writing and the standard input
25107 is a terminal.

25108 b. The −i option is specified.

25109 the mv utility shall write a prompt to standard error and read a line from standard input. If |
25110 the response is not affirmative, mv shall do nothing more with the current source_file and
25111 go on to any remaining source_files.

25112 2. The mv utility shall perform actions equivalent to the rename() function defined in the
25113 System Interfaces volume of IEEE Std. 1003.1-200x, called with the following arguments:

25114 a. The source_file operand is used as the old argument.

25115 b. The destination path is used as the new argument.

25116 If this succeeds, mv shall do nothing more with the current source_file and go on to any
25117 remaining source_files. If this fails for any reasons other than those described for the errno
25118 [EXDEV] in the System Interfaces volume of IEEE Std. 1003.1-200x, mv shall write a
25119 diagnostic message to standard error, do nothing more with the current source_file , and go
25120 on to any remaining source_files.

25121 3. If the destination path exists, and it is a file of type directory and source_file is not a file of
25122 type directory, or it is a file not of type directory and source_file is a file of type directory,
25123 mv shall write a diagnostic message to standard error, do nothing more with the current
25124 source_file , and go on to any remaining source_files.

25125 4. If the destination path exists, mv shall attempt to remove it. If this fails for any reason, mv
25126 shall write a diagnostic message to standard error, do nothing more with the current
25127 source_file , and go on to any remaining source_files.

Shell and Utilities, Issue 6 2863

mv Utilities

25128 5. The file hierarchy rooted in source_file shall be duplicated as a file hierarchy rooted in the
25129 destination path. If source_file or any of the files below it in the hierarchy are symbolic links,
25130 the links themselves shall be duplicated, including their contents, rather than any files to
25131 which they refer. The following characteristics of each file in the file hierarchy shall be
25132 duplicated:

25133 • The time of last data modification and time of last access

25134 • The user ID and group ID

25135 • The file mode

25136 If the user ID, group ID, or file mode of a regular file cannot be duplicated, the file mode
25137 bits S_ISUID and S_ISGID shall not be duplicated.

25138 When files are duplicated to another file system, the implementation may require that the
25139 process invoking mv has read access to each file being duplicated.

25140 If the duplication of the file hierarchy fails for any reason, mv shall write a diagnostic
25141 message to standard error, do nothing more with the current source_file , and go on to any
25142 remaining source_files.

25143 If the duplication of the file characteristics fails for any reason, mv shall write a diagnostic
25144 message to standard error, but this failure shall not cause mv to modify its exit status.

25145 6. The file hierarchy rooted in source_file shall be removed. If this fails for any reason, mv shall
25146 write a diagnostic message to the standard error, do nothing more with the current
25147 source_file , and go on to any remaining source_files.

25148 OPTIONS
25149 The mv utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
25150 12.2, Utility Syntax Guidelines. |

25151 The following options shall be supported:

25152 −f Do not prompt for confirmation if the destination path exists. Any previous
25153 occurrences of the −i option is ignored.

25154 −i Prompt for confirmation if the destination path exists. Any previous occurrences of
25155 the −f option is ignored.

25156 Specifying more than one of the −f or −i options shall not be considered an error. The last option
25157 specified shall determine the behavior of mv.

25158 OPERANDS
25159 The following operands shall be supported:

25160 source_file A path name of a file or directory to be moved.

25161 target_file A new path name for the file or directory being moved.

25162 target_dir A path name of an existing directory into which to move the input files.

25163 STDIN
25164 Used to read an input line in response to each prompt specified in the STDERR section.
25165 Otherwise, the standard input shall not be used.

25166 INPUT FILES
25167 The input files specified by each source_file operand can be of any file type.

2864 Technical Standard (2000) (Draft July 31, 2000)

Utilities mv

25168 ENVIRONMENT VARIABLES
25169 The following environment variables shall affect the execution of mv:

25170 LANG Provide a default value for the internationalization variables that are unset or null.
25171 If LANG is unset or null, the corresponding value from the implementation- |
25172 defined default locale shall be used. If any of the internationalization variables |
25173 contains an invalid setting, the utility shall behave as if none of the variables had
25174 been defined.

25175 LC_ALL If set to a non-empty string value, override the values of all the other
25176 internationalization variables.

25177 LC_COLLATE
25178 Determine the locale for the behavior of ranges, equivalence classes and multi-
25179 character collating elements used in the extended regular expression defined for
25180 the yesexpr locale keyword in the LC_MESSAGES category.

25181 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
25182 characters (for example, single-byte as opposed to multi-byte characters in
25183 arguments and input files), the behavior of character classes used in the extended
25184 regular expression defined for the yesexpr locale keyword in the LC_MESSAGES
25185 category.

25186 LC_MESSAGES
25187 Determine the locale for the processing of affirmative responses that should be
25188 used to affect the format and contents of diagnostic messages written to standard
25189 error.

25190 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

25191 ASYNCHRONOUS EVENTS
25192 Default.

25193 STDOUT
25194 Not used.

25195 STDERR
25196 Prompts shall be written to the standard error under the conditions specified in the
25197 DESCRIPTION section. The prompts shall contain the destination path name, but their format is
25198 otherwise unspecified. Otherwise, the standard error shall be used only for diagnostic messages.

25199 OUTPUT FILES
25200 The output files may be of any file type.

25201 EXTENDED DESCRIPTION
25202 None.

25203 EXIT STATUS
25204 The following exit values shall be returned:

25205 0 All input files were moved successfully.

25206 >0 An error occurred.

25207 CONSEQUENCES OF ERRORS
25208 If the copying or removal of source_file is prematurely terminated by a signal or error, mv may
25209 leave a partial copy of source_file at the source or destination. The mv utility shall not modify
25210 both source_file and the destination path simultaneously; termination at any point shall leave
25211 either source_file or the destination path complete.

Shell and Utilities, Issue 6 2865

mv Utilities

25212 APPLICATION USAGE
25213 None.

25214 EXAMPLES
25215 If the current directory contains only files a (of any type defined by the System Interfaces
25216 volume of IEEE Std. 1003.1-200x), b (also of any type), and a directory c:

25217 mv a b c
25218 mv c d

25219 results with the original files a and b residing in the directory d in the current directory.

25220 RATIONALE
25221 Early proposals diverged from the SVID and BSD historical practice in that they required that
25222 when the destination path exists, the −f option is not specified, and input is not a terminal, mv
25223 fails. This was done for compatibility with cp. The current text returns to historical practice. It
25224 should be noted that this is consistent with the rename() function defined in the System
25225 Interfaces volume of IEEE Std. 1003.1-200x, which does not require write permission on the
25226 target.

25227 For absolute clarity, paragraph (1), describing the behavior of mv when prompting for
25228 confirmation, should be interpreted in the following manner:

25229 if (exists AND (NOT f_option) AND
25230 ((not_writable AND input_is_terminal) OR i_option))

25231 The −i option exists on BSD systems, giving applications and users a way to avoid accidentally
25232 unlinking files when moving others. When the standard input is not a terminal, the 4.3 BSD mv
25233 deletes all existing destination paths without prompting, even when −i is specified; this is
25234 inconsistent with the behavior of the 4.3 BSD cp utility, which always generates an error when
25235 the file is unwritable and the standard input is not a terminal. The standard developers decided
25236 that use of −i is a request for interaction, so when the destination path exists, the utility takes
25237 instructions from whatever responds to standard input.

25238 The rename() function is able to move directories within the same file system. Some historical
25239 versions of mv have been able to move directories, but not to a different file system. The
25240 standard developers considered that this was an annoying inconsistency, so this volume of
25241 IEEE Std. 1003.1-200x requires directories to be able to be moved even across file systems. There
25242 is no −R option to confirm that moving a directory is actually intended, since such an option was
25243 not required for moving directories in historical practice. Requiring the application to specify it
25244 sometimes, depending on the destination, seemed just as inconsistent. The semantics of the
25245 rename() function were preserved as much as possible. For example, mv is not permitted to
25246 ‘‘rename’’ files to or from directories, even though they might be empty and removable.

25247 Historic implementations of mv did not exit with a non-zero exit status if they were unable to
25248 duplicate any file characteristics when moving a file across file systems, nor did they write a
25249 diagnostic message for the user. The former behavior has been preserved to prevent scripts from
25250 breaking; a diagnostic message is now required, however, so that users are alerted that the file
25251 characteristics have changed.

25252 The exact format of the interactive prompts is unspecified. Only the general nature of the
25253 contents of prompts are specified because implementations may desire more descriptive
25254 prompts than those used on historical implementations. Therefore, an application not using the
25255 −f option or using the −i option relies on the system to provide the most suitable dialog directly
25256 with the user, based on the behavior specified.

25257 When mv is dealing with a single file system and source_file is a symbolic link, the link itself is
25258 moved as a consequence of the dependence on the rename() functionality, per the

2866 Technical Standard (2000) (Draft July 31, 2000)

Utilities mv

25259 DESCRIPTION. Across file systems, this has to be made explicit.

25260 FUTURE DIRECTIONS
25261 None.

25262 SEE ALSO
25263 cp , ln

25264 CHANGE HISTORY
25265 First released in Issue 2.

25266 Issue 4
25267 Aligned with the ISO/IEC 9945-2: 1993 standard.

25268 Issue 6
25269 The mv utility is changed to describe processing of symbolic links as specified in the
25270 IEEE P1003.2b draft standard.

Shell and Utilities, Issue 6 2867

newgrp Utilities

25271 NAME
25272 newgrp — change to a new group

25273 SYNOPSIS
25274 UP newgrp [−l][group
25275

25276 DESCRIPTION
25277 The newgrp utility shall create a new shell execution environment with a new real and effective
25278 group identification. Of the attributes listed in Section 2.13 (on page 2273), the new shell
25279 execution environment shall retain the working directory, file creation mask, and exported
25280 variables from the previous environment (that is, open files, traps, unexported variables, alias
25281 definitions, shell functions, and set options may be lost). All other aspects of the process
25282 environment that are preserved by the exec family of functions defined in the System Interfaces
25283 volume of IEEE Std. 1003.1-200x shall also be preserved by newgrp; whether other aspects are
25284 preserved is unspecified.

25285 A failure to assign the new group identifications (for example, for security or password-related
25286 reasons) shall not prevent the new shell execution environment from being created.

25287 The newgrp utility shall affect the supplemental groups for the process as follows:

25288 • On systems where the effective group ID is normally in the supplementary group list (or
25289 whenever the old effective group ID actually is in the supplementary group list):

25290 — If the new effective group ID is also in the supplementary group list, newgrp shall change
25291 the effective group ID.

25292 — If the new effective group ID is not in the supplementary group list, newgrp shall add the
25293 new effective group ID to the list, if there is room to add it.

25294 • On systems where the effective group ID is not normally in the supplementary group list (or
25295 whenever the old effective group ID is not in the supplementary group list):

25296 — If the new effective group ID is in the supplementary group list, newgrp shall delete it.

25297 — If the old effective group ID is not in the supplementary list, newgrp shall add it if there is
25298 room.

25299 Note: The System Interfaces volume of IEEE Std. 1003.1-200x does not specify whether the
25300 effective group ID of a process is included in its supplementary group list.

25301 With no operands, newgrp shall change the effective group back to the groups identified in the
25302 user’s user entry, and shall set the list of supplementary groups to that set in the user’s group
25303 database entries.

25304 If a password is required for the specified group, and the user is not listed as a member of that
25305 group in the group database, the user shall be prompted to enter the correct password for that
25306 group. If the user is listed as a member of that group, no password is requested. If no password
25307 is required for the specified group, it is implementation-defined whether users not listed as |
25308 members of that group can change to that group. Whether or not a password is required, |
25309 implementation-defined system accounting or security mechanisms may impose additional |
25310 authorization restrictions that may cause newgrp to write a diagnostic message and suppress the
25311 changing of the group identification.

25312 OPTIONS
25313 The newgrp utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
25314 12.2, Utility Syntax Guidelines. |

2868 Technical Standard (2000) (Draft July 31, 2000)

Utilities newgrp

25315 The following option shall be supported:

25316 −l (The letter ell.) Change the environment to what would be expected if the user
25317 actually logged in again.

25318 OPERANDS
25319 The following operand shall be supported:

25320 group A group name from the group database or a non-negative numeric group ID.
25321 Specifies the group ID to which the real and effective group IDs shall be set. If
25322 group is a non-negative numeric string and exists in the group database as a group
25323 name (see getgrnam()), the numeric group ID associated with that group name
25324 shall be used as the group ID.

25325 STDIN
25326 Not used.

25327 INPUT FILES
25328 The file /dev/tty shall be used to read a single line of text for password checking, when one is
25329 required.

25330 ENVIRONMENT VARIABLES
25331 The following environment variables shall affect the execution of newgrp:

25332 LANG Provide a default value for the internationalization variables that are unset or null.
25333 If LANG is unset or null, the corresponding value from the implementation- |
25334 defined default locale shall be used. If any of the internationalization variables |
25335 contains an invalid setting, the utility shall behave as if none of the variables had
25336 been defined.

25337 LC_ALL If set to a non-empty string value, override the values of all the other
25338 internationalization variables.

25339 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
25340 characters (for example, single-byte as opposed to multi-byte characters in
25341 arguments).

25342 LC_MESSAGES
25343 Determine the locale that should be used to affect the format and contents of
25344 diagnostic messages written to standard error.

25345 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

25346 ASYNCHRONOUS EVENTS
25347 Default.

25348 STDOUT
25349 Not used.

25350 STDERR
25351 Used for diagnostic messages and a prompt string for a password, if one is required. Diagnostic
25352 messages may be written in cases where the exit status is not available. See the EXIT STATUS
25353 section.

25354 OUTPUT FILES
25355 None.

Shell and Utilities, Issue 6 2869

newgrp Utilities

25356 EXTENDED DESCRIPTION
25357 None.

25358 EXIT STATUS
25359 If newgrp succeeds in creating a new shell execution environment, whether or not the group
25360 identification was changed successfully, the exit status shall be the exit status of the shell.
25361 Otherwise, the following exit value shall be returned:

25362 >0 An error occurred.

25363 CONSEQUENCES OF ERRORS
25364 The invoking shell may terminate.

25365 APPLICATION USAGE
25366 There is no convenient way to enter a password into the Group Database. Use of group
25367 passwords is not encouraged, because by their very nature they encourage poor security
25368 practices. Group passwords may disappear in the future.

25369 A common implementation of newgrp is that the current shell uses exec to overlay itself with
25370 newgrp, which in turn overlays itself with a new shell after changing group. On some systems,
25371 however, this may not occur and newgrp may be invoked as a subprocess.

25372 The newgrp command is intended only for use from an interactive terminal. It does not offer a
25373 useful interface for the support of applications.

25374 The exit status of newgrp is generally inapplicable. If newgrp is used in a script, in most cases it
25375 successfully invokes a new shell and the rest of the original shell script is bypassed when the
25376 new shell exits. Used interactively, newgrp displays diagnostic messages to indicate problems.
25377 But usage such as:

25378 newgrp foo
25379 echo $?

25380 is not useful because the new shell might not have access to any status newgrp may have
25381 generated (and most historical systems do not provide this status). A zero status echoed here
25382 does not necessarily indicate that the user has changed to the new group successfully. Following
25383 newgrp with the id command provides a portable means of determining whether the group
25384 change was successful or not. |

25385 EXAMPLES
25386 None.

25387 RATIONALE
25388 Most historical implementations use one of the exec functions to implement the behavior of
25389 newgrp. Errors detected before the exec leave the environment unchanged, while errors detected
25390 after the exec leave the user in a changed environment. While it would be useful to have newgrp
25391 issue a diagnostic message to tell the user that the environment changed, it would be
25392 inappropriate to require this change to some historical implementations.

25393 The password mechanism is allowed in the group database, but how this would be
25394 implemented is not specified.

25395 The newgrp utility was retained in this volume of IEEE Std. 1003.1-200x, even given the existence
25396 of the multiple group permissions feature in the System Interfaces volume of
25397 IEEE Std. 1003.1-200x, for several reasons. First, in some systems, the group ownership of a
25398 newly created file is determined by the group of the directory in which the file is created, as
25399 allowed by the System Interfaces volume of IEEE Std. 1003.1-200x; on other systems, the group
25400 ownership of a newly created file is determined by the effective group ID. On systems of the
25401 latter type, newgrp allows files to be created with a specific group ownership. Finally, many

2870 Technical Standard (2000) (Draft July 31, 2000)

Utilities newgrp

25402 systems use the real group ID in accounting, and on such systems, newgrp allows the accounting
25403 identity of the user to be changed.

25404 FUTURE DIRECTIONS
25405 None.

25406 SEE ALSO
25407 sh, the System Interfaces volume of IEEE Std. 1003.1-200x, exec

25408 CHANGE HISTORY
25409 First released in Issue 2.

25410 Issue 4
25411 Aligned with the ISO/IEC 9945-2: 1993 standard.

25412 The newgrp utility is now mandatory; it is optional in Issue 3.

25413 Issue 6
25414 This utility is now marked as part of the User Portability Utilities option.

25415 The obsolescent SYNOPSIS is removed.

25416 The text describing supplemental groups is no longer conditional on {NGROUPS_MAX} being
25417 greater than 1. This is because {NGROUPS_MAX} now has a minimum value of 8. This is a FIPS
25418 requirement.

Shell and Utilities, Issue 6 2871

nice Utilities

25419 NAME
25420 nice — invoke a utility with an altered nice value

25421 SYNOPSIS
25422 UP nice [−n increment] utility [argument ...]
25423

25424 DESCRIPTION
25425 The nice utility shall invoke a utility, requesting that it be run with a different nice value (see the |
25426 Base Definitions volume of IEEE Std. 1003.1-200x, Section 3.241, Nice Value). With no options |
25427 and only if the user has appropriate privileges, the executed utility shall be run with a nice value |
25428 that is some implementation-defined quantity less than or equal to the nice value of the current |
25429 process. If the user lacks appropriate privileges to affect the nice value in the requested manner,
25430 the nice utility shall not affect the nice value; in this case, a warning message may be written to
25431 standard error, but this shall not prevent the invocation of utility or affect the exit status.

25432 OPTIONS
25433 The nice utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
25434 12.2, Utility Syntax Guidelines. |

25435 The following option is supported:

25436 −n increment Specify how the nice value of the executed utility shall be adjusted. The increment
25437 option-argument shall be a positive or negative decimal integer that shall be used
25438 to modify the nice value of the executed utility in an implementation-defined |
25439 manner. |

25440 Positive increment values shall cause a lower or unchanged nice value. Negative
25441 increment values may require appropriate privileges and shall cause a higher or
25442 unchanged nice value.

25443 The nice value shall be bounded in an implementation-defined manner. If the |
25444 requested increment would raise or lower the nice value of the executed utility
25445 beyond implementation-defined limits, then the limit whose value was exceeded |
25446 shall be used.

25447 OPERANDS
25448 The following operands shall be supported:

25449 utility The name of a utility that is to be invoked. If the utility operand names any of the
25450 special built-in utilities in Section 2.15 (on page 2276), the results are undefined.

25451 argument Any string to be supplied as an argument when invoking the utility named by the
25452 utility operand.

25453 STDIN
25454 Not used.

25455 INPUT FILES
25456 None.

25457 ENVIRONMENT VARIABLES
25458 The following environment variables shall affect the execution of nice:

25459 LANG Provide a default value for the internationalization variables that are unset or null.
25460 If LANG is unset or null, the corresponding value from the implementation- |
25461 defined default locale shall be used. If any of the internationalization variables |
25462 contains an invalid setting, the utility shall behave as if none of the variables had
25463 been defined.

2872 Technical Standard (2000) (Draft July 31, 2000)

Utilities nice

25464 LC_ALL If set to a non-empty string value, override the values of all the other
25465 internationalization variables.

25466 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
25467 characters (for example, single-byte as opposed to multi-byte characters in
25468 arguments).

25469 LC_MESSAGES
25470 Determine the locale that should be used to affect the format and contents of
25471 diagnostic messages written to standard error.

25472 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

25473 PATH Determine the search path used to locate the utility to be invoked. See the Base |
25474 Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

25475 ASYNCHRONOUS EVENTS
25476 Default.

25477 STDOUT
25478 Not used.

25479 STDERR
25480 Used only for diagnostic messages.

25481 OUTPUT FILES
25482 None.

25483 EXTENDED DESCRIPTION
25484 None.

25485 EXIT STATUS
25486 If the utility utility is invoked, the exit status of nice shall be the exit status of utility ; otherwise,
25487 the nice utility shall exit with one of the following values:

25488 1-125 An error occurred in the nice utility.
25489 126 The utility specified by utility was found but could not be invoked.
25490 127 The utility specified by utility could not be found.

25491 CONSEQUENCES OF ERRORS
25492 Default.

25493 APPLICATION USAGE
25494 The only guaranteed portable uses of this utility are:

25495 nice utility
25496 Run utility with the default lower nice value.

25497 nice −n <positive integer> utility
25498 Run utility with a lower nice value.

25499 On some systems they have no discernible effect on the invoked utility and on some others they
25500 are exactly equivalent.

25501 Historical systems have frequently supported the <positive integer> up to 20. Since there is no
25502 error penalty associated with guessing a number that is too high, users without access to the
25503 system conformance document (to see what limits are actually in place) could use the historical
25504 1 to 20 range or attempt to use very large numbers if the job should be truly low priority.

25505 The nice value value of a process can be displayed using the command:

Shell and Utilities, Issue 6 2873

nice Utilities

25506 ps −o nice

25507 The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
25508 an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
25509 utility exited with an error indication’’. The value 127 was chosen because it is not commonly
25510 used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
25511 values above 128 can be confused with termination due to receipt of a signal. The value 126 was
25512 chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
25513 scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
25514 between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
25515 exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
25516 any other reason. |

25517 EXAMPLES
25518 None.

25519 RATIONALE
25520 Due to the text about the limits of the nice value being implementation-defined, nice is not |
25521 actually required to change the nice value of the executed command; the limits could be zero
25522 differences from the system default, although the implementor is required to document this fact
25523 in the conformance document.

25524 The 4.3 BSD version of nice does not check if increment is a valid decimal integer. The command
25525 nice −x utility , for example, would be treated the same as the command nice − −1 utility . If the
25526 user does not have appropriate privileges, this results in a ‘‘permission denied’’ error. This is
25527 considered a bug.

25528 When a user without appropriate privileges gives a negative increment, System V treats it like
25529 the command nice −0 utility , while 4.3 BSD writes a ‘‘permission denied’’ message and does not
25530 run the utility. Neither was considered clearly superior, so the behavior was left unspecified.

25531 The C shell has a built-in version of nice that has a different interface from the one described in
25532 this volume of IEEE Std. 1003.1-200x.

25533 The term ‘‘utility’’ is used, rather than ‘‘command’’, to highlight the fact that shell compound
25534 commands, pipelines, and so on, cannot be used. Special built-ins also cannot be used.
25535 However, ‘‘utility’’ includes user application programs and shell scripts, not just utilities defined
25536 in this volume of IEEE Std. 1003.1-200x.

25537 Historical implementations of nice provide a nice value range of 40 or 41 discrete steps, with the
25538 default nice value being the midpoint of that range. By default, they lower the nice value of the
25539 executed utility by 10.

25540 Some historical documentation states that the increment value must be within a fixed range. This
25541 is misleading; the valid increment values on any invocation are determined by the current
25542 process nice value, which is not always the default.

25543 The definition of nice value is not intended to suggest that all processes in a system have
25544 priorities that are comparable. Scheduling policy extensions such as the realtime priorities in
25545 POSIX.4 make the notion of a single underlying priority for all scheduling policies problematic.
25546 Some systems may implement the nice-related features to affect all processes on the system, |
25547 others to affect just the general time-sharing activities implied by this volume of
25548 IEEE Std. 1003.1-200x, and others may have no effect at all. Because of the use of |
25549 ‘‘implementation-defined’’ in nice and renice, a wide range of implementation strategies are |
25550 possible.

2874 Technical Standard (2000) (Draft July 31, 2000)

Utilities nice

25551 FUTURE DIRECTIONS
25552 None.

25553 SEE ALSO
25554 renice

25555 CHANGE HISTORY
25556 First released in Issue 4.

25557 Issue 6
25558 This utility is now marked as part of the User Portability Utilities option.

25559 The obsolescent SYNOPSIS is removed.

Shell and Utilities, Issue 6 2875

nl Utilities

25560 NAME
25561 nl — line numbering filter

25562 SYNOPSIS
25563 XSI nl [−p][−b type][−d delim][−f type][−h type][−i incr][−l num][−n format]
25564 [−s sep][−v startnum][−w width][file]
25565

25566 DESCRIPTION
25567 The nl utility shall read lines from the named file or the standard input if no file is named and
25568 shall reproduce the lines to standard output. Lines shall be numbered on the left. Additional
25569 functionality may be provided in accordance with the command options in effect.

25570 The nl utility views the text it reads in terms of logical pages. Line numbering is reset at the start
25571 of each logical page. A logical page consists of a header, a body, and a footer section. Empty
25572 sections are valid. Different line numbering options are independently available for header,
25573 body, and footer (for example, no numbering of header and footer lines while numbering blank
25574 lines only in the body).

25575 The starts of logical page sections are signaled by input lines containing nothing but the
25576 following delimiter characters:

25577 Line Start of___________________
25578 \:\:\: Header
25579 \:\: Body
25580 \: Footer___________________LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

25581 Unless otherwise specified, nl assumes the text being read is in a single logical page body.

25582 OPTIONS
25583 The nl utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
25584 Utility Syntax Guidelines. Only one file can be named. |

25585 The following options shall be supported:

25586 −b type Specify which logical page body lines shall be numbered. Recognized types and
25587 their meaning are:

25588 a Number all lines.

25589 t Number only non-empty lines.

25590 n No line numbering.

25591 pstring Number only lines that contain the basic regular expression specified in
25592 string.

25593 The default type for logical page body is t (text lines numbered).

25594 −d delim Specify the delimiter characters that indicate the start of a logical page section.
25595 These can be changed from the default characters "\:" to two user-specified
25596 characters. If only one character is entered, the second character remains the
25597 default character ’:’ .

25598 −f type Specify the same as b type except for footer. The default for logical page footer is n
25599 (no lines numbered).

25600 −h type Specify the same as b type except for header. The default type for logical page
25601 header is n (no lines numbered).

2876 Technical Standard (2000) (Draft July 31, 2000)

Utilities nl

25602 −i incr Specify the increment value used to number logical page lines. The default is 1.

25603 −l num Specify the number of blank lines to be considered as one. For example, −l 2 results
25604 in only the second adjacent blank line being numbered (if the appropriate −h a,
25605 −b a, or −f a option is set). The default is 1.

25606 −n format Specify the line numbering format. Recognized values are: ln, left justified, leading
25607 zeros suppressed; rn, right justified, leading zeros suppressed; rz, right justified,
25608 leading zeros kept. The default format is rn (right justified).

25609 −p Specify that numbering should not be restarted at logical page delimiters.

25610 −s sep Specify the characters used in separating the line number and the corresponding
25611 text line. The default sep is a <tab>.

25612 −v startnum Specify the initial value used to number logical page lines. The default is 1.

25613 −w width Specify the number of characters to be used for the line number. The default width
25614 is 6.

25615 OPERANDS
25616 The following operand shall be supported:

25617 file A path name of a text file to be line-numbered.

25618 STDIN
25619 The standard input is a text file that is used if no file operand is given.

25620 INPUT FILES
25621 The input file named by the file operand is a text file.

25622 ENVIRONMENT VARIABLES
25623 The following environment variables shall affect the execution of nl:

25624 LANG Provide a default value for the internationalization variables that are unset or null.
25625 If LANG is unset or null, the corresponding value from the implementation- |
25626 defined default locale shall be used. If any of the internationalization variables |
25627 contains an invalid setting, the utility shall behave as if none of the variables had
25628 been defined.

25629 LC_ALL If set to a non-empty string value, override the values of all the other
25630 internationalization variables.

25631 LC_COLLATE
25632 Determine the locale for the behavior of ranges, equivalence classes and multi-
25633 character collating elements within regular expressions.

25634 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
25635 characters (for example, single-byte as opposed to multi-byte characters in
25636 arguments and input files), the behavior of character classes within regular
25637 expressions, and for deciding which characters are in character class graph (for the
25638 −b t, −f t, and −h t options).

25639 LC_MESSAGES
25640 Determine the locale that should be used to affect the format and contents of
25641 diagnostic messages written to standard error.

25642 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Shell and Utilities, Issue 6 2877

nl Utilities

25643 ASYNCHRONOUS EVENTS
25644 Default.

25645 STDOUT
25646 The standard output shall be a text file in the following format:

25647 "%s%s%s", < line number >, < separator >, < input line >

25648 where <line number> is one of the following numeric formats:

25649 %6d When the rn format is used (the default; see −n).

25650 %06d When the rz format is used.

25651 %−6d When the ln format is used.

25652 <empty> When line numbers are suppressed for a portion of the page; the <separator> is also
25653 suppressed.

25654 In the preceding list, the number 6 is the default width; the −w option can change this value.

25655 STDERR
25656 Used only for diagnostic messages.

25657 OUTPUT FILES
25658 None.

25659 EXTENDED DESCRIPTION
25660 None.

25661 EXIT STATUS
25662 The following exit values shall be returned:

25663 0 Successful completion.

25664 >0 An error occurred.

25665 CONSEQUENCES OF ERRORS
25666 Default.

25667 APPLICATION USAGE
25668 In using the −d delim option, care should be taken to escape characters that have special meaning
25669 to the command interpreter.

25670 EXAMPLES
25671 The command:

25672 nl −v 10 −i 10 −d \!+ file1

25673 numbers file1 starting at line number 10 with an increment of 10. The logical page delimiter is
25674 "!+" . Note that the ’!’ has to be escaped when using csh as a command interpreter because of
25675 its history substitution syntax. For ksh and sh the escape is not necessary, but does not do any
25676 harm.

25677 RATIONALE
25678 None.

25679 FUTURE DIRECTIONS
25680 None. |

2878 Technical Standard (2000) (Draft July 31, 2000)

Utilities nl

25681 SEE ALSO
25682 pr

25683 CHANGE HISTORY
25684 First released in Issue 2.

25685 Issue 4
25686 Format reorganized.

25687 Utility Syntax Guideline support mandated.

25688 Internationalized environment variable support mandated.

25689 Issue 5
25690 The option [−f type] is added to the SYNOPSIS. The option descriptions are presented in
25691 alphabetic order. The description of −bt is changed to ‘‘Number only non-empty lines’’.

25692 Issue 6
25693 The obsolescent behavior allowing the options to be intermingled with the optional file operand
25694 is removed.

Shell and Utilities, Issue 6 2879

nm Utilities

25695 NAME
25696 nm — write the name list of an object file (DEVELOPMENT)

25697 SYNOPSIS
25698 UP SD XSInm [−APv][−efox][−g| −u][−t format] file ...
25699

25700 DESCRIPTION
25701 This utility shall be provided on systems that support both the User Portability Utilities option
25702 and the Software Development Utilities option. On other systems it is optional. Certain options
25703 are only available on XSI-conformant systems.

25704 The nm utility shall display symbolic information appearing in the object file, executable file or
25705 object-file library named by file . If no symbolic information is available for a valid input file, the
25706 nm utility shall report that fact, but not consider it an error condition.

25707 XSI The default base used when numeric values are written is unspecified. On XSI-conformant |
25708 systems, it shall be decimal. |

25709 OPTIONS
25710 The nm utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
25711 12.2, Utility Syntax Guidelines. |

25712 The following options shall be supported:

25713 −A Write the full path name or library name of an object on each line.

25714 XSI −e Write only external (global) and static symbol information.

25715 XSI −f Produce full output. Write redundant symbols (.text, .data, and .bss), normally
25716 suppressed.

25717 −g Write only external (global) symbol information.

25718 XSI −o Write numeric values in octal (equivalent to −t o). |

25719 −P Write information in a portable output format, as specified in the STDOUT section.

25720 −t format Write each numeric value in the specified format. The format shall be dependent
25721 on the single character used as the format option-argument:

25722 XSI d The offset is written in decimal (default).

25723 o The offset is written in octal.

25724 x The offset is written in hexadecimal.

25725 −u Write only undefined symbols.

25726 −v Sort output by value instead of alphabetically.

25727 XSI −x Write numeric values in hexadecimal (equivalent to −t x). |

25728 OPERANDS
25729 The following operand shall be supported:

25730 file A path name of an object file, executable file, or object-file library.

25731 STDIN
25732 See the INPUT FILES section.

2880 Technical Standard (2000) (Draft July 31, 2000)

Utilities nm

25733 INPUT FILES
25734 The input file shall be an object file, an object-file library whose format is the same as those
25735 produced by the ar utility for link editing, or an executable file. The nm utility may accept |
25736 additional implementation-defined object library formats for the input file. |

25737 ENVIRONMENT VARIABLES
25738 The following environment variables shall affect the execution of nm:

25739 LANG Provide a default value for the internationalization variables that are unset or null.
25740 If LANG is unset or null, the corresponding value from the implementation- |
25741 defined default locale shall be used. If any of the internationalization variables |
25742 contains an invalid setting, the utility shall behave as if none of the variables had
25743 been defined.

25744 LC_ALL If set to a non-empty string value, override the values of all the other
25745 internationalization variables.

25746 LC_COLLATE
25747 Determine the locale for character collation information for the symbol-name and
25748 symbol-value collation sequences.

25749 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
25750 characters (for example, single-byte as opposed to multi-byte characters in
25751 arguments).

25752 LC_MESSAGES
25753 Determine the locale that should be used to affect the format and contents of
25754 diagnostic messages written to standard error.

25755 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

25756 ASYNCHRONOUS EVENTS
25757 Default.

25758 STDOUT
25759 If symbolic information is present in the input files, then for each file or for each member of an
25760 archive, the nm utility shall write the following information to standard output. By default, the
25761 format is unspecified, but the output shall be sorted alphabetically by symbol name:

25762 • Library or object name, if −A is specified

25763 • Symbol name

25764 • Symbol type, which shall either be one of the following single characters or an |
25765 implementation-defined type represented by a single character: |

25766 A Global absolute symbol.

25767 a Local absolute symbol.

25768 B Global ‘‘bss’’ (that is, uninitialized data space) symbol.

25769 b Local bss symbol.

25770 D Global data symbol.

25771 d Local data symbol.

25772 T Global text symbol.

25773 t Local text symbol.

Shell and Utilities, Issue 6 2881

nm Utilities

25774 U Undefined symbol.

25775 • Value of the symbol

25776 • The size associated with the symbol, if applicable

25777 This information may be supplemented by additional information specific to the
25778 implementation.

25779 If the −P option is specified, the previous information shall be displayed using the following
25780 portable format. The three versions differ depending on whether −t d, −t o, or −t x was specified,
25781 respectively:

25782 "%s%s %s %d %d\n", < library/object name >, < name>, < type >,
25783 <value >, < size >

25784 "%s%s %s %o %o\n", < library/object name >, < name>, < type >,
25785 <value >, < size >

25786 "%s%s %s %x %x\n", < library/object name >, < name>, < type >,
25787 <value >, < size >

25788 where

25789 <library/object name> shall be formatted as follows:

25790 • If −A is not specified, <library/object name> shall be an empty string.

25791 • If −A is specified and the corresponding file operand does not name a library:

25792 "%s: ", < file >

25793 • If −A is specified and the corresponding file operand names a library. In this case, <object file>
25794 shall name the object file in the library containing the symbol being described:

25795 "%s[%s]: ", < file >, < object file >

25796 If −A is not specified, then if more than one file operand is specified or if only one file operand is
25797 specified and it names a library, nm shall write a line identifying the object containing the
25798 following symbols before the lines containing those symbols, in the form:

25799 • If the corresponding file operand does not name a library:

25800 "%s:\n", < file >

25801 • If the corresponding file operand names a library; in this case, <object file> shall be the name
25802 of the file in the library containing the following symbols:

25803 "%s[%s]:\n", < file >, < object file >

25804 If −P is specified, but −t is not, the format shall be as if −t x had been specified.

25805 STDERR
25806 Used only for diagnostic messages.

25807 OUTPUT FILES
25808 None.

25809 EXTENDED DESCRIPTION
25810 None.

2882 Technical Standard (2000) (Draft July 31, 2000)

Utilities nm

25811 EXIT STATUS
25812 The following exit values shall be returned:

25813 0 Successful completion.

25814 >0 An error occurred.

25815 CONSEQUENCES OF ERRORS
25816 Default.

25817 APPLICATION USAGE
25818 Mechanisms for dynamic linking make this utility less meaningful when applied to an
25819 executable file because a dynamically linked executable may omit numerous library routines
25820 that would be found in a statically linked executable.

25821 EXAMPLES
25822 None.

25823 RATIONALE
25824 Historical implementations of nm have used different bases for numeric output and supplied
25825 different default types of symbols that were reported. The −t format option, similar to that used
25826 in od and strings, can be used to specify the numeric base; −g and −u can be used to restrict the
25827 amount of output or the types of symbols included in the output.

25828 The option list was significantly reduced from that provided by historical implementations.

25829 The nm description is a subset of both the System V and BSD nm utilities with no specified
25830 default output.

25831 It was recognized that mechanisms for dynamic linking make this utility less meaningful when
25832 applied to an executable file (because a dynamically linked executable file may omit numerous
25833 library routines that would be found in a statically linked executable file), but the value of nm
25834 during software development was judged to outweigh other limitations.

25835 The compromise of using −t format versus using −d, −o, and other similar options was necessary
25836 because of differences in the meaning of −o between implementations. The −o option from BSD
25837 has been provided here as −A to avoid confusion with the −o from System V (which has been
25838 provided here as −t and as −o on XSI-conformant systems).

25839 The default output format of nm is not specified because of differences in historical
25840 implementations. The −P option was added to allow some type of portable output format. After
25841 a comparison of the different formats used in SunOS, BSD, SVR3, and SVR4, it was decided to
25842 create one that did not match the current format of any of these four systems. The format
25843 devised is easy to parse by humans, easy to parse in shell scripts, and does not need to vary
25844 depending on locale (because no English descriptions are included). All of the systems currently
25845 have the information available to use this format.

25846 The format given in nm STDOUT uses spaces between the fields, which may be any number of
25847 <blank>s required to align the columns. The single-character types were selected to match
25848 historical practice, and the requirement that implementation additions also be single characters
25849 made parsing the information easier for shell scripts.

25850 FUTURE DIRECTIONS
25851 None.

25852 SEE ALSO
25853 ar , c99 |

Shell and Utilities, Issue 6 2883

nm Utilities

25854 CHANGE HISTORY
25855 First released in Issue 2.

25856 Issue 4
25857 Aligned with the ISO/IEC 9945-2: 1993 standard.

25858 Issue 6
25859 This utility is now marked as supported when both the User Portability Utilities option and the
25860 Software Development Utilities option are supported.

2884 Technical Standard (2000) (Draft July 31, 2000)

Utilities nohup

25861 NAME
25862 nohup — invoke a utility immune to hangups

25863 SYNOPSIS
25864 nohup utility [argument ...]

25865 DESCRIPTION
25866 The nohup utility shall invoke the utility named by the utility operand with arguments supplied
25867 as the argument operands. At the time the named utility is invoked, the SIGHUP signal shall be
25868 set to be ignored.

25869 If the standard output is a terminal, all output written by the named utility to its standard output
25870 shall be appended to the end of the file nohup.out in the current directory. If nohup.out cannot
25871 be created or opened for appending, the output shall be appended to the end of the file
25872 nohup.out in the directory specified by the HOME environment variable. If neither file can be
25873 created or opened for appending, utility shall not be invoked. If a file is created, the file’s
25874 permission bits shall be set to S_IRUSR | S_IWUSR.

25875 If the standard error is a terminal, all output written by the named utility to its standard error
25876 shall be redirected to the same file descriptor as the standard output.

25877 OPTIONS
25878 None.

25879 OPERANDS
25880 The following operands shall be supported:

25881 utility The name of a utility that is to be invoked. If the utility operand names any of the
25882 special built-in utilities in Section 2.15 (on page 2276), the results are undefined.

25883 argument Any string to be supplied as an argument when invoking the utility named by the
25884 utility operand.

25885 STDIN
25886 Not used.

25887 INPUT FILES
25888 None.

25889 ENVIRONMENT VARIABLES
25890 The following environment variables shall affect the execution of nohup:

25891 HOME Determine the path name of the user’s home directory: if the output file nohup.out
25892 cannot be created in the current directory, the nohup utility shall use the directory
25893 named by HOME to create the file.

25894 LANG Provide a default value for the internationalization variables that are unset or null.
25895 If LANG is unset or null, the corresponding value from the implementation- |
25896 defined default locale shall be used. If any of the internationalization variables |
25897 contains an invalid setting, the utility behav se as if none of the variables had been
25898 defined.

25899 LC_ALL If set to a non-empty string value, override the values of all the other
25900 internationalization variables.

25901 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
25902 characters (for example, single-byte as opposed to multi-byte characters in
25903 arguments).

Shell and Utilities, Issue 6 2885

nohup Utilities

25904 LC_MESSAGES
25905 Determine the locale that should be used to affect the format and contents of
25906 diagnostic messages written to standard error.

25907 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

25908 PATH Determine the search path that is used to locate the utility to be invoked. See the |
25909 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment |
25910 Variables. |

25911 ASYNCHRONOUS EVENTS
25912 The nohup utility shall take the standard action for all signals except that SIGHUP shall be
25913 ignored.

25914 STDOUT
25915 If the standard output is not a terminal, the standard output of nohup shall be the standard
25916 output generated by the execution of the utility specified by the operands. Otherwise, nothing
25917 shall be written to the standard output.

25918 STDERR
25919 If the standard output is a terminal, a message shall be written to the standard error, indicating
25920 the name of the file to which the output is being appended. The name of the file shall be either
25921 nohup.out or $HOME/nohup.out.

25922 OUTPUT FILES
25923 If the standard output is a terminal, all output written by the named utility to the standard
25924 output and standard error is appended to the file nohup.out, which is created if it does not
25925 already exist.

25926 EXTENDED DESCRIPTION
25927 None.

25928 EXIT STATUS
25929 The following exit values shall be returned:

25930 126 The utility specified by utility was found but could not be invoked.

25931 127 An error occurred in the nohup utility or the utility specified by utility could not be
25932 found.

25933 Otherwise, the exit status of nohup shall be that of the utility specified by the utility operand.

25934 CONSEQUENCES OF ERRORS
25935 Default.

25936 APPLICATION USAGE
25937 The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
25938 an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
25939 utility exited with an error indication’’. The value 127 was chosen because it is not commonly
25940 used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
25941 values above 128 can be confused with termination due to receipt of a signal. The value 126 was
25942 chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
25943 scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
25944 between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
25945 exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
25946 any other reason.

2886 Technical Standard (2000) (Draft July 31, 2000)

Utilities nohup

25947 EXAMPLES
25948 It is frequently desirable to apply nohup to pipelines or lists of commands. This can be done by
25949 placing pipelines and command lists in a single file; this file can then be invoked as a utility, and
25950 the nohup applies to everything in the file.

25951 Alternatively, the following command can be used to apply nohup to a complex command:

25952 nohup sh −c ’ complex-command-line ’

25953 RATIONALE
25954 The 4.3 BSD version ignores SIGTERM and SIGHUP, and if ./nohup.out cannot be used, it fails
25955 instead of trying to use $HOME/nohup.out.

25956 The csh utility has a built-in version of nohup that acts differently from the POSIX Shell and
25957 Utilities nohup.

25958 The term utility is used, rather than command , to highlight the fact that shell compound
25959 commands, pipelines, special built-ins, and so on, cannot be used directly. However, utility
25960 includes user application programs and shell scripts, not just the standard utilities.

25961 Historical versions of the nohup utility use default file creation semantics. Some more recent
25962 versions use the permissions specified here as an added security precaution.

25963 Some historical implementations ignore SIGQUIT in addition to SIGHUP; others ignore
25964 SIGTERM. An early proposal allowed, but did not require, SIGQUIT to be ignored. Several
25965 reviewers objected that nohup should only modify the handling of SIGHUP as required by this
25966 volume of IEEE Std. 1003.1-200x.

25967 FUTURE DIRECTIONS
25968 None.

25969 SEE ALSO
25970 sh, the System Interfaces volume of IEEE Std. 1003.1-200x, signal()

25971 CHANGE HISTORY
25972 First released in Issue 2.

25973 Issue 4
25974 Aligned with the ISO/IEC 9945-2: 1993 standard.

Shell and Utilities, Issue 6 2887

od Utilities

25975 NAME
25976 od — dump files in various formats

25977 SYNOPSIS
25978 od [−v][−A address_base][−j skip][−N count][−t type_string] ...
25979 [file ...]

25980 XSI od [−bcdosx][file] [[+] offset [.][b]]
25981

25982 DESCRIPTION
25983 The od utility shall write the contents of its input files to standard output in a user-specified
25984 format.

25985 OPTIONS
25986 The od utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
25987 XSI Utility Syntax Guidelines, except that the order of presentation of the −t options and the |
25988 −bcdosx options is significant.

25989 The following options shall be supported:

25990 −A address_base
25991 Specify the input offset base. See the EXTENDED DESCRIPTION section. The
25992 application shall ensure that the address_base option-argument is a character. The
25993 characters ’d’ , ’o’ , and ’x’ specify that the offset base shall be written in
25994 decimal, octal, or hexadecimal, respectively. The character ’n’ specifies that the
25995 offset shall not be written.

25996 XSI −b Interpret bytes in octal. This is equivalent to −t o1.

25997 XSI −c Interpret bytes as characters specified by the current setting of the LC_CTYPE
25998 category. Certain non-graphic characters appear as C escapes: "NUL=\0" ,
25999 "BS=\b" , "FF=\f" , "NL=\n" , "CR=\r" , "HT=\t" ; others appear as 3-digit octal
26000 numbers.

26001 XSI −d Interpret words (two-byte units) in unsigned decimal. This is equivalent to −t u2.

26002 −j skip Jump over skip bytes from the beginning of the input. The od utility shall read or
26003 seek past the first skip bytes in the concatenated input files. If the combined input
26004 is not at least skip bytes long, the od utility shall write a diagnostic message to
26005 standard error and exit with a non-zero exit status.

26006 By default, the skip option-argument shall be interpreted as a decimal number.
26007 With a leading "0x" or "0X" , the offset shall be interpreted as a hexadecimal
26008 number; otherwise, with a leading ’0’ , the offset shall be interpreted as an octal
26009 number. Appending the character ’b’ , ’k’ , or ’m’ to offset shall cause it to be
26010 MAN interpreted as a multiple of 512, 1 024, or 1 048 576 bytes, respectively. If the skip |
26011 number is hexadecimal, any appended ’b’ shall be considered to be the final
26012 hexadecimal digit.

26013 −N count Format no more than count bytes of input. By default, count shall be interpreted as
26014 a decimal number. With a leading "0x" or "0X" , count shall be interpreted as a
26015 hexadecimal number; otherwise, with a leading ’0’ , it shall be interpreted as an
26016 octal number. If count bytes of input (after successfully skipping, if −j skip is
26017 specified) are not available, it shall not be considered an error; the od utility shall
26018 format the input that is available.

26019 XSI −o Interpret words (two-byte units) in octal. This is equivalent to −t o2.

2888 Technical Standard (2000) (Draft July 31, 2000)

Utilities od

26020 XSI −s Interpret words (two-byte units) in signed decimal. This is equivalent to −t d2.

26021 −t type_string
26022 Specify one or more output types. See the EXTENDED DESCRIPTION section. The
26023 application shall ensure that the type_string option-argument is a string specifying
26024 the types to be used when writing the input data. The string shall consist of the
26025 type specification characters a, c, d, f, o, u, and x, specifying named character,
26026 character, signed decimal, floating point, octal, unsigned decimal, and
26027 hexadecimal, respectively. The type specification characters d, f, o, u, and x can be
26028 followed by an optional unsigned decimal integer that specifies the number of
26029 bytes to be transformed by each instance of the output type. The type specification
26030 character f can be followed by an optional F, D, or L indicating that the conversion
26031 should be applied to an item of type float, double, or long double, respectively.
26032 The type specification characters d, o, u and x can be followed by an optional C, S,
26033 I, or L indicating that the conversion should be applied to an item of type char,
26034 short, int, or long, respectively. Multiple types can be concatenated within the
26035 same type_string and multiple −t options can be specified. Output lines shall be
26036 written for each type specified in the order in which the type specification
26037 characters are specified.

26038 −v Write all input data. Without the −v option, any number of groups of output lines,
26039 which would be identical to the immediately preceding group of output lines
26040 (except for the byte offsets), shall be replaced with a line containing only an
26041 asterisk (’*’).

26042 XSI −x Interpret words (two-byte units) in hexadecimal. This is equivalent to −t x2.

26043 XSI Multiple types can be specified by using multiple −bcdostx options. Output lines are written for
26044 each type specified in the order in which the types are specified.

26045 OPERANDS
26046 The following operands shall be supported:

26047 file A path name of a file to be read. If no file operands are specified, the standard |
26048 input shall be used. If the first character of file is a plus sign (’+’) or the first |
26049 character of the first file operand is numeric, no more than two operands are given, |
26050 XSI and none of the −A, −j, −N, or −t options is specified, the results are unspecified. |
26051 On XSI-conformant systems, the operand shall be assumed to be an offset . |

26052 XSI [+]offset[.][b]
26053 The offset operand specifies the offset in the file where dumping is to commence.
26054 This operand is normally interpreted as octal bytes. If ’.’ is appended, the offset
26055 shall be interpreted in decimal. If ’b’ is appended, the offset shall be interpreted
26056 in units of 512 bytes. If the file argument is omitted, and none of the −A, −j, −N, or
26057 −t options is specified, the application shall ensure that the offset argument is
26058 preceded by ’+’ .

26059 STDIN
26060 The standard input shall be used only if no file operands are specified. See the INPUT FILES
26061 section.

26062 INPUT FILES
26063 The input files can be any file type.

Shell and Utilities, Issue 6 2889

od Utilities

26064 ENVIRONMENT VARIABLES
26065 The following environment variables shall affect the execution of od:

26066 LANG Provide a default value for the internationalization variables that are unset or null.
26067 If LANG is unset or null, the corresponding value from the implementation- |
26068 defined default locale shall be used. If any of the internationalization variables |
26069 contains an invalid setting, the utility shall behave as if none of the variables had
26070 been defined.

26071 LC_ALL If set to a non-empty string value, override the values of all the other
26072 internationalization variables.

26073 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
26074 characters (for example, single-byte as opposed to multi-byte characters in
26075 arguments and input files).

26076 LC_MESSAGES
26077 Determine the locale that should be used to affect the format and contents of
26078 diagnostic messages written to standard error.

26079 LC_NUMERIC
26080 Determine the locale for selecting the radix character used when writing floating-
26081 point formatted output.

26082 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

26083 ASYNCHRONOUS EVENTS
26084 Default.

26085 STDOUT
26086 See the EXTENDED DESCRIPTION section.

26087 STDERR
26088 Used only for diagnostic messages.

26089 OUTPUT FILES
26090 None.

26091 EXTENDED DESCRIPTION
26092 The od utility shall copy sequentially each input file to standard output, transforming the input
26093 XSI data according to the output types specified by the −t options or the −bcdosx options. If no
26094 output type is specified, the default output shall be as if −t oS had been specified.

26095 The number of bytes transformed by the output type specifier c may be variable depending on
26096 the LC_CTYPE category.

26097 The default number of bytes transformed by output type specifiers d, f, o, u, and x corresponds
26098 to the various C-language types as follows. If the c99 compiler is present on the system, these |
26099 specifiers shall correspond to the sizes used by default in that compiler. Otherwise, these sizes
26100 may vary among systems that conform to IEEE Std. 1003.1-200x.

26101 • For the type specifier characters d, o, u, and x, the default number of bytes shall correspond
26102 to the size of the underlying implementation’s basic integer type. For these specifier |
26103 characters, the implementation shall support values of the optional number of bytes to be
26104 converted corresponding to the number of bytes in the C-language types char, short, int, and |
26105 long. These numbers can also be specified by an application as the characters ’C’ , ’S’ , ’I’ , |
26106 and ’L’ , respectively. |

2890 Technical Standard (2000) (Draft July 31, 2000)

Utilities od

26107 Notes to Reviewers |
26108 This section with side shading will not appear in the final copy. - Ed. |

26109 D3, XCU, ERN 99: We need to address long long, which usually uses the notation LL; |
26110 however, that is 2 characters. Do we need to invent a new single character notation for long |
26111 long? |
26112 The implementation shall also support the values 1, 2, and 4, even if it provides no C- |
26113 Language types of those sizes. The byte order used when interpreting numeric values is |
26114 implementation-defined, but shall correspond to the order in which a constant of the |
26115 corresponding type is stored in memory on the system.

26116 • For the type specifier character f, the default number of bytes shall correspond to the number
26117 of bytes in the underlying implementation’s basic double precision floating-point data type.
26118 The implementation shall support values of the optional number of bytes to be converted
26119 corresponding to the number of bytes in the C-language types float, double, and long
26120 double. These numbers can also be specified by an application as the characters ’F’ , ’D’ ,
26121 and ’L’ , respectively.

26122 The type specifier character a specifies that bytes are interpreted as named characters from the
26123 International Reference Version (IRV) of the ISO/IEC 646: 1991 standard. Only the least
26124 significant seven bits of each byte shall be used for this type specification. Bytes with the values
26125 listed in the following table shall be written using the corresponding names for those characters.

26126 Table 4-12 Named Characters in od
26127 ___
26128 Value Name Value Name Value Name Value Name___
26129 \000 nul \001 soh \002 stx \003 etx
26130 \004 eot \005 enq \006 ack \007 bel
26131 \010 bs \011 ht \012 lf or nl* \013 vt
26132 \014 ff \015 cr \016 so \017 si
26133 \020 dle \021 dc1 \022 dc2 \023 dc3
26134 \024 dc4 \025 nak \026 syn \027 etb
26135 \030 can \031 em \032 sub \033 esc
26136 \034 fs \035 gs \036 rs \037 us
26137 \040 sp \177 del___LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

26138 Note: The "\012" value may be written either as lf or nl.

26139 The type specifier character c specifies that bytes are interpreted as characters specified by the
26140 current setting of the LC_CTYPE locale category. Characters listed in the table in the Base |
26141 Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, File Format Notation ("\\" , ’\a’ , |
26142 ’\b’ , ’\f’ , ’\n’ , ’\r’ , ’\t’ , ’\v’) shall be written as the corresponding escape sequences,
26143 except that backslash shall be written as a single backslash and a NUL shall be written as ’\0’ .
26144 Other non-printable characters shall be written as one three-digit octal number for each byte in
26145 the character. If the size of a byte on the system is greater than nine bits, the format used for
26146 non-printable characters is implementation-defined. Printable multi-byte characters shall be |
26147 written in the area corresponding to the first byte of the character; the two-character sequence
26148 "**" shall be written in the area corresponding to each remaining byte in the character, as an
26149 indication that the character is continued. When either the −j skip or −N count option is specified
26150 along with the c type specifier, and this results in an attempt to start or finish in the middle of a
26151 multi-byte character, the result is implementation-defined. |

26152 The input data shall be manipulated in blocks, where a block is defined as a multiple of the least
26153 common multiple of the number of bytes transformed by the specified output types. If the least

Shell and Utilities, Issue 6 2891

od Utilities

26154 common multiple is greater than 16, the results are unspecified. Each input block shall be
26155 written as transformed by each output type, one per written line, in the order that the output
26156 types were specified. If the input block size is larger than the number of bytes transformed by
26157 the output type, the output type shall sequentially transform the parts of the input block, and
26158 the output from each of the transformations shall be separated by one or more <blank>
26159 characters.

26160 If, as a result of the specification of the −N option or end-of-file being reached on the last input
26161 file, input data only partially satisfies an output type, the input shall be extended sufficiently
26162 with null bytes to write the last byte of the input.

26163 Unless −A n is specified, the first output line produced for each input block shall be preceded by
26164 the input offset, cumulative across input files, of the next byte to be written. The format of the
26165 input offset is unspecified; however, it shall not contain any <blank> characters, shall start at the
26166 first character of the output line, and shall be followed by one or more <blank> characters. In
26167 addition, the offset of the byte following the last byte written shall be written after all the input
26168 data has been processed, but shall not be followed by any <blank> characters.

26169 If no −A option is specified, the input offset base is unspecified.

26170 EXIT STATUS
26171 The following exit values shall be returned:

26172 0 All input files were processed successfully.

26173 >0 An error occurred.

26174 CONSEQUENCES OF ERRORS
26175 Default.

26176 APPLICATION USAGE
26177 Applications are warned not to use file names starting with ’+’ or a first operand starting with
26178 a numeric character so that the old functionality can be maintained by implementations, unless
26179 they specify one of the new options specified by the ISO/IEC 9945-2: 1993 standard. To
26180 guarantee that one of these file names is always interpreted as a file name, an application could
26181 always specify the address base format with the −A option.

26182 EXAMPLES
26183 If a file containing 128 bytes with decimal values zero to 127, in increasing order, is supplied as
26184 standard input to the command:

26185 od −A d −t a

26186 on an implementation using an input block size of 16 bytes, the standard output, independent of
26187 the current locale setting, would be similar to:

26188 0000000 nul soh stx etx eot enq ack bel bs ht nl vt ff cr so si
26189 0000016 dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us
26190 0000032 s p ! " # $ % & ’ () * + , − . /
26191 000004 8 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
26192 000006 4 @ A B C D E F G H I J K L M N O
26193 000008 0 P Q R S T U V W X Y Z [\] ^ _
26194 000009 6 ‘ a b c d e f g h i j k l m n o
26195 000011 2 p q r s t u v w x y z { | } ~ del
26196 0000128

26197 Note that this volume of IEEE Std. 1003.1-200x allows nl or lf to be used as the name for the
26198 ISO/IEC 646: 1991 standard IRV character with decimal value 10. The IRV names this character
26199 lf (line feed), but traditional implementations have referred to this character as newline (nl) and

2892 Technical Standard (2000) (Draft July 31, 2000)

Utilities od

26200 the POSIX locale character set symbolic name for the corresponding character is a <newline>
26201 character.

26202 The command:

26203 od −A o −t o2x2x −n 18

26204 on a system with 32-bit words and an implementation using an input block size of 16 bytes
26205 could write 18 bytes in approximately the following format:

26206 0000000 032056 031440 041123 042040 052516 044530 020043 031464
26207 342e 3320 4253 4420 554e 4958 2023 3334
26208 342e3320 42534420 554e4958 20233334
26209 0000020 032472
26210 353a
26211 353a0000
26212 0000022

26213 The command:

26214 od −A d −t f −t o4 −t x4 −n 24 −j 0x15

26215 on a system with 64-bit doubles (for example, IEEE Std. 754-1985 double precision floating-point |
26216 format) would skip 21 bytes of input data and then write 24 bytes in approximately the
26217 following format:

26218 0000000 1.00000000000000e+00 1.57350000000000e+01
26219 07774000000 00000000000 10013674121 35341217270
26220 3ff00000 00000000 402f3851 eb851eb8
26221 0000016 1.40668230000000e+02
26222 10030312542 04370303230
26223 40619562 23e18698
26224 0000024

26225 RATIONALE
26226 The od utility went through several names in early proposals, including hd, xd, and most recently
26227 hexdump. There were several objections to all of these based on the following reasons:

26228 • The hd and xd names conflicted with historical utilities that behaved differently.

26229 • The hexdump description was much more complex than needed for a simple dump utility.

26230 • The od utility has been available on all historical implementations and there was no need to
26231 create a new name for a utility so similar to the historical od utility.

26232 The original reasons for not standardizing historical od were also fairly widespread. Those
26233 reasons are given below along with rationale explaining why the standard developers believe
26234 that this version does not suffer from the indicated problem:

26235 • The BSD and System V versions of od have diverged, and the intersection of features
26236 provided by both does not meet the needs of the user community. In fact, the System V
26237 version only provides a mechanism for dumping octal bytes and shorts, signed and unsigned
26238 decimal shorts, hexadecimal shorts, and ASCII characters. BSD added the ability to dump
26239 floats, doubles, named ASCII characters, and octal, signed decimal, unsigned decimal, and
26240 hexadecimal longs. The version presented here provides more normalized forms for
26241 dumping bytes, shorts, ints, and longs in octal, signed decimal, unsigned decimal, and
26242 hexadecimal; float, double, and long double; and named ASCII as well as current locale
26243 characters.

Shell and Utilities, Issue 6 2893

od Utilities

26244 • It would not be possible to come up with a compatible superset of the BSD and System V
26245 flags that met the requirements of the standard developers. The historical default od output is
26246 the specified default output of this utility. None of the option letters chosen for this version
26247 of od conflict with any of the options to historical versions of od.

26248 • On systems with different sizes for short, int, and long, there was no way to ask for dumps
26249 of ints, even in the BSD version. Because of the way options are named, the name space |
26250 could not be extended to solve these problems. This is why the −t option was added (with |
26251 type specifiers more closely matched to the printf() formats used in the rest of this volume of
26252 IEEE Std. 1003.1-200x) and the optional field sizes were added to the d, f, o, u, and x type
26253 specifiers. It is also one of the reasons why the historical practice was not mandated as a
26254 required obsolescent form of od. (Although the old versions of od are not listed as an
26255 obsolescent form, implementations are urged to continue to recognize the older forms for
26256 several more years.) The a, c, f, o, and x types match the meaning of the corresponding
26257 format characters in the historical implementations of od except for the default sizes of the
26258 fields converted. The d format is signed in this volume of IEEE Std. 1003.1-200x to match the
26259 printf() notation. (Historical versions of od used d as a synonym for u in this version. The
26260 System V implementation uses s for signed decimal; BSD uses i for signed decimal and s for
26261 null-terminated strings.) Other than d and u, all of the type specifiers match format
26262 characters in the historical BSD version of od.

26263 The sizes of the C-language types char, short, int, long, float, double, and long double are
26264 used even though it is recognized that there may be zero or more than one compiler for the C
26265 language on an implementation and that they may use different sizes for some of these types.
26266 (For example, one compiler might use 2 bytes shorts, 2 bytes ints, and 4 bytes longs, while
26267 another compiler (or an option to the same compiler) uses 2 bytes shorts, 4 bytes ints, and 4
26268 bytes longs.) Nonetheless, there has to be a basic size known by the implementation for
26269 these types, corresponding to the values reported by invocations of the getconf utility when
26270 called with system_var operands {UCHAR_MAX}, {USHORT_MAX}, {UINT_MAX}, and
26271 {ULONG_MAX} for the types char, short, int, and long, respectively. There are similar
26272 constants required by the ISO C standard, but not required by the System Interfaces volume
26273 of IEEE Std. 1003.1-200x or this volume of IEEE Std. 1003.1-200x. They are
26274 {FLT_MANT_DIG}, {DBL_MANT_DIG}, and {LDBL_MANT_DIG} for the types float,
26275 double, and long double, respectively. If the optional c99 utility is provided by the |
26276 implementation and used as specified by this volume of IEEE Std. 1003.1-200x, these are the
26277 sizes that would be provided. If an option is used that specifies different sizes for these types,
26278 there is no guarantee that the od utility is able to interpret binary data output by such a
26279 program correctly.

26280 This volume of IEEE Std. 1003.1-200x requires that the numeric values of these lengths be
26281 recognized by the od utility and that symbolic forms also be recognized. Thus, a portable
26282 application can always look at an array of unsigned long data elements using od −t uL.

26283 • The method of specifying the format for the address field based on specifying a starting
26284 offset in a file unnecessarily tied the two together. The −A option now specifies the address
26285 base and the −S option specifies a starting offset.

26286 • It would be difficult to break the dependence on U.S. ASCII to achieve an internationalized
26287 utility. It does not seem to be any harder for od to dump characters in the current locale than
26288 it is for the ed or sed l commands. The c type specifier does this without difficulty and is
26289 completely compatible with the historical implementations of the c format character when
26290 the current locale uses a superset of the ISO/IEC 646: 1991 standard as a codeset. The a type
26291 specifier (from the BSD a format character) was left as a portable means to dump ASCII (or
26292 more correctly ISO/IEC 646: 1991 standard (IRV)) so that headers produced by pax could be
26293 deciphered even on systems that do not use the ISO/IEC 646: 1991 standard as a subset of

2894 Technical Standard (2000) (Draft July 31, 2000)

Utilities od

26294 their base codeset.

26295 The use of "**" as an indication of continuation of a multi-byte character in c specifier output
26296 was chosen based on seeing an implementation that uses this method. The continuation bytes
26297 have to be marked in a way that is not ambiguous with another single-byte or multi-byte
26298 character.

26299 An early proposal used −S and −n, respectively, for the −j and −N options eventually selected.
26300 These were changed to avoid conflicts with historical implementations.

26301 The original standard specified −t o2 as the default when no output type was given. This was
26302 changed to −t oS (the length of a short) to accommodate a supercomputer implementation that
26303 historically used 64 bits as its default (and that defined shorts as 64 bits). This change should not
26304 affect portable applications. The requirement to support lengths of 1, 2, and 4 was added at the
26305 same time to address an historical implementation that had no two-byte data types in its C
26306 compiler. |

26307 The use of a basic integer data type is intended to allow the implementation to choose a word |
26308 size commonly used by applications on that architecture. |

26309 FUTURE DIRECTIONS
26310 All option and operand interfaces marked as extensions may be withdrawn in a future issue.

26311 SEE ALSO
26312 c99 , sed |

26313 CHANGE HISTORY
26314 First released in Issue 2.

26315 Issue 4
26316 Aligned with the ISO/IEC 9945-2: 1993 standard.

26317 Issue 4, Version 2
26318 The description of the −c option is made dependent on the current setting of the LC_CTYPE
26319 category, and a reference to the POSIX locale is deleted.

26320 Issue 5
26321 In the description of the −c option, the phrase ‘‘This is equivalent to −t c.’’ is deleted.

26322 The FUTURE DIRECTIONS section has been modified.

26323 Issue 6
26324 The od utility is changed to remove the assumption that short was a two-byte entity, as per the
26325 revisions in the IEEE P1003.2b draft standard.

26326 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2895

paste Utilities

26327 NAME
26328 paste — merge corresponding or subsequent lines of files

26329 SYNOPSIS
26330 paste [−s][−d list] file ...

26331 DESCRIPTION
26332 The paste utility shall concatenate the corresponding lines of the given input files, and writes the
26333 resulting lines to standard output.

26334 The default operation of paste shall concatenate the corresponding lines of the input files. The
26335 <newline> character of every line except the line from the last input file shall be replaced with a
26336 <tab> character.

26337 If an end-of-file condition is detected on one or more input files, but not all input files, paste shall
26338 behave as though empty lines were read from the files on which end-of-file was detected, unless
26339 the −s option is specified.

26340 OPTIONS
26341 The paste utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
26342 12.2, Utility Syntax Guidelines. |

26343 The following options shall be supported:

26344 −d list Unless a backslash character appears in list , each character in list is an element
26345 specifying a delimiter character. If a backslash character appears in list , the
26346 backslash character and one or more characters following it are an element
26347 specifying a delimiter character as described below. These elements specify one or
26348 more delimiters to use, instead of the default <tab> character, to replace the
26349 <newline> character of the input lines. The elements in list shall be used circularly;
26350 that is, when the list is exhausted the first element from the list is reused. When the
26351 −s option is specified:

26352 • The last <newline> character in a file shall not be modified.

26353 • The delimiter shall be reset to the first element of list after each file operand is
26354 processed.

26355 When the −s option is not specified:

26356 • The <newline> characters in the file specified by the last file operand shall not
26357 be modified.

26358 • The delimiter shall be reset to the first element of list each time a line is
26359 processed from each file.

26360 If a backslash character appears in list , it and the character following it shall be
26361 used to represent the following delimiter characters:

26362 \n <newline> character.

26363 \t <tab> character.

26364 \\ Backslash character.

26365 \0 Empty string (not a null character). If ’\0’ is immediately followed by the
26366 character ’x’ , the character ’X’ , or any character defined by the LC_CTYPE
26367 digit keyword (see the Base Definitions volume of IEEE Std. 1003.1-200x, |
26368 Chapter 7, Locale), the results are unspecified. |

2896 Technical Standard (2000) (Draft July 31, 2000)

Utilities paste

26369 If any other characters follow the backslash, the results are unspecified.

26370 −s Concatenate all of the lines of each separate input file in command line order. The
26371 <newline> character of every line except the last line in each input file shall be
26372 replaced with the <tab> character, unless otherwise specified by the −d option.

26373 OPERANDS
26374 The following operand shall be supported:

26375 file A path name of an input file. If ’ −’ is specified for one or more of the files, the
26376 standard input shall be used; the standard input shall be read one line at a time,
26377 circularly, for each instance of ’ −’ . Implementations shall support pasting of at
26378 least 12 file operands.

26379 STDIN
26380 The standard input shall be used only if one or more file operands is ’ −’ . See the INPUT FILES
26381 section.

26382 INPUT FILES
26383 The input files shall be text files, except that line lengths shall be unlimited.

26384 ENVIRONMENT VARIABLES
26385 The following environment variables shall affect the execution of paste:

26386 LANG Provide a default value for the internationalization variables that are unset or null.
26387 If LANG is unset or null, the corresponding value from the implementation- |
26388 defined default locale shall be used. If any of the internationalization variables |
26389 contains an invalid setting, the utility shall behave as if none of the variables had
26390 been defined.

26391 LC_ALL If set to a non-empty string value, override the values of all the other
26392 internationalization variables.

26393 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
26394 characters (for example, single-byte as opposed to multi-byte characters in
26395 arguments and input files).

26396 LC_MESSAGES
26397 Determine the locale that should be used to affect the format and contents of
26398 diagnostic messages written to standard error.

26399 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

26400 ASYNCHRONOUS EVENTS
26401 Default.

26402 STDOUT
26403 Concatenated lines of input files shall be separated by the <tab> character (or other characters
26404 under the control of the −d option) and terminated by a <newline> character.

26405 STDERR
26406 Used only for diagnostic messages.

26407 OUTPUT FILES
26408 None.

26409 EXTENDED DESCRIPTION
26410 None.

Shell and Utilities, Issue 6 2897

paste Utilities

26411 EXIT STATUS
26412 The following exit values shall be returned:

26413 0 Successful completion.

26414 >0 An error occurred.

26415 CONSEQUENCES OF ERRORS
26416 If one or more input files cannot be opened when the −s option is not specified, a diagnostic
26417 message shall be written to standard error, but no output is written to standard output. If the −s
26418 option is specified, the paste utility shall provide the default behavior described in Section 1.11
26419 (on page 2224).

26420 APPLICATION USAGE
26421 When the escape sequences of the list option-argument are used in a shell script, they must be
26422 quoted; otherwise, the shell treats the ’\\’ as a special character. |

26423 Portable applications should only use the specific backslash escaped delimiters presented in this
26424 volume of IEEE Std. 1003.1-200x. Historical implementations treat ’\x’ , where ’x’ is not in this
26425 list, as ’x’ , but future implementations are free to expand this list to recognize other common
26426 escapes similar to those accepted by printf and other standard utilities.

26427 Most of the standard utilities work on text files. The cut utility can be used to turn files with
26428 arbitrary line lengths into a set of text files containing the same data. The paste utility can be used
26429 to create (or recreate) files with arbitrary line lengths. For example, if file contains long lines: |

26430 cut −b 1−500 −n file > file1
26431 cut −b 501 − −n file > file2

26432 creates file1 (a text file) with lines no longer than 500 bytes (plus the <newline> character) and
26433 file2 that contains the remainder of the data from file . Note that file2 is not a text file if there are |
26434 lines in file that are longer than 500 + {LINE_MAX} bytes. The original file can be recreated from |
26435 file1 and file2 using the command:

26436 paste −d "\0" file1 file2 > file

26437 The commands:

26438 paste −d "\0" ...
26439 paste −d "" ...

26440 are not necessarily equivalent; the latter is not specified by this volume of IEEE Std. 1003.1-200x
26441 and may result in an error. The construct ’\0’ is used to mean ‘‘no separator’’ because
26442 historical versions of paste did not follow the syntax guidelines, and the command:

26443 paste −d"" ...

26444 could not be handled properly by getopt().

26445 EXAMPLES

26446 1. Write out a directory in four columns:

26447 ls | paste − − − −

26448 2. Combine pairs of lines from a file into single lines:

26449 paste −s −d "\t\n" file

2898 Technical Standard (2000) (Draft July 31, 2000)

Utilities paste

26450 RATIONALE
26451 None.

26452 FUTURE DIRECTIONS
26453 None.

26454 SEE ALSO
26455 cut, grep, pr

26456 CHANGE HISTORY
26457 First released in Issue 2.

26458 Issue 4
26459 Aligned with the ISO/IEC 9945-2: 1993 standard.

26460 Issue 6
26461 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2899

patch Utilities

26462 NAME
26463 patch — apply changes to files

26464 SYNOPSIS
26465 UP patch [−blNR][−c| −e| −n][−d dir][−D define][−i patchfile]
26466 [−o outfile][−p num][−r rejectfile][file]
26467

26468 DESCRIPTION
26469 The patch utility shall read a source (patch) file containing any of the three forms of difference
26470 (diff) listings produced by the diff utility (normal, context or in the style of ed) and apply those
26471 differences to a file. By default, patch shall read from the standard input.

26472 The patch utility shall attempt to determine the type of the diff listing, unless overruled by a −c,
26473 −e, or −n option.

26474 If the patch file contains more than one patch, patch shall attempt to apply each of them as if they
26475 came from separate patch files. (In this case, the application shall ensure that the name of the
26476 patch file is determinable for each diff listing.)

26477 OPTIONS
26478 The patch utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
26479 12.2, Utility Syntax Guidelines. |

26480 The following options shall be supported:

26481 −b Save a copy of the original contents of each modified file, before the differences are
26482 applied, in a file of the same name with the suffix .orig appended to it. If the file
26483 already exists, it shall be overwritten; if multiple patches are applied to the same
26484 file, the .orig file shall be written only for the first patch. When the −o outfile option
26485 is also specified, file .orig shall not be created but, if outfile already exists,
26486 outfile .orig shall be created.

26487 −c Interpret the patch file as a context difference (the output of the utility diff when
26488 the −c or −C options are specified).

26489 −d dir Change the current directory to dir before processing as described in the
26490 EXTENDED DESCRIPTION section.

26491 −D define Mark changes with one of the following C preprocessor constructs:

26492 #ifdef define
26493 ...
26494 #endif
26495 #ifndef define
26496 ...
26497 #endif

26498 optionally combined with the C preprocessor construct #else.

26499 −e Interpret the patch file as an ed script, rather than a diff script.

26500 −i patchfile Read the patch information from the file named by the path name patchfile , rather
26501 than the standard input.

26502 −l (The letter ell.) Cause any sequence of <blank> characters in the difference script to
26503 match any sequence of <blank> characters in the input file. Other characters shall
26504 be matched exactly.

2900 Technical Standard (2000) (Draft July 31, 2000)

Utilities patch

26505 −n Interpret the script as a normal difference.

26506 −N Ignore patches where the differences have already been applied to the file; by
26507 default, already-applied patches shall be rejected.

26508 −o outfile Instead of modifying the files (specified by the file operand or the difference
26509 listings) directly, write a copy of the file referenced by each patch, with the
26510 appropriate differences applied, to outfile . Multiple patches for a single file shall
26511 be applied to the intermediate versions of the file created by any previous patches,
26512 and shall result in multiple, concatenated versions of the file being written to
26513 outfile .

26514 −p num For all path names in the patch file that indicate the names of files to be patched,
26515 delete num path name components from the beginning of each path name. If the
26516 path name in the patch file is absolute, any leading slashes shall be considered the
26517 first component (that is, −p 1 shall remove the leading slashes). Specifying −p 0
26518 shall cause the full path name to be used. If −p is not specified, only the basename
26519 (the final path name component) shall be used.

26520 −R Reverse the sense of the patch script; that is, assume that the difference script was
26521 created from the new version to the old version. The −R option cannot be used
26522 with ed scripts. The patch utility shall attempt to reverse each portion of the script |
26523 before applying it. Rejected differences shall be saved in swapped format. If this |
26524 option is not specified, and until a portion of the patch file is successfully applied, |
26525 patch attempts to apply each portion in its reversed sense as well as in its normal
26526 sense. If the attempt is successful, the user shall be prompted to determine if the
26527 −R option should be set.

26528 −r rejectfile Override the default reject file name. In the default case, the reject file shall have
26529 the same name as the output file, with the suffix .rej appended to it; see Patch
26530 Application (on page 2903).

26531 OPERANDS
26532 The following operand shall be supported:

26533 file A path name of a file to patch.

26534 STDIN
26535 See the INPUT FILES section.

26536 INPUT FILES
26537 Input files shall be text files.

26538 ENVIRONMENT VARIABLES
26539 The following environment variables shall affect the execution of patch:

26540 LANG Provide a default value for the internationalization variables that are unset or null.
26541 If LANG is unset or null, the corresponding value from the implementation- |
26542 defined default locale shall be used. If any of the internationalization variables |
26543 contains an invalid setting, the utility shall behave as if none of the variables had
26544 been defined.

26545 LC_ALL If set to a non-empty string value, override the values of all the other
26546 internationalization variables.

26547 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
26548 characters (for example, single-byte as opposed to multi-byte characters in
26549 arguments and input files).

Shell and Utilities, Issue 6 2901

patch Utilities

26550 LC_MESSAGES
26551 Determine the locale that should be used to affect the format and contents of
26552 diagnostic messages written to standard error and informative messages written to
26553 standard output.

26554 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

26555 LC_TIME Determine the locale for recognizing the format of file timestamps written by the
26556 diff utility in a context-difference input file.

26557 ASYNCHRONOUS EVENTS
26558 Default.

26559 STDOUT
26560 Not used.

26561 STDERR
26562 Used for diagnostic and informational messages.

26563 OUTPUT FILES
26564 The output of the patch utility, the save files (.orig suffixes) and the reject files (.rej suffixes) shall
26565 be text files.

26566 EXTENDED DESCRIPTION
26567 A patchfile may contain patching instructions for more than one file; file names shall be
26568 determined as specified in File Name Determination (on page 2903). When the −b option is
26569 specified, for each patched file, the original shall be saved in a file of the same name with the
26570 suffix .orig appended to it.

26571 For each patched file, a reject file may also be created as noted in Patch Application (on page
26572 2903). In the absence of a −r option, the name of this file shall be formed by appending the suffix
26573 .rej to the original file name.

26574 Patchfile Format

26575 The patch file shall contain zero or more lines of header information followed by one or more
26576 patches. Each patch shall contain zero or more lines of file name identification in the format
26577 produced by diff −c, and one or more sets of diff output, which are customarily called hunks.

26578 The patch utility shall recognize the following expression in the header information:

26579 Index: pathname
26580 The file to be patched is named pathname .

26581 If all lines (including headers) within a patch begin with the same leading sequence of <blank>
26582 characters, the patch utility shall remove this sequence before proceeding. Within each patch, if
26583 the type of difference is context, the patch utility shall recognize the following expressions:

26584 *** filename timestamp
26585 The patches arose from filename .

26586 − − − filename timestamp
26587 The patches should be applied to filename .

26588 Each hunk within a patch shall be the diff output to change a line range within the original file.
26589 The line numbers for successive hunks within a patch shall occur in ascending order.

2902 Technical Standard (2000) (Draft July 31, 2000)

Utilities patch

26590 File Name Determination

26591 If no file operand is specified, patch shall perform the following steps to determine the file name
26592 to use:

26593 1. If the type of diff is context, the patch utility shall delete path name components (as
26594 specified by the −p option) from the file name on the line beginning with "***" , then test
26595 for the existence of this file relative to the current directory (or the directory specified with
26596 the −d option). If the file exists, the patch utility shall use this file name.

26597 2. If the type of diff is context, the patch utility shall delete the path name components (as
26598 specified by the −p option) from the file name on the line beginning with " −−−" , then test
26599 for the existence of this file relative to the current directory (or the directory specified with
26600 the −d option). If the file exists, the patch utility shall use this file name.

26601 3. If the header information contains a line beginning with the string Index:, the patch utility
26602 shall delete path name components (as specified by the −p option) from this line, then test
26603 for the existence of this file relative to the current directory (or the directory specified with
26604 the −d option). If the file exists, the patch utility shall use this file name.

26605 XSI 4. If an SCCS directory exists in the current directory, patch shall attempt to perform a get −e
26606 SCCS/s.filename command to retrieve an editable version of the file. If the file exists, the |
26607 patch utility shall use this file name. |

26608 5. The patch utility shall write a prompt to standard output and request a file name
26609 interactively from the controlling terminal (for example, /dev/tty).

26610 Patch Application

26611 If the −c, −e, or −n option is present, the patch utility shall interpret information within each hunk
26612 as a context difference, an ed difference or a normal difference, respectively. In the absence of
26613 any of these options, the patch utility shall determine the type of difference based on the format
26614 of information within the hunk.

26615 For each hunk, the patch utility shall begin to search for the place to apply the patch at the line
26616 number at the beginning of the hunk, plus or minus any offset used in applying the previous
26617 hunk. If lines matching the hunk context are not found, patch shall scan both forwards and
26618 backwards at least 1 000 bytes for a set of lines that match the hunk context.

26619 If no such place is found and it is a context difference, then another scan shall take place,
26620 ignoring the first and last line of context. If that fails, the first two and last two lines of context
26621 shall be ignored and another scan shall be made. Implementations may search more extensively
26622 for installation locations.

26623 If no location can be found, the patch utility shall append the hunk to the reject file. The rejected
26624 hunk shall be written in context-difference format regardless of the format of the patch file. If the
26625 input was a normal or ed−style difference, the reject file may contain differences with zero lines
26626 of context. The line numbers on the hunks in the reject file may be different from the line
26627 numbers in the patch file since they shall reflect the approximate locations for the failed hunks in
26628 the new file rather than the old one.

26629 If the type of patch is an ed diff, the implementation may accomplish the patching by invoking
26630 the ed utility.

26631 EXIT STATUS
26632 The following exit values shall be returned:

26633 0 Successful completion.

Shell and Utilities, Issue 6 2903

patch Utilities

26634 1 One or more lines were written to a reject file.

26635 >1 An error occurred.

26636 CONSEQUENCES OF ERRORS
26637 Patches that cannot be correctly placed in the file shall be written to a reject file.

26638 APPLICATION USAGE
26639 The −R option does not work with ed scripts because there is too little information to reconstruct
26640 the reverse operation.

26641 The −p option makes it possible to customize a patchfile to local user directory structures
26642 without manually editing the patchfile. For example, if the file name in the patch file was:

26643 /curds/whey/src/blurfl/blurfl.c

26644 Setting −p 0 gives the entire path name unmodified; −p 1 gives:

26645 curds/whey/src/blurfl/blurfl.c

26646 without the leading slash, −p 4 gives:

26647 blurfl/blurfl.c

26648 and not specifying −p at all gives:

26649 blurfl.c .

26650 EXAMPLES |
26651 None.

26652 RATIONALE
26653 Some of the functionality in historical patch implementations was not specified. The following
26654 documents those features present in historical implementations that have not been specified.

26655 A deleted piece of functionality was the ’+’ pseudo-option allowing an additional set of options
26656 and a patch file operand to be given. This was seen as being insufficiently useful to standardize.

26657 In historical implementations, if the string "Prereq:" appeared in the header, the patch utility
26658 would search for the corresponding version information (the string specified in the header,
26659 delimited by <blank>s or the beginning or end of a line or the file) anywhere in the original file.
26660 This was deleted as too simplistic and insufficiently trustworthy a mechanism to standardize.
26661 For example, if:

26662 Prereq: 1.2

26663 were in the header, the presence of a delimited 1.2 anywhere in the file would satisfy the
26664 prerequisite.

26665 The following options were dropped from historical implementations of patch as insufficiently
26666 useful to standardize:

26667 −b The −b option historically provided a method for changing the name extension of
26668 the backup file from the default .orig. This option has been modified and retained
26669 in this volume of IEEE Std. 1003.1-200x.

26670 −F The −F option specified the number of lines of a context diff to ignore when
26671 searching for a place to install a patch.

26672 −f The −f option historically caused patch not to request additional information from
26673 the user.

2904 Technical Standard (2000) (Draft July 31, 2000)

Utilities patch

26674 −r The −r option historically provided a method of overriding the extension of the
26675 reject file from the default .rej.

26676 −s The −s option historically caused patch to work silently unless an error occurred.

26677 −x The −x option historically set internal debugging flags.

26678 In some file system implementations, the saving of a .orig file may produce unwanted results. In
26679 the case of 12, 13, or 14-character file names (on file systems supporting 14-character maximum
26680 file names), the .orig file overwrites the new file. The reject file may also exceed this file name
26681 limit. It was suggested, due to some historical practice, that a tilde (’˜’) suffix be used instead
26682 of .orig and some other character instead of the .rej suffix. This was rejected because it is not
26683 obvious to the user which file is which. The suffixes .orig and .rej are clearer and more
26684 understandable.

26685 The −b option has the opposite sense in some historical implementations—do not save the .orig
26686 file. The default case here is not to save the files, making patch behave more consistently with the
26687 other standard utilities.

26688 The −w option in early proposals was changed to −l to match historical practice.

26689 The −N option was included because without it, a non-interactive application cannot reject
26690 previously applied patches. For example, if a user is piping the output of diff into the patch
26691 utility, and the user only wants to patch a file to a newer version non-interactively, the −N
26692 option is required.

26693 Changes to the −l option description were proposed to allow matching across <newline>s in
26694 addition to just <blank>s. Since this is not historical practice, and since some ambiguities could
26695 result, it is suggested that future developments in this area utilize another option letter, such as
26696 −L.

26697 FUTURE DIRECTIONS
26698 None.

26699 SEE ALSO
26700 ed, diff

26701 CHANGE HISTORY
26702 First released in Issue 4.

26703 Issue 5
26704 FUTURE DIRECTIONS section added.

26705 Issue 6
26706 This utility is now marked as part of the User Portability Utilities option.

26707 The description of the −D option and the steps in File Name Determination (on page 2903) are
26708 changed to match historical practice as defined in the IEEE P1003.2b draft standard.

26709 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2905

pathchk Utilities

26710 NAME
26711 pathchk — check path names

26712 SYNOPSIS
26713 pathchk [−p] pathname ...

26714 DESCRIPTION
26715 The pathchk utility shall check that one or more path names are valid (that is, they could be used
26716 to access or create a file without causing syntax errors) and portable (that is, no file name
26717 truncation results). More extensive portability checks are provided by the −p option.

26718 By default, the pathchk utility shall check each component of each pathname operand based on the
26719 underlying file system. A diagnostic shall be written for each pathname operand that:

26720 • Is longer than {PATH_MAX} bytes (see Path Name Variable Values in the Base Definitions |
26721 volume of IEEE Std. 1003.1-200x, Chapter 13, Headers, <limits.h>) |

26722 • Contains any component longer than {NAME_MAX} bytes in its containing directory

26723 • Contains any component in a directory that is not searchable

26724 • Contains any character in any component that is not valid in its containing directory

26725 The format of the diagnostic message is not specified, but shall indicate the error detected and
26726 the corresponding pathname operand.

26727 It shall not be considered an error if one or more components of a pathname operand do not exist
26728 as long as a file matching the path name specified by the missing components could be created
26729 that does not violate any of the checks specified above.

26730 OPTIONS
26731 The pathchk utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
26732 12.2, Utility Syntax Guidelines. |

26733 The following option shall be supported:

26734 −p Instead of performing checks based on the underlying file system, write a
26735 diagnostic for each pathname operand that:

26736 • Is longer than {_POSIX_PATH_MAX} bytes (see Minimum Values in the Base |
26737 Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers, <limits.h>) |

26738 • Contains any component longer than {_POSIX_NAME_MAX} bytes

26739 • Contains any character in any component that is not in the portable file name
26740 character set

26741 OPERANDS
26742 The following operand shall be supported:

26743 pathname A path name to be checked.

26744 STDIN
26745 Not used.

26746 INPUT FILES
26747 None.

26748 ENVIRONMENT VARIABLES
26749 The following environment variables shall affect the execution of pathchk:

26750 LANG Provide a default value for the internationalization variables that are unset or null.
26751 If LANG is unset or null, the corresponding value from the implementation- |

2906 Technical Standard (2000) (Draft July 31, 2000)

Utilities pathchk

26752 defined default locale shall be used. If any of the internationalization variables |
26753 contains an invalid setting, the utility shall behave as if none of the variables had
26754 been defined.

26755 LC_ALL If set to a non-empty string value, override the values of all the other
26756 internationalization variables.

26757 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
26758 characters (for example, single-byte as opposed to multi-byte characters in
26759 arguments).

26760 LC_MESSAGES
26761 Determine the locale that should be used to affect the format and contents of
26762 diagnostic messages written to standard error.

26763 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

26764 ASYNCHRONOUS EVENTS
26765 Default.

26766 STDOUT
26767 Not used.

26768 STDERR
26769 Used only for diagnostic messages.

26770 OUTPUT FILES
26771 None.

26772 EXTENDED DESCRIPTION
26773 None.

26774 EXIT STATUS
26775 The following exit values shall be returned:

26776 0 All pathname operands passed all of the checks.

26777 >0 An error occurred.

26778 CONSEQUENCES OF ERRORS
26779 Default.

26780 APPLICATION USAGE
26781 The test utility can be used to determine whether a given path name names an existing file; it
26782 does not, however, give any indication of whether or not any component of the path name was
26783 truncated in a directory where the _POSIX_NO_TRUNC feature is not in effect. The pathchk
26784 utility does not check for file existence; it performs checks to determine if a path name does exist
26785 or could be created with no path name component truncation.

26786 The noclobber option in the shell (see the set (on page 2297) special built-in) can be used to
26787 atomically create a file. As with all file creation semantics in the System Interfaces volume of
26788 IEEE Std. 1003.1-200x, it guarantees atomic creation, but still depends on applications to agree
26789 on conventions and cooperate on the use of files after they have been created.

26790 EXAMPLES
26791 To verify that all path names in an imported data interchange archive are legitimate and
26792 unambiguous on the current system:

26793 pax −f archive | sed −e ’/ == .*/s///’ | xargs pathchk
26794 if [$? −eq 0]
26795 then

Shell and Utilities, Issue 6 2907

pathchk Utilities

26796 pax −r −f archive
26797 else
26798 echo Investigate problems before importing files.
26799 exit 1
26800 fi

26801 To verify that all files in the current directory hierarchy could be moved to any system
26802 conforming to the System Interfaces volume of IEEE Std. 1003.1-200x that also supports the pax
26803 utility:

26804 find . −print | xargs pathchk −p
26805 if [$? −eq 0]
26806 then
26807 pax −w −f archive .
26808 else
26809 echo Portable archive cannot be created.
26810 exit 1
26811 fi

26812 To verify that a user-supplied path name names a readable file and that the application can
26813 create a file extending the given path without truncation and without overwriting any existing
26814 file:

26815 case $ − in
26816 *C*) reset="";;
26817 *) reset="set +C"
26818 set −C;;
26819 esac
26820 test −r "$path" && pathchk "$path.out" &&
26821 rm "$path.out" > "$path.out"
26822 if [$? −ne 0]; then
26823 printf "%s: %s not found or %s.out fails \
26824 creation checks.\n" $0 "$path" "$path"
26825 $reset # Reset the noclobber option in case a trap
26826 # on EXIT depends on it.
26827 exit 1
26828 fi
26829 $reset
26830 PROCESSING < "$path" > "$path.out"

26831 The following assumptions are made in this example:

26832 1. PROCESSING represents the code that is used by the application to use $path once it is
26833 verified that $path.out works as intended.

26834 2. The state of the noclobber option is unknown when this code is invoked and should be set
26835 on exit to the state it was in when this code was invoked. (The reset variable is used in this
26836 example to restore the initial state.)

26837 3. Note the usage of:

26838 rm "$path.out" > "$path.out"

26839 a. The pathchk command has already verified, at this point, that $path.out is not
26840 truncated.

26841 b. With the noclobber option set, the shell verifies that $path.out does not already exist
26842 before invoking rm.

2908 Technical Standard (2000) (Draft July 31, 2000)

Utilities pathchk

26843 c. If the shell succeeded in creating $path.out, rm removes it so that the application can
26844 create the file again in the PROCESSING step.

26845 d. If the PROCESSING step wants the file to exist already when it is invoked, the:

26846 rm "$path.out" > "$path.out"

26847 should be replaced with:

26848 > "$path.out"

26849 which verifies that the file did not already exist, but leaves $path.out in place for use
26850 by PROCESSING.

26851 RATIONALE
26852 The pathchk utility is new, commissioned for this volume of IEEE Std. 1003.1-200x. It, along with
26853 the set −C(noclobber) option added to the shell, replaces the mktemp, validfnam, and create utilities
26854 that appeared in early proposals. All of these utilities were attempts to solve several common
26855 problems:

26856 • Verify the validity (for several different definitions of ‘‘valid’’) of a path name supplied by a
26857 user, generated by an application, or imported from an external source.

26858 • Atomically create a file.

26859 • Perform various string handling functions to generate a temporary file name.

26860 The create utility, included in an early proposal, provided checking and atomic creation in a
26861 single invocation of the utility; these are orthogonal issues and need not be grouped into a single
26862 utility. Note that the noclobber option also provides a way of creating a lock for process
26863 synchronization; since it provides an atomic create, there is no race between a test for existence
26864 and the following creation if it did not exist.

26865 Having a function like tmpnam() in the ISO C standard is important in many high-level
26866 languages. The shell programming language, however, has built-in string manipulation
26867 facilities, making it very easy to construct temporary file names. The names needed obviously
26868 depend on the application, but are frequently of a form similar to:

26869 $TMPDIR/application_abbreviation $$. suffix

26870 In cases where there is likely to be contention for a given suffix, a simple shell for or while loop
26871 can be used with the shell noclobber option to create a file without risk of collisions, as long as |
26872 applications trying to use the same file name name space are cooperating on the use of files after |
26873 they have been created.

26874 FUTURE DIRECTIONS
26875 None.

26876 SEE ALSO
26877 test, Section 2.7 (on page 2251)

26878 CHANGE HISTORY
26879 First released in Issue 4.

Shell and Utilities, Issue 6 2909

pax Utilities

26880 NAME
26881 pax — portable archive interchange

26882 SYNOPSIS
26883 pax [−cdnv][−H| −L][−f archive][−s replstr] ... [pattern ...]

26884 pax −r [−cdiknuv][−H| −L][−f archive][−o options] ... [−p string] ...
26885 [−s replstr] ... [pattern ...]

26886 pax −w[−dituvX][−H| −L][−b blocksize][[−a][−f archive][−o options] ...
26887 [−s replstr] ... [−x format][file ...]

26888 pax −r −w[−diklntuvX][−H| −L][−p string] ... [−s replstr] ...
26889 [file ...] directory

26890 DESCRIPTION
26891 The pax utility shall read, write, and write lists of the members of archive files and copy |
26892 directory hierarchies. A variety of archive formats shall be supported; see the −x format option.

26893 The action to be taken depends on the presence of the −r and −w options. The four combinations
26894 of −r and −w are referred to as the four modes of operation: list, read, write, and copy modes,
26895 corresponding respectively to the four forms shown in the SYNOPSIS section.

26896 list In list mode (when neither −r nor −w are specified), pax shall write the names of
26897 the members of the archive file read from the standard input, with path names
26898 matching the specified patterns, to standard output. If a named file is of type
26899 directory, the file hierarchy rooted at that file shall be listed as well.

26900 read In read mode (when −r is specified, but −w is not), pax shall extract the members of
26901 the archive file read from the standard input, with path names matching the
26902 specified patterns. If an extracted file is of type directory, the file hierarchy rooted
26903 at that file shall be extracted as well. The extracted files shall be created relative to
26904 the current file hierarchy.

26905 If an attempt is made to extract a directory when the directory already exists, this |
26906 shall not be considered to be an error. If an attempt is made to extract a FIFO when |
26907 the FIFO already exists, this shall not be considered to be an error. |

26908 The ownership, access, and modification times, and file mode of the restored files |
26909 are discussed under the −p option.

26910 write In write mode (when −w is specified, but −r is not), pax shall write the contents of
26911 the file operands to the standard output in an archive format. If no file operands are
26912 specified, a list of files to copy, one per line, shall be read from the standard input.
26913 A file of type directory shall include all of the files in the file hierarchy rooted at the
26914 file.

26915 copy In copy mode (when both −r and −w are specified), pax shall copy the file operands
26916 to the destination directory.

26917 If no file operands are specified, a list of files to copy, one per line, shall be read
26918 from the standard input. A file of type directory shall include all of the files in the
26919 file hierarchy rooted at the file.

26920 The effect of the copy shall be as if the copied files were written to an archive file
26921 and then subsequently extracted, except that there may be hard links between the
26922 original and the copied files. If the destination directory is a subdirectory of one of
26923 the files to be copied, the results are unspecified. If the destination directory is a
26924 file of a type not defined by the System Interfaces volume of IEEE Std. 1003.1-200x, |

2910 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

26925 the results are implementation-defined; otherwise, it shall be an error for the file |
26926 named by the directory operand not to exist, not be writable by the user, or not be a
26927 file of type directory.

26928 In read or copy modes, if intermediate directories are necessary to extract an archive member,
26929 pax shall perform actions equivalent to the mkdir() function defined in the System Interfaces
26930 volume of IEEE Std. 1003.1-200x, called with the following arguments:

26931 • The intermediate directory used as the path argument

26932 • The value of the bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO as the mode
26933 argument

26934 If any specified pattern or file operands are not matched by at least one file or archive member,
26935 pax shall write a diagnostic message to standard error for each one that did not match and exit
26936 with a non-zero exit status.

26937 The archive formats described in the EXTENDED DESCRIPTION section shall be automatically
26938 detected on input. The default output archive format shall be implementation-defined. |

26939 A single archive can span multiple files. The pax utility shall determine, in an implementation- |
26940 defined manner, what file to read or write as the next file. |

26941 If the selected archive format supports the specification of linked files, it shall be an error if these
26942 files cannot be linked when the archive is extracted. For archive formats that do not store file
26943 contents with each name that causes a hard link, if the file that contains the data is not extracted
26944 during this pax session, either the data shall be restored from the original file, or a diagnostic
26945 message shall be displayed with the name of a file that can be used to extract the data. In
26946 traversing directories, pax shall detect infinite loops; that is, entering a previously visited
26947 directory that is an ancestor of the last file visited. When it detects an infinite loop, pax shall
26948 write a diagnostic message to standard error and shall terminate.

26949 OPTIONS
26950 The pax utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
26951 12.2, Utility Syntax Guidelines, except that the order of presentation of the −o, −p, and −s options |
26952 is significant.

26953 The following options shall be supported:

26954 −r Read an archive file from standard input.

26955 −w Write files to the standard output in the specified archive format.

26956 −a Append files to the end of the archive. It is implementation-defined which devices |
26957 on the system support appending. Additional file formats unspecified by this
26958 volume of IEEE Std. 1003.1-200x may impose restrictions on appending.

26959 −b blocksize Block the output at a positive decimal integer number of bytes per write to the
26960 archive file. Devices and archive formats may impose restrictions on blocking.
26961 Blocking shall be automatically determined on input. Portable applications shall
26962 not specify a blocksize value larger than 32 256. Default blocking when creating
26963 archives depends on the archive format. (See the −x option below.)

26964 −c Match all file or archive members except those specified by the pattern or file
26965 operands.

26966 −d Cause files of type directory being copied or archived or archive members of type
26967 directory being extracted or listed to match only the file or archive member itself
26968 and not the file hierarchy rooted at the file.

Shell and Utilities, Issue 6 2911

pax Utilities

26969 −f archive Specify the path name of the input or output archive, overriding the default
26970 standard input (in list or read modes) or standard output (write mode).

26971 −H If a symbolic link referencing a file of type directory is specified on the command
26972 line, pax shall archive the file hierarchy rooted in the file referenced by the link,
26973 using the name of the link as the root of the file hierarchy. The default behavior
26974 shall be to archive the symbolic link itself.

26975 −i Interactively rename files or archive members. For each archive member matching
26976 a pattern operand or file matching a file operand, a prompt shall be written to the
26977 file /dev/tty. The prompt shall contain the name of the file or archive member, but
26978 the format is otherwise unspecified. A line shall then be read from /dev/tty. If this
26979 line is blank, the file or archive member shall be skipped. If this line consists of a
26980 single period, the file or archive member shall be processed with no modification
26981 to its name. Otherwise, its name shall be replaced with the contents of the line. The
26982 pax utility shall immediately exit with a non-zero exit status if end-of-file is
26983 encountered when reading a response or if /dev/tty cannot be opened for reading
26984 and writing.

26985 The results of extracting a hard link to a file that has been renamed during
26986 extraction are unspecified.

26987 −k Prevent the overwriting of existing files.

26988 −l (The letter ell.) In copy mode, hard links shall be made between the source and
26989 destination file hierarchies whenever possible.

26990 −L If a symbolic link referencing a file of type directory is specified on the command
26991 line or encountered during the traversal of a file hierarchy, pax shall archive the file
26992 hierarchy rooted in the file referenced by the link, using the name of the link as the
26993 root of the file hierarchy. The default behavior shall be to archive the symbolic link
26994 itself.

26995 −n Select the first archive member that matches each pattern operand. No more than
26996 one archive member shall be matched for each pattern (although members of type
26997 directory shall still match the file hierarchy rooted at that file).

26998 −o options Provide information to the implementation to modify the algorithm for extracting
26999 or writing files. The value of options shall consist of one or more comma-separated
27000 keywords of the form:

27001 keyword [[:] =value][, keyword [[:] =value] , ...]

27002 Some keywords apply only to certain file formats, as indicated with each
27003 description. Use of keywords that are inapplicable to the file format being
27004 processed produces undefined results.

27005 Keywords in the options argument shall be a string that would be a valid portable
27006 file name as described in the Base Definitions volume of IEEE Std. 1003.1-200x, |
27007 Section 3.282, Portable File Name Character Set. |

27008 Note: Keywords are not expected to be file names, merely to follow the same
27009 character composition rules as portable file names.

27010 Keywords can be preceded with white space. The value field shall consist of zero or
27011 more characters; within value , the application shall precede any literal comma with
27012 a backslash, which shall be ignored, but preserves the comma as part of value . A
27013 comma as the final character, or a comma followed solely by white space as the
27014 final characters, in options shall be ignored. Multiple −o options can be specified; if

2912 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27015 keywords given to these multiple −o options conflict, the keywords and values
27016 appearing later in command line sequence shall take precedence and the earlier
27017 shall be silently ignored. The following keyword values of options shall be
27018 supported for the file formats as indicated:

27019 delete=pattern
27020 (Applicable only to the −x pax format.) When used in write or copy mode, pax
27021 shall omit from extended header records that it produces any keywords
27022 matching the string pattern. When used in read or list mode, pax shall ignore
27023 any keywords matching the string pattern in the extended header records. In
27024 both cases, matching shall be performed using the pattern matching notation
27025 described in Section 2.14.1 (on page 2274) and Section 2.14.2 (on page 2274).
27026 For example:

27027 −o delete=security .*

27028 would suppress security-related information. See pax Extended Header (on
27029 page 2923) for extended header record keyword usage.

27030 exthdr.name=string
27031 (Applicable only to the −x pax format.) This keyword allows user control over
27032 the name that is written into the ustar header blocks for the extended header
27033 produced under the circumstances described in pax Header Block (on page
27034 2922). The name shall be the contents of string, after the following character
27035 substitutions have been made:

27036 string
27037 Includes: Replaced By:___
27038 The directory name of the file, equivalent to the result of the
27039 dirname utility on the translated path name.

%d

27040 The file name of the file, equivalent to the result of the basename
27041 utility on the translated path name.

%f

27042 A ’%’ character.%%___LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

27043 Any other ’%’ characters in string produce undefined results.

27044 If no −o exthdr.name=string is specified, pax shall use the following default
27045 value:

27046 %d/PaxHeaders/%f

27047 globexthdr.name=string
27048 (Applicable only to the −x pax format.) When used in write or copy mode with
27049 the appropriate options, pax creates global extended header records with ustar
27050 header blocks that will be treated as regular files by previous versions of pax.
27051 This keyword allows user control over the name that is written into the ustar
27052 header blocks for global extended header records. The name shall be the
27053 contents of string, after the following character substitutions have been made:

27054 string
27055 Includes: Replaced By:___
27056 An integer that represents the sequence number of the global
27057 extended header record in the archive, starting at 1.

%n

27058 A ’%’ character.%%___L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Shell and Utilities, Issue 6 2913

pax Utilities

27059 Any other ’%’ characters in string produce undefined results.

27060 If no −o globexthdr.name=string is specified, pax shall use the following
27061 default value:

27062 $TMPDIR/GlobalHead.%n

27063 where $TMPDIR represents the value of the TMPDIR environment variable. If
27064 TMPDIR is not set, pax shall use /tmp.

27065 invalid=action
27066 (Applicable only to the −x pax format.) This keyword allows user control over
27067 the action pax takes upon encountering values in an extended header record
27068 that, in read or copy mode, are invalid in the destination hierarchy or, in list
27069 mode, cannot be written in the codeset and current locale of the
27070 implementation. The following are invalid values that shall be recognized by
27071 pax:

27072 — In read or copy mode, a file name or link name that contains character
27073 encodings invalid in the destination hierarchy. (For example, the name
27074 may contain embedded NULs.)

27075 — In read or copy mode, a file name or link name that is longer than the
27076 maximum allowed in the destination hierarchy (for either a path name
27077 component or the entire path name).

27078 — In list mode, any character string value (file name, link name, user name,
27079 and so on) that cannot be written in the codeset and current locale of the
27080 implementation.

27081 The following mutually-exclusive values of the action argument are
27082 supported:

27083 bypass In read or copy mode, pax shall bypass the file, causing no
27084 change to the destination hierarchy. In list mode, pax shall write
27085 all requested valid values for the file, but its method for writing
27086 invalid values is unspecified.

27087 rename In read or copy mode, pax shall act as if the −i option were in
27088 effect for each file with invalid file name or link name values,
27089 allowing the user to provide a replacement name interactively.
27090 In list mode, pax shall behave identically to the bypass action.

27091 UTF-8 When used in read, copy, or list mode and a file name, link
27092 name, owner name, or any other field in an extended header
27093 record cannot be translated from the pax UTF-8 codeset format
27094 to the codeset and current locale of the implementation, pax
27095 shall use the actual UTF-8 encoding for the name.

27096 write In read or copy mode, pax shall write the file, translating or
27097 truncating the name, regardless of whether this may overwrite
27098 an existing file with a valid name. In list mode, pax shall behave
27099 identically to the bypass action. |

27100 If no −o invalid= option is specified, pax shall act as if −oinvalid=bypass were |
27101 specified. Any overwriting of existing files that may be allowed by the
27102 −oinvalid= actions shall be subject to permission (−p) and modification time
27103 (−u) restrictions, and shall be suppressed if the −k option is also specified.

2914 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27104 linkdata (Applicable only to the −x pax format.) In write mode, pax shall write the
27105 contents of a file to the archive even when that file is merely a hard link to a
27106 file whose contents have already been written to the archive. |

27107 listopt=format
27108 This keyword specifies the output format of the table of contents produced
27109 when the −v option is specified in list mode. See List Mode Format
27110 Specifications (on page 2918). To avoid ambiguity, the listopt=format shall be
27111 the only or final keyword=value pair in a −o option-argument; all characters in
27112 the remainder of the option-argument shall be considered part of the format
27113 string. When multiple −olistopt=format options are specified, the format
27114 strings shall be considered a single, concatenated string, evaluated in
27115 command line order.

27116 times
27117 (Applicable only to the −x pax format.) When used in write or copy mode, pax
27118 shall include atime, ctime, and mtime extended header records for each file.
27119 See pax Extended Header File Times (on page 2926).

27120 In addition to these keywords, if the −x pax format is specified, any of the
27121 keywords and values defined in pax Extended Header (on page 2923), including
27122 implementation extensions, can be used in −o option-arguments, in either of two
27123 modes:

27124 keyword=value
27125 When used in write or copy mode, these keyword/value pairs shall be
27126 included at the beginning of the archive as typeflag g global extended header
27127 records. When used in read or list mode, these keyword/value pairs shall act
27128 as if they had been at the beginning of the archive as typeflag g global
27129 extended header records.

27130 keyword:=value
27131 When used in write or copy mode, these keyword/value pairs shall be
27132 included as records at the beginning of a typeflag x extended header for each
27133 file. (This is equivalent to the equal-sign form except that it creates no
27134 typeflag g global extended header records.) When used in read or list mode,
27135 these keyword/value pairs shall act as if they were included as records at the
27136 end of each extended header; thus, they shall override any global or file-
27137 specific extended header record keywords of the same names. For example, in
27138 the command:

27139 pax −r −o "
27140 gname:=mygroup,
27141 " <archive

27142 the group name will be forced to a new value for all files read from the
27143 archive.

27144 The precedences of −o keywords over various fields in the archive are described in
27145 pax Extended Header Keyword Precedence (on page 2925).

27146 −p string Specify one or more file characteristic options (privileges). The string option-
27147 argument shall be a string specifying file characteristics to be retained or discarded
27148 on extraction. The string shall consist of the specification characters a, e, m, o, and
27149 p. Other implementation-defined characters can be included. Multiple |
27150 characteristics can be concatenated within the same string and multiple −p options
27151 can be specified. The meaning of the specification characters are as follows:

Shell and Utilities, Issue 6 2915

pax Utilities

27152 a Do not preserve file access times.

27153 e Preserve the user ID, group ID, file mode bits (see the Base Definitions volume |
27154 of IEEE Std. 1003.1-200x, Section 3.170, File Mode Bits), access time, |
27155 modification time, and any other implementation-defined file characteristics. |

27156 m Do not preserve file modification times.

27157 o Preserve the user ID and group ID.

27158 p Preserve the file mode bits. Other implementation-defined file mode attributes |
27159 may be preserved.

27160 In the preceding list, ‘‘preserve’’ indicates that an attribute stored in the archive
27161 shall be given to the extracted file, subject to the permissions of the invoking
27162 process. The access and modification times of the file shall be preserved unless
27163 otherwise specified with the −p option or not stored in the archive. All attributes
27164 that are not preserved shall be determined as part of the normal file creation action
27165 (see Section 1.7.1.4 (on page 2209)).

27166 If neither the e nor the o specification character is specified, or the user ID and
27167 group ID are not preserved for any reason, pax shall not set the S_ISUID and
27168 S_ISGID bits of the file mode.

27169 If the preservation of any of these items fails for any reason, pax shall write a
27170 diagnostic message to standard error. Failure to preserve these items shall affect
27171 the final exit status, but shall not cause the extracted file to be deleted.

27172 If file characteristic letters in any of the string option-arguments are duplicated or
27173 conflict with each other, the ones given last shall take precedence. For example, if
27174 −p eme is specified, file modification times are preserved.

27175 −s replstr Modify file or archive member names named by pattern or file operands according
27176 to the substitution expression replstr, using the syntax of the ed utility. The
27177 concepts of ‘‘address’’ and ‘‘line’’ are meaningless in the context of the pax utility,
27178 and shall not be supplied. The format shall be:

27179 −s / old / new/ [gp]

27180 where as in ed, old is a basic regular expression and new can contain an ampersand,
27181 ’\n’ (where n is a digit) backreferences, or subexpression matching. The old string |
27182 also shall be permitted to contain <newline> characters.

27183 Any non-null character can be used as a delimiter (’/’ shown here). Multiple −s
27184 expressions can be specified; the expressions shall be applied in the order
27185 specified, terminating with the first successful substitution. The optional trailing
27186 ’g’ is as defined in the ed utility. The optional trailing ’p’ shall cause successful
27187 substitutions to be written to standard error. File or archive member names that
27188 substitute to the empty string shall be ignored when reading and writing archives.

27189 −t Cause the access times of the archived files to be the same as they were before
27190 being read by pax.

27191 −u Ignore files that are older (having a less recent file modification time) than a pre-
27192 existing file or archive member with the same name. In read mode, an archive
27193 member with the same name as a file in the file system shall be extracted if the
27194 archive member is newer than the file. In write mode, an archive file member with
27195 the same name as a file in the file system shall be superseded if the file is newer
27196 than the archive member. If −a is also specified, this is accomplished by appending

2916 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27197 to the archive; otherwise, it is unspecified whether this is accomplished by actual
27198 replacement in the archive or by appending to the archive. In copy mode, the file in
27199 the destination hierarchy shall be replaced by the file in the source hierarchy or by
27200 a link to the file in the source hierarchy if the file in the source hierarchy is newer.

27201 −v In list mode, produce a verbose table of contents (see the STDOUT section).
27202 Otherwise, write archive member path names to standard error (see the STDERR
27203 section).

27204 −x format Specify the output archive format. The pax utility shall support the following
27205 formats:

27206 cpio The cpio interchange format; see the EXTENDED DESCRIPTION
27207 section. The default blocksize for this format for character special
27208 archive files shall be 5 120. Implementations shall support all
27209 blocksize values less than or equal to 32 256 that are multiples of 512.

27210 pax The pax interchange format; see the EXTENDED DESCRIPTION
27211 section. The default blocksize for this format for character special
27212 archive files shall be 5 120. Implementations shall support all
27213 blocksize values less than or equal to 32 256 that are multiples of 512.

27214 ustar The tar interchange format; see the EXTENDED DESCRIPTION
27215 section. The default blocksize for this format for character special
27216 archive files shall be 10 240. Implementations shall support all
27217 blocksize values less than or equal to 32 256 that are multiples of 512.

27218 Implementation-defined formats shall specify a default block size as well as any |
27219 other block sizes supported for character special archive files.

27220 Any attempt to append to an archive file in a format different from the existing
27221 archive format shall cause pax to exit immediately with a non-zero exit status.

27222 In copy mode, if no −x format is specified, pax shall behave as if −xpax were
27223 specified.

27224 −X When traversing the file hierarchy specified by a path name, pax shall not descend
27225 into directories that have a different device ID (st_dev ; see the System Interfaces
27226 volume of IEEE Std. 1003.1-200x, stat()).

27227 The options that operate on the names of files or archive members (−c, −i, −n, −s, −u, and −v)
27228 shall interact as follows. In read mode, the archive members shall be selected based on the user-
27229 specified pattern operands as modified by the −c, −n, and −u options. Then, any −s and −i options
27230 shall modify, in that order, the names of the selected files. The −v option shall write names
27231 resulting from these modifications.

27232 In write mode, the files shall be selected based on the user-specified path names as modified by
27233 the −n and −u options. Then, any −s and −i options shall modify, in that order, the names of
27234 these selected files. The −v option shall write names resulting from these modifications.

27235 If both the −u and −n options are specified, pax shall not consider a file selected unless it is newer
27236 than the file to which it is compared.

Shell and Utilities, Issue 6 2917

pax Utilities

27237 List Mode Format Specifications

27238 In list mode with the −o listopt=format option, the format argument shall be applied for each
27239 selected file. The pax utility shall append a <newline> character to the listopt output for each
27240 selected file. The format argument shall be used as the format string described in the Base |
27241 Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, File Format Notation, with the |
27242 exceptions 1. through 5. defined in the EXTENDED DESCRIPTION section of printf, plus the |
27243 following exceptions:

27244 6. The sequence (keyword) can occur before a format conversion specifier. The conversion
27245 argument is defined by the value of keyword . The implementation shall support the
27246 following keywords:

27247 — Any of the Field Name entries in Table 4-13 (on page 2927) and Table 4-15 (on page
27248 2930). The implementation may support the cpio keywords without the leading c_ in
27249 addition to the form required by Table 4-16 (on page 2931).

27250 — Any keyword defined for the extended header in pax Extended Header (on page 2923).

27251 — Any keyword provided as an implementation-defined extension within the extended |
27252 header defined in pax Extended Header (on page 2923).

27253 For example, the sequence "%(charset)s" is the string value of the name of the character
27254 set in the extended header.

27255 The result of the keyword conversion argument shall be the value from the applicable
27256 header field or extended header, without any trailing NULs.

27257 All keyword values used as conversion arguments shall be translated from the UTF-8
27258 encoding to the character set appropriate for the local file system, user database, and so on,
27259 as applicable.

27260 7. An additional conversion character, T, shall be used to specify time formats. The T
27261 conversion character can be preceded by the sequence (keyword=subformat), where subformat
27262 is a date format as defined by date operands. The default keyword shall be mtime and the
27263 default subformat shall be:

27264 %b %e %H:%M %Y

27265 8. An additional conversion character, M, shall be used to specify the file mode string as
27266 defined in ls Standard Output. If (keyword) is omitted, the mode keyword shall be used. For
27267 example, %.1M writes the single character corresponding to the <entry type> field of the ls
27268 −l command.

27269 9. An additional conversion character, D, shall be used to specify the device for block or
27270 special files, if applicable, in an implementation-defined format. If not applicable, and |
27271 (keyword) is specified, then this conversion shall be equivalent to %(keyword)u. If not
27272 applicable, and (keyword) is omitted, then this conversion shall be equivalent to <space>.

27273 10. An additional conversion character, F, shall be used to specify a path name. The F
27274 conversion character can be preceded by a sequence of comma-separated keywords:

27275 (keyword [, keyword] ...)

27276 The values for all the keywords that are non-null shall be concatenated together, each
27277 separated by a ’/’ . The default shall be (path) if the keyword path is defined; otherwise,
27278 the default shall be (prefix,name).

27279 11. An additional conversion character, L, shall be used to specify a symbolic line expansion. If
27280 the current file is a symbolic link, then %L shall expand to:

2918 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27281 "%s −> %s", < value of keyword >, < contents of link >

27282 Otherwise, the %L conversion character shall be the equivalent of %F.

27283 OPERANDS
27284 The following operands shall be supported:

27285 directory The destination directory path name for copy mode.

27286 file A path name of a file to be copied or archived.

27287 pattern A pattern matching one or more path names of archive members. A pattern must
27288 be given in the name-generating notation of the pattern matching notation in
27289 Section 2.14 (on page 2274), including the file name expansion rules in Section
27290 2.14.3 (on page 2275). The default, if no pattern is specified, is to select all members
27291 in the archive.

27292 STDIN
27293 In write mode, the standard input shall be used only if no file operands are specified. It shall be a
27294 text file containing a list of path names, one per line, without leading or trailing <blank>
27295 characters.

27296 In list and read modes, if −f is not specified, the standard input shall be an archive file.

27297 Otherwise, the standard input shall not be used.

27298 INPUT FILES
27299 The input file named by the archive option-argument, or standard input when the archive is read
27300 from there, shall be a file formatted according to one of the specifications in the EXTENDED |
27301 DESCRIPTION section or some other implementation-defined format. |

27302 The file /dev/tty shall be used to write prompts and read responses.

27303 ENVIRONMENT VARIABLES
27304 The following environment variables shall affect the execution of pax:

27305 LANG Provide a default value for the internationalization variables that are unset or null.
27306 If LANG is unset or null, the corresponding value from the implementation- |
27307 defined default locale shall be used. If any of the internationalization variables |
27308 contains an invalid setting, the utility shall behave as if none of the variables had
27309 been defined.

27310 LC_ALL If set to a non-empty string value, override the values of all the other
27311 internationalization variables.

27312 LC_COLLATE
27313 Determine the locale for the behavior of ranges, equivalence classes and multi-
27314 character collating elements used in the pattern matching expressions for the
27315 pattern operand, the basic regular expression for the −s option, and the extended
27316 regular expression defined for the yesexpr locale keyword in the LC_MESSAGES
27317 category.

27318 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
27319 characters (for example, single-byte as opposed to multi-byte characters in
27320 arguments and input files), the behavior of character classes used in the extended
27321 regular expression defined for the yesexpr locale keyword in the LC_MESSAGES
27322 category, and pattern matching.

27323 LC_MESSAGES
27324 Determine the locale for the processing of affirmative responses that should be

Shell and Utilities, Issue 6 2919

pax Utilities

27325 used to affect the format and contents of diagnostic messages written to standard
27326 error.

27327 LC_TIME Determine the format and contents of date and time strings when the −v option is
27328 specified.

27329 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

27330 TMPDIR Determine the path name that provides part of the default global extended header
27331 record file, as described for the −o globexthdr= keyword as described in the
27332 OPTIONS section.

27333 ASYNCHRONOUS EVENTS
27334 Default.

27335 STDOUT
27336 In write mode, if −f is not specified, the standard output shall be the archive formatted
27337 according to one of the specifications in the EXTENDED DESCRIPTION section, or some other |
27338 implementation-defined format (see −x format). |

27339 In list mode, when the −olistopt=format has been specified, the selected archive members shall
27340 be written to standard output using the format described under List Mode Format
27341 Specifications (on page 2918). In list mode without the −olistopt=format option, the table of
27342 contents of the the selected archive members shall be written to standard output using the
27343 following format:

27344 "%s\n", < path name >

27345 If the −v option is specified in list mode, the table of contents of the selected archive members
27346 shall be written to standard output using the following formats.

27347 For path names representing hard links to previous members of the archive:

27348 "%s∆==∆%s\n", < ls −l listing >, < linkname >

27349 For all other path names:

27350 "%s\n", < ls −l listing >

27351 where <ls −l listing> shall be the format specified by the ls utility with the −l option. When
27352 writing path names in this format, it is unspecified what is written for fields for which the
27353 underlying archive format does not have the correct information, although the correct number of
27354 <blank> character-separated fields shall be written.

27355 In list mode, standard output shall not be buffered more than a line at a time.

27356 STDERR
27357 If −v is specified in read, write, or copy modes, pax shall write the path names it processes to the
27358 standard error output using the following format:

27359 "%s\n", < path name >

27360 These path names shall be written as soon as processing is begun on the file or archive member,
27361 and shall be flushed to standard error. The trailing <newline> character, which shall not be
27362 buffered, is written when the file has been read or written.

27363 If the −s option is specified, and the replacement string has a trailing ’p’ , substitutions shall be
27364 written to standard error in the following format:

27365 "%s∆>>∆%s\n", < original path name >, < new path name >

2920 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27366 In all operating modes of pax, optional messages of unspecified format concerning the input
27367 archive format and volume number, the number of files, blocks, volumes, and media parts as
27368 well as other diagnostic messages may be written to standard error.

27369 In all formats, for both standard output and standard error, it is unspecified how non-printable
27370 characters in path names or link names are written.

27371 When pax is in read mode or list mode, using the −xpax archive format, and a file name, link
27372 name, owner name, or any other field in an extended header record cannot be translated from
27373 the pax UTF-8 codeset format to the codeset and current locale of the implementation, pax shall
27374 write a diagnostic message to standard error, shall process the file as described for the −o
27375 invalid=option, and then shall process the next file in the archive.

27376 OUTPUT FILES
27377 In read mode, the extracted output files shall be of the archived file type. In copy mode, the
27378 copied output files shall be the type of the file being copied. In either mode, existing files in the
27379 destination hierarchy shall be overwritten only when all permission (−p), modification time (−u),
27380 and invalid-value (−oinvalid=) tests allow it.

27381 In write mode, the output file named by the −f option-argument shall be a file formatted
27382 according to one of the specifications in the EXTENDED DESCRIPTION section, or some other |
27383 implementation-defined format. |

27384 EXTENDED DESCRIPTION

27385 pax Interchange Format

27386 A pax archive tape or file produced in the −xpax format shall contain a series of blocks. The
27387 physical layout of the archive shall be identical to the ustar format described in ustar
27388 Interchange Format (on page 2926). Each file archived shall be represented by the following
27389 sequence:

27390 • An optional header block with extended header records. This header block is of the form
27391 described in pax Header Block (on page 2922), with a typeflag value of x or g. The extended
27392 header records, described in pax Extended Header (on page 2923), are included as the data
27393 for this header block.

27394 • A header block that describes the file. Any fields in the preceding optional extended header
27395 override the associated fields in this header block for this file.

27396 • Zero or more blocks that contain the contents of the file.

27397 At the end of the archive file there shall be two 512-byte blocks filled with binary zeroes,
27398 interpreted as an end-of-archive indicator.

27399 A schematic of an example archive with global extended header records and two actual files is
27400 shown in Figure 4-1 (on page 2922). In the example, the second file in the archive has no
27401 extended header preceding it, presumably because it has no need for extended attributes.

Shell and Utilities, Issue 6 2921

pax Utilities

27402

ustar Header [typeflag=g]

Global Extended Header Data

ustar Header [typeflag=x]

Extended Header Data

ustar Header [typeflag=0]

Data for File 1

ustar Header [typeflag=0]

Data for File 2

Block of binary zeroes

Block of binary zeroes

Global Extended Header

File 1: Extended Header is
included

File 2: No Extended Header is
included

End of Archive Indicator

}

}
}
}

27403 Figure 4-1 pax Format Archive Example

27404 pax Header Block

27405 The pax header block shall be identical to the ustar header block described in ustar Interchange
27406 Format (on page 2926), except that two additional typeflag values are defined:

27407 x Represents extended header records for the following file in the archive (which shall have
27408 its own ustar header block). The format of these extended header records shall be as
27409 described in pax Extended Header (on page 2923).

27410 g Represents global extended header records for the following files in the archive. The format
27411 of these extended header records shall be as described in pax Extended Header (on page
27412 2923). Each value shall affect all subsequent files that do not override that value in their
27413 own extended header record and until another global extended header record is reached
27414 that provides another value for the same field. The typeflag g global headers should not be
27415 used with interchange media that could suffer partial data loss in transporting the archive.

27416 For both of these types, the size field shall be the size of the extended header records in octets.
27417 The other fields in the header block are not meaningful to this version of the pax utility.
27418 However, if this archive is read by a pax utility conforming to a previous version of
27419 IEEE Std. 1003.1-200x, the header block fields are used to create a regular file that contains the
27420 extended header records as data. Therefore, header block field values should be selected to
27421 provide reasonable file access to this regular file.

27422 A further difference from the ustar header block is that data blocks for files of typeflag 1 (the digit |
27423 one) (hard link) may be included, which means that the size field may be greater than zero. |
27424 Archives created by pax −o linkdata shall include these data blocks with the hard links. |

2922 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27425 pax Extended Header

27426 A pax extended header contains values that are inappropriate for the ustar header block because
27427 of limitations in that format: fields requiring a character encoding other than that described in
27428 the ISO/IEC 646: 1991 standard, fields representing file attributes not described in the ustar
27429 header, and fields whose format or length do not fit the requirements of the ustar header. The
27430 values in an extended header add attributes to the following file (or files; see the description of
27431 the typeflag g header block) or override values in the following header block(s), as indicated in
27432 the following list of keywords.

27433 An extended header shall consist of one or more records, each constructed as follows:

27434 "%d %s=%s\n", < length >, < keyword >, < value >

27435 The extended header records shall be encoded according to the ISO/IEC 10646-1: 1993 standard
27436 (UTF-8). The <length> field, <blank> character, equals sign, and <newline> character shown
27437 shall be limited to the portable character set, as encoded in UTF-8. The <keyword> and <value>
27438 fields can be any UTF-8 characters. The <length> field shall be the decimal length of the extended
27439 header record in octets, including the trailing <newline> character.

27440 The <keyword> field shall be one of the entries from the following list or a keyword provided as
27441 an implementation extension. Keywords consisting entirely of lowercase letters, digits, and
27442 periods are reserved for future standardization. A keyword shall not include an equals sign. (In
27443 the following list, the notations ‘‘file(s)’’ or ‘‘block(s)’’ is used to acknowledge that a keyword
27444 affects the following single file after a typeflag x extended header, but possibly multiple files after
27445 typeflag g. Any requirements in the list for pax to include a record when in write or copy mode
27446 shall apply only when such a record has not already been provided through the use of the −o
27447 option. When used in copy mode, pax shall behave as if an archive had been created with
27448 applicable extended header records and then extracted.)

27449 atime The file access time for the following file(s), equivalent to the value of the st_atime
27450 member of the stat structure for a file, as described by the stat() function. The
27451 access time shall be restored if the process has the appropriate privilege required
27452 to do so. The format of the <value> shall be as described in pax Extended Header
27453 File Times (on page 2926).

27454 charset The name of the character set used to encode the data in the following file(s). The
27455 entries in the following table are defined to refer to known standards; additional
27456 names may be agreed on between the originator and recipient.

27457 <value> Formal Standard___
27458 ISO-IR ∆646∆1990 ISO/IEC 646: 1990
27459 ISO-IR ∆8859 ∆1∆1987 ISO/IEC 8859-1: 1987
27460 ISO-IR ∆8859 ∆2∆1987 ISO/IEC 8859-2: 1987
27461 ISO-IR ∆10646 ∆1993 ISO/IEC 10646: 1993
27462 ISO-IR ∆10646 ∆1993 ∆UTF-8 ISO/IEC 10646, UTF-8 encoding
27463 BINARY None.___L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

27464 The encoding is included in an extended header for information only; when pax is
27465 used as described in IEEE Std. 1003.1-200x, it shall not translate the file data into
27466 any other encoding. The BINARY entry indicates unencoded binary data.

27467 When used in write or copy mode, it is implementation-defined whether pax |
27468 includes a charset extended header record for a file.

27469 comment A series of characters used as a comment. All characters in the <value> field shall
27470 be ignored by pax.

Shell and Utilities, Issue 6 2923

pax Utilities

27471 ctime The file creation time for the following file(s), equivalent to the value of the
27472 st_ctime member of the stat structure for a file, as described by the stat() function.
27473 The creation time shall be restored if the process has the appropriate privilege
27474 required to do so. The format of the <value> shall be as described in pax Extended
27475 Header File Times (on page 2926).

27476 gid The group ID of the group that owns the file, expressed as a decimal number using
27477 digits from the ISO/IEC 646: 1991 standard. This record shall override the gid field
27478 in the following header block(s). When used in write or copy mode, pax shall
27479 include a gid extended header record for each file whose group ID is greater than |
27480 2 097 151 (octal 7 777 777). |

27481 gname The group of the file(s), formatted as a group name in the group database. This
27482 record shall override the gid and gname fields in the following header block(s), and
27483 any gid extended header record. When used in read, copy, or list mode, pax shall
27484 translate the name from the UTF-8 encoding in the header record to the character
27485 set appropriate for the group database on the receiving system. If any of the UTF-8
27486 characters cannot be translated, and if the −oinvalid=UTF-8 option is not specified, |
27487 the results are implementation-defined. When used in write or copy mode, pax |
27488 shall include a gname extended header record for each file whose group name
27489 cannot be represented entirely with the letters and digits of the portable character
27490 set.

27491 linkpath The path name of a link being created to another file, of any type, previously
27492 archived. This record shall override the linkname field in the following ustar header
27493 block(s). The following ustar header block shall determine the type of link created.
27494 If typeflag of the following header block is 1, it shall be a hard link. If typeflag is 2, it
27495 shall be a symbolic link and the linkpath value shall be the contents of the
27496 symbolic link. The pax utility shall translate the name of the link (contents of the
27497 symbolic link) from the UTF-8 encoding to the character set appropriate for the
27498 local file system. When used in write or copy mode, pax shall include a linkpath
27499 extended header record for each link whose path name cannot be represented
27500 entirely with the members of the portable character set other than NUL.

27501 mtime The file modification time of the following file(s), equivalent to the value of the
27502 st_mtime member of the stat structure for a file, as described in the stat() function.
27503 This record shall override the mtime field in the following header block(s). The
27504 modification time shall be restored if the process has the appropriate privilege
27505 required to do so. The format of the <value> shall be as described in pax Extended
27506 Header File Times (on page 2926).

27507 path The path name of the following file(s). This record shall override the name and
27508 prefix fields in the following header block(s). The pax utility shall translate the path
27509 name of the file from the UTF-8 encoding to the character set appropriate for the
27510 local file system.

27511 When used in write or copy mode, pax shall include a path extended header record
27512 for each file whose path name cannot be represented entirely with the members of
27513 the portable character set other than NUL.

27514 realtime.any The keywords prefixed by ‘‘realtime.’’ are reserved for future standardization.

27515 security.any The keywords prefixed by ‘‘security.’’ are reserved for future standardization.

27516 size The size of the file in octets, expressed as a decimal number using digits from the
27517 ISO/IEC 646: 1991 standard. This record shall override the size field in the
27518 following header block(s). When used in write or copy mode, pax shall include a

2924 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27519 size extended header record for each file with a size value greater than 8 589 934 591 |
27520 (octal 7 777 777 777). |

27521 uid The user ID of the file owner, expressed as a decimal number using digits from the
27522 ISO/IEC 646: 1991 standard. This record shall override the uid field in the
27523 following header block(s). When used in write or copy mode, pax shall include a
27524 uid extended header record for each file whose owner ID is greater than 2 097 151 |
27525 (octal 7 777 777). |

27526 uname The owner of the following file(s), formatted as a user name in the user database.
27527 This record shall override the uid and uname fields in the following header block(s),
27528 and any uid extended header record. When used in read, copy, or list mode, pax
27529 shall translate the name from the UTF-8 encoding in the header record to the
27530 character set appropriate for the user database on the receiving system. If any of
27531 the UTF-8 characters cannot be translated, and if the −oinvalid= UTF-8 option is
27532 not specified, the results are implementation-defined. When used in write or copy |
27533 mode, pax shall include a uname extended header record for each file whose user
27534 name cannot be represented entirely with the letters and digits of the portable
27535 character set.

27536 If the <value> field is zero length, it shall delete any header block field, previously entered
27537 extended header value, or global extended header value of the same name.

27538 If a keyword in an extended header record (or in a −o option-argument) overrides or deletes a
27539 corresponding field in the ustar header block, pax shall ignore the contents of that header block
27540 field.

27541 Unlike the ustar header block fields, NULs shall not delimit <value>s; all characters within the
27542 <value> field shall be considered data for the field. None of the length limitations of the ustar
27543 header block fields in Table 4-13 (on page 2927) shall apply to the extended header records.

27544 pax Extended Header Keyword Precedence

27545 This section describes the precedence in which the various header records and fields and
27546 command line options are selected to apply to a file in the archive. When pax is used in read or
27547 list modes, it shall determine a file attribute in the following sequence:

27548 1. If −odelete=keyword-prefix is used, the affected attributes shall be determined from step 7.,
27549 if applicable, or ignored otherwise.

27550 2. If −okeyword := is used, the affected attributes shall be ignored.

27551 3. If −okeyword :=value is used, the affected attribute shall be assigned the value.

27552 4. If there is a typeflag x extended header record, the affected attribute shall be assigned the
27553 <value>. When extended header records conflict, the last one given in the header shall take
27554 precedence.

27555 5. If −okeyword=value is used, the affected attribute shall be assigned the value.

27556 6. If there is a typeflag g global extended header record, the affected attribute shall be
27557 assigned the <value>. When global extended header records conflict, the last one given in
27558 the global header shall take precedence.

27559 7. Otherwise, the attribute shall be determined from the ustar header block.

Shell and Utilities, Issue 6 2925

pax Utilities

27560 pax Extended Header File Times

27561 Notes to Reviewers |
27562 This section with side shading will not appear in the final copy. - Ed. |

27563 D3, XCU, ERN 158 proposes new wording for the first half of the following paragraph: "pax shall |
27564 write an mtime record for each file in write or copy modes if the file’s modification time cannot |
27565 be represented exactly in the ustar header block described in ustar Interchange Format. This can |
27566 occur if the time is out of ustar range, or if the file system of the underlying implementation |
27567 supports non-integer time granularities and the time is not an integer." |

27568 The pax utility shall write atime and ctime records for each file in write or copy modes only if |
27569 the −otimes option is specified; pax shall write a mtime record for each file in write or copy
27570 modes if the file system of the underlying implementation supports time granularities smaller
27571 than that required by the ustar header block described in ustar Interchange Format. All of these
27572 time records shall be formatted as a decimal representation of the time in seconds since the
27573 Epoch. If a period (’.’) decimal point character is present, the digits to the right of the point
27574 shall represent the units of a subsecond timing granularity, where the first digit is tenths of a
27575 second and each subsequent digit is a tenth of the previous digit. Implementations may ignore
27576 any portion of the subsecond digits for which they do not support the necessary timing
27577 granularity; they shall not perform any rounding operation. |

27578 Notes to Reviewers |
27579 This section with side shading will not appear in the final copy. - Ed. |

27580 D3, XCU, ERN 173, proposes new text for the previous sentence because a pax implementation |
27581 on a single platform should not be allowed to lose information when it writes an extended |
27582 header time and then reads it back in again: "In read or copy mode, the pax utility shall truncate |
27583 the time of a file to the greatest value that is not greater than the input header file time. In write |
27584 or copy mode, the pax utility shall output a time exactly if it can be represented exactly as a |
27585 decimal number, and otherwise shall generate only enough digits so that the same time shall be |
27586 recovered if the file is extracted on a system whose underlying implementation supports the |
27587 same time granularity." |

27588 ustar Interchange Format |

27589 A ustar archive tape or file shall contain a series of blocks. Each block shall be a fixed-size block
27590 of 512 octets (see below). Although this format may be thought of as being stored on 9-track
27591 industry-standard 12.7mm (0.5in) magnetic tape, other types of transportable media are not
27592 excluded. Each file archived shall be represented by a header block that describes the file,
27593 followed by zero or more blocks that give the contents of the file. At the end of the archive file
27594 there shall be two 512-octet blocks filled with binary zeros, interpreted as an end-of-archive
27595 indicator.

27596 The blocks may be grouped for physical I/O operations, as described under the −bblocksize and
27597 −x ustar options. Each group of blocks may be written with a single operation equivalent to the
27598 write() function. On magnetic tape, the result of this write shall be a single tape record. The last
27599 group of blocks always shall be at the full size, so blocks after the two zero blocks may contain
27600 undefined data.

27601 The header block shall be structured as shown in the following table. All lengths and offsets are
27602 in decimal.

27603 Table 4-13 ustar Header Block

2926 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27604 __
27605 Field Name Octet Offset Length (in Octets)__
27606 name 0 100
27607 mode 100 8
27608 uid 108 8
27609 gid 116 8
27610 size 124 12
27611 mtime 136 12
27612 chksum 148 8
27613 typeflag 156 1
27614 linkname 157 100
27615 magic 257 6
27616 version 263 2
27617 uname 265 32
27618 gname 297 32
27619 devmajor 329 8
27620 devminor 337 8
27621 prefix 345 155__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

27622 All characters in the header block shall be represented in the coded character set of the
27623 ISO/IEC 646: 1991 standard. For maximum portability between implementations, names should
27624 be selected from characters represented by the portable file name character set as octets with the
27625 most significant bit zero. If an implementation supports the use of characters outside of slash
27626 and the portable file name character set in names for files, users, and groups, one or more |
27627 implementation-defined encodings of these characters shall be provided for interchange |
27628 purposes.

27629 However, the pax utility shall never create file names on the local system that cannot be accessed |
27630 via the procedures described in IEEE Std. 1003.1-200x. If a file name is found on the medium that |
27631 would create an invalid file name, it is implementation-defined whether the data from the file is |
27632 stored on the file hierarchy and under what name it is stored. The pax utility may choose to |
27633 ignore these files as long as it produces an error indicating that the file is being ignored.

27634 Each field within the header block is contiguous; that is, there is no padding used. Each character
27635 on the archive medium shall be stored contiguously.

27636 The fields magic , uname, and gname are character strings each terminated by a NUL character.
27637 The fields name, linkname , and prefix are NUL-terminated character strings except when all
27638 characters in the array contain non-NUL characters including the last character. The version field
27639 is two octets containing the characters "00" (zero-zero). The typeflag contains a single character.
27640 All other fields are leading zero-filled octal numbers using digits from the ISO/IEC 646: 1991
27641 standard IRV. Each numeric field is terminated by one or more <space> or NUL characters.

27642 The name and the prefix fields shall produce the path name of the file. A new path name shall be
27643 formed, if prefix is not an empty string (its first character is not NUL), by concatenating prefix (up
27644 to the first NUL character), a slash character, and name; otherwise, name is used alone. In either
27645 case, name is terminated at the first NUL character. If prefix begins with a NUL character, it shall
27646 be ignored. In this manner, path names of at most 256 characters can be supported. If a path
27647 name does not fit in the space provided, pax shall notify the user of the error, and shall not store
27648 any part of the file—header or data—on the medium.

27649 The linkname field, described below, shall not use the prefix to produce a path name. As such, a
27650 linkname is limited to 100 characters. If the name does not fit in the space provided, pax shall
27651 notify the user of the error, and shall not attempt to store the link on the medium.

Shell and Utilities, Issue 6 2927

pax Utilities

27652 The mode field provides 12 bits encoded in the ISO/IEC 646: 1991 standard octal digit
27653 representation. The encoded bits shall represent the following values:

27654 Table 4-14 ustar mode Field
__

27655 Bit Value IEEE Std. 1003.1-200x Bit Description__
27656 04 000 S_ISUID Set UID on execution.
27657 02 000 S_ISGID Set GID on execution.
27658 01 000 <reserved> Reserved for future standardization.
27659 00 400 S_IRUSR Read permission for file owner class.
27660 00 200 S_IWUSR Write permission for file owner class.
27661 00 100 S_IXUSR Execute/search permission for file owner class.
27662 00 040 S_IRGRP Read permission for file group class.
27663 00 020 S_IWGRP Write permission for file group class.
27664 00 010 S_IXGRP Execute/search permission for file group class.
27665 00 004 S_IROTH Read permission for file other class.
27666 00 002 S_IWOTH Write permission for file other class.
27667 00 001 S_IXOTH Execute/search permission for file other class.__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

27668 When appropriate privilege is required to set one of these mode bits, and the user restoring the
27669 files from the archive does not have the appropriate privilege, the mode bits for which the user
27670 does not have appropriate privilege shall be ignored. Some of the mode bits in the archive
27671 format are not mentioned elsewhere in this volume of IEEE Std. 1003.1-200x. If the
27672 implementation does not support those bits, they may be ignored.

27673 The uid and gid fields are the user and group ID of the owner and group of the file, respectively.

27674 The size field is the size of the file in octets. If the typeflag field is set to specify a file to be of type
27675 1 (a link) or 2 (reserved for symbolic links), the size field shall be specified as zero. If the typeflag
27676 field is set to specify a file of type 5 (directory), the size field shall be interpreted as described
27677 under the definition of that record type. No data blocks are stored for types 1, 2, or 5. If the
27678 typeflag field is set to 3 (character special file), 4 (block special file), or 6 (FIFO), the meaning of
27679 the size field is unspecified by this volume of IEEE Std. 1003.1-200x, and no data blocks shall be
27680 stored on the medium. Additionally, for type 6, the size field shall be ignored when reading. If |
27681 the typeflag field is set to any other value, the number of blocks written following the header
27682 shall be (size+511)/512, ignoring any fraction in the result of the division.

27683 The mtime field shall be the modification time of the file at the time it was archived. It is the
27684 ISO/IEC 646: 1991 standard representation of the octal value of the modification time obtained
27685 from the stat() function.

27686 The chksum field shall be the ISO/IEC 646: 1991 standard IRV representation of the octal value of
27687 the simple sum of all octets in the header block. Each octet in the header shall be treated as an
27688 unsigned value. These values shall be added to an unsigned integer, initialized to zero, the
27689 precision of which is not less than 17 bits. When calculating the checksum, the chksum field is
27690 treated as if it were all spaces.

27691 The typeflag field specifies the type of file archived. If a particular implementation does not
27692 recognize the type, or the user does not have appropriate privilege to create that type, the file
27693 shall be extracted as if it were a regular file if the file type is defined to have a meaning for the
27694 size field that could cause data blocks to be written on the medium (see the previous description
27695 for size). If conversion to a regular file occurs, the pax utility shall produce an error indicating
27696 that the conversion took place. All of the typeflag fields shall be coded in the ISO/IEC 646: 1991
27697 standard IRV:

2928 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27698 0 Represents a regular file. For backward compatibility, a typeflag value of binary zero
27699 (’\0’) should be recognized as meaning a regular file when extracting files from the
27700 archive. Archives written with this version of the archive file format create regular files
27701 with a typeflag value of the ISO/IEC 646: 1991 standard IRV ’0’ .

27702 1 Represents a file linked to another file, of any type, previously archived. Such files are
27703 identified by each file having the same device and file serial number. The linked-to
27704 name is specified in the linkname field with a NUL-character terminator if it is less than
27705 100 octets in length.

27706 2 Represents a symbolic link. The contents of the symbolic link shall be stored in the
27707 linkname field.

27708 3,4 Represent character special files and block special files respectively. In this case the
27709 devmajor and devminor fields shall contain information defining the device, the format
27710 of which is unspecified by this volume of IEEE Std. 1003.1-200x. Implementations may
27711 map the device specifications to their own local specification or may ignore the entry.

27712 5 Specifies a directory or subdirectory. On systems where disk allocation is performed on
27713 a directory basis, the size field shall contain the maximum number of octets (which may
27714 be rounded to the nearest disk block allocation unit) that the directory may hold. A size
27715 field of zero indicates no such limiting. Systems that do not support limiting in this
27716 manner should ignore the size field.

27717 6 Specifies a FIFO special file. Note that the archiving of a FIFO file archives the existence
27718 of this file and not its contents.

27719 7 Reserved to represent a file to which an implementation has associated some high-
27720 performance attribute. Implementations without such extensions should treat this file
27721 as a regular file (type 0).

27722 A-Z The letters ’A’ to ’Z’ , inclusive, are reserved for custom implementations. All other
27723 values are reserved for future revisions of IEEE Std. 1003.1-200x.

27724 The magic field is the specification that this archive was output in this archive format. If this field
27725 contains ustar (the five characters from the ISO/IEC 646: 1991 standard IRV shown followed by
27726 NUL), the uname and gname fields shall contain the ISO/IEC 646: 1991 standard IRV
27727 representation of the owner and group of the file, respectively (truncated to fit, if necessary).
27728 When the file is restored by a privileged, protection-preserving version of the utility, the user
27729 and group databases shall be scanned for these names. If found, the user and group IDs
27730 contained within these files shall be used rather than the values contained within the uid and gid
27731 fields.

27732 cpio Interchange Format

27733 The octet-oriented cpio archive format shall be a series of entries, each comprising a header that
27734 describes the file, the name of the file, and then the contents of the file.

27735 An archive may be recorded as a series of fixed-size blocks of octets. This blocking shall be used
27736 only to make physical I/O more efficient. The last group of blocks shall be always at the full
27737 size.

27738 For the octet-oriented cpio archive format, the individual entry information shall be in the order
27739 indicated and described by the following table; see also the <cpio.h> header.

Shell and Utilities, Issue 6 2929

pax Utilities

27740 Table 4-15 Octet-Oriented cpio Archive Entry
__

27741 Header Field Name Length (in Octets) Interpreted as__
27742 c_magic 6 Octal number
27743 c_dev 6 Octal number
27744 c_ino 6 Octal number
27745 c_mode 6 Octal number
27746 c_uid 6 Octal number
27747 c_gid 6 Octal number
27748 c_nlink 6 Octal number
27749 c_rdev 6 Octal number
27750 c_mtime 11 Octal number
27751 c_namesize 6 Octal number
27752 c_filesize 11 Octal number__
27753 File Name Field Name LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Length LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Interpreted as__
27754 c_name c_namesize Path name string__
27755 File Data Field Name LL Length LL Interpreted as__
27756 c_filedata c_filesize Data__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

27757 cpio Header

27758 For each file in the archive, a header as defined previously shall be written. The information in
27759 the header fields is written as streams of the ISO/IEC 646: 1991 standard characters interpreted
27760 as octal numbers. The octal numbers shall be extended to the necessary length by appending the
27761 ISO/IEC 646: 1991 standard IRV zeros at the most-significant-digit end of the number; the result
27762 is written to the most-significant digit of the stream of octets first. The fields shall be interpreted
27763 as follows:

27764 c_magic Identify the archive as being a transportable archive by containing the identifying
27765 value "070707" .

27766 c_dev, c_ino Contains values that uniquely identify the file within the archive (that is, no files
27767 contain the same pair of c_dev and c_ino values unless they are links to the same
27768 file). The values shall be determined in an unspecified manner.

27769 c_mode Contains the file type and access permissions as defined in the following table.

2930 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27770 Table 4-16 Values for cpio c_mode Field

27771 File Permissions Name Value Indicates___
27772 C_IRUSR 000 400 Read by owner
27773 C_IWUSR 000 200 Write by owner
27774 C_IXUSR 000 100 Execute by owner
27775 C_IRGRP 000 040 Read by group
27776 C_IWGRP 000 020 Write by group
27777 C_IXGRP 000 010 Execute by group
27778 C_IROTH 000 004 Read by others
27779 C_IWOTH 000 002 Write by others
27780 C_IXOTH 000 001 Execute by others
27781 C_ISUID 004 000 Set uid
27782 C_ISGID 002 000 Set gid
27783 C_ISVTX 001 000 Reserved___
27784 File Type Name Value Indicates___
27785 C_ISDIR 040 000 Directory
27786 C_ISFIFO 010 000 FIFO
27787 C_ISREG 0100 000 Regular file

27788 C_ISBLK 060 000 Block special file
27789 C_ISCHR 020 000 Character special file

27790 C_ISCTG 0110 000 Reserved
27791 C_ISLNK 0120 000 Reserved
27792 C_ISSOCK 0140 000 Reserved___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

27793 Directories, FIFOs, and regular files shall be supported on a system conforming to
27794 this volume of IEEE Std. 1003.1-200x; additional values defined previously are
27795 reserved for compatibility with existing systems. Additional file types may be
27796 supported; however, such files should not be written to archives intended to be
27797 transported to other systems.

27798 c_uid Contains the user ID of the owner.

27799 c_gid Contains the group ID of the group.

27800 c_nlink Contains the number of links referencing the file at the time the archive was
27801 created.

27802 c_rdev Contains implementation-defined information for character or block special files. |

27803 c_mtime Contains the latest time of modification of the file at the time the archive was
27804 created.

27805 c_namesize Contains the length of the path name, including the terminating NUL character.

27806 c_filesize Contains the length of the file in octets. This shall be the length of the data section
27807 following the header structure.

Shell and Utilities, Issue 6 2931

pax Utilities

27808 cpio File Name

27809 The c_name field shall contain the path name of the file. The length of this field in octets is the
27810 value of c_namesize .

27811 MAN If a file name is found on the medium that would create an invalid path name, it is |
27812 implementation-defined whether the data from the file is stored on the file hierarchy and under |
27813 what name it is stored.

27814 All characters shall be represented in the ISO/IEC 646: 1991 standard IRV. For maximum
27815 portability between implementations, names should be selected from characters represented by
27816 the portable file name character set as octets with the most significant bit zero. If an
27817 implementation supports the use of characters outside the portable file name character set in
27818 names for files, users, and groups, one or more implementation-defined encodings of these |
27819 characters shall be provided for interchange purposes. However, the pax utility shall never |
27820 create file names on the local system that cannot be accessed via the procedures described |
27821 previously in this volume of IEEE Std. 1003.1-200x. If a file name is found on the medium that |
27822 would create an invalid file name, it is implementation-defined whether the data from the file is |
27823 stored on the local file system and under what name it is stored. The pax utility may choose to |
27824 ignore these files as long as it produces an error indicating that the file is being ignored.

27825 cpio File Data

27826 Following c_name, there shall be c_filesize octets of data. Interpretation of such data occurs in a
27827 manner dependent on the file. If c_filesize is zero, no data shall be contained in c_filedata .

27828 MAN When restoring from an archive: |

27829 • If the user does not have the appropriate privilege to create a file of the specified type, pax
27830 shall ignore the entry and write an error message to standard error.

27831 • Only regular files have data to be restored. Presuming a regular file meets any selection
27832 criteria that might be imposed on the format-reading utility by the user, such data shall be
27833 restored.

27834 • If a user does not have appropriate privilege to set a particular mode flag, the flag shall be
27835 ignored. Some of the mode flags in the archive format are not mentioned elsewhere in this
27836 volume of IEEE Std. 1003.1-200x. If the implementation does not support those flags, they
27837 may be ignored.
27838 |

27839 cpio Special Entries

27840 FIFO special files, directories, and the trailer shall be recorded with c_filesize equal to zero. For
27841 other special files, c_filesize is unspecified by this volume of IEEE Std. 1003.1-200x. The header
27842 for the next file entry in the archive shall be written directly after the last octet of the file entry
27843 preceding it. A header denoting the file name TRAILER!!! indicates the end of the archive; the
27844 contents of octets in the last block of the archive following such a header are undefined.

27845 EXIT STATUS
27846 The following exit values shall be returned:

27847 0 All files were processed successfully.

27848 >0 An error occurred.

2932 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27849 CONSEQUENCES OF ERRORS
27850 If pax cannot create a file or a link when reading an archive or cannot find a file when writing an
27851 archive, or cannot preserve the user ID, group ID, or file mode when the −p option is specified, a
27852 diagnostic message shall be written to standard error and a non-zero exit status shall be
27853 returned, but processing shall continue. In the case where pax cannot create a link to a file, pax
27854 shall not, by default, create a second copy of the file.

27855 If the extraction of a file from an archive is prematurely terminated by a signal or error, pax may
27856 have only partially extracted the file or (if the −n option was not specified) may have extracted a
27857 file of the same name as that specified by the user, but which is not the file the user wanted.
27858 Additionally, the file modes of extracted directories may have additional bits from the S_IRWXU
27859 mask set as well as incorrect modification and access times.

27860 APPLICATION USAGE
27861 The −p (privileges) option was invented to reconcile differences between historical tar and cpio
27862 implementations. In particular, the two utilities use −m in diametrically opposed ways. The −p
27863 option also provides a consistent means of extending the ways in which future file attributes can
27864 be addressed, such as for enhanced security systems or high-performance files. Although it may
27865 seem complex, there are really two modes that are most commonly used:

27866 −p e ‘‘Preserve everything’’. This would be used by the historical superuser, someone with
27867 all the appropriate privileges, to preserve all aspects of the files as they are recorded in
27868 the archive. The e flag is the sum of o and p, and other implementation-defined |
27869 attributes. |

27870 −p p ‘‘Preserve’’ the file mode bits. This would be used by the user with regular privileges
27871 who wished to preserve aspects of the file other than the ownership. The file times are
27872 preserved by default, but two other flags are offered to disable these and use the time
27873 of extraction.

27874 The one path name per line format of standard input precludes path names containing
27875 <newline> characters. Although such path names violate the portable file name guidelines, they
27876 may exist and their presence may inhibit usage of pax within shell scripts. This problem is
27877 inherited from historical archive programs. The problem can be avoided by listing file name
27878 arguments on the command line instead of on standard input.

27879 It is almost certain that appropriate privileges are required for pax to accomplish parts of this
27880 volume of IEEE Std. 1003.1-200x. Specifically, creating files of type block special or character
27881 special, restoring file access times unless the files are owned by the user (the −t option), or
27882 preserving file owner, group, and mode (the −p option) all probably require appropriate
27883 privileges.

27884 In read mode, implementations are permitted to overwrite files when the archive has multiple
27885 members with the same name. This may fail if permissions on the first version of the file do not
27886 permit it to be overwritten.

27887 The cpio and ustar formats can only support files up to 8 gigabytes in size. |

27888 EXAMPLES
27889 The following command:

27890 pax −w −f /dev/rmt/1m .

27891 copies the contents of the current directory to tape drive 1, medium density (assuming historical
27892 System V device naming procedures. The historical BSD device name would be /dev/rmt9).

27893 The following commands:

Shell and Utilities, Issue 6 2933

pax Utilities

27894 mkdir newdir
27895 pax −rw olddir newdir

27896 copy the olddir directory hierarchy to newdir.

27897 pax −r −s ’,ˆ//*usr//*,,’ −f a.pax

27898 reads the archive a.pax, with all files rooted in /usr in the archive extracted relative to the current
27899 directory.

27900 Using the option:

27901 −o listopt="%M %(atime)T %(size)D %(name)s"

27902 overrides the default output description in Standard Output and instead writes:

27903 −rw −rw −−− Jan 12 15:53 1492 /usr/foo/bar

27904 Using the options:

27905 −o listopt=’%L\t%(size)D\n%.7’ \
27906 −o listopt=’(name)s\n%(ctime)T\n%T’

27907 overrides the default output description in Standard Output and instead writes:

27908 /usr/foo/bar −> /tmp 1492
27909 /usr/fo
27910 Jan 12 1991
27911 Jan 31 15:53

27912 RATIONALE
27913 The pax utility was new, commissioned for the ISO POSIX-2: 1993 standard. It represents a
27914 peaceful compromise between advocates of the historical tar and cpio utilities.

27915 A fundamental difference between cpio and tar was in the way directories were treated. The cpio
27916 utility did not treat directories differently from other files, and to select a directory and its
27917 contents required that each file in the hierarchy be explicitly specified. For tar, a directory
27918 matched every file in the file hierarchy it rooted.

27919 The pax utility offers both interfaces; by default, directories map into the file hierarchy they root.
27920 The −d option causes pax to skip any file not explicitly referenced, as cpio historically did. The tar
27921 −style behavior was chosen as the default because it was believed that this was the more
27922 common usage and because tar is the more commonly available interface, as it was historically
27923 provided on both System V and BSD implementations.

27924 The data interchange format specification in this volume of IEEE Std. 1003.1-200x requires that
27925 processes with ‘‘appropriate privileges’’ shall always restore the ownership and permissions of
27926 extracted files exactly as archived. If viewed from the historic equivalence between superuser
27927 and ‘‘appropriate privileges’’, there are two problems with this requirement. First, users running
27928 as superusers may unknowingly set dangerous permissions on extracted files. Second, it is
27929 needlessly limiting, in that superusers cannot extract files and own them as superuser unless the
27930 archive was created by the superuser. (It should be noted that restoration of ownerships and
27931 permissions for the superuser, by default, is historical practice in cpio, but not in tar.) In order to
27932 avoid these two problems, the pax specification has an additional ‘‘privilege’’ mechanism, the −p
27933 option. Only a pax invocation with the privileges needed, and which has the −p option set using
27934 the e specification character, has the ‘‘appropriate privilege’’ to restore full ownership and
27935 permission information.

27936 Note also that this volume of IEEE Std. 1003.1-200x requires that the file ownership and access
27937 permissions shall be set, on extraction, in the same fashion as the creat() function when provided

2934 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

27938 the mode stored in the archive. This means that the file creation mask of the user is applied to
27939 the file permissions.

27940 Users should note that directories may be created by pax while extracting files with permissions
27941 that are different from those that existed at the time the archive was created. When extracting
27942 sensitive information into a directory hierarchy that no longer exists, users are encouraged to set
27943 their file creation mask appropriately to protect these files during extraction.

27944 The table of contents output is written to standard output to facilitate pipeline processing.

27945 An early proposal had hard links displaying for all path names. This was removed because it |
27946 complicates the output of the case where −v is not specified and does not match historical cpio
27947 usage. The hard-link information is available in the −v display.

27948 The archive formats inherited from the POSIX.1-1990 standard have certain restrictions that
27949 have been brought along from historical usage. For example, there are restrictions on the length
27950 of path names stored in the archive. When pax is used in copy(−rw) mode (copying directory
27951 hierarchies), the ability to use extensions from the −xpax format overcomes these restrictions.

27952 The default blocksize value of 5 120 bytes for cpio was selected because it is one of the standard
27953 block-size values for cpio, set when the −B option is specified. (The other default block-size value
27954 for cpio is 512 bytes, and this was considered to be too small.) The default block value of 10 240
27955 bytes for tar was selected because that is the standard block-size value for BSD tar. The
27956 maximum block size of 32 256 bytes (215−512 bytes) is the largest multiple of 512 bytes that fits
27957 into a signed 16-bit tape controller transfer register. There are known limitations in some
27958 historical systems that would prevent larger blocks from being accepted. Historical values were
27959 chosen to improve compatibility with historical scripts using dd or similar utilities to manipulate
27960 archives. Also, default block sizes for any file type other than character special file has been
27961 deleted from this volume of IEEE Std. 1003.1-200x as unimportant and not likely to affect the
27962 structure of the resulting archive.

27963 Implementations are permitted to modify the block-size value based on the archive format or
27964 the device to which the archive is being written. This is to provide implementations with the
27965 opportunity to take advantage of special types of devices, and it should not be used without a
27966 great deal of consideration as it almost certainly decreases archive portability.

27967 The intended use of the −n option was to permit extraction of one or more files from the archive
27968 without processing the entire archive. This was viewed by the standard developers as offering
27969 significant performance advantages over historical implementations. The −n option in early
27970 proposals had three effects; the first was to cause special characters in patterns to not be treated
27971 specially. The second was to cause only the first file that matched a pattern to be extracted. The
27972 third was to cause pax to write a diagnostic message to standard error when no file was found
27973 matching a specified pattern. Only the second behavior is retained by this volume of
27974 IEEE Std. 1003.1-200x, for many reasons. First, it is in general not acceptable for a single option to
27975 have multiple effects. Second, the ability to make pattern matching characters act as normal
27976 characters is useful for parts of pax other than file extraction. Third, a finer degree of control over
27977 the special characters is useful because users may wish to normalize only a single special
27978 character in a single file name. Fourth, given a more general escape mechanism, the previous
27979 behavior of the −n option can be easily obtained using the −s option or a sed script. Finally,
27980 writing a diagnostic message when a pattern specified by the user is unmatched by any file is
27981 useful behavior in all cases.

27982 In this version, the −n was removed from the copy mode synopsis of pax; it is inapplicable
27983 because there are no pattern operands specified in this mode.

27984 There is another method than pax for copying subtrees in IEEE Std. 1003.1-200x described as part
27985 of the cp utility. Both methods are historical practice: cp provides a simpler, more intuitive

Shell and Utilities, Issue 6 2935

pax Utilities

27986 interface, while pax offers a finer granularity of control. Each provides additional functionality to
27987 the other; in particular, pax maintains the hard-link structure of the hierarchy while cp does not.
27988 It is the intention of the standard developers that the results be similar (using appropriate option
27989 combinations in both utilities). The results are not required to be identical; there seemed
27990 insufficient gain to applications to balance the difficulty of implementations having to guarantee
27991 that the results would be exactly identical.

27992 A single archive may span more than one file. It is suggested that implementations provide
27993 informative messages to the user on standard error whenever the archive file is changed.

27994 The −d option (do not create intermediate directories not listed in the archive) found in early
27995 proposals was originally provided as a complement to the historic −d option of cpio. It has been
27996 deleted.

27997 The −s option in early proposals specified a subset of the substitution command from the ed
27998 utility. As there was no reason for only a subset to be supported, the −s option is now
27999 compatible with the current ed specification. Since the delimiter can be any non-null character,
28000 the following usage with single spaces is valid:

28001 pax −s " foo bar " ...

28002 The −t option (specify an implementation-defined identifier naming an input or output device) |
28003 found in early proposals has been deleted because it is not historical practice and is of limited
28004 utility. In particular, historic versions of neither cpio nor tar had the concept of devices that were
28005 not mapped into the file system; if the devices are mapped into the file system, the −f option is
28006 sufficient.

28007 The default behavior of pax with regard to file modification times is the same as historical
28008 implementations of tar. It is not the historical behavior of cpio.

28009 Because the −i option uses /dev/tty, utilities without a controlling terminal are not able to use
28010 this option.

28011 The −y option, found in early proposals, has been deleted because a line containing a single
28012 period for the −i option has equivalent functionality. The special lines for the −i option (a single
28013 period and the empty line) are historical practice in cpio.

28014 In early drafts, an −echarmap option was included to increase portability of files between systems
28015 using different coded character sets. This option was omitted because it was apparent that
28016 consensus could not be formed for it. In this version, the use of UTF-8 should be an adequate
28017 substitute.

28018 The −k option was added to address international concerns about the dangers involved in the
28019 character set transformations of −e (if the target character set were different than the source, the
28020 file names might be transformed into names matching existing files) and also was made more
28021 general to protect files transferred between file systems with different {NAME_MAX} values
28022 (truncating a file name on a smaller system might also inadvertently overwrite existing files). As
28023 stated, it prevents any overwriting, even if the target file is older than the source. This version
28024 adds more granularity of options to solve this problem by introducing the −oinvalid= option—
28025 specifically the UTF-8 action. (Note that an existing file that is named with a UTF-8 encoding is
28026 still subject to overwriting in this case. The −k option closes that loophole.)

28027 Some of the file characteristics referenced in this volume of IEEE Std. 1003.1-200x might not be
28028 supported by some archive formats. For example, neither the tar nor cpio formats contain the file
28029 access time. For this reason, the e specification character has been provided, intended to cause all
28030 file characteristics specified in the archive to be retained.

2936 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

28031 It is required that extracted directories, by default, have their access and modification times and
28032 permissions set to the values specified in the archive. This has obvious problems in that the
28033 directories are almost certainly modified after being extracted and that directory permissions
28034 may not permit file creation. One possible solution is to create directories with the mode
28035 specified in the archive, as modified by the umask of the user, with sufficient permissions to
28036 allow file creation. After all files have been extracted, pax would then reset the access and
28037 modification times and permissions as necessary.

28038 The list-mode formatting description borrows heavily from the one defined by the printf utility.
28039 However, since there is no separate operand list to get conversion arguments, the format was
28040 extended to allow specifying the name of the conversion argument as part of the conversion
28041 specification.

28042 The T specifier allows time fields to be displayed in any of the date formats. Unlike the ls utility,
28043 pax does not adjust the format when the date is less than six months in the past. This makes
28044 parsing the output more predictable.

28045 The D specifier handles the ability to display the major/minor or file size, as with ls, by using
28046 %−8(size)D.

28047 The L specifier handles the ls display for symbolic links.

28048 Conversion specifiers were added to generate existing known types used for ls.

28049 pax Interchange Format

28050 The new POSIX data interchange format was developed primarily to satisfy international
28051 concerns that the ustar and cpio formats did not provide for file, user, and group names encoded
28052 in characters outside a subset of the ISO/IEC 646: 1991 standard. The standard developers
28053 realized that this new POSIX data interchange format should be very extensible because there
28054 were other requirements they foresaw in the near future:

28055 • Support international character encodings and locale information

28056 • Support security information (ACLs, and so on)

28057 • Support future file types, such as realtime or contiguous files

28058 • Include data areas for implementation use

28059 • Support systems with words larger than 32 bits and timers with subsecond granularity

28060 The following were not goals for this format because these are better handled by separate
28061 utilities or are inappropriate for a portable format:

28062 • Encryption

28063 • Compression

28064 • Data translation between locales and codesets

28065 • inode storage

28066 The format chosen to support the goals is an extension of the ustar format. Of the two formats
28067 previously available, only the ustar format was selected for extensions because:

28068 • It was easier to extend in an upward-compatible way. It offered version flags and header
28069 block type fields with room for future standardization. The cpio format, while possessing a
28070 more flexible file naming methodology, could not be extended without breaking some
28071 theoretical implementation or using a dummy file name that could be a legitimate file name.

Shell and Utilities, Issue 6 2937

pax Utilities

28072 • Industry experience since the original ‘‘tar wars’’ fought in developing the ISO POSIX-1
28073 standard has clearly been in favor of the ustar format, which is generally the default output
28074 format selected for pax implementations on new systems.

28075 The new format was designed with one additional goal in mind: reasonable behavior when an
28076 older tar or pax utility happened to read an archive. Since the POSIX.1-1990 standard mandated
28077 that a ‘‘format-reading utility’’ had to treat unrecognized typeflag values as regular files, this
28078 allowed the format to include all the extended information in a pseudo-regular file that preceded
28079 each real file. An option is given that allows the archive creator to set up reasonable names for
28080 these files on the older systems. Also, the normative text suggests that reasonable file access
28081 values be used for this ustar header block. Making these header files inaccessible for convenient
28082 reading and deleting would not be reasonable. File permissions of 600 or 700 are suggested.

28083 The ustar typeflag field was used to accommodate the additional functionality of the new format
28084 rather than magic or version because the POSIX.1-1990 standard (and, by reference, the previous
28085 version of pax), mandated the behavior of the format-reading utility when it encountered an
28086 unknown typeflag , but was silent about the other two fields.

28087 Early proposals of the first revision to IEEE Std. 1003.1-200x contained a proposed archive
28088 format that was based on compatibility with the standard for tape files (ISO 1001, similar to the
28089 format used historically on many mainframes and minicomputers). This format was overly
28090 complex and required considerable overhead in volume and header records. Furthermore, the
28091 standard developers felt that it would not be acceptable to the community of POSIX developers,
28092 so it was later changed to be a format more closely related to historical practice on POSIX
28093 systems.

28094 The prefix and name split of path names in ustar was replaced by the single path extended
28095 header record for simplicity.

28096 The concept of a global extended header (typeflagg) was controversial. If this were applied to an
28097 archive being recorded on magnetic tape, a few unreadable blocks at the beginning of the tape
28098 could be a serious problem; a utility attempting to extract as many files as possible from a
28099 damaged archive could lose a large percentage of file header information in this case. However,
28100 if the archive were on a reliable medium, such as a CD-ROM, the global extended header offers
28101 considerable potential size reductions by eliminating redundant information. Thus, the text
28102 warns against using the global method for unreliable media and provides a method for
28103 implanting global information in the extended header for each file, rather than in the typeflag g
28104 records.

28105 No facility for data translation or filtering on a per-file basis is included because the standard
28106 developers could not invent an interface that would allow this in an efficient manner. If a filter,
28107 such as encryption or compression, is to be applied to all the files, it is more efficient to apply the
28108 filter to the entire archive as a single file. The standard developers considered interfaces that
28109 would invoke a shell script for each file going into or out of the archive, but the system overhead
28110 in this approach was considered to be too high.

28111 One such approach would be to have filter= records that give a path name for an executable.
28112 When the program is invoked, the file and archive would be open for standard input/output
28113 and all the header fields would be available as environment variables or command-line
28114 arguments. The standard developers did discuss such schemes, but they were omitted from
28115 IEEE Std. 1003.1-200x due to concerns about excessive overhead. Also, the program itself would
28116 need to be in the archive if it were to be used portably.

28117 There is currently no portable means of identifying the character set(s) used for a file in the file
28118 system. Therefore, pax has not been given a mechanism to generate charset records
28119 automatically. The only portable means of doing this is for the user to write the archive using the

2938 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

28120 −ocharset=string command line option. This assumes that all of the files in the archive use the |
28121 same encoding. The ‘‘implementation-defined’’ text is included to allow for a system that can |
28122 identify the encodings used for each of its files.

28123 The table of standards that accompanies the charset record description is acknowledged to be
28124 very limited. Only a limited number of character set standards is reasonable for maximal
28125 interchange. Any character set is, of course, possible by prior agreement. It was suggested that
28126 EBCDIC be listed, but it was omitted because it is not defined by a formal standard. Formal
28127 standards, and then only those with reasonably large followings, can be included here, simply as
28128 a matter of practicality. The <value>s represent names of officially registered charactersets in the
28129 format required by the ISO 2375: 1985 standard.

28130 The normal comma or <blank>-separated list rules are not followed in the case of keyword
28131 options to allow ease of argument parsing for getopts.

28132 Further information on character encodings is in pax Archive Character Set Encoding/Decoding
28133 (on page 2941).

28134 The standard developers have reserved keyword name space for vendor extensions. It is
28135 suggested that the format to be used is:

28136 VENDOR.keyword

28137 where VENDOR is the name of the vendor or organization in all uppercase letters. It is further
28138 suggested that the keyword following the period be named differently than any of the standard
28139 keywords so that it could be used for future standardization, if appropriate, by omitting the
28140 VENDOR prefix.

28141 The <length> field in the extended header record was included to make it simpler to step
28142 through the records, even if a record contains an unknown format (to a particular pax) with
28143 complex interactions of special characters. It also provides a minor integrity checkpoint within
28144 the records to aid a program attempting to recover files from a damaged archive.

28145 There are no extended header versions of the devmajor and devminor fields because the
28146 unspecified format ustar header field should be sufficient. If they are not, vendor-specific
28147 extended keywords (such as VENDOR.devmajor) should be used.

28148 Device and i-number labeling of files was not adopted from cpio; files are interchanged strictly
28149 on a symbolic name basis, as in ustar.

28150 Just as with the ustar format descriptions, the new format makes no special arrangements for
28151 multi-volume archives. Each of the pax archive types is assumed to be inside a single POSIX file
28152 and splitting that file over multiple volumes (diskettes, tape cartridges, and so on), processing
28153 their labels, and mounting each in the proper sequence are considered to be implementation
28154 details that cannot be described portably.

28155 The pax format is intended for interchange, not only for backup on a single (family of) systems. It
28156 is not as densely packed as might be possible for backup:

28157 • It contains information as coded characters that could be coded in binary.

28158 • It identifies extended records with name fields that could be omitted in favor of a fixed-field
28159 layout.

28160 • It translates names into a portable character set and identifies locale-related information,
28161 both of which are probably unnecessary for backup.

28162 The requirements on restoring from an archive are slightly different from the historical wording,
28163 allowing for non-monolithic privilege to bring forward as much as possible. In particular,
28164 attributes such as ‘‘high performance file’’ might be broadly but not universally granted while

Shell and Utilities, Issue 6 2939

pax Utilities

28165 set-user-ID or chown() might be much more restricted. There is no implication in
28166 IEEE Std. 1003.1-200x that the security information be honored after it is restored to the file
28167 hierarchy, in spite of what might be improperly inferred by the silence on that topic. That is a
28168 topic for another standard.

28169 Links are recorded in the fashion described here because a link can be to any file type. It is
28170 desirable in general to be able to restore part of an archive selectively and restore all of those
28171 files completely. If the data is not associated with each link, it is not possible to do this.
28172 However, the data associated with a file can be large, and when selective restoration is not
28173 needed, this can be a significant burden. The archive is structured so that files that have no
28174 associated data can always be restored by the name of any link name of any link, and the user
28175 may choose whether data is recorded with each instance of a file that contains data. The format
28176 permits mixing of both types of links in a single archive; this can be done for special needs, and
28177 pax is expected to interpret such archives on input properly, despite the fact that there is no pax
28178 option that would force this mixed case on output. (When −o linkdata is used, the output must
28179 contain the duplicate data, but the implementation is free to include it or omit it when −o
28180 linkdata is not used.)

28181 The time values are included as extended header records for those implementations needing
28182 more than the eleven octal digits allowed by the ustar format. Portable file timestamps cannot be |
28183 negative. If pax encounters a file with a negative timestamp in copy or write mode, it can reject |
28184 the file, substitute a non-negative timestamp, or generate a non-portable timestamp with a |
28185 leading ’-’ . Even though some implementations can support finer file-time granularities than |
28186 seconds, the normative text requires support only for seconds since the Epoch because the
28187 ISO POSIX-1 standard states them that way. The ustar format includes only mtime; the new
28188 format adds atime and ctime for symmetry. The atime access time restored to the file system will
28189 be affected by the −p a and −p e options. The ctime creation time (actually inode modification
28190 time) is described with ‘‘appropriate privilege’’ so that it can be ignored when writing to the file
28191 system. POSIX does not provide a portable means to change file creation time. Nothing is
28192 intended to prevent a non-portable implementation of pax from restoring the value.

28193 The gid , size , and uid extended header records were included to allow expansion beyond the
28194 sizes specified in the regular tar header. New file system architectures are emerging that will
28195 exhaust the 12-digit size field. There are probably not many systems requiring more than 8 digits
28196 for user and group IDs, but the extended header values were included for completeness,
28197 allowing overrides for all of the decimal values in the tar header.

28198 The standard developers intended to describe the effective results of pax with regard to file
28199 ownerships and permissions; implementations are not restricted in timing or sequencing the
28200 restoration of such, provided the results are as specified.

28201 Much of the text describing the extended headers refers to use in ‘‘write or copy modes’’. The
28202 copy mode references are due to the normative text: ‘‘The effect of the copy shall be as if the
28203 copied files were written to an archive file and then subsequently extracted . . .’’. There is
28204 certainly no way to test whether pax is actually generating the extended headers in copy mode,
28205 but the effects must be as if it had.

2940 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

28206 pax Archive Character Set Encoding/Decoding

28207 There is a need to exchange archives of files between systems of different native codesets. File
28208 names, group names, and user names must be preserved to the fullest extent possible when an
28209 archive is read on the receiving platform. Translation of the contents of files is not within the
28210 scope of the pax utility.

28211 There will also be the need to represent glyphs that are not available on the receiving platform.
28212 (A glyph is commonly called a character, but without any reference to a specific encoding of that
28213 character. The term glyph refers to the symbol itself.) These unsupported glyphs cannot be
28214 automatically folded to the local set of glyphs due to the chance of collisions. This could result in
28215 overwriting previous extracted files from the archive or pre-existing files on the system.

28216 For these reasons, the codeset used to represent glyphs within the extended header records of
28217 the pax archive must be sufficiently rich to handle all commonly used character sets. The fields
28218 requiring translation include, at a minimum, file names, user names, group names, and link path
28219 names. Implementations may wish to have localized extended keywords that use non-portable
28220 characters.

28221 The standard developers considered the following options:

28222 • The archive creator specifies the well-defined name of the source codeset. The receiver must
28223 then recognize the codeset name and perform the appropriate translations to the destination
28224 codeset.

28225 • The archive creator includes within the archive the character mapping table for the source
28226 codeset used to encode extended header records. The receiver must then read the character
28227 mapping table and perform the appropriate translations to the destination codeset.

28228 • The archive creator translates the extended header records in the source codeset into a
28229 canonical form. The receiver must then perform the appropriate translations to the
28230 destination codeset.

28231 The approach that incorporates the name of the source codeset poses the problem of codeset
28232 name registration, and makes the archive useless to pax archive decoders that do not recognize
28233 that codeset.

28234 Because parts of an archive may be corrupted, the standard developers felt that including the
28235 character map of the source codeset was too fragile. The loss of this one key component could
28236 result in making the entire archive useless. (The difference between this and the global extended
28237 header decision was that the latter has a workaround—duplicating extended header records on
28238 unreliable media—but this would be too burdensome for large character set maps.)

28239 Both of the above approaches also put an undue burden on the pax archive receiver to handle the
28240 cross-product of all source and destination codesets.

28241 To simplify the translation from the source codeset to the canonical form and from the canonical
28242 form to the destination codeset, the standard developers decided that the internal representation
28243 should be a stateless encoding. A stateless encoding is one where each codepoint has the same
28244 meaning, without regard to the decoder being in a specific state. An example of a stateful
28245 encoding would be the Japanese Shift-JIS; an example of a stateless encoding would be the
28246 ISO/IEC 646: 1991 standard (equivalent to 7-bit ASCII).

28247 For these reasons, the standard developers decided to adopt a canonical format for the
28248 representation of file information strings. The obvious, well-endorsed candidate is the
28249 ISO/IEC 10646-1: 1993 standard (based in part on Unicode), which can be used to represent the
28250 glyphs of virtually all standardized character sets. The standard developers initially agreed upon
28251 using UCS2 (16-bit Unicode) as the internal representation. This repertoire of glyphs provides a

Shell and Utilities, Issue 6 2941

pax Utilities

28252 sufficiently rich set to represent all commonly-used codesets.

28253 However, the standard developers found that the 16-bit Unicode representation had some
28254 problems. It forced the issue of standardizing byte ordering. The 2-byte length of each character
28255 made the extended header records twice as long for the case of strings coded entirely from
28256 historical 7-bit ASCII. For these reasons, the standard developers chose the UTF-8 defined in the
28257 ISO/IEC 10646-1: 1993 standard. This multi-byte representation encodes UCS2 or UCS4
28258 characters reliably and deterministically, eliminating the need for a canonical byte ordering. In
28259 addition, NUL octets and other characters possibly confusing to POSIX file systems do not
28260 appear, except to represent themselves. It was realized that certain national codesets take up
28261 more space after the encoding, due to their placement within the UCS range; it was felt that the
28262 usefulness of the encoding of the names outweighs the disadvantage of size increase for file,
28263 user, and group names.

28264 The encoding of UTF-8 is as follows:

28265 UCS4 Hex Encoding UTF-8 Binary Encoding

28266 00000000-0000007F 0xxxxxxx
28267 00000080-000007FF 110xxxxx 10xxxxxx
28268 00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
28269 00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
28270 00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
28271 04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

28272 where each ’x’ represents a bit value from the character being translated.

28273 ustar Interchange Format

28274 The description of the ustar format reflects numerous enhancements over pre-1988 versions of
28275 the historical tar utility. The goal of these changes was not only to provide the functional
28276 enhancements desired, but also to retain compatibility between new and old versions. This
28277 compatibility has been retained. Archives written using the old archive format are compatible
28278 with the new format.

28279 Implementors should be aware that the previous file format did not include a mechanism to
28280 archive directory type files. For this reason, the convention of using a file name ending with
28281 slash was adopted to specify a directory on the archive.

28282 The total size of the name and prefix fields have been set to meet the minimum requirements for
28283 {PATH_MAX}. If a path name will fit within the name field, it is recommended that the path
28284 name be stored there without the use of the prefix field. Although the name field is known to be
28285 too small to contain {PATH_MAX} characters, the value was not changed in this version of the
28286 archive file format to retain backward compatibility, and instead the prefix was introduced.
28287 Also, because of the earlier version of the format, there is no way to remove the restriction on the
28288 linkname field being limited in size to just that of the name field.

28289 The size field is required to be meaningful in all implementation extensions, although it could be
28290 zero. This is required so that the data blocks can always be properly counted.

28291 It is suggested that if device special files need to be represented that cannot be represented in the
28292 standard format that one of the extension types (A-Z) be used, and that the additional
28293 information for the special file be represented as data and be reflected in the size field.

28294 Attempting to restore a special file type, where it is converted to ordinary data and conflicts
28295 with an existing file name, need not be specially detected by the utility. If run as an ordinary
28296 user, pax should not be able to overwrite the entries in, for example, /dev in any case (whether
28297 the file is converted to another type or not). If run as a privileged user, it should be able to do so,

2942 Technical Standard (2000) (Draft July 31, 2000)

Utilities pax

28298 and it would be considered a bug if it did not. The same is true of ordinary data files and
28299 similarly named special files; it is impossible to anticipate the needs of the user (who could
28300 really intend to overwrite the file), so the behavior should be predictable (and thus regular) and
28301 rely on the protection system as required.

28302 The value 7 in the typeflag field is intended to define how contiguous files can be stored in a
28303 ustar archive. IEEE Std. 1003.1-200x does not require the contiguous file extension, but does
28304 define a standard way of archiving such files so that all conforming systems can interpret these
28305 file types in a meaningful and consistent manner. On a system that does not support extended
28306 file types, the pax utility should do the best it can with the file and go on to the next.

28307 The file protection modes are those conventionally used by the ls utility. This is extended
28308 beyond the usage in the ISO POSIX-2 standard to support the ‘‘shared text’’ or ‘‘sticky’’ bit. It is
28309 intended that the conformance document should not document anything beyond the existence
28310 of and support of such a mode. Further extensions are expected to these bits, particularly with
28311 overloading the set-user-ID and set-group-ID flags.

28312 cpio Interchange Format

28313 The reference to appropriate privilege in the cpio format refers to an error on standard output;
28314 the ustar format does not make comparable statements.

28315 The model for this format was the historical System V cpio−c data interchange format. This
28316 model documents the portable version of the cpio format and not the binary version. It has the
28317 flexibility to transfer data of any type described within IEEE Std. 1003.1-200x, yet is extensible to
28318 transfer data types specific to extensions beyond IEEE Std. 1003.1-200x (for example, contiguous
28319 files). Because it describes existing practice, there is no question of maintaining upward
28320 compatibility.

28321 cpio Header

28322 There has been some concern that the size of the c_ino field of the header is too small to handle
28323 those systems that have very large inode numbers. However, the c_ino field in the header is used
28324 strictly as a hard-link resolution mechanism for archives. It is not necessarily the same value as
28325 the inode number of the file in the location from which that file is extracted.

28326 The name c_magic is based on historical usage.

28327 cpio File Name

28328 For most historical implementations of the cpio utility, {PATH_MAX} octets can be used to
28329 describe the path name without the addition of any other header fields (the NUL character
28330 would be included in this count). {PATH_MAX} is the minimum value for path name size,
28331 documented as 256 bytes. However, an implementation may use c_namesize to determine the
28332 exact length of the path name. With the current description of the <cpio.h> header, this path
28333 name size can be as large as a number that is described in six octal digits.

28334 Two values are documented under the c_mode field values to provide for extensibility for known
28335 file types:

Shell and Utilities, Issue 6 2943

pax Utilities

28336 Notes to Reviewers
28337 This section with side shading will not appear in the final copy. - Ed.

28338 Note that the sockets extension below needs to be integrated, now that sockets have been
28339 merged

28340 0110 000 Reserved for contiguous files. The implementation may treat the rest of the
28341 information for this archive like a regular file. If this file type is undefined, the
28342 implementation may create the file as a regular file.

28343 0140 000 Reserved for sockets. If this type is undefined on the target system, the
28344 implementation may decide to ignore this file type and output a warning message.

28345 This provides for extensibility of the cpio format while allowing for the ability to read old
28346 archives. Files of an unknown type may be read as ‘‘regular files’’ on some implementations. On
28347 a system that does not support extended file types, the pax utility should do the best it can with
28348 the file and go on to the next.

28349 FUTURE DIRECTIONS
28350 None.

28351 SEE ALSO
28352 cp , ed, getopts , printf , the Base Definitions volume of IEEE Std. 1003.1-200x, <cpio.h>, the System |
28353 Interfaces volume of IEEE Std. 1003.1-200x, chown(), creat(), mkdir(), stat(), write()

28354 CHANGE HISTORY
28355 First released in Issue 4.

28356 Issue 5
28357 A note is added to the APPLICATION USAGE indicating that the cpio and tar formats can only
28358 support files up to 8 gigabytes in size.

28359 Issue 6
28360 The pax utility is aligned with the IEEE P1003.2b draft standard:

28361 • Support has been added for symbolic links in the options and interchange formats.

28362 • A new format has been devised, based on extensions to ustar.

28363 • References to the ‘‘extended’’ tar and cpio formats derived from the POSIX.1-1990 standard
28364 have been changed to remove the ‘‘extended’’ adjective because this could cause confusion
28365 with the extended tar header added in this revision. (All references to tar are actually to
28366 ustar).

28367 IEEE PASC Interpretation 1003.2 #168 is applied clarifying that mkdir() and mkfifo () calls can |
28368 ignore an [EEXIST] error when extracting an archive. |

2944 Technical Standard (2000) (Draft July 31, 2000)

Utilities pr

28369 NAME
28370 pr — print files

28371 SYNOPSIS
28372 pr [+page][−column][−adFmrt][−e[char][gap]][−h header][−i [char][gap]]
28373 XSI [−l lines][−n[char][width]][−o offset][−s [char]][−w width][−fp]
28374 [file ...]

28375 DESCRIPTION
28376 The pr utility is a printing and pagination filter. If multiple input files are specified, each shall be
28377 read, formatted, and written to standard output. By default, the input shall be separated into 66-
28378 line pages, each with:

28379 • A 5-line header that includes the page number, date, time, and the path name of the file

28380 • A 5-line trailer consisting of blank lines

28381 If standard output is associated with a terminal, diagnostic messages shall be deferred until the
28382 pr utility has completed processing.

28383 When options specifying multi-column output are specified, output text columns shall be of
28384 equal width; input lines that do not fit into a text column shall be truncated. By default, text
28385 columns shall be separated with at least one <blank> character.

28386 OPTIONS
28387 The pr utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
28388 Utility Syntax Guidelines, except that: the page option has a ’+’ delimiter; page and column can |
28389 be multi-digit numbers; some of the option-arguments are optional; and some of the option-
28390 arguments cannot be specified as separate arguments from the preceding option letter. In
28391 particular, the −s option does not allow the option letter to be separated from its argument, and
28392 the options −e, −i, and −n require that both arguments, if present, not be separated from the
28393 option letter.

28394 The following options shall be supported. In the following option descriptions, column , lines ,
28395 offset , page , and width are positive decimal integers; gap is a non-negative decimal integer.

28396 +page Begin output at page number page of the formatted input.

28397 −column Produce multi-column output that is arranged in column columns (the default shall
28398 be 1) and is written down each column in the order in which the text is received
28399 from the input file. This option should not be used with −m. The options −e and −i
28400 shall be assumed for multiple text-column output. Whether or not text columns
28401 are produced with identical vertical lengths is unspecified, but a text column shall
28402 never exceed the length of the page (see the −l option). When used with −t, use the
28403 minimum number of lines to write the output.

28404 −a Modify the effect of the −column option so that the columns are filled across the
28405 page in a round-robin order (for example, when column is 2, the first input line
28406 heads column 1, the second heads column 2, the third is the second line in column
28407 1, and so on).

28408 −d Produce output that is double-spaced; append an extra <newline> character
28409 following every <newline> character found in the input.

28410 −e[char][gap]
28411 Expand each input <tab> character to the next greater column position specified
28412 by the formula n*gap+1, where n is an integer > 0. If gap is zero or is omitted, it
28413 shall default to 8. All <tab> characters in the input shall be expanded into the
28414 appropriate number of <space> characters. If any non-digit character, char , is

Shell and Utilities, Issue 6 2945

pr Utilities

28415 specified, it shall be used as the input <tab> character.

28416 XSI −f Use a <form-feed> character for new pages, instead of the default behavior that
28417 uses a sequence of <newline> characters. Pause before beginning the first page if
28418 the standard output is associated with a terminal.

28419 −F Use a <form-feed> character for new pages, instead of the default behavior that
28420 uses a sequence of <newline> characters.

28421 −h header Use the string header to replace the contents of the file operand in the page header.

28422 −i[char][gap]
28423 In output, replace multiple <space> characters with <tab> characters wherever
28424 two or more adjacent <space> characters reach column positions gap+1, 2* gap+1,
28425 3* gap+1, and so on. If gap is zero or is omitted, default tab settings at every eighth
28426 column position shall be assumed. If any non-digit character, char , is specified, it
28427 shall be used as the output <tab> character.

28428 −l lines Override the 66-line default and reset the page length to lines . If lines is not greater
28429 than the sum of both the header and trailer depths (in lines), the pr utility shall
28430 suppress both the header and trailer, as if the −t option were in effect.

28431 −m Merge files. Standard output shall be formatted so the pr utility writes one line
28432 from each file specified by a file operand, side by side into text columns of equal
28433 fixed widths, in terms of the number of column positions. Implementations shall
28434 support merging of at least nine file operands.

28435 −n[char][width]
28436 Provide width-digit line numbering (default for width shall be 5). The number shall
28437 occupy the first width column positions of each text column of default output or
28438 each line of −m output. If char (any non-digit character) is given, it shall be
28439 appended to the line number to separate it from whatever follows (default for char
28440 is a <tab> character).

28441 −o offset Each line of output shall be preceded by offset <space>s. If the −o option is not
28442 specified, the default offset shall be zero. The space taken is in addition to the
28443 output line width (see the −w option below).

28444 −p Pause before beginning each page if the standard output is directed to a terminal
28445 (pr shall write an <alert> character to standard error and wait for a <carriage-
28446 return> character to be read on /dev/tty).

28447 −r Write no diagnostic reports on failure to open files.

28448 −s[char] Separate text columns by the single character char instead of by the appropriate
28449 number of <space> characters (default for char shall be the <tab> character).

28450 −t Write neither the five-line identifying header nor the five-line trailer usually
28451 supplied for each page. Quit writing after the last line of each file without spacing
28452 to the end of the page.

28453 −w width Set the width of the line to width column positions for multiple text-column output
28454 only. If the −w option is not specified and the −s option is not specified, the default
28455 width shall be 72. If the −w option is not specified and the −s option is specified,
28456 the default width shall be 512.

28457 For single column output, input lines shall not be truncated.

2946 Technical Standard (2000) (Draft July 31, 2000)

Utilities pr

28458 OPERANDS
28459 The following operand shall be supported:

28460 file A path name of a file to be written. If no file operands are specified, or if a file
28461 operand is ’ −’ , the standard input shall be used.

28462 STDIN
28463 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ .
28464 See the INPUT FILES section.

28465 INPUT FILES
28466 The input files shall be text files.

28467 The file /dev/tty is used to read responses required by the −p option.

28468 ENVIRONMENT VARIABLES
28469 The following environment variables shall affect the execution of pr:

28470 LANG Provide a default value for the internationalization variables that are unset or null.
28471 If LANG is unset or null, the corresponding value from the implementation- |
28472 defined default locale shall be used. If any of the internationalization variables |
28473 contains an invalid setting, the utility shall behave as if none of the variables had
28474 been defined.

28475 LC_ALL If set to a non-empty string value, override the values of all the other
28476 internationalization variables.

28477 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
28478 characters (for example, single-byte as opposed to multi-byte characters in
28479 arguments and input files) and which characters are defined as printable (character
28480 class print). Non-printable characters are still written to standard output, but are
28481 not counted for the purpose for column-width and line-length calculations.

28482 LC_MESSAGES
28483 Determine the locale that should be used to affect the format and contents of
28484 diagnostic messages written to standard error.

28485 LC_TIME Determine the format of the date and time for use in writing header lines.

28486 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

28487 TZ Determine the timezone for use in writing header lines.

28488 ASYNCHRONOUS EVENTS
28489 If pr receives an interrupt while writing to a terminal, it shall flush all accumulated error
28490 messages to the screen before terminating.

28491 STDOUT
28492 The pr utility output shall be a paginated version of the original file (or files). This pagination
28493 shall be accomplished using either <form-feed> characters or a sequence of <newline>
28494 XSI characters, as controlled by the −F or −f option. Page headers shall be generated unless the −t
28495 option is specified. The page headers shall be of the form:

28496 "\n\n%s %s Page %d\n\n\n", < output of date >, < file >, < page number >

28497 In the POSIX locale, the <output of date> field, representing the date and time of last modification
28498 of the input file (or the current date and time if the input file is standard input), shall be
28499 equivalent to the output of the following command as it would appear if executed at the given
28500 time:

Shell and Utilities, Issue 6 2947

pr Utilities

28501 date "+%b %e %H:%M %Y"

28502 without the trailing <newline> character, if the page being written is from standard input. If the
28503 page being written is not from standard input, in the POSIX locale, the same format shall be
28504 used, but the time used shall be the modification time of the file corresponding to file instead of
28505 the current time. When the LC_TIME locale category is not set to the POSIX locale, a different
28506 format and order of presentation of this field may be used.

28507 If the standard input is used instead of a file operand, the <file> field shall be replaced by a null
28508 string.

28509 If the −h option is specified, the <file> field shall be replaced by the header argument.

28510 STDERR
28511 Used for diagnostic messages and for alerting the terminal when −p is specified. |

28512 OUTPUT FILES
28513 None.

28514 EXTENDED DESCRIPTION
28515 None.

28516 EXIT STATUS
28517 The following exit values shall be returned:

28518 0 Successful completion.

28519 >0 An error occurred.

28520 CONSEQUENCES OF ERRORS
28521 Default.

28522 APPLICATION USAGE
28523 None.

28524 EXAMPLES

28525 1. Print a numbered list of all files in the current directory:

28526 ls −a | pr −n −h "Files in $(pwd)."

28527 2. Print file1 and file2 as a double-spaced, three-column listing headed by ‘‘file list’’:

28528 pr −3d −h "file list" file1 file2

28529 3. Write file1 on file2, expanding tabs to columns 10, 19, 28, . . .:

28530 pr −e9 −t <file1 >file2

28531 RATIONALE
28532 This utility is one of those that does not follow the Utility Syntax Guidelines because of its
28533 historical origins. The standard developers could have added new options that obeyed the
28534 guidelines (and marked the old options obsolescent) or devised an entirely new utility; there are
28535 examples of both actions in this volume of IEEE Std. 1003.1-200x. Because of its widespread use
28536 by historical applications, the standard developers decided to exempt this version of pr from
28537 many of the guidelines.

28538 Implementations are required to accept option-arguments to the −h, −l, −o, and −w options
28539 whether presented as part of the same argument or as a separate argument to pr, as suggested by
28540 the Utility Syntax Guidelines. The −n and −s options, however, are specified as in historical
28541 practice because they are frequently specified without their optional arguments. If a <blank> |
28542 were allowed before the option-argument in these cases, a file operand could mistakenly be |

2948 Technical Standard (2000) (Draft July 31, 2000)

Utilities pr

28543 interpreted as an option-argument in historical applications. |

28544 The text about the minimum number of lines in multi-column output was included to ensure
28545 that a best effort is made in balancing the length of the columns. There are known historical
28546 implementations in which, for example, 60-line files are listed by pr −2 as one column of 56 lines
28547 and a second of 4. Although this is not a problem when a full page with headers and trailers is
28548 produced, it would be relatively useless when used with −t.

28549 Historical implementations of the pr utility have differed in the action taken for the −f option.
28550 BSD uses it as described here for the −F option; System V uses it to change trailing <newline>s
28551 on each page to a <form-feed> and, if standard output is a TTY device, sends an <alert> to
28552 standard error and reads a line from /dev/tty before the first page. There were strong arguments
28553 from both sides of this issue concerning historical practice and additional arguments against the
28554 System V −f behavior, on the grounds that having the behavior of an option change depending
28555 on where output is directed was not a modular design. Therefore, the −f option is not specified
28556 and the −F option has been added.

28557 The <output of date> field in the −l format is specified only for the POSIX locale. As noted, the
28558 format can be different in other locales. No mechanism for defining this is present in this volume |
28559 of IEEE Std. 1003.1-200x, as the appropriate vehicle is a message catalog; that is, the format |
28560 should be specified as a ‘‘message’’.

28561 FUTURE DIRECTIONS
28562 It is possible that a new interface that conforms to the Utility Syntax Guidelines will be
28563 introduced.

28564 SEE ALSO
28565 expand , lp

28566 CHANGE HISTORY
28567 First released in Issue 2.

28568 Issue 4
28569 Aligned with the ISO/IEC 9945-2: 1993 standard.

28570 Issue 6
28571 The following new requirements on POSIX implementations derive from alignment with the
28572 Single UNIX Specification:

28573 • The −p option is added.

28574 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 2949

printf Utilities

28575 NAME
28576 printf — write formatted output

28577 SYNOPSIS
28578 printf format [argument ...]

28579 DESCRIPTION
28580 The printf utility shall write formatted operands to the standard output. The argument operands
28581 shall be formatted under control of the format operand.

28582 OPTIONS
28583 None.

28584 OPERANDS
28585 The following operands shall be supported:

28586 format A string describing the format to use to write the remaining operands. See the
28587 EXTENDED DESCRIPTION section.

28588 argument The strings to be written to standard output, under the control of format . See the
28589 EXTENDED DESCRIPTION section.

28590 STDIN
28591 Not used.

28592 INPUT FILES
28593 None.

28594 ENVIRONMENT VARIABLES
28595 The following environment variables shall affect the execution of printf:

28596 LANG Provide a default value for the internationalization variables that are unset or null.
28597 If LANG is unset or null, the corresponding value from the implementation- |
28598 defined default locale shall be used. If any of the internationalization variables |
28599 contains an invalid setting, the utility shall behave as if none of the variables had
28600 been defined.

28601 LC_ALL If set to a non-empty string value, override the values of all the other
28602 internationalization variables.

28603 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
28604 characters (for example, single-byte as opposed to multi-byte characters in
28605 arguments).

28606 LC_MESSAGES
28607 Determine the locale that should be used to affect the format and contents of
28608 diagnostic messages written to standard error.

28609 LC_NUMERIC
28610 Determine the locale for numeric formatting. It shall affect the format of numbers
28611 written using the e, E, f , g , and G conversion characters (if supported).

28612 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

28613 ASYNCHRONOUS EVENTS
28614 Default.

2950 Technical Standard (2000) (Draft July 31, 2000)

Utilities printf

28615 STDOUT
28616 See the EXTENDED DESCRIPTION section.

28617 STDERR
28618 Used only for diagnostic messages.

28619 OUTPUT FILES
28620 None.

28621 EXTENDED DESCRIPTION
28622 The format operand shall be used as the format string described in the Base Definitions volume of |
28623 IEEE Std. 1003.1-200x, Chapter 5, File Format Notation with the following exceptions: |

28624 1. A <space> character in the format string, in any context other than a flag of a conversion
28625 specification, shall be treated as an ordinary character that is copied to the output.

28626 2. A ’ ∆’ character in the format string shall be treated as a ’ ∆’ character, not as a <space>
28627 character.

28628 3. In addition to the escape sequences shown in the Base Definitions volume of |
28629 IEEE Std. 1003.1-200x, Chapter 5, File Format Notation (’\\’ , ’\a’ , ’\b’ , ’\f’ , ’\n’ , |
28630 ’\r’ , ’\t’ , ’\v’), "\ddd" , where ddd is a one, two, or three-digit octal number, shall be
28631 written as a byte with the numeric value specified by the octal number.

28632 4. The implementation shall not precede or follow output from the d or u conversion
28633 specifications with <blank> characters not specified by the format operand.

28634 5. The implementation shall not precede output from the o conversion specification with
28635 zeros not specified by the format operand.

28636 6. The e, E, f , g , and G conversion specifications need not be supported.

28637 7. An additional conversion character, b, shall be supported as follows. The argument shall
28638 be taken to be a string that may contain backslash-escape sequences. The following
28639 backslash-escape sequences shall be supported:

28640 — The escape sequences listed in the Base Definitions volume of IEEE Std. 1003.1-200x, |
28641 Chapter 5, File Format Notation (’\\’ , ’\a’ , ’\b’ , ’\f’ , ’\n’ , ’\r’ , ’\t’ , ’\v’), |
28642 which shall be converted to the characters they represent

28643 — "\0ddd" , where ddd is a zero, one, two, or three-digit octal number that shall be
28644 converted to a byte with the numeric value specified by the octal number

28645 — ’\c’ , which shall not be written and shall cause printf to ignore any remaining
28646 characters in the string operand containing it, any remaining string operands, and any
28647 additional characters in the format operand

28648 The interpretation of a backslash followed by any other sequence of characters is
28649 unspecified.

28650 Bytes from the converted string shall be written until the end of the string or the number of
28651 bytes indicated by the precision specification is reached. If the precision is omitted, it shall
28652 be taken to be infinite, so all bytes up to the end of the converted string shall be written.

28653 8. For each specification that consumes an argument, the next argument operand shall be
28654 evaluated and converted to the appropriate type for the conversion as specified below.

28655 9. The format operand shall be reused as often as necessary to satisfy the argument operands.
28656 Any extra c or s conversion specifications shall be evaluated as if a null string argument
28657 were supplied; other extra conversion specifications shall be evaluated as if a zero
28658 argument were supplied. If the format operand contains no conversion specifications and

Shell and Utilities, Issue 6 2951

printf Utilities

28659 argument operands are present, the results are unspecified.

28660 10. If a character sequence in the format operand begins with a ’%’ character, but does not
28661 form a valid conversion specification, the behavior is unspecified.

28662 The argument operands shall be treated as strings if the corresponding conversion character is b,
28663 c, or s; otherwise, it shall be evaluated as a C constant, as described by the ISO C standard, with
28664 the following extensions:

28665 • A leading plus or minus sign shall be allowed.

28666 • If the leading character is a single-quote or double-quote, the value shall be the numeric
28667 value in the underlying codeset of the character following the single-quote or double-quote.

28668 If an argument operand cannot be completely converted into an internal value appropriate to
28669 the corresponding conversion specification, a diagnostic message shall be written to standard
28670 error and the utility shall not exit with a zero exit status, but shall continue processing any
28671 remaining operands and shall write the value accumulated at the time the error was detected to
28672 standard output. |

28673 It is not considered an error if an argument operand is not completely used for a c or s |
28674 conversion or if a string operand’s first or second character is used to get the numeric value of a |
28675 character. |

28676 EXIT STATUS
28677 The following exit values shall be returned:

28678 0 Successful completion.

28679 >0 An error occurred.

28680 CONSEQUENCES OF ERRORS
28681 Default.

28682 APPLICATION USAGE
28683 The floating-point formatting conversion specifications of printf() are not required because all
28684 arithmetic in the shell is integer arithmetic. The awk utility performs floating-point calculations
28685 and provides its own printf function. The bc utility can perform arbitrary-precision floating-
28686 point arithmetic, but does not provide extensive formatting capabilities. (This printf utility
28687 cannot really be used to format bc output; it does not support arbitrary precision.)
28688 Implementations are encouraged to support the floating-point conversions as an extension.

28689 Note that this printf utility, like the printf() function defined in the System Interfaces volume of
28690 IEEE Std. 1003.1-200x on which it is based, makes no special provision for dealing with multi-
28691 byte characters when using the %c conversion specification or when a precision is specified in a
28692 %b or %s conversion specification. Applications should be extremely cautious using either of
28693 these features when there are multi-byte characters in the character set.

28694 No provision is made in this volume of IEEE Std. 1003.1-200x which allows field widths and
28695 precisions to be specified as ’*’ since the ’*’ can be replaced directly in the format operand
28696 using shell variable substitution. Implementations can also provide this feature as an extension
28697 if they so choose.

28698 Hexadecimal character constants as defined in the ISO C standard are not recognized in the
28699 format operand because there is no consistent way to detect the end of the constant. Octal
28700 character constants are limited to, at most, three octal digits, but hexadecimal character
28701 constants are only terminated by a non-hex-digit character. In the ISO C standard, the "##"
28702 concatenation operator can be used to terminate a constant and follow it with a hexadecimal
28703 character to be written. In the shell, concatenation occurs before the printf utility has a chance to

2952 Technical Standard (2000) (Draft July 31, 2000)

Utilities printf

28704 parse the end of the hexadecimal constant.

28705 The %b conversion specification is not part of the ISO C standard; it has been added here as a
28706 portable way to process backslash escapes expanded in string operands as provided by the echo
28707 utility. See also the APPLICATION USAGE section of echo (on page 2543) for ways to use printf
28708 as a replacement for all of the traditional versions of the echo utility.

28709 If an argument cannot be parsed correctly for the corresponding conversion specification, the
28710 printf utility is required to report an error. Thus, overflow and extraneous characters at the end
28711 of an argument being used for a numeric conversion shall be reported as errors. |

28712 EXAMPLES
28713 To alert the user and then print and read a series of prompts:

28714 printf "\aPlease fill in the following: \nName: "
28715 read name
28716 printf "Phone number: "
28717 read phone

28718 To read out a list of right and wrong answers from a file, calculate the percentage correctly, and
28719 print them out. The numbers are right-justified and separated by a single <tab> character. The
28720 percentage is written to one decimal place of accuracy:

28721 while read right wrong ; do
28722 percent=$(echo "scale=1;($right*100)/($right+$wrong)" | bc)
28723 printf "%2d right\t%2d wrong\t(%s%%)\n" \
28724 $right $wrong $percent
28725 done < database_file

28726 The command:

28727 printf "%5d%4d\n" 1 21 321 4321 54321

28728 produces:

28729 1 21
28730 3214321
28731 54321 0

28732 Note that the format operand is used three times to print all of the given strings and that a ’0’
28733 was supplied by printf to satisfy the last %4d conversion specification.

28734 The printf utility is required to notify the user when conversion errors are detected while
28735 producing numeric output; thus, the following results would be expected on an implementation
28736 with 32-bit twos-complement integers when %d is specified as the format operand:

28737 Standard
28738 Argument Output Diagnostic Output___
28739 5a 5 printf: "5a" not completely converted
28740 9999999999 2147483647 printf: "9999999999" arithmetic overflow
28741 −9999999999 −2147483648 printf: " −9999999999" arithmetic overflow
28742 ABC 0 printf: "ABC" expected numeric value___LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

28743 The diagnostic message format is not specified, but these examples convey the type of
28744 information that should be reported. Note that the value shown on standard output is what
28745 would be expected as the return value from the strtol() function as defined in the System
28746 Interfaces volume of IEEE Std. 1003.1-200x. A similar correspondence exists between %u and
28747 strtoul() and %e, %f, and %g (if the implementation supports floating-point conversions) and
28748 strtod().

Shell and Utilities, Issue 6 2953

printf Utilities

28749 In a locale using the ISO/IEC 646: 1991 standard as the underlying codeset, the command:

28750 printf "%d\n" 3 +3 −3 \’3 \"+3 "’ −3"

28751 produces:

28752 3 Numeric value of constant 3

28753 3 Numeric value of constant 3

28754 −3 Numeric value of constant −3

28755 51 Numeric value of the character ’3’ in the ISO/IEC 646: 1991 standard codeset

28756 43 Numeric value of the character ’+’ in the ISO/IEC 646: 1991 standard codeset

28757 45 Numeric value of the character ’ −’ in the ISO/IEC 646: 1991 standard codeset

28758 Note that in a locale with multi-byte characters, the value of a character is intended to be the
28759 value of the equivalent of the wchar_t representation of the character as described in the System
28760 Interfaces volume of IEEE Std. 1003.1-200x.

28761 RATIONALE
28762 The printf utility was added to provide functionality that has historically been provided by echo.
28763 However, due to irreconcilable differences in the various versions of echo extant, the version has
28764 few special features, leaving those to this new printf utility, which is based on one in the Ninth
28765 Edition system.

28766 The EXTENDED DESCRIPTION section almost exactly matches the printf() function in the
28767 ISO C standard, although it is described in terms of the file format notation in the Base |
28768 Definitions volume of IEEE Std. 1003.1-200x, Chapter 5, File Format Notation. |

28769 FUTURE DIRECTIONS
28770 None.

28771 SEE ALSO
28772 awk , bc, echo , the System Interfaces volume of IEEE Std. 1003.1-200x, printf()

28773 CHANGE HISTORY
28774 First released in Issue 4.

2954 Technical Standard (2000) (Draft July 31, 2000)

Utilities prs

28775 NAME
28776 prs — print an SCCS file (DEVELOPMENT)

28777 SYNOPSIS
28778 XSI prs [−a][−d dataspec][−r [SID]] file ...

28779 XSI prs [−e| −l] −c cutoff [−d dataspec] file ...

28780 XSI prs [−e| −l] −r [SID][−d dataspec] file ...
28781

28782 DESCRIPTION
28783 The prs utility shall write to standard output parts or all of an SCCS file in a user-supplied
28784 format.

28785 OPTIONS
28786 The prs utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
28787 12.2, Utility Syntax Guidelines, except that the −r option has an optional option-argument. This |
28788 optional option-argument cannot be presented as a separate argument. The following options
28789 shall be supported:

28790 −d dataspec Specify the output data specification. The dataspec shall be a string consisting of |
28791 SCCS file data keywords (see Data Keywords (on page 2956)) interspersed with |
28792 optional user-supplied text.

28793 −r[SID] Specify the SCCS identification string (SID) of a delta for which information is
28794 desired. If no SID option-argument is specified, the SID of the most recently
28795 created delta is assumed.

28796 −e Request information for all deltas created earlier than and including the delta
28797 designated via the −r option or the date-time given by the −c option.

28798 −l Request information for all deltas created later than and including the delta
28799 designated via the −r option or the date-time given by the −c option.

28800 −c cutoff Indicate the cutoff date-time, in the form:

28801 YY[MM[DD[HH[MM[SS]]]]]

28802 For the YY component, values in the range [69-99] shall refer to years in the
28803 twentieth century (1969 to 1999 inclusive); values in the range [00-68] shall refer to
28804 years in the twenty-first century (2000 to 2068 inclusive).

28805 No changes (deltas) to the SCCS file that were created after the specified cutoff
28806 date-time shall be included in the output. Units omitted from the date-time default
28807 to their maximum possible values; for example, −c 7502 is equivalent to
28808 −c 750228235959.

28809 −a Request writing of information for both removed, that is, delta type=R (see rmdel
28810 (on page 3037)) and existing, that is, delta type=D, deltas. If the −a option is not
28811 specified, information for existing deltas only shall be provided.

28812 OPERANDS
28813 The following operand shall be supported:

28814 file A path name of an existing SCCS file or a directory. If file is a directory, the prs |
28815 utility shall behave as though each file in the directory were specified as a named |
28816 file, except that non-SCCS files (last component of the path name does not begin |
28817 with s.) and unreadable files shall be silently ignored. |

Shell and Utilities, Issue 6 2955

prs Utilities

28818 If a single instance file is specified as ’ −’ , the standard input shall be read; each
28819 line of the standard input shall be taken to be the name of an SCCS file to be
28820 processed. Non-SCCS files and unreadable files shall be silently ignored. |

28821 STDIN
28822 The standard input shall be a text file used only when the file operand is specified as ’ −’ . Each
28823 line of the text file shall be interpreted as an SCCS path name.

28824 INPUT FILES
28825 Any SCCS files displayed are files of an unspecified format.

28826 ENVIRONMENT VARIABLES
28827 The following environment variables shall affect the execution of prs:

28828 LANG Provide a default value for the internationalization variables that are unset or null.
28829 If LANG is unset or null, the corresponding value from the implementation- |
28830 defined default locale shall be used. If any of the internationalization variables |
28831 contains an invalid setting, the utility shall behave as if none of the variables had
28832 been defined.

28833 LC_ALL If set to a non-empty string value, override the values of all the other
28834 internationalization variables.

28835 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
28836 characters (for example, single-byte as opposed to multi-byte characters in
28837 arguments and input files).

28838 LC_MESSAGES
28839 Determine the locale that should be used to affect the format and contents of
28840 diagnostic messages written to standard error.

28841 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

28842 ASYNCHRONOUS EVENTS
28843 Default.

28844 STDOUT
28845 The standard output shall be a text file whose format is dependent on the data keywords
28846 specified with the −d option.

28847 Data Keywords

28848 Data keywords specify which parts of an SCCS file shall be retrieved and output. All parts of an
28849 SCCS file have an associated data keyword. A data keyword may appear in a dataspec multiple
28850 times.

28851 The information written by prs consists of:

28852 1. The user-supplied text

28853 2. Appropriate values (extracted from the SCCS file) substituted for the recognized data
28854 keywords in the order of appearance in the dataspec

28855 The format of a data keyword value shall either be simple (’S’), in which keyword substitution |
28856 is direct, or multi-line (’M’).

28857 User-supplied text shall be any text other than recognized data keywords. A <tab> character |
28858 shall be specified by ’\t’ and <newline> by ’\n’ . When the −r option is not specified, the |
28859 default dataspec shall be: |

2956 Technical Standard (2000) (Draft July 31, 2000)

Utilities prs

28860 :PN::\n\n

28861 and the following dataspec shall be used for each selected delta: |

28862 :Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:\n

28863 ___
28864 SCCS File Data Keywords___
28865 Keyword Data Item File Section Value Format___L

L
L

LL LL LL LL L
L
L

28866 :Dt: Delta information Delta Table See below* S
28867 :DL: Delta line statistics " :Li:/:Ld:/:Lu: S
28868 :Li: Lines inserted by Delta " nnnnn S
28869 :Ld: Lines deleted by Delta " nnnnn S
28870 :Lu: Lines unchanged by Delta " nnnnn S
28871 :DT: Delta type " D or R S
28872 :I: SCCS ID string (SID) " See below** S
28873 :R: Release number " nnnn S
28874 :L: Level number " nnnn S
28875 :B: Branch number " nnnn S
28876 :S: Sequence number " nnnn S
28877 :D: Date delta created " :Dy:/:Dm:/:Dd: S
28878 :Dy: Year delta created " nn S
28879 :Dm: Month delta created " nn S
28880 :Dd: Day delta created " nn S
28881 :T: Time delta created " :Th:::Tm:::Ts: S
28882 :Th: Hour delta created " nn S
28883 :Tm: Minutes delta created " nn S
28884 :Ts: Seconds delta created " nn S
28885 :P: Programmer who created Delta " logname S
28886 :DS: Delta sequence number " nnnn S
28887 :DP: Predecessor Delta sequence " nnnn S
28888 number
28889 :DI: Sequence number of deltas " :Dn:/:Dx:/:Dg: S
28890 included, excluded or ignored
28891 :Dn: Deltas included (sequence #) " :DS: :DS: . . . S
28892 :Dx: Deltas excluded (sequence #) " :DS: :DS: . . . S
28893 :Dg: Deltas ignored (sequence #) " :DS: :DS: . . . S
28894 :MR: MR numbers for delta " text M
28895 :C: Comments for delta " text M
28896 :UN: User names User Names text M
28897 :FL: Flag list Flags text M
28898 :Y: Module type flag " text S
28899 :MF: MR validation flag " yes or no S
28900 :MP: MR validation program name " text S
28901 :KF: Keyword error, warning flag " yes or no S
28902 :KV: Keyword validation string " text S
28903 :BF: Branch flag " yes or no S
28904 :J: Joint edit flag " yes or no S
28905 :LK: Locked releases " :R: . . . S
28906 :Q: User-defined keyword " text S___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Shell and Utilities, Issue 6 2957

prs Utilities

28907 ___
28908 SCCS File Data Keywords___
28909 Keyword Data Item File Section Value Format___L

L
L

LL LL LL LL L
L
L

28910 :M: Module name " text S
28911 :FB: Floor boundary " :R: S
28912 :CB: Ceiling boundary " :R: S
28913 :Ds: Default SID " :I: S
28914 :ND: Null delta flag " yes or no S
28915 :FD: File descriptive text Comments text M
28916 :BD: Body Body text M
28917 :GB: Gotten body " text M
28918 :W: A form of what string N/A :Z::M:\t:I: S
28919 :A: A form of what string N/A :Z::Y: :M: :I::Z: S
28920 :Z: what string delimiter N/A @(#) S
28921 :F: SCCS file name N/A text S
28922 :PN: SCCS file path name N/A text S___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

28923 * :Dt:=:DT: :I: :D: :T: :P: :DS: :DP:

28924 ** :R:.:L:.:B:.:S: if the delta is a branch delta (:BF:= =yes)
28925 :R:.:L: if the delta is not a branch delta (:BF:= =no)

28926 STDERR
28927 Used only for diagnostic messages.

28928 OUTPUT FILES
28929 None.

28930 EXTENDED DESCRIPTION
28931 None.

28932 EXIT STATUS
28933 The following exit values shall be returned:

28934 0 Successful completion.

28935 >0 An error occurred.

28936 CONSEQUENCES OF ERRORS
28937 Default.

28938 APPLICATION USAGE
28939 None.

28940 EXAMPLES

28941 1. The following example:

28942 prs −d "User Names for :F: are:\n:UN:" s.file

28943 may write to standard output:

28944 User Names for s.file are:
28945 xyz
28946 131
28947 abc

28948 2. The following example:

28949 prs −d "Delta for pgm :M:: :I: − :D: By :P:" −r s.file

2958 Technical Standard (2000) (Draft July 31, 2000)

Utilities prs

28950 may write to standard output:

28951 Delta for pgm main.c: 3.7 − 77/12/01 By cas

28952 3. As a special case:

28953 prs s.file

28954 may write to standard output:

28955 s.file:
28956 <blank line >
28957 D 1.1 77/12/01 00:00:00 cas 1 000000/00000/00000
28958 MRs:
28959 bl78 −12345
28960 bl79 −54321
28961 COMMENTS:
28962 this is the comment line for s.file initial delta
28963 <blank line >

28964 for each delta table entry of the D type. The only option allowed to be used with this
28965 special case is the −a option.

28966 RATIONALE
28967 None.

28968 FUTURE DIRECTIONS
28969 None.

28970 SEE ALSO
28971 admin , delta , get, what

28972 CHANGE HISTORY
28973 First released in Issue 2.

28974 Issue 4
28975 Format reorganized.

28976 Exceptions to Utility Syntax Guidelines conformance noted.

28977 Internationalized environment variable support mandated.

28978 Issue 5
28979 The phrase ‘‘in which keyword substitution is followed by a <newline>’’ is deleted from the end
28980 of the second paragraph of Data Keywords (on page 2956).

28981 The interpretation of the YY component of the −c cutoff argument is noted.

28982 Issue 6
28983 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements.

Shell and Utilities, Issue 6 2959

ps Utilities

28984 NAME
28985 ps — report process status

28986 SYNOPSIS
28987 UP XSI ps [−aA][−defl][−G grouplist][−o format] ... [−p proclist][−t termlist]

28988 [−U userlist][−g grouplist][−n namelist][−u userlist]
28989

28990 DESCRIPTION
28991 The ps utility shall write information about processes, subject to having the appropriate
28992 privileges to obtain information about those processes.

28993 By default, ps selects all processes with the same effective user ID as the current user and the
28994 same controlling terminal as the invoker.

28995 OPTIONS
28996 The ps utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2,
28997 Utility Syntax Guidelines.

28998 The following options shall be supported:

28999 −a Write information for all processes associated with terminals. Implementations
29000 may omit session leaders from this list.

29001 −A Write information for all processes.

29002 XSI −d Write information for all processes, except session leaders.

29003 XSI −e Write information for all processes. (Equivalent to −A.)

29004 XSI −f Generate a full listing. (See the STDOUT section for the contents of a full listing.)

29005 XSI −g grouplist Write information for processes whose session leaders are given in grouplist . The
29006 application shall ensure that the grouplist is a single argument in the form of a
29007 <blank> or comma-separated list.

29008 −G grouplist Write information for processes whose real group ID numbers are given in
29009 grouplist . The application shall ensure that the grouplist is a single argument in the
29010 form of a <blank> or comma-separated list.

29011 XSI −l Generate a long listing. (See the STDOUT section for the contents of a long listing.)
29012

29013 XSI −n namelist Specify the name of an alternative system namelist file in place of the default. The
29014 name of the default file and the format of a namelist file are unspecified.

29015 −o format Write information according to the format specification given in format . This is
29016 fully described in the STDOUT section. Multiple −o options can be specified; the
29017 format specification shall be interpreted as the <space> character-separated
29018 concatenation of all the format option-arguments.

29019 −p proclist Write information for processes whose process ID numbers are given in proclist .
29020 The application shall ensure that the proclist is a single argument in the form of a
29021 <blank> or comma-separated list.

29022 −t termlist Write information for processes associated with terminals given in termlist. The
29023 application shall ensure that the termlist is a single argument in the form of a
29024 <blank> or comma-separated list. Terminal identifiers shall be given in an
29025 XSI implementation-defined format. On XSI-conformant systems, they shall be given
29026 in one of two forms: the device’s file name (for example, tty04) or, if the device’s

2960 Technical Standard (2000) (Draft July 31, 2000)

Utilities ps

29027 file name starts with tty, just the identifier following the characters tty (for
29028 example, "04").

29029 XSI −u userlist Write information for processes whose user ID numbers or login names are given
29030 in userlist. The application shall ensure that the userlist is a single argument in the
29031 form of a <blank> or comma-separated list. In the listing, the numerical user ID is
29032 written unless the −f option is used, in which case the login name is written.

29033 −U userlist Write information for processes whose real user ID numbers or login names are
29034 given in userlist. The application shall ensure that the userlist is a single argument
29035 in the form of a <blank> or comma-separated list.

29036 With the exception of −o format , all of the options shown are used to select processes. If any are
29037 specified, the default list shall be ignored and ps shall select the processes represented by the
29038 bitwise-inclusive OR of all the selection-criteria options.

29039 OPERANDS
29040 None.

29041 STDIN
29042 Not used.

29043 INPUT FILES
29044 None.

29045 ENVIRONMENT VARIABLES
29046 The following environment variables shall affect the execution of ps:

29047 COLUMNS Override the system-selected horizontal screen size, used to determine the number
29048 of text columns to display. See the Base Definitions volume of
29049 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables for valid values and
29050 results when it is unset or null.

29051 LANG Provide a default value for the internationalization variables that are unset or null.
29052 If LANG is unset or null, the corresponding value from the implementation-
29053 defined default locale shall be used. If any of the internationalization variables
29054 contains an invalid setting, the utility shall behave as if none of the variables had
29055 been defined.

29056 LC_ALL If set to a non-empty string value, override the values of all the other
29057 internationalization variables.

29058 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
29059 characters (for example, single-byte as opposed to multi-byte characters in
29060 arguments).

29061 LC_MESSAGES
29062 Determine the locale that should be used to affect the format and contents of
29063 diagnostic messages written to standard error and informative messages written to
29064 standard output.

29065 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

29066 LC_TIME Determine the format and contents of the date and time strings displayed.

29067 ASYNCHRONOUS EVENTS
29068 Default.

Shell and Utilities, Issue 6 2961

ps Utilities

29069 STDOUT
29070 When the −o option is not specified, the standard output format is unspecified.

29071 XSI On XSI-conformant systems, the output format is as follows. The column headings and
29072 descriptions of the columns in a ps listing are given below. The precise meanings of these fields
29073 are implementation-defined. The letters ’f’ and ’l’ (below) indicate the option (full or long)
29074 that shall cause the corresponding heading to appear; all means that the heading always
29075 appears. Note that these two options determine only what information is provided for a process;
29076 they do not determine which processes are listed.

29077 Flags (octal and additive) associated with the process.F (l)
29078 S (l) The state of the process.
29079 The user ID number of the process owner; the login name is printed
29080 under the −f option.

UID (f,l)

29081 The process ID of the process; it is possible to kill a process if this
29082 datum is known.

PID (all)

29083 PPID (f,l) The process ID of the parent process.
29084 C (f,l) Processor utilization for scheduling.
29085 The priority of the process; higher numbers mean lower priority.PRI (l)
29086 Nice value; used in priority computation.NI (l)
29087 ADDR (l) The address of the process.
29088 The size in blocks of the core image of the process.SZ (l)
29089 The event for which the process is waiting or sleeping; if blank, the
29090 process is running.

WCHAN (l)

29091 STIME (f) Starting time of the process.
29092 TTY (all) The controlling terminal for the process.
29093 The cumulative execution time for the process.TIME (all)
29094 The command name; the full command name and its arguments are
29095 written under the −f option.

CMD (all)

29096 A process that has exited and has a parent, but has not yet been waited for by the parent, is
29097 marked defunct.

29098 Under the option −f, ps tries to determine the command name and arguments given when the
29099 process was created by examining memory or the swap area. Failing this, the command name, as
29100 it would appear without the option −f, is written in square brackets.

29101 The −o option allows the output format to be specified under user control.

29102 The application shall ensure that the format specification is a list of names presented as a single
29103 argument, <blank> or comma-separated. Each variable has a default header. The default header
29104 can be overridden by appending an equals sign and the new text of the header. The rest of the
29105 characters in the argument shall be used as the header text. The fields specified shall be written
29106 in the order specified on the command line, and should be arranged in columns in the output.
29107 The field widths shall be selected by the system to be at least as wide as the header text (default
29108 or overridden value). If the header text is null, such as −o user=, the field width shall be at least
29109 as wide as the default header text. If all header text fields are null, no header line shall be
29110 written.

29111 The following names are recognized in the POSIX locale:

29112 ruser The real user ID of the process. This shall be the textual user ID, if it can be obtained
29113 and the field width permits, or a decimal representation otherwise.

2962 Technical Standard (2000) (Draft July 31, 2000)

Utilities ps

29114 user The effective user ID of the process. This shall be the textual user ID, if it can be
29115 obtained and the field width permits, or a decimal representation otherwise.

29116 rgroup The real group ID of the process. This shall be the textual group ID, if it can be obtained
29117 and the field width permits, or a decimal representation otherwise.

29118 group The effective group ID of the process. This shall be the textual group ID, if it can be
29119 obtained and the field width permits, or a decimal representation otherwise.

29120 pid The decimal value of the process ID.

29121 ppid The decimal value of the parent process ID.

29122 pgid The decimal value of the process group ID.

29123 pcpu The ratio of CPU time used recently to CPU time available in the same period,
29124 expressed as a percentage. The meaning of ‘‘recently’’ in this context is unspecified. The
29125 CPU time available is determined in an unspecified manner.

29126 vsz The size of the process in (virtual) memory in kilobytes as a decimal integer.

29127 nice The decimal value of the nice value of the process; see nice (on page 2872).

29128 etime In the POSIX locale, the elapsed time since the process was started, in the form:

29129 [[dd−] hh:] mm: ss

29130 where dd shall represent the number of days, hh the number of hours, mm the number
29131 of minutes, and ss the number of seconds. The dd field shall be a decimal integer. The
29132 hh , mm, and ss fields shall be two-digit decimal integers padded on the left with zeros.

29133 time In the POSIX locale, the cumulative CPU time of the process in the form:

29134 [dd−] hh: mm: ss

29135 The dd , hh , mm, and ss fields shall be as described in the etime specifier.

29136 tty The name of the controlling terminal of the process (if any) in the same format used by
29137 the who utility.

29138 comm The name of the command being executed (argv[0] value) as a string.

29139 args The command with all its arguments as a string. The implementation may truncate this |
29140 value to the field width; it is implementation-defined whether any further truncation |
29141 occurs. It is unspecified whether the string represented is a version of the argument list
29142 as it was passed to the command when it started, or is a version of the arguments as
29143 they may have been modified by the application. Applications cannot depend on being
29144 able to modify their argument list and having that modification be reflected in the
29145 output of ps.

29146 Any field need not be meaningful in all implementations. In such a case a hyphen (’ −’) should
29147 be output in place of the field value.

29148 Only comm and args shall be allowed to contain <blank> characters; all others shall not. Any |
29149 implementation-defined variables shall be specified in the system documentation along with the |
29150 default header and indicating if the field may contain <blank> characters.

29151 The following table specifies the default header to be used in the POSIX locale corresponding to
29152 each format specifier.

Shell and Utilities, Issue 6 2963

ps Utilities

29153 Table 4-17 Variable Names and Default Headers in ps

29154 Format Specifier Default Header Format Specifier Default Header___
29155 args COMMAND ppid PPID
29156 comm COMMAND rgroup RGROUP
29157 etime ELAPSED ruser RUSER
29158 group GROUP time TIME
29159 nice NI tty TT
29160 pcpu %CPU user USER
29161 pgid PGID vsz VSZ
29162 pid PID___LL

L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

29163 STDERR
29164 Used only for diagnostic messages.

29165 OUTPUT FILES
29166 None.

29167 EXTENDED DESCRIPTION
29168 None.

29169 EXIT STATUS
29170 The following exit values shall be returned:

29171 0 Successful completion.

29172 >0 An error occurred.

29173 CONSEQUENCES OF ERRORS
29174 Default.

29175 APPLICATION USAGE
29176 Things can change while ps is running; the snapshot it gives is only true for an instant, and might
29177 not be accurate by the time it is displayed.

29178 The args format specifier is allowed to produce a truncated version of the command arguments.
29179 In some implementations, this information is no longer available when the ps utility is executed.

29180 If the field width is too narrow to display a textual ID, the system may use a numeric version.
29181 Normally, the system would be expected to choose large enough field widths, but if a large
29182 number of fields were selected to write, it might squeeze fields to their minimum sizes to fit on
29183 one line. One way to ensure adequate width for the textual IDs is to override the default header
29184 for a field to make it larger than most or all user or group names.

29185 There is no special quoting mechanism for header text. The header text is the rest of the
29186 argument. If multiple header changes are needed, multiple −o options can be used, such as:

29187 ps −o "user=User Name" −o pid=Process\ ID

29188 On some systems, especially multi-level secure systems, ps may be severely restricted and
29189 produce information only about child processes owned by the user. |

29190 EXAMPLES
29191 The command:

29192 ps −o user,pid,ppid=MOM −o args

29193 writes at least the following in the POSIX locale:

29194 USER PID MOM COMMAND
29195 helene 34 12 ps −o uid,pid,ppid=MOM −o args

2964 Technical Standard (2000) (Draft July 31, 2000)

Utilities ps

29196 The contents of the COMMAND field need not be the same in all implementations, due to
29197 possible truncation.

29198 RATIONALE
29199 There is very little commonality between BSD and System V implementations of ps. Many
29200 options conflict or have subtly different usages. The standard developers attempted to select a
29201 set of options that were useful on a wide range of systems and selected options that either can be
29202 implemented on both BSD and System V-based systems without breaking the current
29203 implementations or where the options are sufficiently similar that any changes would not be
29204 unduly problematic for users or implementors.

29205 It is recognized that on some systems, especially multi-level secure systems, ps may be nearly
29206 useless. The default output has therefore been chosen such that it does not break historical
29207 implementations and also is likely to provide at least some useful information on most systems.

29208 The major change is the addition of the format specification capability. The motivation for this
29209 invention is to provide a mechanism for users to access a wider range of system information, if
29210 the system permits it, in a portable manner. The fields chosen to appear in this volume of
29211 IEEE Std. 1003.1-200x were arrived at after considering what concepts were likely to be both
29212 reasonably useful to the ‘‘average’’ user and had a reasonable chance of being implemented on a
29213 wide range of systems. Again it is recognized that not all systems are able to provide all the
29214 information and, conversely, some may wish to provide more. It is hoped that the approach
29215 adopted will be sufficiently flexible and extensible to accommodate most systems.
29216 Implementations may be expected to introduce new format specifiers.

29217 The default output should consist of a short listing containing the process ID, terminal name,
29218 cumulative execution time, and command name of each process.

29219 The preference of the standard developers would have been to make the format specification an
29220 operand of the ps command. Unfortunately, BSD usage precluded this.

29221 At one time a format was included to display the environment array of the process. This was
29222 deleted because there is no portable way to display it.

29223 The −A option is equivalent to the BSD −g and the SVID −e. Because the two systems differed, a
29224 mnemonic compromise was selected.

29225 The −a option is described with some optional behavior because the SVID omits session leaders,
29226 but BSD does not.

29227 In an early proposal, format specifiers appeared for priority and start time. The former was not
29228 defined adequately in this volume of IEEE Std. 1003.1-200x and was removed in deference to the
29229 defined nice value; the latter because elapsed time was considered to be more useful.

29230 In a new BSD version of ps, a −O option can be used to write all of the default information,
29231 followed by additional format specifiers. This was not adopted because the default output is |
29232 implementation-defined. Nevertheless, this is a useful option that should be reserved for that |
29233 purpose. In the −o option for the POSIX Shell and Utilities ps, the format is the concatenation of
29234 each −o. Therefore, the user can have an alias or function that defines the beginning of their
29235 desired format and add more fields to the end of the output in certain cases where that would be
29236 useful.

29237 The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
29238 require that they all use the same format.

29239 The pcpu field indicates that the CPU time available is determined in an unspecified manner.
29240 This is because it is difficult to express an algorithm that is useful across all possible machine
29241 architectures. Historical counterparts to this value have attempted to show percentage of use in

Shell and Utilities, Issue 6 2965

ps Utilities

29242 the recent past, such as the preceding minute. Frequently, these values for all processes did not
29243 add up to 100%. Implementations are encouraged to provide data in this field to users that will
29244 help them identify processes currently affecting the performance of the system.

29245 FUTURE DIRECTIONS
29246 None.

29247 SEE ALSO
29248 kill , nice, renice

29249 CHANGE HISTORY
29250 First released in Issue 2.

29251 Issue 4
29252 Aligned with the ISO/IEC 9945-2: 1993 standard.

29253 Issue 6
29254 This utility is now marked as part of the User Portability Utilities option.

29255 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2966 Technical Standard (2000) (Draft July 31, 2000)

Utilities pwd

29256 NAME
29257 pwd — return working directory name

29258 SYNOPSIS
29259 pwd [−L | −P]

29260 DESCRIPTION
29261 The pwd utility shall write to standard output an absolute path name of the current working
29262 directory, which does not contain the file names dot or dot-dot.

29263 OPTIONS
29264 The pwd utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
29265 12.2, Utility Syntax Guidelines. |

29266 The following options shall be supported by the implementation:

29267 −L If the PWD environment variable contains an absolute path name of the current
29268 directory that does not contain the file names dot or dot-dot, pwd shall write this
29269 path name to standard output. Otherwise, the −L option shall behave as the −P
29270 option.

29271 −P The absolute path name written shall not contain file names that, in the context of
29272 the path name, refer to files of type symbolic link.

29273 If both −L and −P are specified, the last one shall apply. If neither −L nor −P is specified, the pwd
29274 utility shall behave as if −L had been specified.

29275 OPERANDS
29276 None.

29277 STDIN
29278 Not used.

29279 INPUT FILES
29280 None.

29281 ENVIRONMENT VARIABLES
29282 The following environment variables shall affect the execution of pwd:

29283 LANG Provide a default value for the internationalization variables that are unset or null.
29284 If LANG is unset or null, the corresponding value from the implementation- |
29285 defined default locale shall be used. If any of the internationalization variables |
29286 contains an invalid setting, the utility shall behave as if none of the variables had
29287 been defined.

29288 LC_ALL If set to a non-empty string value, override the values of all the other
29289 internationalization variables.

29290 LC_MESSAGES
29291 Determine the locale that should be used to affect the format and contents of
29292 diagnostic messages written to standard error.

29293 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

29294 PWD If the −P option is in effect, this variable shall be set to an absolute path name of
29295 the current working directory that does not contain any components that specify
29296 symbolic links, does not contain any components that are dot, and does not
29297 contain any components that are dot-dot. If an application sets or unsets the value
29298 of PWD, the behavior of pwd is unspecified.

Shell and Utilities, Issue 6 2967

pwd Utilities

29299 ASYNCHRONOUS EVENTS
29300 Default.

29301 STDOUT
29302 The pwd utility output is an absolute path name of the current working directory:

29303 "%s\n", < directory pathname >

29304 STDERR
29305 Used only for diagnostic messages.

29306 OUTPUT FILES
29307 None.

29308 EXTENDED DESCRIPTION
29309 None.

29310 EXIT STATUS
29311 The following exit values shall be returned:

29312 0 Successful completion.

29313 >0 An error occurred.

29314 CONSEQUENCES OF ERRORS
29315 If an error is detected, output shall not be written to standard output, a diagnostic message shall
29316 be written to standard error, and the exit status is not zero.

29317 APPLICATION USAGE
29318 None.

29319 EXAMPLES
29320 None.

29321 RATIONALE
29322 Some implementations have historically provided pwd as a shell special built-in command.

29323 In most utilities, if an error occurs, partial output may be written to standard output. This does
29324 not happen in historical implementations of pwd. Because pwd is frequently used in historical
29325 shell scripts without checking the exit status, it is important that the historical behavior is
29326 required here; therefore, the CONSEQUENCES OF ERRORS section specifically disallows any
29327 partial output being written to standard output.

29328 FUTURE DIRECTIONS
29329 None.

29330 SEE ALSO
29331 cd , the System Interfaces volume of IEEE Std. 1003.1-200x, getcwd()

29332 CHANGE HISTORY
29333 First released in Issue 2.

29334 Issue 4
29335 Aligned with the ISO/IEC 9945-2: 1993 standard.

29336 Issue 6
29337 The −P and −L options are added to describe actions relating to symbolic links as specified in the
29338 IEEE P1003.2b draft standard.

2968 Technical Standard (2000) (Draft July 31, 2000)

Utilities qalter

29339 NAME
29340 qalter — alter batch job

29341 SYNOPSIS
29342 BE qalter [−a date_time][−A account_string][−c interval][−e path_name]
29343 [−h hold_list][−j join_list][−k keep_list][−l resource_list]
29344 [−m mail_options][−M mail_list][−N name][−o path_name]
29345 [−p priority][−r y| n][−S path_name_list][−u user_list]
29346 job_identifier ...
29347

29348 DESCRIPTION
29349 The attributes of a batch job are altered by a request to the batch server that manages the batch
29350 job. The qalter utility is a user-accessible batch client that requests the alteration of the attributes
29351 of one or more batch jobs.

29352 The qalter utility shall alter the attributes of those batch jobs, and only those batch jobs, for which
29353 a batch job_identifier is presented to the utility.

29354 The qalter utility shall alter the attributes of batch jobs in the order in which the batch
29355 job_identifiers are presented to the utility.

29356 If the qalter utility fails to process a batch job_identifier successfully, the utility shall proceed to
29357 process the remaining batch job_identifiers, if any.

29358 For each batch job_identifier for which the qalter utility succeeds, each attribute of the identified
29359 batch job shall be altered as indicated by all the options presented to the utility.

29360 For each identified batch job for which the qalter utility fails, the utility shall not alter any
29361 attribute of the batch job.

29362 For each batch job that the qalter utility processes, the utility shall not modify any attribute other
29363 than those required by the options and option-arguments presented to the utility.

29364 The qalter utility shall alter batch jobs by sending a Modify Job Request to the batch server that
29365 manages each batch job. At the time the qalter utility exits, it shall have modified the batch job
29366 corresponding to each successfully processed batch job_identifier. An attempt to alter the
29367 attributes of a batch job in the RUNNING state is implementation-defined. |

29368 OPTIONS
29369 The qalter utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
29370 12.2, Utility Syntax Guidelines. |

29371 The following options shall be supported by the implementation:

29372 −a date_time Redefine the time at which the batch job becomes eligible for execution.

29373 The qalter utility shall accept an option-argument that conforms to the syntax of
29374 the date_time operand of the touch utility.

29375 The qalter utility shall set the Execution_Time attribute of the batch job to the
29376 number of seconds since the Epoch that is equivalent to the local time expressed
29377 by the value of the date_time option-argument. Specifying a date_time option-
29378 argument that represents a time (number of seconds since the Epoch) earlier than
29379 the time at which the utility exits shall have the same effect on batch job execution
29380 as if the −a option had not been presented to the utility. |

29381 −A account_string
29382 Redefine the account to which the resource consumption of the batch job should be
29383 charged.

Shell and Utilities, Issue 6 2969

qalter Utilities

29384 The syntax of the account_string option-argument is unspecified.

29385 The qalter utility shall set the Account_Name attribute of the batch job to the value
29386 of the account_string option-argument.

29387 −c interval Redefine whether the batch job should be checkpointed, and if so, how often.

29388 The qalter utility shall accept a value for the interval option-argument that is one of
29389 the following:

29390 n No checkpointing is to be performed on the batch batch job
29391 (NO_CHECKPOINT).

29392 s Checkpointing is to be performed only when the batch server is shut
29393 down (CHECKPOINT_AT_SHUTDOWN).

29394 c Automatic periodic checkpointing is to be performed at the
29395 Minimum_Cpu_Interval attribute of the batch queue, in units of CPU
29396 minutes (CHECKPOINT_AT_MIN_CPU_INTERVAL).

29397 c=minutes Automatic periodic checkpointing is to be performed every minutes
29398 of CPU time, or every Minimum_Cpu_Interval minutes, whichever is
29399 greater. The minutes argument shall conform to the syntax for
29400 unsigned integers and shall be greater than zero.

29401 An implementation may define other checkpoint intervals. The conformance
29402 document for an implementation shall describe any alternative checkpoint
29403 intervals, how they are specified, their internal behavior, and how they affect the
29404 behavior of the utility.

29405 The qalter utility shall set the Checkpoint attribute of the batch job to the value of the
29406 interval option-argument.

29407 −e path_name Redefine the path to be used for the standard error stream of the batch job.

29408 The qalter utility shall accept a path_name option-argument that conforms to the
29409 syntax of the path_name element defined in the POSIX.1-1990 standard, which can
29410 be preceded by a host name element of the form hostname :.

29411 If the path_name option-argument constitutes an absolute path name, the qalter
29412 utility shall set the Error_Path attribute of the batch job to the value of the
29413 path_name option-argument, including the host name element, if present.

29414 If the path_name option-argument constitutes a relative path name and no host
29415 name element is specified, the qalter utility shall set the Error_Path attribute of the
29416 batch job to the value of the absolute path name derived by expanding the
29417 path_name option-argument relative to the current directory of the process that
29418 executes the qalter utility.

29419 If the path_name option-argument constitutes a relative path name and a host name
29420 element is specified, the qalter utility shall set the Error_Path attribute of the batch
29421 job to the value of the option-argument without expansion.

29422 If the path_name option-argument does not include a host name element, the qalter
29423 utility shall prefix the path name in the Error_Path attribute with hostname :, where
29424 hostname is the name of the host upon which the qalter utility is being executed.

29425 −h hold_list Redefine the types of holds, if any, on the batch job. The qalter −h option shall
29426 accept a value for the hold_list option-argument that is a string of alphanumeric
29427 characters in the portable character set. |

2970 Technical Standard (2000) (Draft July 31, 2000)

Utilities qalter

29428 The qalter utility shall accept a value for the hold_list option-argument that is a
29429 string of one or more of the characters ’u’ , ’s’ , or ’o’ , or the single character
29430 ’n’ . For each unique character in the hold_list option-argument, the qalter utility
29431 shall add a value to the Hold_Types attribute of the batch job as follows, each
29432 representing a different hold type:

29433 u USER |

29434 s SYSTEM |

29435 o OPERATOR |

29436 If any of these characters are duplicated in the hold_list option-argument, the
29437 duplicates shall be ignored. An existing Hold_Types attribute can be cleared by the
29438 hold type:

29439 n NO_HOLD |

29440 The qalter utility shall consider it an error if any hold type other than n is combined
29441 with hold type n. Strictly conforming applications shall not repeat any of the
29442 characters ’u’ , ’s’ , ’o’ , or ’n’ within the hold_list option-argument. The qalter
29443 utility shall permit the repetition of characters, but shall not assign additional
29444 meaning to the repeated characters. An implementation may define other hold
29445 types. The conformance document for an implementation shall describe any
29446 additional hold types, how they are specified, their internal behavior, and how
29447 they affect the behavior of the utility.

29448 −j join_list Redefine which streams of the batch job are to be merged. The qalter −j option shall
29449 accept a value for the join_list option-argument that is a string of alphanumeric
29450 characters in the portable character set. |

29451 The qalter utility shall accept a join_list option-argument that consists of one or
29452 more of the characters ’e’ and ’o’ , or the single character ’n’ .

29453 All of the other batch job output streams specified shall be merged into the output
29454 stream represented by the character listed first in the join_list option-argument.

29455 For each unique character in the join_list option-argument, the qalter utility shall
29456 add a value to the Join_Path attribute of the batch job as follows, each representing
29457 a different batch job stream to join:

29458 e The standard error of the batch batch job (JOIN_STD_ERROR).

29459 o The standard output of the batch batch job (JOIN_STD_OUTPUT).

29460 An existing Join_Path attribute can be cleared by the join type:

29461 n NO_JOIN

29462 If n is specified, then no files are joined. The qalter utility shall consider it an error if
29463 any join type other than n is combined with join type n.

29464 Strictly conforming applications shall not repeat any of the characters ’e’ , ’o’ , or
29465 ’n’ within the join_list option-argument. The qalter utility shall permit the
29466 repetition of characters, but shall not assign additional meaning to the repeated
29467 characters.

29468 An implementation may define other join types. The conformance document for an
29469 implementation shall describe any additional batch job streams, how they are
29470 specified, their internal behavior, and how they affect the behavior of the utility.

Shell and Utilities, Issue 6 2971

qalter Utilities

29471 −k keep_list Redefine which output of the batch job to retain on the execution host.

29472 The qalter −k option shall accept a value for the keep_list option-argument that is a
29473 string of alphanumeric characters in the portable character set. |

29474 The qalter utility shall accept a keep_list option-argument that consists of one or
29475 more of the characters ’e’ and ’o’ or the single character ’n’ .

29476 For each unique character in the keep_list option-argument, the qalter utility shall
29477 add a value to the Keep_Files attribute of the batch job as follows, each representing
29478 a different batch job stream to keep:

29479 e The standard error of the batch batch job (KEEP_STD_ERROR).

29480 o The standard output of the batch batch job (KEEP_STD_OUTPUT).

29481 If both ’e’ and ’o’ are specified, then both files are retained. An existing
29482 Keep_Files attribute can be cleared by the keep type:

29483 n NO_KEEP

29484 If n is specified, then no files are retained. The qalter utility shall consider it an error
29485 if any keep type other than n is combined with keep type n.

29486 Strictly conforming applications shall not repeat any of the characters ’e’ , ’o’ , or
29487 ’n’ within the keep_list option-argument. The qalter utility shall permit the
29488 repetition of characters, but shall not assign additional meaning to the repeated
29489 characters. An implementation may define other keep types. The conformance
29490 document for an implementation shall describe any additional keep types, how
29491 they are specified, their internal behavior, and how they affect the behavior of the
29492 utility.

29493 −l resource_list
29494 Redefine the resources that are allowed or required by the batch job.

29495 The qalter utility shall accept a resource_list option-argument that conforms to the
29496 following syntax:

29497 resource=value[,,resource=value,,...]

29498 The qalter utility shall set one entry in the value of the Resource_List attribute of the
29499 batch job for each resource listed in the resource_list option-argument.

29500 Because the list of supported resource names might vary by batch server, the qalter
29501 utility shall rely on the batch server to validate the resource names and associated
29502 values. See Section 3.3.3 (on page 2337) for a means of removing keyword=value
29503 (and value@keyword) pairs and other general rules for list-oriented batch job
29504 attributes.

29505 −m mail_options
29506 Redefine the points in the execution of the batch job at which the batch server is to
29507 send mail about a change in the state of the batch job.

29508 The qalter −m option shall accept a value for the mail_options option-argument that
29509 is a string of alphanumeric characters in the portable character set. |

29510 The qalter utility shall accept a value for the mail_options option-argument that is a
29511 string of one or more of the characters ’e’ , ’b’ , and ’a’ , or the single character
29512 ’n’ . For each unique character in the mail_options option-argument, the qalter
29513 utility shall add a value to the Mail_Users attribute of the batch job as follows, each
29514 representing a different time during the life of a batch job at which to send mail:

2972 Technical Standard (2000) (Draft July 31, 2000)

Utilities qalter

29515 e MAIL_AT_EXIT

29516 b MAIL_AT_BEGINNING

29517 a MAIL_AT_ABORT

29518 If any of these characters are duplicated in the mail_options option-argument, the
29519 duplicates shall be ignored.

29520 An existing Mail_Points attribute can be cleared by the mail type:

29521 n NO_MAIL

29522 If n is specified, then mail is not sent. The qalter utility shall consider it an error if
29523 any mail type other than n is combined with mail type n. Strictly conforming
29524 applications shall not repeat any of the characters ’e’ , ’b’ , ’a’ , or ’n’ within
29525 the mail_options option-argument. The qalter utility shall permit the repetition of
29526 characters but shall not assign additional meaning to the repeated characters.

29527 An implementation may define other mail types. The conformance document for
29528 an implementation shall describe any additional mail types, how they are
29529 specified, their internal behavior, and how they affect the behavior of the utility.

29530 −M mail_list Redefine the list of users to which the batch server that executes the batch job is to
29531 send mail, if the batch server sends mail about the batch job.

29532 The syntax of the mail_list option-argument is unspecified. If the implementation
29533 of the qalter utility uses a name service to locate users, the utility shall accept the
29534 syntax used by the name service.

29535 If the implementation of the qalter utility does not use a name service to locate
29536 users, the implementation shall accept the following syntax for user names:

29537 mail_address[,,mail_address,,...]

29538 The interpretation of mail_address is implementation-defined. |

29539 The qalter utility shall set the Mail_Users attribute of the batch job to the value of
29540 the mail_list option-argument.

29541 −N name Redefine the name of the batch job.

29542 The qalter −N option shall accept a value for the name option argument that is a
29543 string of up to 15 alphanumeric characters in the portable character set where the |
29544 first character is alphabetic. |

29545 The syntax of the name option-argument is unspecified.

29546 The qalter utility shall set the Job_Name attribute of the batch job to the value of the
29547 name option-argument.

29548 −o path_name Redefine the path for the standard output of the batch job.

29549 The qalter utility shall accept a path_name option-argument that conforms to the
29550 syntax of the path_name element defined in the POSIX.1-1990 standard, which can
29551 be preceded by a host name element of the form hostname :.

29552 If the path_name option-argument constitutes an absolute path name, the qalter
29553 utility shall set the Output_Path attribute of the batch job to the value of the
29554 path_name option-argument.

29555 If the path_name option-argument constitutes a relative path name and no host
29556 name element is specified, the qalter utility shall set the Output_Path attribute of the

Shell and Utilities, Issue 6 2973

qalter Utilities

29557 batch job to the absolute path name derived by expanding the path_name option-
29558 argument relative to the current directory of the process that executes the qalter
29559 utility.

29560 If the path_name option-argument constitutes a relative path name and a host name
29561 element is specified, the qalter utility shall set the Output_Path attribute of the batch
29562 job to option-argument without any expansion of the path name.

29563 If the path_name option-argument does not include a host name element, the qalter
29564 utility shall prefix the path name in the Output_Path attribute with hostname :,
29565 where hostname is the name of the host upon which the qalter utility is being
29566 executed.

29567 −p priority Redefine the priority of the batch job.

29568 The qalter utility shall accept a value for the priority option-argument that
29569 conforms to the syntax for signed decimal integers, and which is not less than
29570 −1 024 and not greater than 1 023.

29571 The qalter utility shall set the Priority attribute of the batch job to the value of the
29572 priority option-argument.

29573 −r y|n Redefine whether the batch job is rerunable.

29574 If the value of the option-argument is y , the qalter utility shall set the Rerunable
29575 attribute of the batch job to TRUE.

29576 If the value of the option-argument is n, the qalter utility shall set the Rerunable
29577 attribute of the batch job to FALSE.

29578 The qalter utility shall consider it an error if any character other than ’y’ or ’n’ is
29579 specified in the option-argument.

29580 −S path_name_list
29581 Redefine the shell that interprets the script at the destination system.

29582 The qalter utility shall accept a path_name_list option-argument that conforms to
29583 the following syntax:

29584 pathname[@host][,pathname[@host],...]

29585 The qalter utility shall accept only one path name that is missing a corresponding
29586 host name. The qalter utility shall allow only one path name per named host.

29587 The qalter utility shall add a value to the Shell_Path_List attribute of the batch job
29588 for each entry in the path_name_list option-argument. See Section 3.3.3 (on page
29589 2337) for a means of removing keyword=value (and value@keyword) pairs and other
29590 general rules for list-oriented batch job attributes.

29591 −u user_list Redefine the user name under which the batch job is to run at the destination
29592 system.

29593 The qalter utility shall accept a user_list option-argument that conforms to the
29594 following syntax:

29595 username[@host][,,username[@host],,...]

29596 The qalter utility shall accept only one user name that is missing a corresponding
29597 host name. The qalter utility shall accept only one user name per named host.

29598 The qalter utility shall add a value to the User_List attribute of the batch job for each
29599 entry in the user_list option-argument. See Section 3.3.3 (on page 2337) for a means

2974 Technical Standard (2000) (Draft July 31, 2000)

Utilities qalter

29600 of removing keyword=value (and value@keyword) pairs and other general rules for
29601 list-oriented batch job attributes.

29602 OPERANDS
29603 The qalter utility shall accept one or more operands that conform to the syntax for a batch
29604 job_identifier (see Section 3.3.1 (on page 2336)).

29605 STDIN
29606 Not used.

29607 INPUT FILES
29608 None.

29609 ENVIRONMENT VARIABLES
29610 The following environment variables shall affect the execution of qalter:

29611 LANG Provide a default value for the internationalization variables that are unset or null.
29612 If LANG is unset or null, the corresponding value from the implementation- |
29613 defined default locale shall be used. If any of the internationalization variables |
29614 contains an invalid setting, the utility shall behave as if none of the variables had
29615 been defined.

29616 LC_ALL If set to a non-empty string value, override the values of all the other
29617 internationalization variables.

29618 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
29619 characters (for example, single-byte as opposed to multi-byte characters in
29620 arguments).

29621 LC_MESSAGES
29622 Determine the locale that should be used to affect the format and contents of
29623 diagnostic messages written to standard error.

29624 LC_TIME Determine the format and contents of date and time strings written by qalter.

29625 LOGNAME Determine the login name of the user.

29626 TZ Determine the timezone in which the time and date are written. If the TZ variable
29627 is not set, an unspecified system default timezone is used.

29628 ASYNCHRONOUS EVENTS
29629 Default.

29630 STDOUT
29631 None.

29632 STDERR
29633 Used only for diagnostic messages.

29634 OUTPUT FILES
29635 None.

29636 EXTENDED DESCRIPTION
29637 None.

29638 EXIT STATUS
29639 The following exit values shall be returned:

29640 0 Successful completion.

29641 >0 An error occurred.

Shell and Utilities, Issue 6 2975

qalter Utilities

29642 CONSEQUENCES OF ERRORS
29643 In addition to the default behavior, the qalter utility shall not be required to write a diagnostic
29644 message to standard error when the error reply received from a batch server indicates that the
29645 batch job_identifier does not exist on the server. Whether or not the qalter utility attempts to
29646 locate the batch job on other batch servers is implementation-defined. |

29647 APPLICATION USAGE
29648 None.

29649 EXAMPLES
29650 None.

29651 RATIONALE
29652 The qalter utility allows users to change the attributes of a batch job.

29653 As a means of altering a queued job, the qalter utility is superior to deleting and requeuing the
29654 batch job insofar as an altered job retains its place in the queue with some traditional selection
29655 algorithms. In addition, the qalter utility is both shorter and simpler than a sequence of qdel and
29656 qsub utilities.

29657 The result of an attempt on the part of a user to alter a batch job in a RUNNING state is |
29658 implementation-defined because a batch job in the RUNNING state will already have opened its |
29659 output files and otherwise performed any actions indicated by the options in effect at the time
29660 the batch job began execution.

29661 The options processed by the qalter utility are identical to those of the qsub utility, with a few
29662 exceptions: −V, −v, and −q. The −V and −v are inappropriate for the qalter utility, since they
29663 capture potentially transient environment information from the submitting process. The −q
29664 option would specify a new queue, which would largely negate the previously stated advantage
29665 of using qalter; furthermore, the qmove utility provides a superior means of moving jobs.

29666 Each of the following paragraphs provides the rationale for a qalter option.

29667 Additional rationale concerning these options can be found in the rationale for the qsub utility.

29668 The −a option allows users to alter the date and time at which a batch job becomes eligible to
29669 run.

29670 The −A option allows users to change the account that will be charged for the resources
29671 consumed by the batch job. Support for the −A option is mandatory for conforming
29672 implementations of qalter, even though support of accounting is optional for servers. Whether or
29673 not to support accounting is left to the implementor of the server, but mandatory support of the
29674 −A option assures users of a consistent interface and allows them to control accounting on
29675 servers that support accounting.

29676 The −c option allows users to alter the checkpointing interval of a batch job. A checkpointing
29677 system, which is not defined by IEEE Std. 1003.1-200x, allows recovery of a batch job at the most
29678 recent checkpoint in the event of a crash. Checkpointing is typically used for jobs that consume
29679 expensive computing time or must meet a critical schedule. Users should be allowed to make
29680 the tradeoff between the overhead of checkpointing and the risk to the timely completion of the
29681 batch job; therefore, this volume of IEEE Std. 1003.1-200x provides the checkpointing interval
29682 option. Support for checkpointing is optional for servers.

29683 The −e option allows users to alter the name and location of the standard error stream written by
29684 a batch job. However, the path of the standard error stream is meaningless if the value of the
29685 Join_Path attribute of the batch job is TRUE.

29686 The −h option allows users to set the hold type in the Hold_Types attribute of a batch job. The
29687 qhold and qrls utilities add or remove hold types to the Hold_Types attribute, respectively. The −h |

2976 Technical Standard (2000) (Draft July 31, 2000)

Utilities qalter

29688 option has been modified to allow for implementation-defined hold types. |

29689 The −j option allows users to alter the decision to join (merge) the standard error stream of the
29690 batch job with the standard output stream of the batch job.

29691 The −l option allows users to change the resource limits imposed on a batch job.

29692 The −m option allows users to modify the list of points in the life of a batch job at which the
29693 designated users will receive mail notification.

29694 The −M option allows users to alter the list of users who will receive notification about events in
29695 the life of a batch job.

29696 The −N option allows users to change the name of a batch job.

29697 The −o option allows users to alter the name and path to which the standard output stream of
29698 the batch job will be written.

29699 The −P option allows users to modify the priority of a batch job. Support for priority is optional
29700 for batch servers.

29701 The −r option allows users to alter the rerunability status of a batch job.

29702 The −S option allows users to change the name and location of the shell image that will be
29703 invoked to interpret the script of the batch job. This option has been modified to allow a list of
29704 shell name and locations associated with different host.

29705 The −u option allows users to change the user identifier under which the batch job will execute.

29706 The job_identifier operand syntax is provided so that the user can differentiate between the |
29707 originating and destination (or executing) batch server. These may or may not be the same. The
29708 .server_name portion identifies the originating batch server, while the @server portion identifies
29709 the destination batch server.

29710 Historically, the qalter utility has been a component of the Network Queuing System (NQS), the
29711 existing practice from which this utility has been derived.

29712 FUTURE DIRECTIONS
29713 None.

29714 SEE ALSO
29715 qdel, qhold , qmove, qrls, qsub, touch , Chapter 3 (on page 2313)

29716 CHANGE HISTORY
29717 Derived from IEEE Std. 1003.2d-1994.

Shell and Utilities, Issue 6 2977

qdel Utilities

29718 NAME
29719 qdel — delete batch jobs

29720 SYNOPSIS
29721 BE qdel job_identifier ...
29722

29723 DESCRIPTION
29724 A batch job is deleted by sending a request to the batch server that manages the batch job. A
29725 batch job that has been deleted is no longer subject to management by batch services.

29726 The qdel utility is a user-accessible client of batch services that requests the deletion of one or
29727 more batch jobs.

29728 The qdel utility shall request a batch server to delete those batch jobs for which a batch
29729 job_identifier is presented to the utility.

29730 The qdel utility shall delete batch jobs in the order in which their batch job_identifiers are
29731 presented to the utility.

29732 If the qdel utility fails to process any batch job_identifier successfully, the utility shall proceed to
29733 process the remaining batch job_identifiers, if any.

29734 The qdel utility shall delete each batch job by sending a Delete Job Request to the batch server that
29735 manages the batch job.

29736 The qdel utility shall not exit until the batch job corresponding to each successfully processed
29737 batch job_identifier has been deleted.

29738 OPTIONS
29739 None.

29740 OPERANDS
29741 The qdel utility shall accept one or more operands that conform to the syntax for a batch
29742 job_identifier (see Section 3.3.1 (on page 2336)).

29743 STDIN
29744 Not used.

29745 INPUT FILES
29746 None.

29747 ENVIRONMENT VARIABLES
29748 The following environment variables shall affect the execution of qdel:

29749 LANG Provide a default value for the internationalization variables that are unset or null.
29750 If LANG is unset or null, the corresponding value from the implementation- |
29751 defined default locale shall be used. If any of the internationalization variables |
29752 contains an invalid setting, the utility shall behave as if none of the variables had
29753 been defined.

29754 LC_ALL If set to a non-empty string value, override the values of all the other
29755 internationalization variables.

29756 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
29757 characters (for example, single-byte as opposed to multi-byte characters in
29758 arguments).

29759 LC_MESSAGES
29760 Determine the locale that should be used to affect the format and contents of
29761 diagnostic messages written to standard error.

2978 Technical Standard (2000) (Draft July 31, 2000)

Utilities qdel

29762 LC_TIME Determine the format and contents of date and time strings written by qdel.

29763 LOGNAME Determine the login name of the user.

29764 TZ Determine the timezone in which the time and date are written. If the TZ variable
29765 is not set, an unspecified system default timezone is used.

29766 ASYNCHRONOUS EVENTS
29767 Default.

29768 STDOUT
29769 An implementation of the qdel utility may write informative messages to standard output.

29770 STDERR
29771 Used only for diagnostic messages.

29772 OUTPUT FILES
29773 None.

29774 EXTENDED DESCRIPTION
29775 None.

29776 EXIT STATUS
29777 The following exit values shall be returned:

29778 0 Successful completion.

29779 >0 An error occurred.

29780 CONSEQUENCES OF ERRORS
29781 In addition to the default behavior, the qdel utility shall not be required to write a diagnostic
29782 message to standard error when the error reply received from a batch server indicates that the
29783 batch job_identifier does not exist on the server. Whether or not the qdel utility waits to output the
29784 diagnostic message while attempting to locate the job on other servers is implementation- |
29785 defined. |

29786 APPLICATION USAGE
29787 None.

29788 EXAMPLES
29789 None.

29790 RATIONALE
29791 The qdel utility allows users and administrators to delete jobs.

29792 The qdel utility provides functionality that is not otherwise available. For example, the kill utility
29793 of the operating system does not suffice. First, to use the kill utility, the user might have to log in
29794 on a remote node, because the kill utility does not operate across the network. Second, unlike
29795 qdel, kill cannot remove jobs from queues. Lastly, the arguments of the qdel utility are job
29796 identifiers rather than process identifiers, and so this utility can be passed the output of the
29797 qselect utility, thus providing users with a means of deleting a list of jobs.

29798 Because a set of jobs can be selected using the qselect utility, the qdel utility has not been
29799 complicated with options that provide for selection of jobs. Instead, the batch jobs to be deleted
29800 are identified individually by their job identifiers.

29801 Historically, the qdel utility has been a component of NQS, the existing practice on which it is
29802 based. However, the qdel utility defined in this volume of IEEE Std. 1003.1-200x does not provide
29803 an option for specifying a signal number to send to the batch job prior to the killing of the
29804 process; that capability has been subsumed by the qsig utility.

Shell and Utilities, Issue 6 2979

qdel Utilities

29805 A discussion was held about the delays of networking and the possibility that the batch server
29806 may never respond, due to a down router, down batch server, or other network mishap. The
29807 DESCRIPTION records this under the words ‘‘fails to process any job identifier’’. In the broad
29808 sense, the network problem is also an error, which causes the failure to process the batch job
29809 identifier. |

29810 FUTURE DIRECTIONS
29811 None.

29812 SEE ALSO
29813 kill , qselect, qsig, Chapter 3 (on page 2313)

29814 CHANGE HISTORY
29815 Derived from IEEE Std. 1003.2d-1994.

2980 Technical Standard (2000) (Draft July 31, 2000)

Utilities qhold

29816 NAME
29817 qhold — hold batch jobs

29818 SYNOPSIS
29819 BE qhold [−h hold_list] job_identifier ...
29820

29821 DESCRIPTION
29822 A hold is placed on a batch job by a request to the batch server that manages the batch job. A
29823 batch job that has one or more holds is not eligible for execution. The qhold utility is a user-
29824 accessible client of batch services that requests one or more types of hold to be placed on one or
29825 more batch jobs.

29826 The qhold utility shall place holds on those batch jobs for which a batch job_identifier is presented
29827 to the utility.

29828 The qhold utility shall place holds on batch jobs in the order in which their batch job_identifiers
29829 are presented to the utility. If the qhold utility fails to process any batch job_identifier successfully,
29830 the utility shall proceed to process the remaining batch job_identifiers, if any.

29831 The qhold utility shall place holds on each batch job by sending a Hold Job Request to the batch
29832 server that manages the batch job.

29833 The qhold utility shall not exit until holds have been placed on the batch job corresponding to
29834 each successfully processed batch job_identifier.

29835 OPTIONS
29836 The qhold utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
29837 12.2, Utility Syntax Guidelines. |

29838 The following option shall be supported by the implementation:

29839 −h hold_list Define the types of holds to be placed on the batch job.

29840 The qhold −h option shall accept a value for the hold_list option-argument that is a
29841 string of alphanumeric characters in the portable character set (see the Base |
29842 Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). |

29843 The qhold utility shall accept a value for the hold_list option-argument that is a
29844 string of one or more of the characters ’u’ , ’s’ , or ’o’ , or the single character
29845 ’n’ .

29846 For each unique character in the hold_list option-argument, the qhold utility shall
29847 add a value to the Hold_Types attribute of the batch job as follows, each
29848 representing a different hold type:

29849 u USER

29850 s SYSTEM

29851 o OPERATOR

29852 If any of these characters are duplicated in the hold_list option-argument, the
29853 duplicates shall be ignored.

29854 An existing Hold_Types attribute can be cleared by the following hold type:

29855 n NO_HOLD

29856 The qhold utility shall consider it an error if any hold type other than n is combined
29857 with hold type n.

Shell and Utilities, Issue 6 2981

qhold Utilities

29858 Strictly conforming applications shall not repeat any of the characters ’u’ , ’s’ ,
29859 ’o’ , or ’n’ within the hold_list option-argument. The qhold utility shall permit the
29860 repetition of characters, but shall not assign additional meaning to the repeated
29861 characters.

29862 An implementation may define other hold types. The conformance document for
29863 an implementation shall describe any additional hold types, how they are
29864 specified, their internal behavior, and how they affect the behavior of the utility.

29865 If the −h option is not presented to the qhold utility, the implementation shall set
29866 the Hold_Types attribute to USER.

29867 OPERANDS
29868 The qhold utility shall accept one or more operands that conform to the syntax for a batch
29869 job_identifier (see Section 3.3.1 (on page 2336)).

29870 STDIN
29871 Not used.

29872 INPUT FILES
29873 None.

29874 ENVIRONMENT VARIABLES
29875 The following environment variables shall affect the execution of qhold:

29876 LANG Provide a default value for the internationalization variables that are unset or null.
29877 If LANG is unset or null, the corresponding value from the implementation- |
29878 defined default locale shall be used. If any of the internationalization variables |
29879 contains an invalid setting, the utility shall behave as if none of the variables had
29880 been defined.

29881 LC_ALL If set to a non-empty string value, override the values of all the other
29882 internationalization variables.

29883 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
29884 characters (for example, single-byte as opposed to multi-byte characters in
29885 arguments).

29886 LC_MESSAGES
29887 Determine the locale that should be used to affect the format and contents of
29888 diagnostic messages written to standard error.

29889 LC_TIME Determine the format and contents of date and time strings written by qhold.

29890 LOGNAME Determine the login name of the user.

29891 TZ Determine the timezone in which the time and date are written. If the TZ variable
29892 is not set, an unspecified system default timezone is used.

29893 ASYNCHRONOUS EVENTS
29894 Default.

29895 STDOUT
29896 None.

29897 STDERR
29898 Used only for diagnostic messages.

2982 Technical Standard (2000) (Draft July 31, 2000)

Utilities qhold

29899 OUTPUT FILES
29900 None.

29901 EXTENDED DESCRIPTION
29902 None.

29903 EXIT STATUS
29904 The following exit values shall be returned:

29905 0 Successful completion.

29906 >0 An error occurred.

29907 CONSEQUENCES OF ERRORS
29908 In addition to the default behavior, the qhold utility shall not be required to write a diagnostic
29909 message to standard error when the error reply received from a batch server indicates that the
29910 batch job_identifier does not exist on the server. Whether or not the qhold utility waits to output
29911 the diagnostic message while attempting to locate the job on other servers is implementation- |
29912 defined. |

29913 APPLICATION USAGE
29914 None.

29915 EXAMPLES
29916 None.

29917 RATIONALE
29918 The qhold utility allows users to place a hold on one or more jobs. A hold makes a batch job
29919 ineligible for execution.

29920 The qhold utility has options that allow the user to specify the type of hold. Should the user wish
29921 to place a hold on a set of jobs that meet a selection criteria, such a list of jobs can be acquired
29922 using the qselect utility.

29923 The −h option allows the user to specify the type of hold that is to be placed on the job. This
29924 option allows for USER, SYSTEM, OPERATOR, and implementation-defined hold types. The |
29925 USER and OPERATOR holds are distinct. The batch server that manages the batch job will verify |
29926 that the user is authorized to set the specified hold for the batch job.

29927 Mail is not required on hold because the administrator has the tools and libraries to build this
29928 option if he or she wishes.

29929 Historically, the qhold utility has been a part of some existing batch systems, although it has not |
29930 traditionally been a part of the NQS.

29931 FUTURE DIRECTIONS
29932 None.

29933 SEE ALSO
29934 qselect, Chapter 3 (on page 2313)

29935 CHANGE HISTORY
29936 Derived from IEEE Std. 1003.2d-1994.

Shell and Utilities, Issue 6 2983

qmove Utilities

29937 NAME
29938 qmove — move batch jobs

29939 SYNOPSIS
29940 BE qmove destination job_identifier ...
29941

29942 DESCRIPTION
29943 To move a batch job is to remove the batch job from the batch queue in which it resides and
29944 instantiate the batch job in another batch queue. A batch job is moved by a request to the batch
29945 server that manages the batch job. The qmove utility is a user-accessible batch client that requests
29946 the movement of one or more batch jobs.

29947 The qmove utility shall move those batch jobs, and only those batch jobs, for which a batch
29948 job_identifier is presented to the utility.

29949 The qmove utility shall move batch jobs in the order in which the corresponding batch
29950 job_identifiers are presented to the utility.

29951 If the qmove utility fails to process a batch job_identifier successfully, the utility shall proceed to
29952 process the remaining batch job_identifiers, if any.

29953 The qmove utility shall move batch jobs by sending a Move Job Request to the batch server that
29954 manages each batch job. The qmove utility shall not exit before the batch jobs corresponding to all
29955 successfully processed batch job_identifiers have been moved.

29956 OPTIONS
29957 None.

29958 OPERANDS
29959 The qmove utility shall accept one operand that conforms to the syntax for a destination (see
29960 Section 3.3.2 (on page 2337)).

29961 The qmove utility shall accept one or more operands that conform to the syntax for a batch
29962 job_identifier (see Section 3.3.1 (on page 2336)).

29963 STDIN
29964 Not used.

29965 INPUT FILES
29966 None.

29967 ENVIRONMENT VARIABLES
29968 The following environment variables shall affect the execution of qmove:

29969 LANG Provide a default value for the internationalization variables that are unset or null.
29970 If LANG is unset or null, the corresponding value from the implementation- |
29971 defined default locale shall be used. If any of the internationalization variables |
29972 contains an invalid setting, the utility shall behave as if none of the variables had
29973 been defined.

29974 LC_ALL If set to a non-empty string value, override the values of all the other
29975 internationalization variables.

29976 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
29977 characters (for example, single-byte as opposed to multi-byte characters in
29978 arguments).

29979 LC_MESSAGES
29980 Determine the locale that should be used to affect the format and contents of

2984 Technical Standard (2000) (Draft July 31, 2000)

Utilities qmove

29981 diagnostic messages written to standard error.

29982 LC_TIME Determine the format and contents of date and time strings written by qmove.

29983 LOGNAME Determine the login name of the user.

29984 TZ Determine the timezone in which the time and date are written. If the TZ variable
29985 is not set, an unspecified system default timezone is used.

29986 ASYNCHRONOUS EVENTS
29987 Default.

29988 STDOUT
29989 None.

29990 STDERR
29991 Used only for diagnostic messages.

29992 OUTPUT FILES
29993 None.

29994 EXTENDED DESCRIPTION
29995 None.

29996 EXIT STATUS
29997 The following exit values shall be returned:

29998 0 Successful completion.

29999 >0 An error occurred.

30000 CONSEQUENCES OF ERRORS
30001 In addition to the default behavior, the qmove utility shall not be required to write a diagnostic
30002 message to standard error when the error reply received from a batch server indicates that the
30003 batch job_identifier does not exist on the server. Whether or not the qmove utility waits to output
30004 the diagnostic message while attempting to locate the job on other servers is implementation- |
30005 defined. |

30006 APPLICATION USAGE
30007 None.

30008 EXAMPLES
30009 None.

30010 RATIONALE
30011 The qmove utility allows users to move jobs between queues.

30012 The alternative to using the qmove utility—deleting the batch job and requeuing it—entails
30013 considerably more typing.

30014 Since the means of selecting jobs based on attributes has been encapsulated in the qselect utility,
30015 the only option of the qmove utility concerns authorization. The −u option provides the user with
30016 the convenience of changing the user identifier under which the batch job will execute.
30017 Minimalism and consistency has taken precedence over convenience; the −u option has been
30018 deleted because the equivalent capability exists with the −u option of the qalter utility. |

30019 FUTURE DIRECTIONS
30020 None.

Shell and Utilities, Issue 6 2985

qmove Utilities

30021 SEE ALSO
30022 qalter , qselect, Chapter 3 (on page 2313)

30023 CHANGE HISTORY
30024 Derived from IEEE Std. 1003.2d-1994.

2986 Technical Standard (2000) (Draft July 31, 2000)

Utilities qmsg

30025 NAME
30026 qmsg — send message to batch jobs

30027 SYNOPSIS
30028 BE qmsg [−E][−O] message_string job_identifier ...
30029

30030 DESCRIPTION
30031 To send a message to a batch job is to request that a server write a message string into one or
30032 more output files of the batch job. A message is sent to a batch job by a request to the batch
30033 server that manages the batch job. The qmsg utility is a user-accessible batch client that requests
30034 the sending of messages to one or more batch jobs.

30035 The qmsg utility shall write messages into the files of batch jobs by sending a Job Message Request
30036 to the batch server that manages the batch job. The qmsg utility shall not directly write the
30037 message into the files of the batch job.

30038 The qmsg utility shall send a Job Message Request for those batch jobs, and only those batch jobs,
30039 for which a batch job_identifier is presented to the utility.

30040 The qmsg utility shall send Job Message Requests for batch jobs in the order in which their batch
30041 job_identifiers are presented to the utility.

30042 If the qmsg utility fails to process any batch job_identifier successfully, the utility shall proceed to
30043 process the remaining batch job_identifiers, if any.

30044 The qmsg utility shall not exit before a Job Message Request has been sent to the server that
30045 manages the batch job that corresponds to each successfully processed batch job_identifier.

30046 OPTIONS
30047 The qmsg utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
30048 12.2, Utility Syntax Guidelines. |

30049 The following options shall be supported by the implementation:

30050 −E Specify that the message is written to the standard error of each batch job.

30051 The qmsg utility shall write the message into the standard error of the batch job.

30052 −O Specify that the message is written to the standard output of each batch job.

30053 The qmsg utility shall write the message into the standard output of the batch job.

30054 If neither the −O nor the −E option is presented to the qmsg utility, the utility shall write the
30055 message into an implementation-defined file. The conformance document for the |
30056 implementation shall describe the name and location of the implementation-defined file. If both |
30057 the −O and the −E options are presented to the qmsg utility, then the utility shall write the |
30058 messages to both standard output and standard error.

30059 OPERANDS
30060 The qmsg utility shall accept a minimum of two operands, message_string and one or more batch
30061 job_identifiers.

30062 The message_string operand shall be the string to be written to one or more output files of the
30063 batch job followed by a <newline>. If the string contains <blank>s, then the application shall |
30064 ensure that the string is quoted. The message_string shall be encoded in the portable character set |
30065 (see the Base Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). |

30066 All remaining operands are batch job_identifiers that conform to the syntax for a batch
30067 job_identifier (see Section 3.3.1 (on page 2336)).

Shell and Utilities, Issue 6 2987

qmsg Utilities

30068 STDIN
30069 Not used.

30070 INPUT FILES
30071 None.

30072 ENVIRONMENT VARIABLES
30073 The following environment variables shall affect the execution of qmsg:

30074 LANG Provide a default value for the internationalization variables that are unset or null.
30075 If LANG is unset or null, the corresponding value from the implementation- |
30076 defined default locale shall be used. If any of the internationalization variables |
30077 contains an invalid setting, the utility shall behave as if none of the variables had
30078 been defined.

30079 LC_ALL If set to a non-empty string value, override the values of all the other
30080 internationalization variables.

30081 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
30082 characters (for example, single-byte as opposed to multi-byte characters in
30083 arguments).

30084 LC_MESSAGES
30085 Determine the locale that should be used to affect the format and contents of
30086 diagnostic messages written to standard error.

30087 LC_TIME Determine the format and contents of date and time strings written by qmsg.

30088 LOGNAME Determine the login name of the user.

30089 TZ Determine the timezone in which the time and date are written. If the TZ variable
30090 is not set, an unspecified system default timezone is used.

30091 ASYNCHRONOUS EVENTS
30092 Default.

30093 STDOUT
30094 None.

30095 STDERR
30096 Used only for diagnostic messages.

30097 OUTPUT FILES
30098 None.

30099 EXTENDED DESCRIPTION
30100 None.

30101 EXIT STATUS
30102 The following exit values shall be returned:

30103 0 Successful completion.

30104 >0 An error occurred.

30105 CONSEQUENCES OF ERRORS
30106 In addition to the default behavior, the qmsg utility shall not be required to write a diagnostic
30107 message to standard error when the error reply received from a batch server indicates that the
30108 batch job_identifier does not exist on the server. Whether or not the qmsg utility waits to output
30109 the diagnostic message while attempting to locate the job on other servers is implementation- |
30110 defined. |

2988 Technical Standard (2000) (Draft July 31, 2000)

Utilities qmsg

30111 APPLICATION USAGE
30112 None.

30113 EXAMPLES
30114 None.

30115 RATIONALE
30116 The qmsg utility allows users to write messages into the output files of running jobs. Users,
30117 including operators and administrators, have a number of occasions when they want to place
30118 messages in the output files of a batch job. For example, if a disk that is being used by a batch job
30119 is showing errors, the operator might note this in the standard error stream of the batch job.

30120 The options of the qmsg utility provide users with the means of placing the message in the
30121 output stream of their choice. The default output stream for the message—if the user does not
30122 designate an output stream—is implementation-defined, since many implementations will |
30123 provide, as an extension to this volume of IEEE Std. 1003.1-200x, a log file that shows the history |
30124 of utility execution.

30125 If users wish to send a message to a set of jobs that meet a selection criteria, the qselect utility can
30126 be used to acquire the appropriate list of job identifiers.

30127 The −E option allows users to place the message in the standard error stream of the batch job.

30128 The −O option allows users to place the message in the standard output stream of the batch job.

30129 Historically, the qmsg utility is an existing practice in the offerings of one or more implementors |
30130 of an NQS-derived batch system. The utility has been found to be useful enough that it deserves
30131 to be included in this volume of IEEE Std. 1003.1-200x.

30132 FUTURE DIRECTIONS
30133 None.

30134 SEE ALSO
30135 qselect, Chapter 3 (on page 2313)

30136 CHANGE HISTORY
30137 Derived from IEEE Std. 1003.2d-1994.

Shell and Utilities, Issue 6 2989

qrerun Utilities

30138 NAME
30139 qrerun — rerun batch jobs

30140 SYNOPSIS
30141 BE qrerun job_identifier ...
30142

30143 DESCRIPTION
30144 To rerun a batch job is to terminate the session leader of the batch job, delete any associated
30145 checkpoint files, and return the batch job to the batch queued state. A batch job is rerun by a
30146 request to the batch server that manages the batch job. The qrerun utility is a user-accessible
30147 batch client that requests the rerunning of one or more batch jobs.

30148 The qrerun utility shall rerun those batch jobs for which a batch job_identifier is presented to the
30149 utility.

30150 The qrerun utility shall rerun batch jobs in the order in which their batch job_identifiers are
30151 presented to the utility.

30152 If the qrerun utility fails to process any batch job_identifier successfully, the utility shall proceed
30153 to process the remaining batch job_identifiers, if any.

30154 The qrerun utility shall rerun batch jobs by sending a Rerun Job Request to the batch server that
30155 manages each batch job.

30156 For each successfully processed batch job_identifier, the qrerun utility shall have rerun the
30157 corresponding batch batch job at the time the utility exits.

30158 OPTIONS
30159 None.

30160 OPERANDS
30161 The qrerun utility shall accept one or more operands that conform to the syntax for a batch
30162 job_identifier (see Section 3.3.1 (on page 2336)).

30163 STDIN
30164 Not used.

30165 INPUT FILES
30166 None.

30167 ENVIRONMENT VARIABLES
30168 The following environment variables shall affect the execution of qrerun:

30169 LANG Provide a default value for the internationalization variables that are unset or null.
30170 If LANG is unset or null, the corresponding value from the implementation- |
30171 defined default locale shall be used. If any of the internationalization variables |
30172 contains an invalid setting, the utility shall behave as if none of the variables had
30173 been defined.

30174 LC_ALL If set to a non-empty string value, override the values of all the other
30175 internationalization variables.

30176 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
30177 characters (for example, single-byte as opposed to multi-byte characters in
30178 arguments).

30179 LC_MESSAGES
30180 Determine the locale that should be used to affect the format and contents of
30181 diagnostic messages written to standard error.

2990 Technical Standard (2000) (Draft July 31, 2000)

Utilities qrerun

30182 LC_TIME Determine the format and contents of date and time strings written by qrerun.

30183 LOGNAME Determine the login name of the user.

30184 TZ Determine the timezone in which the time and date are written. If the TZ variable
30185 is not set, an unspecified system default timezone is used.

30186 ASYNCHRONOUS EVENTS
30187 Default.

30188 STDOUT
30189 None.

30190 STDERR
30191 Used only for diagnostic messages.

30192 OUTPUT FILES
30193 None.

30194 EXTENDED DESCRIPTION
30195 None.

30196 EXIT STATUS
30197 The following exit values shall be returned:

30198 0 Successful completion.

30199 >0 An error occurred.

30200 CONSEQUENCES OF ERRORS
30201 In addition to the default behavior, the qrerun utility shall not be required to write a diagnostic
30202 message to standard error when the error reply received from a batch server indicates that the
30203 batch job_identifier does not exist on the server. Whether or not the qrerun utility waits to output
30204 the diagnostic message while attempting to locate the job on other servers is implementation- |
30205 defined. |

30206 APPLICATION USAGE
30207 None.

30208 EXAMPLES
30209 None.

30210 RATIONALE
30211 The qrerun utility allows users to cause jobs in the running state to exit and rerun.

30212 The qrerun utility is a new utility, vis-a-vis existing practice, that has been defined in this volume |
30213 of IEEE Std. 1003.1-200x to correct user-perceived deficiencies in the existing practice.

30214 FUTURE DIRECTIONS
30215 None.

30216 SEE ALSO
30217 Chapter 3 (on page 2313)

30218 CHANGE HISTORY
30219 Derived from IEEE Std. 1003.2d-1994.

Shell and Utilities, Issue 6 2991

qrls Utilities

30220 NAME
30221 qrls — release batch jobs

30222 SYNOPSIS
30223 BE qrls [−h hold_list] job_identifier ...
30224

30225 DESCRIPTION
30226 A batch job might have one or more holds, which prevent the batch job from executing. A batch
30227 job from which all the holds have been removed becomes eligible for execution and is said to
30228 have been released. A batch job hold is removed by sending a request to the batch server that
30229 manages the batch job. The qrls utility is a user-accessible client of batch services that requests
30230 holds be removed from one or more batch jobs.

30231 The qrls utility shall remove one or more holds from those batch jobs for which a batch
30232 job_identifier is presented to the utility.

30233 The qrls utility shall remove holds from batch jobs in the order in which their batch job_identifiers
30234 are presented to the utility.

30235 If the qrls utility fails to process a batch job_identifier successfully, the utility shall proceed to
30236 process the remaining batch job_identifiers, if any.

30237 The qrls utility shall remove holds on each batch job by sending a Release Job Request to the batch
30238 server that manages the batch job.

30239 The qrls utility shall not exit until the holds have been removed from the batch job
30240 corresponding to each successfully processed batch job_identifier.

30241 OPTIONS
30242 The qrls utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
30243 12.2, Utility Syntax Guidelines. |

30244 The following option shall be supported by the implementation:

30245 −h hold_list Define the types of holds to be removed from the batch job.

30246 The qrls −h option shall accept a value for the hold_list option-argument that is a
30247 string of alphanumeric characters in the portable character set (see the Base |
30248 Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). |

30249 The qrls utility shall accept a value for the hold_list option-argument that is a string
30250 of one or more of the characters ’u’ , ’s’ , or ’o’ , or the single character ’n’ .

30251 For each unique character in the hold_list option-argument, the qrls utility shall add
30252 a value to the Hold_Types attribute of the batch job as follows, each representing a
30253 different hold type:

30254 u USER

30255 s SYSTEM

30256 o OPERATOR

30257 If any of these characters are duplicated in the hold_list option-argument, the
30258 duplicates shall be ignored.

30259 An existing Hold_Types attribute can be cleared by the following hold type:

30260 n NO_HOLD

2992 Technical Standard (2000) (Draft July 31, 2000)

Utilities qrls

30261 The qrls utility shall consider it an error if any hold type other than n is combined
30262 with hold type n.

30263 Strictly conforming applications shall not repeat any of the characters ’u’ , ’s’ ,
30264 ’o’ , or ’n’ within the hold_list option-argument. The qrls utility shall permit the
30265 repetition of characters, but shall not assign additional meaning to the repeated
30266 characters.

30267 An implementation may define other hold types. The conformance document for
30268 an implementation shall describe any additional hold types, how they are
30269 specified, their internal behavior, and how they affect the behavior of the utility.

30270 If the −h option is not presented to the qrls utility, the implementation shall remove
30271 the USER hold in the Hold_Types attribute.

30272 OPERANDS
30273 The qrls utility shall accept one or more operands that conform to the syntax for a batch
30274 job_identifier (see Section 3.3.1 (on page 2336)).

30275 STDIN
30276 Not used.

30277 INPUT FILES
30278 None.

30279 ENVIRONMENT VARIABLES
30280 The following environment variables shall affect the execution of qrls:

30281 LANG Provide a default value for the internationalization variables that are unset or null.
30282 If LANG is unset or null, the corresponding value from the implementation- |
30283 defined default locale shall be used. If any of the internationalization variables |
30284 contains an invalid setting, the utility shall behave as if none of the variables had
30285 been defined.

30286 LC_ALL If set to a non-empty string value, override the values of all the other
30287 internationalization variables.

30288 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
30289 characters (for example, single-byte as opposed to multi-byte characters in
30290 arguments).

30291 LC_MESSAGES
30292 Determine the locale that should be used to affect the format and contents of
30293 diagnostic messages written to standard error.

30294 LC_TIME Determine the format and contents of date and time strings written by qrls.

30295 LOGNAME Determine the login name of the user.

30296 TZ Determine the timezone in which the time and date are written. If the TZ variable
30297 is not set, an unspecified system default timezone is used.

30298 ASYNCHRONOUS EVENTS
30299 Default.

30300 STDOUT
30301 None.

Shell and Utilities, Issue 6 2993

qrls Utilities

30302 STDERR
30303 Used only for diagnostic messages.

30304 OUTPUT FILES
30305 None.

30306 EXTENDED DESCRIPTION
30307 None.

30308 EXIT STATUS
30309 The following exit values shall be returned:

30310 0 Successful completion.

30311 >0 An error occurred.

30312 CONSEQUENCES OF ERRORS
30313 In addition to the default behavior, the qrls utility shall not be required to write a diagnostic
30314 message to standard error when the error reply received from a batch server indicates that the
30315 batch job_identifier does not exist on the server. Whether or not the qrls utility waits to output the
30316 diagnostic message while attempting to locate the job on other servers is implementation- |
30317 defined. |

30318 APPLICATION USAGE
30319 None.

30320 EXAMPLES
30321 None.

30322 RATIONALE
30323 The qrls utility allows users, operators, and administrators to remove holds from jobs.

30324 The qrls utility does not support any job selection options or wildcard arguments. Users may
30325 acquire a list of jobs selected by attributes using the qselect utility. For example, a user could
30326 select all of their held jobs.

30327 The −h option allows the user to specify the type of hold that is to be removed. This option
30328 allows for USER, SYSTEM, OPERATOR, and implementation-defined hold types. The batch |
30329 server that manages the batch job will verify whether the user is authorized to remove the |
30330 specified hold for the batch job. If more than one type of hold has been placed on the batch job, a
30331 user may wish to remove only some of them.

30332 Mail is not required on release because the administrator has the tools and libraries to build this
30333 option if required.

30334 The qrls utility is a new utility vis-a-vis existing practice; it has been defined in this volume of |
30335 IEEE Std. 1003.1-200x as the natural complement to the qhold utility.

30336 FUTURE DIRECTIONS
30337 None.

30338 SEE ALSO
30339 qhold , qselect, Chapter 3 (on page 2313)

30340 CHANGE HISTORY
30341 Derived from IEEE Std. 1003.2d-1994.

2994 Technical Standard (2000) (Draft July 31, 2000)

Utilities qselect

30342 NAME
30343 qselect — select batch jobs

30344 SYNOPSIS
30345 BE qselect [−a [op] date_time][−A account_string][−c [op] interval]
30346 [−h hold_list][−l resource_list][−N name][−p [op] priority]
30347 [−q destination][−r y| n][−s states][−u user_list]
30348

30349 DESCRIPTION
30350 To select a set of batch jobs is to return the batch job_identifiers for each batch job that meets a list
30351 of selection criteria. A set of batch jobs is selected by a request to a batch server. The qselect
30352 utility is a user-accessible batch client that requests the selection of batch jobs.

30353 Upon successful completion, the qselect utility shall have returned a list of zero or more batch
30354 job_identifiers that meet the criteria specified by the options and option-arguments presented to
30355 the utility.

30356 The qselect utility shall select batch jobs by sending a Select Jobs Request to a batch server. The
30357 qselect utility shall not exit until the server replies to each request generated.

30358 For each option presented to the qselect utility, the utility shall restrict the set of selected batch
30359 jobs as described in the OPTIONS section.

30360 The qselect utility shall not restrict selection of batch jobs except by authorization and as required
30361 by the options presented to the utility.

30362 When an option is specified with a mandatory or optional op component to the option-
30363 argument, then op shall specify a relation between the value of a certain batch job attribute and
30364 the value component of the option-argument. If an op is allowable on an option, then the
30365 description of the option letter indicates the op as either mandatory or optional. Acceptable
30366 strings for the op component, and the relation the string indicates, are shown in the following
30367 list:

30368 .eq. The value represented by the attribute of the batch job is equal to the value represented
30369 by the option-argument.

30370 .ge. The value represented by the attribute of the batch job is greater than or equal to the
30371 value represented by the option-argument.

30372 .gt. The value represented by the attribute of the batch job is greater than the value
30373 represented by the option-argument.

30374 .lt. The value represented by the attribute of the batch job is less than the value
30375 represented by the option-argument.

30376 .le. The value represented by the attribute of the batch job is less than or equal to the value
30377 represented by the option-argument.

30378 .ne. The value represented by the attribute of the batch job is not equal to the value
30379 represented by the option-argument.

30380 OPTIONS
30381 The qselect utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
30382 12.2, Utility Syntax Guidelines. |

30383 The following options shall be supported by the implementation:

30384 −a [op]date_time
30385 Restrict selection to a specific time, or a range of times.

Shell and Utilities, Issue 6 2995

qselect Utilities

30386 The qselect utility shall select only batch jobs for which the value of the
30387 Execution_Time attribute is related to the Epoch equivalent of the local time
30388 expressed by the value of the date_time component of the option-argument in the
30389 manner indicated by the value of the op component of the option-argument.

30390 The qselect utility shall accept a date_time component of the option-argument that
30391 conforms to the syntax of the date_time operand of the touch utility.

30392 If the op component of the option-argument is not presented to the qselect utility,
30393 the utility shall select batch jobs for which the Execution_Time attribute is equal to
30394 the date_time component of the option-argument.

30395 When comparing times, the qselect utility shall use the following definitions for the
30396 op component of the option-argument:

30397 .eq. The time represented by value of the Execution_Time attribute of the batch
30398 job is equal the time represented by the date_time component of the
30399 option-argument.

30400 .ge. The time represented by value of the Execution_Time attribute of the batch
30401 job is after or equal to the time represented by the date_time component of
30402 the option-argument.

30403 .gt. The time represented by value of the Execution_Time attribute of the batch
30404 job is after the time represented by the date_time component of the
30405 option-argument.

30406 .lt. The time represented by value of the Execution_Time attribute of the batch
30407 job is before the time represented by the date_time component of the
30408 option-argument.

30409 .le. The time represented by value of the Execution_Time attribute of the batch
30410 job is before or equal to the time represented by the date_time component
30411 of the option-argument.

30412 .ne. The time represented by value of the Execution_Time attribute of the batch
30413 job is not equal to the time represented by the date_time component of the
30414 option-argument.

30415 The qselect utility shall accept the defined character strings for the op component of
30416 the option-argument.

30417 −A account_string
30418 Restrict selection to the batch jobs charging a specified account.

30419 The qselect utility shall select only batch jobs for which the value of the
30420 Account_Name attribute of the batch job matchs the value of the account_string
30421 option-argument.

30422 The syntax of the account_string option-argument is unspecified.

30423 −c [op]interval
30424 Restrict selection to batch jobs within a range of checkpoint intervals.

30425 The qselect utility shall select only batch jobs for which the value of the Checkpoint
30426 attribute relates to the value of the interval component of the option-argument in
30427 the manner indicated by the value of the op component of the option-argument.

30428 If the op component of the option-argument is omitted, the qselect utility shall
30429 select batch jobs for which the value of the Checkpoint attribute is equal to the value

2996 Technical Standard (2000) (Draft July 31, 2000)

Utilities qselect

30430 of the interval component of the option-argument.

30431 When comparing checkpoint intervals, the qselect utility shall use the following
30432 definitions for the op component of the option-argument:

30433 .eq. The value of the Checkpoint attribute of the batch job equals the value of
30434 the interval component of the option-argument.

30435 .ge. The value of the Checkpoint attribute of the batch job is greater than or
30436 equal to the value of the interval component option-argument.

30437 .gt. The value of the Checkpoint attribute of the batch job is greater than the
30438 value of the interval component option-argument.

30439 .lt. The value of the Checkpoint attribute of the batch job is less than the value
30440 of the interval component option-argument.

30441 .le. The value of the Checkpoint attribute of the batch job is less than or equal
30442 to the value of the interval component option-argument.

30443 .ne. The value of the Checkpoint attribute of the batch job does not equal the
30444 value of the interval component option-argument.

30445 The qselect utility shall accept the defined character strings for the op component of
30446 the option-argument.

30447 The ordering relationship for the values of the interval option-argument is defined
30448 to be:

30449 ‘n’ .gt. ‘s’ .gt. ‘c= minutes ’ .ge. ‘c’

30450 When comparing Checkpoint attributes with an interval having the value of the
30451 single character ’u’ , only equality or inequality are valid comparisons.

30452 −h hold_list Restrict selection to batch jobs that have a specific type of hold.

30453 The qselect utility shall select only batch jobs for which the value of the Hold_Types
30454 attribute matches the value of the hold_list option-argument.

30455 The qselect −h option shall accept a value for the hold_list option-argument that is a
30456 string of alphanumeric characters in the portable character set (see the Base |
30457 Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). |

30458 The qselect utility shall accept a value for the hold_list option-argument that is a
30459 string of one or more of the characters ’u’ , ’s’ , or ’o’ , or the single character
30460 ’n’ .

30461 Each unique character in the hold_list option-argument of the qselect utility is
30462 defined as follows, each representing a different hold type:

30463 u USER

30464 s SYSTEM

30465 o OPERATOR

30466 If any of these characters are duplicated in the hold_list option-argument, the
30467 duplicates shall be ignored.

30468 The qselect utility shall consider it an error if any hold type other than n is
30469 combined with hold type n.

Shell and Utilities, Issue 6 2997

qselect Utilities

30470 Strictly conforming applications shall not repeat any of the characters ’u’ , ’s’ ,
30471 ’o’ , or ’n’ within the hold_list option-argument. The qselect utility shall permit
30472 the repetition of characters, but shall not assign additional meaning to the repeated
30473 characters.

30474 An implementation may define other hold types. The conformance document for
30475 an implementation shall describe any additional hold types, how they are
30476 specified, their internal behavior, and how they affect the behavior of the utility.

30477 −l resource_list
30478 Restrict selection to batch jobs with specified resource limits and attributes.

30479 The qselect utility shall accept a resource_list option-argument with the following
30480 syntax:

30481 resource_name op value [,, resource_name op value ,, ...]

30482 When comparing resource values, the qselect utility shall use the following
30483 definitions for the op component of the option-argument:

30484 .eq. The value of the resource of the same name in the Resource_List attribute
30485 of the batch job equals the value of the value component of the option-
30486 argument.

30487 .ge. The value of the resource of the same name in the Resource_List attribute
30488 of the batch job is greater than or equal to the value of the value
30489 component of the option-argument.

30490 .gt. The value of the resource of the same name in the Resource_List attribute
30491 of the batch job is greater than the value of the value component of the
30492 option-argument.

30493 .lt. The value of the resource of the same name in the Resource_List attribute
30494 of the batch job is less than the value of the value component of the
30495 option-argument.

30496 .ne. The value of the resource of the same name in the Resource_List attribute
30497 of the batch job does not equal the value of the value component of the
30498 option-argument.

30499 .le. The value of the resource of the same name in the Resource_List attribute
30500 of the batch job is less than or equal to the value of the value component
30501 of the option-argument.

30502 When comparing the limit of a Resource_List attribute with the value component of
30503 the option-argument, if the limit, the value, or both are non-numeric, only equality
30504 or inequality are valid comparisons.

30505 The qselect utility shall select only batch jobs for which the values of the
30506 resource_names listed in the resource_list option-argument match the corresponding
30507 limits of the Resource_List attribute of the batch job.

30508 Limits of resource_names present in the Resource_List attribute of the batch job that
30509 have no corresponding values in the resource_list option-argument shall not be
30510 considered when selecting batch jobs.

30511 −N name Restrict selection to batch jobs with a specified name.

30512 The qselect utility shall select only batch jobs for which the value of the Job_Name
30513 attribute matches the value of the name option-argument. The string specified in

2998 Technical Standard (2000) (Draft July 31, 2000)

Utilities qselect

30514 the name option-argument shall be passed, uninterpreted, to the server. This allows
30515 an implementation to match ‘‘wildcard’’ patterns against batch job names.

30516 An implementation shall describe in the conformance document the format it
30517 supports for matching against the Job_Name attribute.

30518 −p [op]priority
30519 Restrict selection to batch jobs of the specified priority or range of priorities.

30520 The qselect utility shall select only batch jobs for which the value of the Priority
30521 attribute of the batch job relates to the value of the priority component of the
30522 option-argument in the manner indicated by the value of the op component of the
30523 option-argument.

30524 If the op component of the option-argument is omitted, the qselect utility shall
30525 select batch jobs for which the value of the Priority attribute of the batch job is
30526 equal to the value of the priority component of the option-argument.

30527 When comparing priority values, the qselect utility shall use the following
30528 definitions for the op component of the option-argument:

30529 .eq. The value of the Priority attribute of the batch job equals the value of the
30530 priority component of the option-argument.

30531 .ge. The value of the Priority attribute of the batch job is greater than or equal
30532 to the value of the priority component option-argument.

30533 .gt. The value of the Priority attribute of the batch job is greater than the value
30534 of the priority component option-argument.

30535 .lt. The value of the Priority attribute of the batch job is less than the value of
30536 the priority component option-argument.

30537 .lt. The value of the Priority attribute of the batch job is less than or equal to
30538 the value of the priority component option-argument.

30539 .ne. The value of the Priority attribute of the batch job does not equal the value
30540 of the priority component option-argument.

30541 −q destination
30542 Restrict selection to the specified batch queue or server, or both.

30543 The qselect utility shall select only batch jobs that are located at the destination
30544 indicated by the value of the destination option-argument.

30545 The destination defines a batch queue, a server, or a batch queue at a server.

30546 The qselect utility shall accept an option-argument for the −q option that conforms
30547 to the syntax for a destination. If the −q option is not presented to the qselect utility,
30548 the utility shall select batch jobs from all batch queues at the default batch server.

30549 If the option-argument describes only a batch queue, the qselect utility shall select
30550 only batch jobs from the batch queue of the specified name at the default batch
30551 server. The means by which qselect determines the default server is |
30552 implementation-defined. |

30553 If the option-argument describes only a batch server, the qselect utility shall select
30554 batch jobs from all the batch queues at that batch server.

30555 If the option-argument describes both a batch queue and a batch server, the qselect
30556 utility shall select only batch jobs from the specified batch queue at the specified

Shell and Utilities, Issue 6 2999

qselect Utilities

30557 server.

30558 −r y|n Restrict selection to batch jobs with the specified rerunability status.

30559 The qselect utility shall select only batch jobs for which the value of the Rerunable
30560 attribute of the batch job matches the value of the option-argument.

30561 The qselect utility shall accept a value for the option-argument that consists of
30562 either the single character ’y’ or the single character ’n’ . The character ’y’
30563 represents the value TRUE, and the character ’n’ represents the value FALSE.

30564 −s states Restrict selection to batch jobs in the specified states.

30565 The qselect utility shall accept an option-argument that consists of any combination
30566 of the characters ’e’ , ’q’ , ’r’ , ’w’ , ’h’ , and ’t’ .

30567 Conforming applications shall not repeat any character in the option-argument.
30568 The qselect utility shall permit the repetition of characters in the option-argument,
30569 but shall not assign additional meaning to repeated characters.

30570 The qselect utility shall interpret the characters in the states option-argument as
30571 follows:

30572 e Represents the EXITING state.

30573 q Represents the QUEUED state.

30574 r Represents the RUNNING state.

30575 t Represents the TRANSITING state.

30576 h Represents the HELD state.

30577 w Represents the WAITING state.

30578 For each character in the states option-argument, the qselect utility shall select batch
30579 jobs in the corresponding state.

30580 −u user_list Restrict selection to batch jobs owned by the specified user names.

30581 The qselect utility shall select only the batch jobs of those users specified in the
30582 user_list option-argument.

30583 The qselect utility shall accept a user_list option-argument that conforms to the
30584 following syntax:

30585 username [@host][,, username [@host] ,, ...]

30586 The qselect utility shall accept only one user name that is missing a corresponding
30587 host name. The qselect utility shall accept only one user name per named host.

30588 OPERANDS
30589 None.

30590 STDIN
30591 Not used.

30592 INPUT FILES
30593 None.

3000 Technical Standard (2000) (Draft July 31, 2000)

Utilities qselect

30594 ENVIRONMENT VARIABLES
30595 The following environment variables shall affect the execution of qselect:

30596 LANG Provide a default value for the internationalization variables that are unset or null.
30597 If LANG is unset or null, the corresponding value from the implementation- |
30598 defined default locale shall be used. If any of the internationalization variables |
30599 contains an invalid setting, the utility shall behave as if none of the variables had
30600 been defined.

30601 LC_ALL If set to a non-empty string value, override the values of all the other
30602 internationalization variables.

30603 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
30604 characters (for example, single-byte as opposed to multi-byte characters in
30605 arguments).

30606 LC_MESSAGES
30607 Determine the locale that should be used to affect the format and contents of
30608 diagnostic messages written to standard error.

30609 LC_TIME Determine the format and contents of date and time strings written by qselect.

30610 LOGNAME Determine the login name of the user.

30611 TZ Determine the timezone in which the time and date are written. If the TZ variable
30612 is not set, an unspecified system default timezone is used.

30613 ASYNCHRONOUS EVENTS
30614 Default.

30615 STDOUT
30616 The qselect utility shall write zero or more batch job_identifiers to standard output.

30617 The qselect utility shall separate the batch job_identifiers written to standard output by white
30618 space.

30619 The qselect utility shall write batch job_identifiers in the following format:

30620 sequence_number.server_name @server

30621 STDERR
30622 Used only for diagnostic messages.

30623 OUTPUT FILES
30624 None.

30625 EXTENDED DESCRIPTION
30626 None.

30627 EXIT STATUS
30628 The following exit values shall be returned:

30629 0 Successful completion.

30630 >0 An error occurred.

30631 CONSEQUENCES OF ERRORS
30632 Default.

Shell and Utilities, Issue 6 3001

qselect Utilities

30633 APPLICATION USAGE
30634 None.

30635 EXAMPLES
30636 The following example shows how a user might use the qselect utility in conjunction with the
30637 qdel utility to delete all of his or her jobs in the queued state without affecting any jobs that are
30638 already running:

30639 qdel $(qselect −s q)

30640 or:

30641 qselect −s q || xargs qdel

30642 RATIONALE
30643 The qselect utility allows users to acquire a list of job identifiers that match user-specified
30644 selection criteria. The list of identifiers returned by the qselect utility conforms to the syntax of
30645 the batch job identifier list processed by a utility such as qmove, qdel, and qrls.The qselect utility is
30646 thus a powerful tool for causing another batch system utility to act upon a set of jobs that match
30647 a list of selection criteria.

30648 The options of the qselect utility let the user apply a number of useful filters for selecting jobs.
30649 Each option further restricts the selection of jobs. Many of the selection options allow the
30650 specification of a relational operator. The FORTRAN-like syntax of the operator—that is,
30651 ".lt." , was chosen rather than the C-like "<=" meta-characters.

30652 The −a option allows users to restrict the selected jobs to those that have been submitted (or
30653 altered) to wait until a particular time. The time period is determined by the argument of this
30654 option, which includes both a time and an operator—it is thus possible to select jobs waiting
30655 until a specific time, jobs waiting until after a certain time, or those waiting for a time before the
30656 specified time.

30657 The −A option allows users to restrict the selected jobs to those that have been submitted (or
30658 altered) to charge a particular account.

30659 The −c option allows users to restrict the selected jobs to those whose checkpointing interval
30660 falls within the specified range.

30661 The −l option allows users to select those jobs whose resource limits fall within the range
30662 indicated by the value of the option. For example, a user could select those jobs for which the
30663 CPU time limit is greater than two hours.

30664 The −N option allows users to select jobs by job name. For instance, all the parts of a task that
30665 have been divided in parallel jobs might be given the same name, and thus manipulated as a
30666 group by means of this option.

30667 The −q option allows users to select jobs in a specified queue.

30668 The −r option allows users to select only those jobs with a specified rerun criteria. For instance, a
30669 user might select only those jobs that can be rerun for use with the qrerun utility.

30670 The −s option allows users to select only those jobs that are in a certain state.

30671 The −u option allows users to select jobs that have been submitted to execute under a particular
30672 account.

30673 The selection criteria provided by the options of the qselect utility allow users to select jobs based |
30674 on all the appropriate attributes that can be assigned to jobs by the qsub utility. When
30675 implementors extend the qsub utility, or another utilities, using the −W option, they may likewise
30676 elect to extend the qselect utility to allow additional selection criteria.

3002 Technical Standard (2000) (Draft July 31, 2000)

Utilities qselect

30677 Historically, the qselect utility has not been a part of existing practice; it is an improvement that
30678 has been introduced in this volume of IEEE Std. 1003.1-200x.

30679 FUTURE DIRECTIONS
30680 None.

30681 SEE ALSO
30682 qdel, qrerun, qrls, qselect, qsub, touch , Chapter 3 (on page 2313)

30683 CHANGE HISTORY
30684 Derived from IEEE Std. 1003.2d-1994.

Shell and Utilities, Issue 6 3003

qsig Utilities

30685 NAME
30686 qsig — signal batch jobs

30687 SYNOPSIS
30688 BE qsig [−s signal] job_identifier ...
30689

30690 DESCRIPTION
30691 To signal a batch job is to send a signal to the session leader of the batch job. A batch job is
30692 signaled by sending a request to the batch server that manages the batch job. The qsig utility is a
30693 user-accessible batch client that requests the signaling of a batch job.

30694 The qsig utility shall signal those batch jobs for which a batch job_identifier is presented to the
30695 utility. The qsig utility shall not signal any batch jobs whose batch job_identifiers are not
30696 presented to the utility.

30697 The qsig utility shall signal batch jobs in the order in which the corresponding batch
30698 job_identifiers are presented to the utility. If the qsig utility fails to process a batch job_identifier
30699 successfully, the utility shall proceed to process the remaining batch job_identifiers, if any.

30700 The qsig utility shall signal batch jobs by sending a Signal Job Request to the batch server that
30701 manages the batch job.

30702 For each successfully processed batch job_identifier, the qsig utility shall have received a
30703 completion reply to each Signal Job Request sent to a batch server at the time the utility exits.

30704 OPTIONS
30705 The qsig utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
30706 12.2, Utility Syntax Guidelines. |

30707 The following option shall be supported by the implementation:

30708 −s signal Define the signal to be sent to the batch job.

30709 The qsig utility shall accept a signal option-argument that is either a symbolic
30710 signal name or an unsigned integer signal number (see the POSIX.1-1990 standard,
30711 Section 3.3.1.1). The qsig utility shall accept signal names for which the SIG prefix
30712 has been omitted.

30713 If the signal option-argument is a signal name, the qsig utility shall send that name.

30714 If the signal option-argument is a number, the qsig utility shall send the signal
30715 value represented by the number.

30716 If the −s option is not presented to the qsig utility, the utility shall send the signal
30717 SIGTERM to each signaled batch job.

30718 OPERANDS
30719 The qsig utility shall accept one or more operands that conform to the syntax for a batch
30720 job_identifier (see Section 3.3.1 (on page 2336)).

30721 STDIN
30722 Not used.

30723 INPUT FILES
30724 None.

3004 Technical Standard (2000) (Draft July 31, 2000)

Utilities qsig

30725 ENVIRONMENT VARIABLES
30726 The following environment variables shall affect the execution of qsig:

30727 LANG Provide a default value for the internationalization variables that are unset or null.
30728 If LANG is unset or null, the corresponding value from the implementation- |
30729 defined default locale shall be used. If any of the internationalization variables |
30730 contains an invalid setting, the utility shall behave as if none of the variables had
30731 been defined.

30732 LC_ALL If set to a non-empty string value, override the values of all the other
30733 internationalization variables.

30734 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
30735 characters (for example, single-byte as opposed to multi-byte characters in
30736 arguments).

30737 LC_MESSAGES
30738 Determine the locale that should be used to affect the format and contents of
30739 diagnostic messages written to standard error.

30740 LC_TIME Determine the format and contents of date and time strings written by qsig.

30741 LOGNAME Determine the login name of the user.

30742 TZ Determine the timezone in which the time and date are written. If the TZ variable
30743 is not set, an unspecified system default timezone is used.

30744 ASYNCHRONOUS EVENTS
30745 Default.

30746 STDOUT
30747 An implementation of the qsig utility may write informative messages to standard output.

30748 STDERR
30749 Used only for diagnostic messages.

30750 OUTPUT FILES
30751 None.

30752 EXTENDED DESCRIPTION
30753 None.

30754 EXIT STATUS
30755 The following exit values shall be returned:

30756 0 Successful completion.

30757 >0 An error occurred.

30758 CONSEQUENCES OF ERRORS
30759 In addition to the default behavior, the qsig utility shall not be required to write a diagnostic
30760 message to standard error when the error reply received from a batch server indicates that the
30761 batch job_identifier does not exist on the server. Whether or not the qsig utility waits to output the
30762 diagnostic message while attempting to locate the batch job on other servers is implementation- |
30763 defined. |

Shell and Utilities, Issue 6 3005

qsig Utilities

30764 APPLICATION USAGE
30765 None.

30766 EXAMPLES
30767 None.

30768 RATIONALE
30769 The qsig utility allows users to signal batch jobs.

30770 A user may be unable to signal a batch job with the kill utility of the operating system for a
30771 number of reasons. First, the process ID of the batch job may be unknown to the user. Second,
30772 the processes of the batch job may be on a remote node. However, by virtue of communication
30773 between batch nodes, the qsig utility can arrange for the signaling of a process.

30774 Because a batch job that is not running cannot be signaled, and because the signal may not
30775 terminate the batch job, the qsig utility is not a substitute for the qdel utility.

30776 The options of the qsig utility allow the user to specify the signal that is to be sent to the batch
30777 job.

30778 The −s option allows users to specify a signal by name or by number, and thus override the
30779 default signal. The POSIX.1-1990 standard defines signals by both name and number.

30780 The qsig utility is a new utility, vis-a-vis existing practice; it has been defined in this volume of |
30781 IEEE Std. 1003.1-200x in response to user-perceived shortcomings in existing practice.

30782 FUTURE DIRECTIONS
30783 None.

30784 SEE ALSO
30785 kill , qdel, Chapter 3 (on page 2313)

30786 CHANGE HISTORY
30787 Derived from IEEE Std. 1003.2d-1994.

3006 Technical Standard (2000) (Draft July 31, 2000)

Utilities qstat

30788 NAME
30789 qstat — show status of batch jobs

30790 SYNOPSIS
30791 BE qstat [−f] job_identifier ...

30792 qstat −Q [−f] destination ...

30793 qstat −B [−f] server_name ...
30794

30795 DESCRIPTION
30796 The status of a batch job, batch queue, or batch server is obtained by a request to the server. The
30797 qstat utility is a user-accessible batch client that requests the status of one or more batch jobs,
30798 batch queues, or servers, and writes the status information to standard output.

30799 For each successfully processed batch job_identifier, the qstat utility shall display information
30800 about the corresponding batch job.

30801 For each successfully processed destination, the qstat utility shall display information about the
30802 corresponding batch queue.

30803 For each successfully processed server name, the qstat utility shall display information about the
30804 corresponding server.

30805 The qstat utility shall acquire batch job status information by sending a Job Status Request to a
30806 batch server. The qstat utility shall acquire batch queue status information by sending a Queue
30807 Status Request to a batch server. The qstat utility shall acquire server status information by
30808 sending a Server Status Request to a batch server.

30809 OPTIONS
30810 The qstat utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
30811 12.2, Utility Syntax Guidelines. |

30812 The following options shall be supported by the implementation:

30813 −f Specify that a full display is produced.

30814 The minimum contents of a full display are specified in the STDOUT section.

30815 Additional contents and format of a full display are implementation-defined. |

30816 −Q Specify that the operand is a destination.

30817 The qstat utility shall display information about each batch queue at each
30818 destination identified as an operand.

30819 −B Specify that the operand is a server name.

30820 The qstat utility shall display information about each server identified as an
30821 operand.

30822 OPERANDS
30823 If the −Q option is presented to the qstat utility, the utility shall accept one or more operands that
30824 conform to the syntax for a destination (see Section 3.3.2 (on page 2337)).

30825 If the −B option is presented to the qstat utility, the utility shall accept one or more server_name
30826 operands.

30827 If neither the −B nor the −Q option is presented to the qstat utility, the utility shall accept one or
30828 more operands that conform to the syntax for a batch job_identifier (see Section 3.3.1 (on page
30829 2336)).

Shell and Utilities, Issue 6 3007

qstat Utilities

30830 STDIN
30831 Not used.

30832 INPUT FILES
30833 None.

30834 ENVIRONMENT VARIABLES
30835 The following environment variables shall affect the execution of qstat:

30836 COLUMNS Override the system-selected horizontal screen size. See the Base Definitions |
30837 volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables for valid |
30838 values and results when it is unset or null.

30839 HOME Determine the path name of the user’s home directory.

30840 LANG Provide a default value for the internationalization variables that are unset or null.
30841 If LANG is unset or null, the corresponding value from the implementation- |
30842 defined default locale shall be used. If any of the internationalization variables |
30843 contains an invalid setting, the utility shall behave as if none of the variables had
30844 been defined.

30845 LC_ALL If set to a non-empty string value, override the values of all the other
30846 internationalization variables.

30847 LC_COLLATE
30848 Determine the locale for the behavior of ranges, equivalence classes and multi-
30849 character collating elements within regular expressions.

30850 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
30851 characters (for example, single-byte as opposed to multi-byte characters in
30852 arguments).

30853 LC_MESSAGES
30854 Determine the locale that should be used to affect the format and contents of
30855 diagnostic messages written to standard error.

30856 LC_NUMERIC
30857 Determine the locale for selecting the radix character used when writing floating-
30858 point formatted output.

30859 LC_TIME Determine the format and contents of date and time strings written by qstat.

30860 LINES Override the system-selected vertical screen size, used as the number of lines in a
30861 screenful and the vertical screen size in visual mode. See the Base Definitions |
30862 volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables for valid |
30863 values and results when it is unset or null. |

30864 LOGNAME Determine the login name of the user.

30865 TERM Determine the terminal type. If this variable is unset or null, and if the −T option is
30866 not specified, an unspecified default terminal type shall be used.

30867 TZ Determine the timezone in which the time and date are written. If the TZ variable
30868 is not set, an unspecified system default timezone is used.

30869 ASYNCHRONOUS EVENTS
30870 Default.

3008 Technical Standard (2000) (Draft July 31, 2000)

Utilities qstat

30871 STDOUT
30872 If an operand presented to the qstat utility is a batch job_identifier and the −f option is not
30873 specified, the qstat utility shall display the following items on a single line, in the stated order,
30874 with white space between each item, for each successfully processed operand:

30875 • The batch job_identifier

30876 • The batch job name

30877 • The Job_Owner attribute

30878 • The CPU time used by the batch job

30879 • The batch job state

30880 • The batch job location

30881 If an operand presented to the qstat utility is a batch job_identifier and the −f option is specified,
30882 the qstat utility shall display the following items for each success fully processed operand:

30883 • The batch job_identifier

30884 • The batch job name

30885 • The Job_Owner attribute

30886 • The execution user ID

30887 • The CPU time used by the batch job

30888 • The batch job state

30889 • The batch job location

30890 • Additional implementation-defined information, if any, about the batch job or batch queue |

30891 If an operand presented to the qstat utility is a destination, the −Q option is specified, and the −f
30892 option is not specified, the qstat utility shall display the following items on a single line, in the
30893 stated order, with white space between each item, for each successfully processed operand:

30894 • The batch queue name

30895 • The maximum number of batch jobs that are allowed to run in the batch queue concurrently

30896 • The total number of batch jobs in the batch queue

30897 • The status of the batch queue

30898 • For each state, the number of batch jobs in that state in the batch queue and the name of the
30899 state

30900 • The type of batch queue (execution or routing)

30901 If the operands presented to the qstat utility are destinations, the −Q option is specified, and the
30902 −f option is specified, the qstat utility shall display the following items for each successfully
30903 processed operand:

30904 • The batch queue name

30905 • The maximum number of batch jobs that are allowed to run in the batch queue concurrently

30906 • The total number of batch jobs in the batch queue

30907 • The status of the batch queue

Shell and Utilities, Issue 6 3009

qstat Utilities

30908 • For each state, the number of batch jobs in that state in the batch queue and the name of the
30909 state

30910 • The type of batch queue (execution or routing)

30911 • Additional implementation-defined information, if any, about the batch queue |

30912 If the operands presented to the qstat utility are batch server names, the −B option is specified,
30913 and the −f option is not specified, the qstat utility shall display the following items on a single
30914 line, in the stated order, with white space between each item, for each successfully processed
30915 operand:

30916 • The batch server name

30917 • The maximum number of batch jobs that are allowed to run in the batch queue concurrently

30918 • The total number of batch jobs managed by the batch server

30919 • The status of the batch server

30920 • For each state, the number of batch jobs in that state and the name of the state

30921 If the operands presented to the qstat utility are server names, the −B option is specified, and the
30922 −f option is specified, the qstat utility shall display the following items for each successfully
30923 processed operand:

30924 • The server name

30925 • The maximum number of batch jobs that are allowed to run in the batch queue concurrently

30926 • The total number of batch jobs managed by the server

30927 • The status of the server

30928 • For each state, the number of batch jobs in that state and the name of the state

30929 • Additional implementation-defined information, if any, about the server |

30930 STDERR
30931 Used only for diagnostic messages.

30932 OUTPUT FILES
30933 None.

30934 EXTENDED DESCRIPTION
30935 None.

30936 EXIT STATUS
30937 The following exit values shall be returned:

30938 0 Successful completion.

30939 >0 An error occurred.

30940 CONSEQUENCES OF ERRORS
30941 In addition to the default behavior, the qstat utility shall not be required to write a diagnostic
30942 message to standard error when the error reply received from a batch server indicates that the
30943 batch job_identifier does not exist on the server. Whether or not the qstat utility waits to output
30944 the diagnostic message while attempting to locate the batch job on other servers is |
30945 implementation-defined. |

3010 Technical Standard (2000) (Draft July 31, 2000)

Utilities qstat

30946 APPLICATION USAGE
30947 None.

30948 EXAMPLES
30949 None.

30950 RATIONALE
30951 The qstat utility allows users to display the status of jobs and listing the batch jobs in queues.

30952 The operands of the qstat utility may be either job identifiers, queues (specified as destination
30953 identifiers), or batch server names. The −Q and −B options, or absence thereof, indicate the
30954 nature of the operands.

30955 The other options of the qstat utility allow the user to control the amount of information
30956 displayed and the format in which it is displayed. Should a user wish to display the status of a
30957 set of jobs that match a selection criteria, the qselect utility may be used to acquire such a list.

30958 The −f option allows users to request a ‘‘full’’ display in an implementation-defined format. |

30959 Historically, the qstat utility has been a part of the NQS and its derivatives, the existing practice |
30960 on which it is based.

30961 FUTURE DIRECTIONS
30962 None.

30963 SEE ALSO
30964 qselect, Chapter 3 (on page 2313)

30965 CHANGE HISTORY
30966 Derived from IEEE Std. 1003.2d-1994.

Shell and Utilities, Issue 6 3011

qsub Utilities

30967 NAME
30968 qsub — submit a script

30969 SYNOPSIS
30970 BE qsub [−a date_time][−A account_string][−c interval]
30971 [−C directive_prefix][−e path_name][−h][−j join_list][−k keep_list]
30972 [−m mail_options][−M mail_list][−N name] |
30973 [−o path_name][−p priority][−q destination][−r y| n] |
30974 [−S path_name_list][−u user_list][−v variable_list][−V]
30975 [−z][script]
30976

30977 DESCRIPTION
30978 To submit a script is to create a batch job that executes the script. A script is submitted by a
30979 request to a batch server. The qsub utility is a user-accessible batch client that submits a script.

30980 Upon successful completion, the qsub utility shall have created a batch job that will execute the
30981 submitted script.

30982 The qsub utility shall submit a script by sending a Queue Job Request to a batch server.

30983 The qsub utility shall place the value of the following environment variables in the Variable_List
30984 attribute of the batch job: HOME, LANG, LOGNAME, PATH, MAIL, SHELL, and TZ. The name
30985 of the environment variable shall be the current name prefixed with the string PBS_O_.

30986 Note: If the current value of the HOME variable in the environment space of the qsub utility
30987 is /aa/bb/cc, then qsub shall place PBS_O_HOME=/aa/bb/cc in the Variable_List
30988 attribute of the batch job.

30989 In addition to the variables described above, the qsub utility shall add the following variables
30990 with the indicated values to the variable list:

30991 PBS_O_WORKDIR The absolute path of the current working directory of the qsub utility process.

30992 PBS_O_HOST The name of the host on which the qsub utility is running.

30993 OPTIONS
30994 The qsub utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
30995 12.2, Utility Syntax Guidelines. |

30996 The following options shall be supported by the implementation:

30997 −a date_time Define the time at which a batch job becomes eligible for execution.

30998 The qsub utility shall accept an option-argument that conforms to the syntax of the
30999 date_time operand of the touch utility.

3012 Technical Standard (2000) (Draft July 31, 2000)

Utilities qsub

31000 Table 4-18 Environment Variable Values (Utilities) |
__

31001 Variable Name Value at qsub Time__
31002 PBS_O_HOME HOME
31003 PBS_O_HOST Client host name
31004 PBS_O_LANG LANG
31005 PBS_O_LOGNAME LOGNAME
31006 PBS_O_PATH PATH
31007 PBS_O_MAIL MAIL
31008 PBS_O_SHELL SHELL
31009 PBS_O_TZ TZ
31010 PBS_O_WORKDIR Current working directory__LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

31011 Note: The server that initiates execution of the batch job will add other
31012 variables to the batch job’s environment; see Section 3.2.2.1 (on page
31013 2319).

31014 The qsub utility shall set the Execution_Time attribute of the batch job to the number
31015 of seconds since the Epoch that is equivalent to the local time expressed by the
31016 value of the date_time option-argument. The Epoch is defined in the Base |
31017 Definitions volume of IEEE Std. 1003.1-200x, Section 3.151, Epoch. |

31018 If the −a option is not presented to the qsub utility, the utility shall set the
31019 Execution_Time attribute of the batch job to a time (number of seconds since the
31020 Epoch) that is earlier than the time at which the utility exits.

31021 −A account_string
31022 Define the account to which the resource consumption of the batch job should be
31023 charged.

31024 The syntax of the account_string option-argument is unspecified.

31025 The qsub utility shall set the Account_Name attribute of the batch job to the value of
31026 the account_string option-argument.

31027 If the −A option is not presented to the qsub utility, the utility shall omit the
31028 Account_Name attribute from the attributes of the batch job.

31029 −c interval Define whether the batch job should be checkpointed, and if so, how often.

31030 The qsub utility shall accept a value for the interval option-argument that is one of
31031 the following:

31032 n No checkpointing shall be performed on the batch batch job
31033 (NO_CHECKPOINT).

31034 s Checkpointing shall be performed only when the batch server is shut
31035 down (CHECKPOINT_AT_SHUTDOWN).

31036 c Automatic periodic checkpointing shall be performed at the
31037 Minimum_Cpu_Interval attribute of the batch queue, in units of CPU
31038 minutes (CHECKPOINT_AT_MIN_CPU_INTERVAL).

31039 c=minutes Automatic periodic checkpointing shall be performed every minutes
31040 of CPU time, or every Minimum_Cpu_Interval minutes, whichever is
31041 greater. The minutes argument shall conform to the syntax for
31042 unsigned integers and shall be greater than zero.

Shell and Utilities, Issue 6 3013

qsub Utilities

31043 The qsub utility shall set the Checkpoint attribute of the batch job to the value of the
31044 interval option-argument.

31045 If the −c option is not presented to the qsub utility, the utility shall set the
31046 Checkpoint attribute of the batch job to the single character ’u’
31047 (CHECKPOINT_UNSPECIFIED).

31048 −C directive_prefix
31049 Define the prefix that declares a directive to the qsub utility within the script.

31050 The directive_prefix is not a batch job attribute; it affects the behavior of the qsub
31051 utility.

31052 If the −C option is presented to the qsub utility, and the value of the directive_prefix
31053 option-argument is the null string, the utility shall not scan the script file for
31054 directives. If the −C option is not presented to the qsub utility, then the value of the
31055 PBS_DPREFIX environment variable is used. If the environment variable is not
31056 defined, then #PBS encoded in the portable character set is the default.

31057 −e path_name Define the path to be used for the standard error stream of the batch job.

31058 The qsub utility shall accept a path_name option-argument which can be preceded |
31059 by a host name element of the form hostname :. |

31060 If the path_name option-argument constitutes an absolute path name, the qsub
31061 utility shall set the Error_Path attribute of the batch job to the value of the
31062 path_name option-argument.

31063 If the path_name option-argument constitutes a relative path name and no host
31064 name element is specified, the qsub utility shall set the Error_Path attribute of the
31065 batch job to the value of the absolute path name derived by expanding the
31066 path_name option-argument relative to the current directory of the process
31067 executing qsub.

31068 If the path_name option-argument constitutes a relative path name and a host name
31069 element is specified, the qsub utility shall set the Error_Path attribute of the batch
31070 job to the value of the path_name option-argument without expansion. The host
31071 name element shall be included.

31072 If the path_name option-argument does not include a host name element, the qsub
31073 utility shall prefix the path name with hostname :, where hostname is the name of the
31074 host upon which the qsub utility is being executed.

31075 If the −e option is not presented to the qsub utility, the utility shall set the
31076 Error_Path attribute of the batch job to the host name and path of the current
31077 directory of the submitting process and the default file name.

31078 The default file name for standard error has the following format:

31079 job_name .e sequence_number

31080 −h Specify that a USER hold is applied to the batch job.

31081 The qsub utility shall set the value of the Hold_Types attribute of the batch job to the
31082 value USER.

31083 If the −h option is not presented to the qsub utility, the utility shall set the
31084 Hold_Types attribute of the batch job to the value NO_HOLD.

31085 −j join_list Define which streams of the batch job are to be merged. The qsub −j option shall
31086 accept a value for the join_list option-argument that is a string of alphanumeric

3014 Technical Standard (2000) (Draft July 31, 2000)

Utilities qsub

31087 characters in the portable character set (see the Base Definitions volume of |
31088 IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). |

31089 The qsub utility shall accept a join_list option-argument that consists of one or
31090 more of the characters ’e’ and ’o’ or the single character ’n’ .

31091 All of the other batch job output streams specified will be merged into the output
31092 stream represented by the character listed first in the join_list option-argument.

31093 For each unique character in the join_list option-argument, the qsub utility shall
31094 add a value to the Join_Path attribute of the batch job as follows, each representing
31095 a different batch job stream to join:

31096 e The standard error of the batch batch job (JOIN_STD_ERROR).

31097 o The standard output of the batch batch job (JOIN_STD_OUTPUT).

31098 An existing Join_Path attribute can be cleared by the following join type:

31099 n NO_JOIN

31100 If n is specified, then no files are joined. The qsub utility shall consider it an error if
31101 any join type other than n is combined with join type n.

31102 Strictly conforming applications shall not repeat any of the characters ’e’ , ’o’ , or
31103 ’n’ within the join_list option-argument. The qsub utility shall permit the
31104 repetition of characters, but shall not assign additional meaning to the repeated
31105 characters.

31106 An implementation may define other join types. The conformance document for an
31107 implementation shall describe any additional batch job streams, how they are
31108 specified, their internal behavior, and how they affect the behavior of the utility.

31109 If the −j option is not presented to the qsub utility, the utility shall set the value of
31110 the Join_Path attribute of the batch job to NO_JOIN.

31111 −k keep_list Define which output of the batch job to retain on the execution host.

31112 The qsub −k option shall accept a value for the keep_list option-argument that is a
31113 string of alphanumeric characters in the portable character set (see the Base |
31114 Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). |

31115 The qsub utility shall accept a keep_list option-argument that consists of one or
31116 more of the characters ’e’ and ’o’ or the single character ’n’ .

31117 For each unique character in the keep_list option-argument, the qsub utility shall
31118 add a value to the Keep_Files attribute of the batch job as follows, each representing
31119 a different batch job stream to keep:

31120 e The standard error of the batch batch job (KEEP_STD_ERROR).

31121 o The standard output of the batch batch job (KEEP_STD_OUTPUT).

31122 If both e and o are specified, then both files are retained. An existing Keep_Files
31123 attribute can be cleared by the following keep type:

31124 n NO_KEEP

31125 If n is specified, then no files are retained. The qsub utility shall consider it an error
31126 if any keep type other than n is combined with keep type n.

31127 Strictly conforming applications shall not repeat any of the characters ’e’ , ’o’ , or
31128 ’n’ within the keep_list option-argument. The qsub utility shall permit the

Shell and Utilities, Issue 6 3015

qsub Utilities

31129 repetition of characters, but shall not assign additional meaning to the repeated
31130 characters.

31131 An implementation may define other keep types. The conformance document for
31132 an implementation shall describe any additional keep types, how they are
31133 specified, their internal behavior, and how they affect the behavior of the utility. If
31134 the −k option is not presented to the qsub utility, the utility shall set the Keep_Files
31135 attribute of the batch job to the value NO_KEEP. |

31136 −m mail_options
31137 Define the points in the execution of the batch job at which the batch server that
31138 manages the batch job shall send mail about a change in the state of the batch job.

31139 The qsub −m option shall accept a value for the mail_options option-argument that
31140 is a string of alphanumeric characters in the portable character set (see the Base |
31141 Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character Set). |

31142 The qsub utility shall accept a value for the mail_options option-argument that is a
31143 string of one or more of the characters ’e’ , ’b’ , and ’a’ , or the single character
31144 ’n’ .

31145 For each unique character in the mail_options option-argument, the qsub utility shall
31146 add a value to the Mail_Users attribute of the batch job as follows, each
31147 representing a different time during the life of a batch job at which to send mail:

31148 e MAIL_AT_EXIT

31149 b MAIL_AT_BEGINNING

31150 a MAIL_AT_ABORT

31151 If any of these characters are duplicated in the mail_options option-argument, the
31152 duplicates shall be ignored.

31153 An existing Mail_Points attribute can be cleared by the following mail type:

31154 n NO_MAIL

31155 If n is specified, then mail is not sent. The qsub utility shall consider it an error if
31156 any mail type other than n is combined with mail type n.

31157 Strictly conforming applications shall not repeat any of the characters ’e’ , ’b’ ,
31158 ’a’ , or ’n’ within the mail_options option-argument.

31159 The qsub utility shall permit the repetition of characters, but shall not assign
31160 additional meaning to the repeated characters. An implementation may define
31161 other mail types. The conformance document for an implementation shall describe
31162 any additional mail types, how they are specified, their internal behavior, and how
31163 they affect the behavior of the utility.

31164 If the −m option is not presented to the qsub utility, the utility shall set the
31165 Mail_Points attribute to the value MAIL_AT_ABORT.

31166 −M mail_list Define the list of users to which a batch server that executes the batch job shall
31167 send mail, if the server sends mail about the batch job.

31168 The syntax of the mail_list option-argument is unspecified.

31169 If the implementation of the qsub utility uses a name service to locate users, the
31170 utility should accept the syntax used by the name service.

3016 Technical Standard (2000) (Draft July 31, 2000)

Utilities qsub

31171 If the implementation of the qsub utility does not use a name service to locate
31172 users, the implementation should accept the following syntax for user names:

31173 mail_address [,, mail_address ,, ...]

31174 The interpretation of mail_address is implementation-defined. |

31175 The qsub utility shall set the Mail_Users attribute of the batch job to the value of the
31176 mail_list option-argument.

31177 If the −M option is not presented to the qsub utility, the utility shall place only the
31178 user name and host name for the current process in the Mail_Users attribute of the
31179 batch job.

31180 −N name Define the name of the batch job.

31181 The qsub −N option shall accept a value for the name option-argument that is a
31182 string of up to 15 alphanumeric characters in the portable character set (see the |
31183 Base Definitions volume of IEEE Std. 1003.1-200x, Section 6.1, Portable Character |
31184 Set) where the first character is alphabetic. |

31185 The qsub utility shall set the value of the Job_Name attribute of the batch job to the
31186 value of the name option-argument.

31187 If the −N option is not presented to the qsub utility, the utility shall set the
31188 Job_Name attribute of the batch job to the name of the script argument from which
31189 the directory specification if any, has been removed.

31190 If the −N option is not presented to the qsub utility, and the script is read from
31191 standard input, the utility shall set the Job_Name attribute of the batch job to the
31192 value STDIN.

31193 −o path_name Define the path for the standard output of the batch job.

31194 The qsub utility shall accept a path_name option-argument that conforms to the
31195 syntax of the path_name element defined in the POSIX.1-1990 standard, which can
31196 be preceded by a host name element of the form hostname :.

31197 If the path_name option-argument constitutes an absolute path name, the qsub
31198 utility shall set the Output_Path attribute of the batch job to the value of the
31199 path_name option-argument without expansion.

31200 If the path_name option-argument constitutes a relative path name and no host
31201 name element is specified, the qsub utility shall set the Output_Path attribute of the
31202 batch job to the path name derived by expanding the value of the path_name
31203 option-argument relative to the current directory of the process executing the qsub.

31204 If the path_name option-argument constitutes a relative path name and a host name
31205 element is specified, the qsub utility shall set the Output_Path attribute of the batch
31206 job to the value of the path_name option-argument without expansion.

31207 If the path_name option-argument does not specify a host name element, the qsub
31208 utility shall prefix the path name with hostname :, where hostname is the name of the
31209 host upon which the qsub utility is executing.

31210 If the −o option is not presented to the qsub utility, the utility shall set the
31211 Output_Path attribute of the batch job to the host name and path of the current
31212 directory of the submitting process and the default file name.

31213 The default file name for standard output has the following format:

Shell and Utilities, Issue 6 3017

qsub Utilities

31214 job_name .o sequence_number

31215 −p priority Define the priority the batch job should have relative to other batch jobs owned by
31216 the batch server.

31217 The qsub utility shall set the Priority attribute of the batch job to the value of the
31218 priority option-argument.

31219 If the −p option is not presented to the qsub utility, the value of the Priority |
31220 attribute is implementation-defined. |

31221 The qsub utility shall accept a value for the priority option-argument that conforms
31222 to the syntax for signed decimal integers, and which is not less than −1 024 and not
31223 greater than 1 023.

31224 −q destination
31225 Define the destination of the batch job.

31226 The destination is not a batch job attribute; it determines the batch server, and
31227 possibly the batch queue, to which the qsub utility batch queues the batch job.

31228 The qsub utility shall submit the script to the batch server named by the destination
31229 option-argument or the server that owns the batch queue named in the destination
31230 option-argument.

31231 The qsub utility shall accept an option-argument for the −q option that conforms to
31232 the syntax for a destination (see Section 3.3.2 (on page 2337)).

31233 If the −q option is not presented to the qsub utility, the qsub utility shall submit the
31234 batch job to the default destination. The mechanism for determining the default
31235 destination is implementation-defined. |

31236 −r y|n Define whether the batch job is rerunable.

31237 If the value of the option-argument is y , the qsub utility shall set the Rerunable |
31238 attribute of the batch job to TRUE.

31239 If the value of the option-argument is n, the qsub utility shall set the Rerunable |
31240 attribute of the batch job to FALSE.

31241 If the −r option is not presented to the qsub utility, the utility shall set the Rerunable
31242 attribute of the batch job to TRUE.

31243 −S path_name_list
31244 Define the path name to the shell under which the batch job is to execute.

31245 The qsub utility shall accept a path_name_list option-argument that conforms to the
31246 following syntax:

31247 pathname [@host][,, pathname [@host] ,, ...]

31248 The qsub utility shall allow only one path name for a given host name. The qsub
31249 utility shall allow only one path name that is missing a corresponding host name.

31250 The qsub utility shall add a value to the Shell_Path_List attribute of the batch job for
31251 each entry in the path_name_list option-argument.

31252 If the −S option is not presented to the qsub utility, the utility shall set the
31253 Shell_Path_List attribute of the batch job to the null string.

31254 The conformance document for an implementation shall describe the mechanism
31255 used to set the default shell and determine the current value of the default shell.

3018 Technical Standard (2000) (Draft July 31, 2000)

Utilities qsub

31256 An implementation shall provide a means for the installation to set the default
31257 shell to the login shell of the user under which the batch job is to execute. See
31258 Section 3.3.3 (on page 2337) for a means of removing keyword=value (and
31259 value@keyword) pairs and other general rules for list-oriented batch job attributes.

31260 −u user_list Define the user name under which the batch job is to execute.

31261 The qsub utility shall accept a user_list option-argument that conforms to the
31262 following syntax:

31263 username [@host][,, username [@host] ,, ...]

31264 The qsub utility shall accept only one user name that is missing a corresponding
31265 host name. The qsub utility shall accept only one user name per named host.

31266 The qsub utility shall add a value to the User_List attribute of the batch job for each
31267 entry in the user_list option-argument.

31268 If the −u option is not presented to the qsub utility, the utility shall set the User_List
31269 attribute of the batch job to the user name from which the utility is executing. See
31270 Section 3.3.3 (on page 2337) for a means of removing keyword=value (and
31271 value@keyword) pairs and other general rules for list-oriented batch job attributes.

31272 −v variable_list
31273 Add to the list of variables that are exported to the session leader of the batch job.

31274 A variable_list is a set of strings of either the form <variable> or <variable=value>,
31275 delimited by commas.

31276 If the −v option is presented to the qsub utility, the utility shall also add, to the
31277 environment Variable_List attribute of the batch job, every variable named in the
31278 environment variable_list option-argument and, optionally, values of specified
31279 variables.

31280 If a value is not provided on the command line, the qsub utility shall set the value
31281 of each variable in the environment Variable_List attribute of the batch job to the
31282 value of the corresponding environment variable for the process in which the
31283 utility is executing; see Table 4-18 (on page 3013).

31284 A conforming application shall not repeat a variable in the environment
31285 variable_list option-argument.

31286 The qsub utility shall not repeat a variable in the environment Variable_List
31287 attribute of the batch job. See Section 3.3.3 (on page 2337) for a means of removing
31288 keyword=value (and value@keyword) pairs and other general rules for list-oriented
31289 batch job attributes.

31290 −V Specify that all of the environment variables of the process are exported to the
31291 context of the batch job.

31292 The qsub utility shall place every environment variable in the process in which the
31293 utility is executing in the list and shall set the value of each variable in the attribute
31294 to the value of that variable in the process.

31295 −z Specify that the utility does not write the batch job_identifier of the created batch
31296 job to standard output.

31297 If the −z option is presented to the qsub utility, the utility shall not write the batch
31298 job_identifier of the created batch job to standard output.

Shell and Utilities, Issue 6 3019

qsub Utilities

31299 If the −z option is not presented to the qsub utility, the utility shall write the
31300 identifier of the created batch job to standard output.

31301 OPERANDS
31302 The qsub utility shall accept a script operand that indicates the path to the script of the batch job.

31303 If the script operand is not presented to the qsub utility, or if the operand is the single-character
31304 string ’-’ , the utility shall read the script from standard input.

31305 If the script represents a partial path, the qsub utility shall expand the path relative to the current
31306 directory of the process executing the utility.

31307 STDIN
31308 The qsub utility reads the script of the batch job from standard input if the script operand is
31309 omitted or is the single character ’-’ .

31310 INPUT FILES
31311 In addition to binding the file indicated by the script operand to the batch job, the qsub utility
31312 reads the script file and acts on directives in the script.

31313 ENVIRONMENT VARIABLES
31314 The following environment variables shall affect the execution of qsub:

31315 LANG Provide a default value for the internationalization variables that are unset or null.
31316 If LANG is unset or null, the corresponding value from the implementation- |
31317 defined default locale shall be used. If any of the internationalization variables |
31318 contains an invalid setting, the utility shall behave as if none of the variables had
31319 been defined.

31320 LC_ALL If set to a non-empty string value, override the values of all the other
31321 internationalization variables.

31322 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
31323 characters (for example, single-byte as opposed to multi-byte characters in
31324 arguments).

31325 LC_MESSAGES
31326 Determine the locale that should be used to affect the format and contents of
31327 diagnostic messages written to standard error.

31328 LC_TIME Determine the format and contents of date and time strings written by qsub.

31329 LOGNAME Determine the login name of the user.

31330 PBS_DPREFIX
31331 Determine the default prefix for directives within the script.

31332 SHELL Determine the path name of the preferred command language interpreter of the
31333 user.

31334 TZ Determine the timezone in which the time and date are written. If the TZ variable
31335 is not set, an unspecified system default timezone is used.

31336 ASYNCHRONOUS EVENTS
31337 Once created, a batch job exists until it exits, aborts, or is deleted.

31338 After a batch job is created by the qsub utility, batch servers might route, execute, modify, or
31339 delete the batch job.

3020 Technical Standard (2000) (Draft July 31, 2000)

Utilities qsub

31340 STDOUT
31341 The qsub utility writes the batch job_identifier assigned to the batch job to standard output, unless
31342 the −z option is specified.

31343 STDERR
31344 Used only for diagnostic messages.

31345 OUTPUT FILES
31346 None.

31347 EXTENDED DESCRIPTION

31348 Script Preservation

31349 The qsub utility shall make the script available to the server executing the batch job in such a way
31350 that the server executes the script as it exists at the time of submission.

31351 The qsub utility can send a copy of the script to the server with the Queue Job Request or store a
31352 temporary copy of the script in a location specified to the server.

31353 Option Specification

31354 A script can contain directives to the qsub utility.

31355 The qsub utility shall scan the lines of the script for directives, skipping blank lines, until the first
31356 line that begins with a string other than the directive string; if directives occur on subsequent
31357 lines, the utility shall ignore those directives.

31358 Lines are separated by a <newline>. If the first line of the script begins with "#!" or a colon
31359 (’:’), then it is skipped. The qsub utility shall process a line in the script as a directive if and |
31360 only if the string of characters from the first non-white-space character on the line until the first |
31361 <space> or <tab> character on the line match the directive prefix. If a line in the script contains a
31362 directive and the final characters of the line are backslash (’\’) and <newline>, then the next |
31363 line shall be interpreted as a continuation of that directive.

31364 The qsub utility shall process the options and option-arguments contained on the directive prefix
31365 line using the same syntax as if the options were input on the qsub utility.

31366 The qsub utility shall continue to process a directive prefix line until after a <newline> is |
31367 encountered. An implementation may ignore lines which, according to the syntax of the shell |
31368 that will interpret the script, are comments. An implementation shall describe in the |
31369 conformance document the format of any shell comments that it will recognize. |

31370 If an option is present in both a directive and the arguments to the qsub utility, the utility shall
31371 ignore the option and the corresponding option-argument, if any, in the directive.

31372 If an option that is present in the directive is not present in the arguments to the qsub utility, the
31373 utility shall process the option and the option-argument, if any.

31374 In order of preference, the qsub utility shall select the directive prefix from one of the following
31375 sources:

31376 • If the −C option is presented to the utility, the value of the directive_prefix option-argument

31377 • If the environment variable PBS_DPREFIX is defined, the value of that variable

31378 • The four-character string "#PBS" encoded in the portable character set

31379 If the −C option is present in the script file it shall be ignored.

Shell and Utilities, Issue 6 3021

qsub Utilities

31380 EXIT STATUS
31381 The following exit values shall be returned:

31382 0 Successful completion.

31383 >0 An error occurred.

31384 CONSEQUENCES OF ERRORS
31385 Default.

31386 APPLICATION USAGE
31387 None.

31388 EXAMPLES
31389 None.

31390 RATIONALE
31391 The qsub utility allows users to create a batch job that will process the script specified as the
31392 operand of the utility.

31393 The options of the qsub utility allow users to control many aspects of the queuing and execution
31394 of a batch job.

31395 The −a option allows users to designate the time after which the batch job will become eligible to
31396 run. By specifying an execution time, users can take advantage of resources at off-peak hours,
31397 synchronize jobs with chronologically predictable events, and perhaps take advantage of off-
31398 peak pricing of computing time. For these reasons and others, a timing option is existing practice
31399 on the part of almost every batch system, including NQS.

31400 The −A option allows users to specify the account that will be charged for the batch job. Support
31401 for account is not mandatory for conforming batch servers.

31402 The −C option allows users to prescribe the prefix for directives within the script file. The default
31403 prefix "#PBS" may be inappropriate if the script will be interpreted with an alternate shell, as
31404 specified by the −S option.

31405 The −c option allows users to establish the checkpointing interval for their jobs. A checkpointing
31406 system, which is not defined by this volume of IEEE Std. 1003.1-200x, allows recovery of a batch
31407 job at the most recent checkpoint in the event of a crash. Checkpointing is typically used for jobs
31408 that consume expensive computing time or must meet a critical schedule. Users should be
31409 allowed to make the tradeoff between the overhead of checkpointing and the risk to the timely
31410 completion of the batch job; therefore, this volume of IEEE Std. 1003.1-200x provides the
31411 checkpointing interval option. Support for checkpointing is optional for batch servers.

31412 The −e option allows users to redirect the standard error streams of their jobs to a non-default
31413 path. For example, if the submitted script generally produces a great deal of useless error output,
31414 a user might redirect the standard error output to the null device. Or, if the file system holding
31415 the default location (the home directory of the user) has too little free space, the user might
31416 redirect the standard error stream to a file in another file system.

31417 The −h option allows users to create a batch job that is held until explicitly released. The ability
31418 to create a held job is useful when some external event must complete before the batch job can
31419 execute. For example, the user might submit a held job and release it when the system load has
31420 dropped.

31421 The −j option allows users to merge the standard error of a batch job into its standard output
31422 stream, which has the advantage of showing the sequential relationship between output and
31423 error messages.

3022 Technical Standard (2000) (Draft July 31, 2000)

Utilities qsub

31424 The −m option allows users to designate those points in the execution of a batch job at which |
31425 mail will be sent to the submitting user, or to the account(s) indicated by the −M option. By
31426 requesting mail notification at points of interest in the life of a job, the submitting user, or other
31427 designated users, can track the progress of a batch job.

31428 The −N option allows users to associate a name with the batch job. The job name in no way
31429 affects the processing of the batch job, but rather serves as a mnemonic handle for users. For
31430 example, the batch job name can help the user distinguish between multiple jobs listed by the
31431 qstat utility.

31432 The −o option allows users to redirect the standard output stream. A user might, for example,
31433 wish to redirect to the null device the standard output stream of a job that produces copious yet
31434 superfluous output.

31435 The −P option allows users to designate the relative priority of a batch job for selection from a
31436 queue.

31437 The −q option allows users to specify an initial queue for the batch job. If the user specifies a
31438 routing queue, the batch batch server routes the batch job to another queue for execution or
31439 further routing. If the user specifies a non-routing queue, the batch server of the queue
31440 eventually executes the batch job.

31441 The −r option allows users to control whether the submitted job will be rerun if the controlling
31442 batch node fails during execution of the batch job. The −r option likewise allows users to
31443 indicate whether or not the batch job is eligible to be rerun by the qrerun utility. Some jobs cannot
31444 be correctly rerun because of changes they make in the state of databases or other aspects of
31445 their environment. This volume of IEEE Std. 1003.1-200x specifies that the default, if the −r
31446 option is not presented to the utility, will be that the batch job cannot be rerun, since the result of
31447 rerunning a non-rerunable job might be catastrophic.

31448 The −S option allows users to specify the program (usually a shell) that will be invoked to
31449 process the script of the batch job. This option has been modified to allow a list of shell names
31450 and locations associated with different hosts.

31451 The −u option is useful when the submitting user is authorized to use more than one account on
31452 a given host, in which case the −u option allows the user to select from among those accounts.
31453 The option-argument is a list of user-host pairs, so that the submitting user can provide different
31454 user identifiers for different nodes in the event the batch job is routed. The −u option provides a
31455 lot of flexibility to accommodate sites with complex account structures. Users that have the
31456 same user identifier on all the hosts they are authorized to use will not need to use the −u option.

31457 The −V option allows users to export all their current environment variables, as of the time the
31458 batch job is submitted, to the context of the processes of the batch job.

31459 The −v option allows users to export specific environment variables from their current process
31460 to the processes of the batch job.

31461 The −z option allows users to suppress the writing of the batch job identifier to standard output.
31462 The −z option is an existing NQS practice that has been standardized.

31463 Historically, the qsub utility has served the batch job-submission function in the NQS system, the |
31464 existing practice on which it is based. Some changes and additions have been made to the qsub
31465 utility in this volume of IEEE Std. 1003.1-200x, vis-a-vis NQS, as a result of the growing pool of
31466 experience with distributed batch systems.

31467 The set of features of the qsub utility as defined in this volume of IEEE Std. 1003.1-200x appears
31468 to incorporate all the common existing practice on potentially POSIX-conformant platforms.
31469 Where implementors wish to extend the functionality of their qsub utility, they may (as defined |

Shell and Utilities, Issue 6 3023

qsub Utilities

31470 by IEEE Std. 1003.1-200x) use the −W option to provide implementation-defined extensions. |

31471 FUTURE DIRECTIONS
31472 None.

31473 SEE ALSO
31474 qrerun, qstat , touch , Chapter 3 (on page 2313)

31475 CHANGE HISTORY
31476 Derived from IEEE Std. 1003.2d-1994. |

31477 Issue 6 |
31478 The −l option has been removed as there is no portable description of the resources that are |
31479 allowed or required by the batch job. |

3024 Technical Standard (2000) (Draft July 31, 2000)

Utilities read

31480 NAME
31481 read — read a line from standard input

31482 SYNOPSIS
31483 read [−r] var ...

31484 DESCRIPTION
31485 The read utility shall read a single line from standard input.

31486 By default, unless the −r option is specified, backslash (’\’) shall act as an escape character, as
31487 described in Section 2.2.1 (on page 2236). If standard input is a terminal device and the invoking
31488 shell is interactive, read shall prompt for a continuation line when:

31489 • The shell reads an input line ending with a backslash, unless the −r option is specified.

31490 • A here-document is not terminated after a <newline> character is entered.

31491 The line shall be split into fields as in the shell (see Section 2.6.5 (on page 2249)); the first field
31492 shall be assigned to the first variable var , the second field to the second variable var , and so on. If
31493 there are fewer var operands specified than there are fields, the leftover fields and their
31494 intervening separators shall be assigned to the last var . If there are fewer fields than vars, the
31495 remaining vars shall be set to empty strings.

31496 The setting of variables specified by the var operands shall affect the current shell execution
31497 environment; see Section 2.13 (on page 2273). If it is called in a subshell or separate utility
31498 execution environment, such as one of the following:

31499 (read foo)
31500 nohup read ...
31501 find . −exec read ... \;

31502 it shall not affect the shell variables in the caller’s environment.

31503 OPTIONS
31504 The read utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
31505 12.2, Utility Syntax Guidelines. |

31506 The following option is supported:

31507 −r Do not treat a backslash character in any special way. Consider each backslash to
31508 be part of the input line.

31509 OPERANDS
31510 The following operand shall be supported:

31511 var The name of an existing or nonexisting shell variable.

31512 STDIN
31513 The standard input shall be a text file.

31514 INPUT FILES
31515 None.

31516 ENVIRONMENT VARIABLES
31517 The following environment variables shall affect the execution of read:

31518 IFS Determine the internal field separators used to delimit fields; see Section 2.5.3 (on
31519 page 2242).

31520 LANG Provide a default value for the internationalization variables that are unset or null.
31521 If LANG is unset or null, the corresponding value from the implementation- |
31522 defined default locale shall be used. If any of the internationalization variables |

Shell and Utilities, Issue 6 3025

read Utilities

31523 contains an invalid setting, the utility shall behave as if none of the variables had
31524 been defined.

31525 LC_ALL If set to a non-empty string value, override the values of all the other
31526 internationalization variables.

31527 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
31528 characters (for example, single-byte as opposed to multi-byte characters in
31529 arguments).

31530 LC_MESSAGES
31531 Determine the locale that should be used to affect the format and contents of
31532 diagnostic messages written to standard error.

31533 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

31534 PS2 Provide the prompt string that an interactive shell shall write to standard error
31535 when a line ending with a backslash is read and the −r option was not specified, or
31536 if a here-document is not terminated after a <newline> character is entered.

31537 ASYNCHRONOUS EVENTS
31538 Default.

31539 STDOUT
31540 Not used.

31541 STDERR
31542 Used for diagnostic messages and prompts for continued input.

31543 OUTPUT FILES
31544 None.

31545 EXTENDED DESCRIPTION
31546 None.

31547 EXIT STATUS
31548 The following exit values shall be returned:

31549 0 Successful completion.

31550 >0 End-of-file was detected or an error occurred.

31551 CONSEQUENCES OF ERRORS
31552 Default.

31553 APPLICATION USAGE
31554 The read utility has historically been a shell built-in.

31555 The −r option is included to enable read to subsume the purpose of the line utility, which is not
31556 included in IEEE Std. 1003.1-200x.

31557 The results are undefined if an end-of-file is detected following a backslash at the end of a line
31558 when −r is not specified.

31559 EXAMPLES
31560 The following command:

31561 while read −r xx yy
31562 do
31563 printf "%s %s\n" "$yy" "$xx"
31564 done < input_file

3026 Technical Standard (2000) (Draft July 31, 2000)

Utilities read

31565 prints a file with the first field of each line moved to the end of the line.

31566 RATIONALE
31567 The read utility historically has been a shell built-in. It was separated off into its own utility to
31568 take advantage of the richer description of functionality introduced by this volume of
31569 IEEE Std. 1003.1-200x.

31570 Since read affects the current shell execution environment, it is generally provided as a shell
31571 regular built-in. If it is called in a subshell or separate utility execution environment, such as one
31572 of the following:

31573 (read foo)
31574 nohup read ...
31575 find . −exec read ... \;

31576 it does not affect the shell variables in the environment of the caller.

31577 FUTURE DIRECTIONS
31578 None.

31579 SEE ALSO
31580 None.

31581 CHANGE HISTORY
31582 First released in Issue 2.

31583 Issue 4
31584 Relocated from the sh description for alignment with the ISO/IEC 9945-2: 1993 standard.

Shell and Utilities, Issue 6 3027

renice Utilities

31585 NAME
31586 renice — set nice values of running processes

31587 SYNOPSIS
31588 UP renice −n increment [−g | −p | −u] ID ...
31589

31590 DESCRIPTION
31591 The renice utility shall request that the nice values (see the Base Definitions volume of |
31592 IEEE Std. 1003.1-200x, Section 3.241, Nice Value) of one or more running processes be changed. |
31593 By default, the applicable processes are specified by their process IDs. When a process group is
31594 specified (see −g), the request applies to all processes in the process group.

31595 The nice value shall be bounded in an implementation-defined manner. If the requested |
31596 increment would raise or lower the nice value of the executed utility beyond implementation- |
31597 defined limits, then the limit whose value was exceeded shall be used. |

31598 When a user is reniced, the request applies to all processes whose saved set-user-ID matches the
31599 user ID corresponding to the user.

31600 Regardless of which options are supplied or any other factor, renice shall not alter the nice values
31601 of any process unless the user requesting such a change has appropriate privileges to do so for
31602 the specified process. If the user lacks appropriate privileges to perform the requested action, the
31603 utility shall return an error status.

31604 The saved set-user-ID of the user’s process shall be checked instead of its effective user ID when
31605 renice attempts to determine the user ID of the process in order to determine whether the user
31606 has appropriate privileges.

31607 OPTIONS
31608 The renice utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
31609 12.2, Utility Syntax Guidelines. |

31610 The following options shall be supported:

31611 −g Interpret all operands as unsigned decimal integer process group IDs.

31612 −n increment Specify how the nice value of the specified process or processes is to be adjusted.
31613 The increment option-argument is a positive or negative decimal integer that shall
31614 be used to modify the nice value of the specified process or processes.

31615 Positive increment values shall cause a lower nice value. Negative increment values
31616 may require appropriate privileges and shall cause a higher nice value.

31617 −p Interpret all operands as unsigned decimal integer process IDs. The −p option is
31618 the default if no options are specified.

31619 −u Interpret all operands as users. If a user exists with a user name equal to the
31620 operand, then the user ID of that user is used in further processing. Otherwise, if
31621 the operand represents an unsigned decimal integer, it shall be used as the numeric
31622 user ID of the user.

31623 OPERANDS
31624 The following operands shall be supported:

31625 ID A process ID, process group ID, or user name/user ID, depending on the option
31626 selected.

3028 Technical Standard (2000) (Draft July 31, 2000)

Utilities renice

31627 STDIN
31628 Not used.

31629 INPUT FILES
31630 None.

31631 ENVIRONMENT VARIABLES
31632 The following environment variables shall affect the execution of renice:

31633 LANG Provide a default value for the internationalization variables that are unset or null.
31634 If LANG is unset or null, the corresponding value from the implementation- |
31635 defined default locale shall be used. If any of the internationalization variables |
31636 contains an invalid setting, the utility shall behave as if none of the variables had
31637 been defined.

31638 LC_ALL If set to a non-empty string value, override the values of all the other
31639 internationalization variables.

31640 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
31641 characters (for example, single-byte as opposed to multi-byte characters in
31642 arguments).

31643 LC_MESSAGES
31644 Determine the locale that should be used to affect the format and contents of
31645 diagnostic messages written to standard error.

31646 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

31647 ASYNCHRONOUS EVENTS
31648 Default.

31649 STDOUT
31650 Not used.

31651 STDERR
31652 Used only for diagnostic messages.

31653 OUTPUT FILES
31654 None.

31655 EXTENDED DESCRIPTION
31656 None.

31657 EXIT STATUS
31658 The following exit values shall be returned:

31659 0 Successful completion.

31660 >0 An error occurred.

31661 CONSEQUENCES OF ERRORS
31662 Default.

Shell and Utilities, Issue 6 3029

renice Utilities

31663 APPLICATION USAGE
31664 None. |

31665 EXAMPLES

31666 1. Adjust the nice value so that process IDs 987 and 32 would have a lower nice value:

31667 renice −n 5 −p 987 32

31668 2. Adjust the nice value so that group IDs 324 and 76 would have a higher nice value, if the
31669 user has the appropriate privileges to do so:

31670 renice −n −4 −g 324 76

31671 3. Adjust the nice value so that numeric user ID 8 and user sas would have a lower nice
31672 value:

31673 renice −n 4 −u 8 sas

31674 Useful nice value increments on historical systems include 19 or 20 (the affected processes run
31675 only when nothing else in the system attempts to run) and any negative number (to make
31676 processes run faster).

31677 RATIONALE
31678 The gid , pid , and user specifications do not fit either the definition of operand or option-
31679 argument. However, for clarity, they have been included in the OPTIONS section, rather than
31680 the OPERANDS section.

31681 The definition of nice value is not intended to suggest that all processes in a system have
31682 priorities that are comparable. Scheduling policy extensions such as the realtime priorities in
31683 POSIX.4 make the notion of a single underlying priority for all scheduling policies problematic.
31684 Some systems may implement the nice-related features to affect all processes on the system, |
31685 others to affect just the general time-sharing activities implied by this volume of
31686 IEEE Std. 1003.1-200x, and others may have no effect at all. Because of the use of |
31687 ‘‘implementation-defined’’ in nice and renice, a wide range of implementation strategies are |
31688 possible.

31689 Originally, this utility was written in the historical manner, using the term ‘‘nice value’’. This
31690 was always a point of concern with users because it was never intuitively obvious what this
31691 meant. With a newer version of renice, which used the term ‘‘system scheduling priority’’, it was
31692 hoped that novice users could better understand what this utility was meant to do. Also, it
31693 would be easier to document what the utility was meant to do. Unfortunately, the addition of
31694 the POSIX realtime scheduling capabilities introduced the concepts of process and thread
31695 scheduling priorities that were totally unaffected by the nice/renice utilities or the
31696 nice()/setpriority() functions. Continuing to use the term ‘‘system scheduling priority’’ would
31697 have incorrectly suggested that these utilities and functions were indeed affecting these realtime
31698 priorities. It was decided to revert to the historical term ‘‘nice value’’ to reference this unrelated
31699 process attribute.

31700 Although this utility has use by system administrators (and in fact appears in the system
31701 administration portion of the BSD documentation), the standard developers considered that it
31702 was very useful for individual end users to control their own processes.

31703 FUTURE DIRECTIONS
31704 None.

3030 Technical Standard (2000) (Draft July 31, 2000)

Utilities renice

31705 SEE ALSO
31706 nice

31707 CHANGE HISTORY
31708 First released in Issue 4.

31709 Issue 5
31710 In the SYNOPSIS, an ellipsis is added to the −u option in all three obsolescent forms.

31711 Issue 6
31712 This utility is now marked as part of the User Portability Utilities option.

31713 The APPLICATION USAGE section is added.

31714 The obsolescent forms of the SYNOPSIS are removed.

31715 Text previously conditional on POSIX_SAVED_IDS is mandatory in this issue. This is a FIPS
31716 requirement.

Shell and Utilities, Issue 6 3031

rm Utilities

31717 NAME
31718 rm — remove directory entries

31719 SYNOPSIS
31720 rm [−fiRr] file ...

31721 DESCRIPTION
31722 The rm utility shall remove the directory entry specified by each file argument.

31723 If either of the files dot or dot-dot are specified as the basename portion of an operand (that is,
31724 the final path name component), rm shall write a diagnostic message to standard error and do
31725 nothing more with such operands.

31726 For each file the following steps shall be taken:

31727 1. If the file does not exist:

31728 a. If the −f option is not specified, write a diagnostic message to standard error.

31729 b. Go on to any remaining files .

31730 2. If file is of type directory, the following steps shall be taken:

31731 a. If neither the −R option nor the −r option is specified, write a diagnostic message to
31732 standard error, do nothing more with file , and go on to any remaining files.

31733 b. If the −f option is not specified, and either the permissions of file do not permit
31734 writing and the standard input is a terminal or the −i option is specified, write a
31735 prompt to standard error and read a line from the standard input. If the response is
31736 not affirmative, do nothing more with the current file and go on to any remaining
31737 files.

31738 c. For each entry contained in file , other than dot or dot-dot, the four steps listed here
31739 (1-4) shall be taken with the entry as if it were a file operand. The rm utility shall not
31740 traverse directories by following symbolic links into other parts of the hierarchy, but
31741 shall remove the links themselves.

31742 d. If the −i option is specified, write a prompt to standard error and read a line from the
31743 standard input. If the response is not affirmative, do nothing more with the current
31744 file, and go on to any remaining files.

31745 3. If file is not of type directory, the −f option is not specified, and either the permissions of
31746 file do not permit writing and the standard input is a terminal or the −i option is specified,
31747 write a prompt to the standard error and read a line from the standard input. If the
31748 response is not affirmative, do nothing more with the current file and go on to any
31749 remaining files.

31750 4. If the current file is a directory, rm shall perform actions equivalent to the rmdir() function
31751 defined in the System Interfaces volume of IEEE Std. 1003.1-200x called with a path name
31752 of the current file used as the path argument. If the current file is not a directory, rm shall
31753 perform actions equivalent to the unlink() function defined in the System Interfaces
31754 volume of IEEE Std. 1003.1-200x called with a path name of the current file used as the path
31755 argument.

31756 If this fails for any reason, rm shall write a diagnostic message to standard error, do
31757 nothing more with the current file, and go on to any remaining files.

31758 The rm utility shall be able to descend to arbitrary depths in a file hierarchy, and shall not fail
31759 due to path length limitations (unless an operand specified by the user exceeds system
31760 limitations).

3032 Technical Standard (2000) (Draft July 31, 2000)

Utilities rm

31761 OPTIONS
31762 The rm utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
31763 12.2, Utility Syntax Guidelines. |

31764 The following options shall be supported:

31765 −f Do not prompt for confirmation. Do not write diagnostic messages or modify the
31766 exit status in the case of nonexistent operands. Any previous occurrences of the −i
31767 option shall be ignored.

31768 −i Prompt for confirmation as described previously. Any previous occurrences of the
31769 −f option shall be ignored.

31770 −R Remove file hierarchies. See the DESCRIPTION.

31771 −r Equivalent to −R.

31772 OPERANDS
31773 The following operand shall be supported:

31774 file A path name of a directory entry to be removed.

31775 STDIN
31776 Used to read an input line in response to each prompt specified in the STDOUT section.
31777 Otherwise, the standard input shall not be used.

31778 INPUT FILES
31779 None.

31780 ENVIRONMENT VARIABLES
31781 The following environment variables shall affect the execution of rm:

31782 LANG Provide a default value for the internationalization variables that are unset or null.
31783 If LANG is unset or null, the corresponding value from the implementation- |
31784 defined default locale shall be used. If any of the internationalization variables |
31785 contains an invalid setting, the utility shall behave as if none of the variables had
31786 been defined.

31787 LC_ALL If set to a non-empty string value, override the values of all the other
31788 internationalization variables.

31789 LC_COLLATE
31790 Determine the locale for the behavior of ranges, equivalence classes, and multi-
31791 character collating elements used in the extended regular expression defined for
31792 the yesexpr locale keyword in the LC_MESSAGES category.

31793 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
31794 characters (for example, single-byte as opposed to multi-byte characters in
31795 arguments) and the behavior of character classes within regular expressions used
31796 in the extended regular expression defined for the yesexpr locale keyword in the
31797 LC_MESSAGES category.

31798 LC_MESSAGES
31799 Determine the locale for the processing of affirmative responses that should be
31800 used to affect the format and contents of diagnostic messages written to standard
31801 error.

31802 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Shell and Utilities, Issue 6 3033

rm Utilities

31803 ASYNCHRONOUS EVENTS
31804 Default.

31805 STDOUT
31806 Not used.

31807 STDERR
31808 Prompts shall be written to standard error under the conditions specified in the DESCRIPTION
31809 and OPTIONS sections. The prompts shall contain the file path name, but their format is
31810 otherwise unspecified. The standard error also shall be used for diagnostic messages.

31811 OUTPUT FILES
31812 None.

31813 EXTENDED DESCRIPTION
31814 None.

31815 EXIT STATUS
31816 The following exit values shall be returned:

31817 0 All of the named directory entries for which rm performed actions equivalent to rmdir() or
31818 unlink() functions were removed.

31819 >0 An error occurred.

31820 CONSEQUENCES OF ERRORS
31821 Default.

31822 APPLICATION USAGE
31823 The rm utility is forbidden to remove the names dot and dot-dot in order to avoid the
31824 consequences of inadvertently doing something like:

31825 rm −r .*

31826 Some systems do not permit the removal of the last link to an executable binary file that is being
31827 executed; see the [EBUSY] error in the unlink() function defined in the System Interfaces volume
31828 of IEEE Std. 1003.1-200x. Thus, the rm utility can fail to remove such files.

31829 The −i option causes rm to prompt and read the standard input even if the standard input is not
31830 a terminal, but in the absence of −i the mode prompting is not done when the standard input is
31831 not a terminal.

31832 EXAMPLES

31833 1. The following command:

31834 rm a.out core

31835 removes the directory entries: a.out and core.

31836 2. The following command:

31837 rm −Rf junk

31838 removes the directory junk and all its contents, without prompting.

31839 RATIONALE
31840 The −i option causes rm to prompt and read the standard input even if the standard input is not
31841 a terminal, but, in the absence of −i, the mode prompting is not done when the standard input is
31842 not a terminal.

31843 For absolute clarity, paragraphs (2b) and (3) in the DESCRIPTION of rm describing the behavior
31844 when prompting for confirmation, should be interpreted in the following manner:

3034 Technical Standard (2000) (Draft July 31, 2000)

Utilities rm

31845 if ((NOT f_option) AND
31846 ((not_writable AND input_is_terminal) OR i_option))

31847 The exact format of the interactive prompts is unspecified. Only the general nature of the
31848 contents of prompts are specified because implementations may desire more descriptive
31849 prompts than those used on historical implementations. Therefore, an application not using the
31850 −f option, or using the −i option, relies on the system to provide the most suitable dialog directly
31851 with the user, based on the behavior specified.

31852 The −r option is historical practice on all known systems. The synonym −R option is provided
31853 for consistency with the other utilities in this volume of IEEE Std. 1003.1-200x that provide
31854 options requesting recursive descent through the file hierarchy.

31855 The behavior of the −f option in historical versions of rm is inconsistent. In general, along with
31856 ‘‘forcing’’ the unlink without prompting for permission, it always causes diagnostic messages to
31857 be suppressed and the exit status to be unmodified for nonexistent operands and files that
31858 cannot be unlinked. In some versions, however, the −f option suppresses usage messages and
31859 system errors as well. Suppressing such messages is not a service to either shell scripts or users.

31860 It is less clear that error messages regarding files that cannot be unlinked (removed) should be |
31861 suppressed. Although this is historical practice, this volume of IEEE Std. 1003.1-200x does not |
31862 permit the −f option to suppress such messages. |

31863 When given the −r and −i options, historical versions of rm prompt the user twice for each
31864 directory, once before removing its contents and once before actually attempting to delete the
31865 directory entry that names it. This allows the user to ‘‘prune’’ the file hierarchy walk. Historical
31866 versions of rm were inconsistent in that some did not do the former prompt for directories
31867 named on the command line and others had obscure prompting behavior when the −i option
31868 was specified and the permissions of the file did not permit writing. The POSIX Shell and
31869 Utilities rm differs little from historic practice, but does require that prompts be consistent.
31870 Historical versions of rm were also inconsistent in that prompts were done to both standard
31871 output and standard error. This volume of IEEE Std. 1003.1-200x requires that prompts be done
31872 to standard error, for consistency with cp and mv, and to allow historical extensions to rm that
31873 provide an option to list deleted files on standard output.

31874 The rm utility is required to descend to arbitrary depths so that any file hierarchy may be
31875 deleted. This means, for example, that the rm utility cannot run out of file descriptors during its
31876 descent (that is, if the number of file descriptors is limited, rm cannot be implemented in the
31877 historical fashion where one file descriptor is used per directory level). Also, rm is not permitted
31878 to fail because of path length restrictions, unless an operand specified by the user is longer than
31879 {PATH_MAX}.

31880 The rm utility removes symbolic links themselves, not the files they refer to, as a consequence of
31881 the dependence on the unlink() functionality, per the DESCRIPTION. When removing
31882 hierarchies with −r or −R, the prohibition on following symbolic links has to be made explicit.

31883 FUTURE DIRECTIONS
31884 None.

31885 SEE ALSO
31886 rmdir, the System Interfaces volume of IEEE Std. 1003.1-200x, remove(), unlink()

31887 CHANGE HISTORY
31888 First released in Issue 2.

Shell and Utilities, Issue 6 3035

rm Utilities

31889 Issue 4
31890 Aligned with the ISO/IEC 9945-2: 1993 standard.

31891 Issue 5
31892 FUTURE DIRECTIONS section added.

31893 Issue 6
31894 Text is added to clarify actions relating to symbolic links as specified in the IEEE P1003.2b draft
31895 standard.

3036 Technical Standard (2000) (Draft July 31, 2000)

Utilities rmdel

31896 NAME
31897 rmdel — remove a delta from an SCCS file (DEVELOPMENT)

31898 SYNOPSIS
31899 XSI rmdel −r SID file ...
31900

31901 DESCRIPTION
31902 The rmdel utility shall remove the delta specified by the SID from each named SCCS file. The
31903 delta to be removed shall be the most recent delta in its branch in the delta chain of each named
31904 SCCS file. In addition, the application shall ensure that the SID specified is not that of a version
31905 being edited for the purpose of making a delta; that is, if a p-file (see get (on page 2685)) exists for
31906 the named SCCS file, the SID specified shall not appear in any entry of the p-file .

31907 Removal of a delta shall be restricted to: |

31908 1. The user who made the delta

31909 2. The owner of the SCCS file

31910 3. The owner of the directory containing the SCCS file

31911 OPTIONS
31912 The rmdel utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
31913 12.2, Utility Syntax Guidelines. |

31914 The following option shall be supported:

31915 −r SID Specify the SCCS identification string (SID) of the delta to be deleted.

31916 OPERANDS
31917 The following operand shall be supported:

31918 file A path name of an existing SCCS file or a directory. If file is a directory, the rmdel |
31919 utility shall behave as though each file in the directory were specified as a named |
31920 file, except that non-SCCS files (last component of the path name does not begin |
31921 with s.) and unreadable files shall be silently ignored. |

31922 If exactly one file operand appears, and it is ’ −’ , the standard input shall be read; |
31923 each line of the standard input is taken to be the name of an SCCS file to be |
31924 processed. Non-SCCS files and unreadable files shall be silently ignored. |

31925 STDIN
31926 The standard input shall be a text file used only when the file operand is specified as ’ −’ . Each
31927 line of the text file shall be interpreted as an SCCS path name.

31928 INPUT FILES
31929 The SCCS files are files of unspecified format.

31930 ENVIRONMENT VARIABLES
31931 The following environment variables shall affect the execution of rmdel:

31932 LANG Provide a default value for the internationalization variables that are unset or null.
31933 If LANG is unset or null, the corresponding value from the implementation- |
31934 defined default locale shall be used. If any of the internationalization variables |
31935 contains an invalid setting, the utility shall behave as if none of the variables had
31936 been defined.

31937 LC_ALL If set to a non-empty string value, override the values of all the other
31938 internationalization variables.

Shell and Utilities, Issue 6 3037

rmdel Utilities

31939 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
31940 characters (for example, single-byte as opposed to multi-byte characters in
31941 arguments and input files).

31942 LC_MESSAGES
31943 Determine the locale that should be used to affect the format and contents of
31944 diagnostic messages written to standard error.

31945 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

31946 ASYNCHRONOUS EVENTS
31947 Default.

31948 STDOUT
31949 Not used.

31950 STDERR
31951 Used only for diagnostic messages.

31952 OUTPUT FILES
31953 The SCCS files are files of unspecified format. During processing of a file , a temporary x-file , as
31954 described in admin (on page 2340), may be created and deleted; a locking z-file , as described in
31955 get (on page 2685), may be created and deleted.

31956 EXTENDED DESCRIPTION
31957 None.

31958 EXIT STATUS
31959 The following exit values shall be returned:

31960 0 Successful completion.

31961 >0 An error occurred.

31962 CONSEQUENCES OF ERRORS
31963 Default.

31964 APPLICATION USAGE
31965 None.

31966 EXAMPLES
31967 None.

31968 RATIONALE
31969 None.

31970 FUTURE DIRECTIONS
31971 None.

31972 SEE ALSO
31973 delta , get, prs

31974 CHANGE HISTORY
31975 First released in Issue 2.

31976 Issue 4
31977 Format reorganized.

31978 Utility Syntax Guidelines support mandated.

31979 Internationalized environment variable support mandated.

3038 Technical Standard (2000) (Draft July 31, 2000)

Utilities rmdel

31980 Issue 6
31981 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

31982 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements. |

Shell and Utilities, Issue 6 3039

rmdir Utilities

31983 NAME
31984 rmdir — remove directories

31985 SYNOPSIS
31986 rmdir [−p] dir ...

31987 DESCRIPTION
31988 The rmdir utility shall remove the directory entry specified by each dir operand, which, in order |
31989 to succeed, the application shall ensure refers to an empty directory. |

31990 Directories shall be processed in the order specified. If a directory and a subdirectory of that
31991 directory are specified in a single invocation of the rmdir utility, the application shall specify the
31992 subdirectory before the parent directory so that the parent directory will be empty when the
31993 rmdir utility tries to remove it.

31994 OPTIONS
31995 The rmdir utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
31996 12.2, Utility Syntax Guidelines. |

31997 The following option shall be supported:

31998 −p Remove all directories in a path name. For each dir operand:

31999 1. The directory entry it names shall be removed.

32000 2. If the dir operand includes more than one path name component, effects
32001 equivalent to the following command shall occur:

32002 rmdir −p $(dirname dir)

32003 OPERANDS
32004 The following operand shall be supported:

32005 dir A path name of an empty directory to be removed.

32006 STDIN
32007 Not used.

32008 INPUT FILES
32009 None.

32010 ENVIRONMENT VARIABLES
32011 The following environment variables shall affect the execution of rmdir:

32012 LANG Provide a default value for the internationalization variables that are unset or null.
32013 If LANG is unset or null, the corresponding value from the implementation- |
32014 defined default locale shall be used. If any of the internationalization variables |
32015 contains an invalid setting, the utility shall behave as if none of the variables had
32016 been defined.

32017 LC_ALL If set to a non-empty string value, override the values of all the other
32018 internationalization variables.

32019 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
32020 characters (for example, single-byte as opposed to multi-byte characters in
32021 arguments).

32022 LC_MESSAGES
32023 Determine the locale that should be used to affect the format and contents of
32024 diagnostic messages written to standard error.

3040 Technical Standard (2000) (Draft July 31, 2000)

Utilities rmdir

32025 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

32026 ASYNCHRONOUS EVENTS
32027 Default.

32028 STDOUT
32029 Not used.

32030 STDERR
32031 Used only for diagnostic messages.

32032 OUTPUT FILES
32033 None.

32034 EXTENDED DESCRIPTION
32035 None.

32036 EXIT STATUS
32037 The following exit values shall be returned:

32038 0 Each directory entry specified by a dir operand was removed successfully.

32039 >0 An error occurred.

32040 CONSEQUENCES OF ERRORS
32041 Default.

32042 APPLICATION USAGE
32043 The definition of an empty directory is one that contains, at most, directory entries for dot and
32044 dot-dot.

32045 EXAMPLES
32046 If a directory a in the current directory is empty except it contains a directory b and a/b is empty
32047 except it contains a directory c:

32048 rmdir −p a/b/c

32049 removes all three directories.

32050 RATIONALE
32051 On historical System V systems, the −p option also caused a message to be written to the
32052 standard output. The message indicated whether the whole path was removed or whether part
32053 of the path remained for some reason. The STDERR section requires this diagnostic when the
32054 entire path specified by a dir operand is not removed, but does not allow the status message
32055 reporting success to be written as a diagnostic.

32056 The rmdir utility on System V also included an −s option that suppressed the informational
32057 message output by the −p option. This option has been omitted because the informational
32058 message is not specified by this volume of IEEE Std. 1003.1-200x.

32059 FUTURE DIRECTIONS
32060 None.

32061 SEE ALSO
32062 rm, the System Interfaces volume of IEEE Std. 1003.1-200x, remove(), rmdir(), unlink()

32063 CHANGE HISTORY
32064 First released in Issue 2.

Shell and Utilities, Issue 6 3041

rmdir Utilities

32065 Issue 4
32066 Separated from the rm description and aligned with the ISO/IEC 9945-2: 1993 standard.

32067 Issue 6
32068 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3042 Technical Standard (2000) (Draft July 31, 2000)

Utilities sact

32069 NAME
32070 sact — print current SCCS file-editing activity (DEVELOPMENT)

32071 SYNOPSIS
32072 XSI sact file ...
32073

32074 DESCRIPTION
32075 The sact utility shall inform the user of any impending deltas to a named SCCS file by writing a
32076 list to standard output. This situation occurs when get −e has been executed previously without
32077 a subsequent execution of delta.

32078 OPTIONS
32079 None.

32080 OPERANDS
32081 The following operand shall be supported:

32082 file A path name of an existing SCCS file or a directory. If file is a directory, the sact |
32083 utility shall behave as though each file in the directory were specified as a named |
32084 file, except that non-SCCS files (last component of the path name does not begin |
32085 with s.) and unreadable files shall be silently ignored. |

32086 If a single instance file is specified as ’ −’ , the standard input shall be read; each |
32087 line of the standard input shall be taken to be the name of an SCCS file to be |
32088 processed. Non-SCCS files and unreadable files shall be silently ignored. |

32089 STDIN
32090 The standard input shall be a text file used only when the file operand is specified as ’ −’ . Each
32091 line of the text file shall be interpreted as an SCCS path name.

32092 INPUT FILES
32093 Any SCCS files interrogated are files of an unspecified format.

32094 ENVIRONMENT VARIABLES
32095 The following environment variables shall affect the execution of sact:

32096 LANG Provide a default value for the internationalization variables that are unset or null.
32097 If LANG is unset or null, the corresponding value from the implementation- |
32098 defined default locale shall be used. If any of the internationalization variables |
32099 contains an invalid setting, the utility shall behave as if none of the variables had
32100 been defined.

32101 LC_ALL If set to a non-empty string value, override the values of all the other
32102 internationalization variables.

32103 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
32104 characters (for example, single-byte as opposed to multi-byte characters in
32105 arguments and input files).

32106 LC_MESSAGES
32107 Determine the locale that should be used to affect the format and contents of
32108 diagnostic messages written to standard error.

32109 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Shell and Utilities, Issue 6 3043

sact Utilities

32110 ASYNCHRONOUS EVENTS
32111 Default.

32112 STDOUT
32113 The output for each named file shall consist of a line in the following format:

32114 "%s∆%s∆%s∆%s∆%s\n", < SID>, < new SID>, < login >, < date >, < time >

32115 <SID> Specifies the SID of a delta that currently exists in the SCCS file to which changes
32116 are made to make the new delta.

32117 <new SID> Specifies the SID for the new delta to be created.

32118 <login> Contains the login name of the user who makes the delta (that is, who executed a
32119 get for editing).

32120 <date> Contains the date that get −e was executed, in the format used by the prs :D: data
32121 keyword.

32122 <time> Contains the time that get −e was executed, in the format used by the prs :T: data
32123 keyword.

32124 If there is more than one named file or if a directory or standard input is named, each path name
32125 shall be written before each of the preceding lines:

32126 "\n%s:\n", < pathname >

32127 STDERR
32128 Used only for optional informative messages concerning SCCS files with no impending deltas,
32129 and for diagnostic messages.

32130 OUTPUT FILES
32131 None.

32132 EXTENDED DESCRIPTION
32133 None.

32134 EXIT STATUS
32135 The following exit values shall be returned:

32136 0 Successful completion.

32137 >0 An error occurred.

32138 CONSEQUENCES OF ERRORS
32139 Default.

32140 APPLICATION USAGE
32141 None.

32142 EXAMPLES
32143 None.

32144 RATIONALE
32145 None.

32146 FUTURE DIRECTIONS
32147 None.

3044 Technical Standard (2000) (Draft July 31, 2000)

Utilities sact

32148 SEE ALSO
32149 delta , get, unget

32150 CHANGE HISTORY
32151 First released in Issue 2.

32152 Issue 4
32153 Format reorganized.

32154 Utility Syntax Guidelines support mandated.

32155 Internationalized environment variable support mandated.

32156 Issue 4, Version 2
32157 The STDERR section encompasses informative messages concerning SCCS files with no
32158 impending deltas. |

32159 Issue 6 |
32160 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements. |

Shell and Utilities, Issue 6 3045

sccs Utilities

32161 NAME
32162 sccs — front end for the SCCS subsystem (DEVELOPMENT)

32163 SYNOPSIS
32164 XSI sccs [−r][−d path][−p path] command [options ...][operands ...]
32165

32166 DESCRIPTION
32167 The sccs utility is a front end to the SCCS programs. It also includes the capability to run set-
32168 user-id to another user to provide additional protection.

32169 The sccs utility shall invoke the specified command with the specified options and operands . By
32170 default, each of the operands shall be modified by prefixing it with the string SCCS/s..

32171 The command can be the name of one of the SCCS utilities in this volume of IEEE Std. 1003.1-200x |
32172 (admin, delta, get, prs, rmdel, sact, unget, val, or what) or one of the pseudo-utilities listed in the
32173 EXTENDED DESCRIPTION section.

32174 OPTIONS
32175 The sccs utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
32176 12.2, Utility Syntax Guidelines, except that options operands are actually options to be passed to |
32177 the utility named by command . When the portion of the command:

32178 command [options ...] [operands ...]

32179 is considered, all of the pseudo-utilities used as command shall support the Utility Syntax
32180 Guidelines. Any of the other SCCS utilities that can be invoked in this manner support the
32181 Guidelines to the extent indicated by their individual OPTIONS sections.

32182 The following options shall be supported preceding the command operand:

32183 −d path A path name of a directory to be used as a root directory for the SCCS files. The
32184 default is the current directory. The −d option takes precedence over the
32185 PROJECTDIR variable. See −p.

32186 −p path A path name of a directory in which the SCCS files are located. The default is the
32187 SCCS directory.

32188 The −p option differs from the −d option in that the −d option-argument is
32189 prefixed to the entire path name and the −p option-argument is inserted before the
32190 final component of the path name. For example:

32191 sccs −d /x −p y get a/b

32192 converts to:

32193 get /x/a/y/s.b

32194 This allows the creation of aliases such as:

32195 alias syssccs="sccs −d /usr/src"

32196 which is used as:

32197 syssccs get cmd/who.c

32198 −r Invoke command with the real user ID of the process, not any effective user ID that
32199 the sccs utility is set to. Certain commands (admin, check, clean, diffs, info, rmdel,
32200 and tell) cannot be run set-user-ID by all users, since this would allow anyone to |
32201 change the authorizations. These commands are always run as the real user. |

3046 Technical Standard (2000) (Draft July 31, 2000)

Utilities sccs

32202 OPERANDS
32203 The following operands shall be supported:

32204 command An SCCS utility name or the name of one of the pseudo-utilities listed in the
32205 EXTENDED DESCRIPTION section.

32206 options An option or option-argument to be passed to command .

32207 operands An operand to be passed to command .

32208 STDIN
32209 See the utility description for the specified command .

32210 INPUT FILES
32211 See the utility description for the specified command .

32212 ENVIRONMENT VARIABLES
32213 The following environment variables shall affect the execution of sccs:

32214 LANG Provide a default value for the internationalization variables that are unset or null.
32215 If LANG is unset or null, the corresponding value from the implementation- |
32216 defined default locale shall be used. If any of the internationalization variables |
32217 contains an invalid setting, the utility shall behave as if none of the variables had
32218 been defined.

32219 LC_ALL If set to a non-empty string value, override the values of all the other
32220 internationalization variables.

32221 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
32222 characters (for example, single-byte as opposed to multi-byte characters in
32223 arguments and input files).

32224 LC_MESSAGES
32225 Determine the locale that should be used to affect the format and contents of
32226 diagnostic messages written to standard error.

32227 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

32228 PROJECTDIR
32229 Provide a default value for the −d path option. If the value of PROJECTDIR begins
32230 with a slash, it shall be considered an absolute path name; otherwise, the value of
32231 PROJECTDIR is treated as a user name and that user’s initial working directory
32232 shall be examined for a subdirectory src or source. If such a directory is found, it
32233 shall be used. Otherwise, the value shall be used as a relative path name.

32234 Additional environment variable effects may be found in the utility description for the specified
32235 command .

32236 ASYNCHRONOUS EVENTS
32237 Default.

32238 STDOUT
32239 See the utility description for the specified command .

32240 STDERR
32241 See the utility description for the specified command .

Shell and Utilities, Issue 6 3047

sccs Utilities

32242 OUTPUT FILES
32243 See the utility description for the specified command .

32244 EXTENDED DESCRIPTION
32245 The following pseudo-utilities shall be supported as command operands. All options referred to |
32246 in the following list are values given in the options operands following command .

32247 check Equivalent to info, except that nothing shall be printed if nothing is being edited, and a |
32248 non-zero exit status shall be returned if anything is being edited. The intent is to have |
32249 this included in an ‘‘install’’ entry in a makefile to ensure that everything is included
32250 into the SCCS file before a version is installed.

32251 clean Remove everything from the current directory that can be recreated from SCCS files,
32252 but do not remove any files being edited. If the −b option is given, branches shall be |
32253 ignored in the determination of whether they are being edited; this is dangerous if |
32254 branches are kept in the same directory. |

32255 create Create an SCCS file, taking the initial contents from the file of the same name. Any
32256 options to admin are accepted. If the creation is successful, the original files shall be |
32257 renamed by prefixing the basenames with a comma. These renamed files should be |
32258 removed after it has been verified that the SCCS files have been created successfully.

32259 delget Perform a delta on the named files and then get new versions. The new versions shall |
32260 have ID keywords expanded and shall not be editable. Any −m, −p, −r, −s, and −y |
32261 options shall be passed to delta, and any −b, −c, −e, −i, −k, −l, −s, and −x options shall be |
32262 passed to get. |

32263 deledit Equivalent to delget, except that the get phase shall include the −e option. This option |
32264 is useful for making a checkpoint of the current editing phase. The same options are
32265 passed to delta as described above, and all the options listed for get above except −e are
32266 passed to edit.

32267 diffs Write a difference listing between the current version of the files checked out for
32268 editing and the versions in SCCS format. Any −r, −c, −i, −x, and −t options shall be |
32269 passed to get; any −l, −s, −e, −f, −h, and −b options shall be passed to diff. A −C option |
32270 shall be passed to diff as −c. |

32271 edit Equivalent to get −e.

32272 fix Remove the named delta, but leave a copy of the delta with the changes that were in it.
32273 It is useful for fixing small compiler bugs, and so on. The application shall ensure that it
32274 is followed by a −r SID option. Since fix doesn’t leave audit trails, it should be used
32275 carefully.

32276 info Write a listing of all files being edited. If the −b option is given, branches (that is, SIDs
32277 with two or fewer components) shall be ignored. If a −u user option is given, then only |
32278 files being edited by the named user shall be listed. A −U option shall be equivalent to |
32279 −u<current user>.

32280 print Write out verbose information about the named files, equivalent to sccs prs.

32281 tell Write a <newline>-separated list of the files being edited to standard output. Takes the
32282 −b, −u, and −U options like info and check.

32283 unedit This is the opposite of an edit or a get −e. It should be used with caution, since any
32284 changes made since the get are lost.

3048 Technical Standard (2000) (Draft July 31, 2000)

Utilities sccs

32285 EXIT STATUS
32286 The following exit values shall be returned:

32287 0 Successful completion.

32288 >0 An error occurred.

32289 CONSEQUENCES OF ERRORS
32290 Default.

32291 APPLICATION USAGE
32292 Many of the SCCS utilities take directory names as operands as well as specific file names. The
32293 pseudo-utilities supported by sccs are not described as having this capability, but are not
32294 prohibited from doing so.

32295 EXAMPLES

32296 1. To get a file for editing, edit it and produce a new delta:

32297 sccs get −e file.c
32298 ex file.c
32299 sccs delta file.c

32300 2. To get a file from another directory:

32301 sccs −p /usr/src/sccs/s. get cc.c

32302 or:

32303 sccs get /usr/src/sccs/s.cc.c

32304 3. To make a delta of a large number of files in the current directory:

32305 sccs delta *.c

32306 4. To get a list of files being edited that are not on branches:

32307 sccs info −b

32308 5. To delta everything being edited by the current user:

32309 sccs delta $(sccs tell −U)

32310 6. In a makefile, to get source files from an SCCS file if it does not already exist:

32311 SRCS = <list of source files >
32312 $(SRCS):
32313 sccs get $(REL) $@

32314 RATIONALE
32315 SCCS and its associated utilities are part of the XSI Development Utilities option within the XSI |
32316 extension. |

32317 SCCS is an abbreviation for Source Code Control System. It is a maintenance and enhancement |
32318 tracking tool. When a file is put under SCCS, the source code control system maintains the file |
32319 and, when changes are made, identifies and stores them in the file with the original source code |
32320 and/or documentation. As other changes are made, they too are identified and retained in the |
32321 file. |

32322 Retrieval of the original and any set of changes is possible. Any version of the file as it develops |
32323 can be reconstructed for inspection or additional modification. History data can be stored with |
32324 each version, documenting why the changes were made, who made them, and when they were |
32325 made. |

Shell and Utilities, Issue 6 3049

sccs Utilities

32326 FUTURE DIRECTIONS
32327 None.

32328 SEE ALSO
32329 admin , delta , get, make , prs, rmdel, sact , unget, val , what

32330 CHANGE HISTORY
32331 First released in Issue 4.

32332 Issue 6
32333 In the ENVIRONMENT VARIABLES section, the PROJECTDIR description is updated from
32334 ‘‘otherwise, the home directory of a user of that name is examined’’ to ‘‘otherwise, the value of
32335 PROJECTDIR is treated as a user name and that user’s initial working directory is examined’’.

32336 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

32337 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements. |

3050 Technical Standard (2000) (Draft July 31, 2000)

Utilities sed

32338 NAME
32339 sed — stream editor

32340 SYNOPSIS
32341 sed [−n] script [file ...]

32342 sed [−n][−e script] ... [−f script_file] ... [file ...]

32343 DESCRIPTION
32344 The sed utility is a stream editor that shall read one or more text files, make editing changes
32345 according to a script of editing commands, and write the results to standard output. The script
32346 shall be obtained from either the script operand string or a combination of the option-arguments
32347 from the −e script and −f script_file options.

32348 OPTIONS
32349 The sed utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
32350 12.2, Utility Syntax Guidelines, except that the order of presentation of the −e and −f options is |
32351 significant.

32352 The following options shall be supported:

32353 −e script Add the editing commands specified by the script option-argument to the end of
32354 the script of editing commands. The script option-argument shall have the same
32355 properties as the script operand, described in the OPERANDS section.

32356 −f script_file Add the editing commands in the file script_file to the end of the script.

32357 −n Suppress the default output (in which each line, after it is examined for editing, is
32358 written to standard output). Only lines explicitly selected for output are written.

32359 Multiple −e and −f options may be specified. All commands shall be added to the script in the
32360 order specified, regardless of their origin.

32361 OPERANDS
32362 The following operands shall be supported:

32363 file A path name of a file whose contents are read and edited. If multiple file operands
32364 are specified, the named files shall be read in the order specified and the
32365 concatenation shall be edited. If no file operands are specified, the standard input
32366 shall be used.

32367 script A string to be used as the script of editing commands. The application shall not
32368 present a script that violates the restrictions of a text file except that the final
32369 character need not be a <newline> character.

32370 STDIN
32371 The standard input shall be used only if no file operands are specified. See the INPUT FILES
32372 section.

32373 INPUT FILES
32374 The input files shall be text files. The script_files named by the −f option shall consist of editing
32375 commands.

32376 ENVIRONMENT VARIABLES
32377 The following environment variables shall affect the execution of sed:

32378 LANG Provide a default value for the internationalization variables that are unset or null.
32379 If LANG is unset or null, the corresponding value from the implementation- |
32380 defined default locale shall be used. If any of the internationalization variables |
32381 contains an invalid setting, the utility shall behave as if none of the variables had

Shell and Utilities, Issue 6 3051

sed Utilities

32382 been defined.

32383 LC_ALL If set to a non-empty string value, override the values of all the other
32384 internationalization variables.

32385 LC_COLLATE
32386 Determine the locale for the behavior of ranges, equivalence classes, and multi-
32387 character collating elements within regular expressions.

32388 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
32389 characters (for example, single-byte as opposed to multi-byte characters in
32390 arguments and input files), and the behavior of character classes within regular
32391 expressions.

32392 LC_MESSAGES
32393 Determine the locale that should be used to affect the format and contents of
32394 diagnostic messages written to standard error.

32395 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

32396 ASYNCHRONOUS EVENTS
32397 Default.

32398 STDOUT
32399 The input files shall be written to standard output, with the editing commands specified in the
32400 script applied. If the −n option is specified, only those input lines selected by the script shall be
32401 written to standard output.

32402 STDERR
32403 Used only for diagnostic messages.

32404 OUTPUT FILES
32405 The output files shall be text files whose formats are dependent on the editing commands given.

32406 EXTENDED DESCRIPTION
32407 The script shall consist of editing commands of the following form:

32408 [address [, address]] function

32409 where function represents a single-character command verb from the list in Editing Commands
32410 in sed (on page 3053), followed by any applicable arguments.

32411 Zero or more <blank> characters shall be accepted before the first address and before function. |
32412 Any number of semicolons shall be accepted before the first address. |

32413 In default operation, sed cyclically shall copy a line of input, less its terminating <newline>, into
32414 a pattern space (unless there is something left after a D command), apply in sequence all
32415 commands whose addresses select that pattern space, and at the end of the script copy the
32416 pattern space to standard output (except when −n is specified) and delete the pattern space.
32417 Whenever the pattern space is written to standard output or a named file, sed shall immediately
32418 follow it with a <newline>.

32419 Some of the editing commands use a hold space to save all or part of the pattern space for
32420 subsequent retrieval. The pattern and hold spaces shall each be able to hold at least 8 192 bytes.

3052 Technical Standard (2000) (Draft July 31, 2000)

Utilities sed

32421 Addresses in sed

32422 An address is either a decimal number that counts input lines cumulatively across files, a ’$’
32423 character that addresses the last line of input, or a context address (which consists of a BRE, as
32424 described in Regular Expressions in sed, preceded and followed by a delimiter, usually a slash).

32425 An editing command with no addresses shall select every pattern space.

32426 An editing command with one address shall select each pattern space that matches the address.

32427 An editing command with two addresses shall select the inclusive range from the first pattern
32428 space that matches the first address through the next pattern space that matches the second. (If
32429 the second address is a number less than or equal to the line number first selected, only one line
32430 shall be selected.) Starting at the first line following the selected range, sed shall look again for
32431 the first address. Thereafter, the process shall be repeated. Omitting either or both of the address
32432 components in the following form produces undefined results:

32433 [address [, address]]

32434 Regular Expressions in sed

32435 The sed utility shall support the BREs described in the Base Definitions volume of |
32436 IEEE Std. 1003.1-200x, Section 9.3, Basic Regular Expressions, with the following additions: |

32437 • In a context address, the construction "\cBREc" , where c is any character other than
32438 backslash or <newline>, shall be identical to "/BRE/" . If the character designated by c
32439 appears following a backslash, then it shall be considered to be that literal character, which
32440 shall not terminate the BRE. For example, in the context address "\xabc\xdefx" , the |
32441 second x stands for itself, so that the BRE is "abcxdef" .

32442 • The escape sequence ’\n’ shall match a <newline> embedded in the pattern space. A literal
32443 <newline> character shall not be used in the BRE of a context address or in the substitute
32444 function.

32445 • If an RE is empty (that is, no pattern is specified) sed shall behave as if the last RE used in the
32446 last command applied (either as an address or as part of a substitute command) was
32447 specified.

32448 Editing Commands in sed

32449 In the following list of editing commands, the maximum number of permissible addresses for
32450 each function is indicated by [0addr], [1addr], or [2addr], representing zero, one, or two
32451 addresses.

32452 The argument text shall consist of one or more lines. Each embedded <newline> in the text shall
32453 be preceded by a backslash. Other backslashes in text shall be removed, and the following
32454 character shall be treated literally.

32455 The r and w command verbs, and the w flag to the s command, take an optional rfile (or wfile)
32456 parameter, separated from the command verb letter or flag by one or more <blank> characters; |
32457 implementations may allow zero separation as an extension. |

32458 The argument rfile or the argument wfile shall terminate the editing command. Each wfile shall be
32459 created before processing begins. Implementations shall support at least ten wfile arguments in
32460 the script; the actual number (greater than or equal to 10) that shall be supported by the
32461 implementation is unspecified. The use of the wfile parameter shall cause that file to be initially
32462 created, if it does not exist, or shall replace the contents of an existing file.

Shell and Utilities, Issue 6 3053

sed Utilities

32463 The b, r, s, t, w, y, and : command verbs shall accept additional arguments. The following
32464 synopses indicate which arguments shall be separated from the command verbs by a single
32465 <space>.

32466 The a and r commands schedule text for later output. The text specified for the a command, and
32467 the contents of the file specified for the r command, shall be written to standard output just
32468 before the next attempt to fetch a line of input when executing the N or n commands, or when
32469 reaching the end of the script. If written when reaching the end of the script, and the −n option
32470 was not specified, the text shall be written after copying the pattern space to standard output.
32471 The contents of the file specified for the r command shall be as of the time the output is written,
32472 not the time the r command is applied. The text shall be output in the order in which the a and r
32473 commands were applied to the input.

32474 Command verbs other than {, a, b, c, i, r, t, w, :, and # can be followed by a semicolon, optional |
32475 <blank> characters, and another command verb. However, when the s command verb is used |
32476 with the w flag, following it with another command in this manner produces undefined results.

32477 A function can be preceded by one or more ’!’ characters, in which case the function shall be
32478 applied if the addresses do not select the pattern space. Zero or more <blank> characters shall be |
32479 accepted before the first ’!’ character. It is unspecified whether <blank> characters can follow a |
32480 ’!’ character, and conforming applications shall not follow a ’!’ character with <blank> |
32481 characters. |

32482 [2addr] {function
32483 function
32484 . . .
32485 } Execute a list of sed functions only when the pattern space is selected. The list of
32486 sed functions shall be surrounded by braces and separated by <newline>s, as
32487 follows. The braces can be preceded or followed by <blank> characters. The |
32488 functions can be preceded by <blank> characters, but shall not be followed by |
32489 <blank> characters. The <right-brace> shall be preceded by a <newline> and can |
32490 be preceded or followed by <blank> characters. |

32491 [1addr]a\
32492 text Write text to standard output as described previously.

32493 [2addr]b [label]
32494 Branch to the : function bearing the label . If label is not specified, branch to the end
32495 of the script. The implementation shall support labels recognized as unique up to
32496 at least 8 characters; the actual length (greater than or equal to 8) that shall be
32497 supported by the implementation is unspecified. It is unspecified whether
32498 exceeding a label length causes an error or a silent truncation.

32499 [2addr]c\
32500 text Delete the pattern space. With a 0 or 1 address or at the end of a 2-address range,
32501 place text on the output and start the next cycle.

32502 [2addr]d Delete the pattern space and start the next cycle.

32503 [2addr]D Delete the initial segment of the pattern space through the first <newline> and
32504 start the next cycle.

32505 [2addr]g Replace the contents of the pattern space by the contents of the hold space.

32506 [2addr]G Append to the pattern space a <newline> followed by the contents of the hold
32507 space.

3054 Technical Standard (2000) (Draft July 31, 2000)

Utilities sed

32508 [2addr]h Replace the contents of the hold space with the contents of the pattern space.

32509 [2addr]H Append to the hold space a <newline> followed by the contents of the pattern
32510 space.

32511 [1addr]i\
32512 text Write text to standard output.

32513 [2addr]l (The letter ell.) Write the pattern space to standard output in a visually |
32514 unambiguous form. The characters listed in the Base Definitions volume of |
32515 IEEE Std. 1003.1-200x, Table 5-1, Escape Sequences and Associated Actions (’\\’ , |
32516 ’\a’ , ’\b’ , ’\f’ , ’\r’ , ’\t’ , ’\v’) shall be written as the corresponding
32517 escape sequence; the ’\n’ in that table is not applicable. Non-printable characters
32518 not in that table shall be written as one three-digit octal number (with a preceding
32519 backslash) for each byte in the character (most significant byte first). If the size of a
32520 byte on the system is greater than 9 bits, the format used for non-printable
32521 characters is implementation-defined. |

32522 Long lines shall be folded, with the point of folding indicated by writing a
32523 backslash followed by a <newline>; the length at which folding occurs is
32524 unspecified, but should be appropriate for the output device. The end of each line
32525 shall be marked with a ’$’ .

32526 [2addr]n Write the pattern space to standard output if the default output has not been
32527 suppressed, and replace the pattern space with the next line of input.

32528 If no next line of input is available, the n command verb shall branch to the end of
32529 the script and quit without starting a new cycle.

32530 [2addr]N Append the next line of input to the pattern space, using an embedded <newline>
32531 character to separate the appended material from the original material. Note that
32532 the current line number changes.

32533 If no next line of input is available, the N command verb shall branch to the end of
32534 the script and quit without starting a new cycle or copying the pattern space to
32535 standard output.

32536 [2addr]p Write the pattern space to standard output.

32537 [2addr]P Write the pattern space, up to the first <newline>, to standard output.

32538 [1addr]q Branch to the end of the script and quit without starting a new cycle.

32539 [1addr]r rfile Copy the contents of rfile to standard output as described previously. If rfile does
32540 not exist or cannot be read, it shall be treated as if it were an empty file, causing no
32541 error condition.

32542 [2addr]s/BRE/replacement/flags
32543 Substitute the replacement string for instances of the BRE in the pattern space. Any
32544 character other than backslash or <newline> can be used instead of a slash to
32545 delimit the BRE and the replacement. Within the BRE and the replacement, the
32546 BRE delimiter itself can be used as a literal character if it is preceded by a
32547 backslash.

32548 An ampersand (’&’) appearing in the replacement shall be replaced by the string
32549 matching the BRE. The special meaning of ’&’ in this context can be suppressed
32550 by preceding it by a backslash. The characters "\ n" , where n is a digit, |
32551 shall be replaced by the text matched by the corresponding
32552 backreference expression. For each backslash (’\’)

Shell and Utilities, Issue 6 3055

sed Utilities

32553 encountered in scanning replacement from beginning to end, the
32554 backslash shall be discarded and the following character
32555 shall lose its special meaning (if any). It is unspecified
32556 what special meaning is given to any character other than
32557 ’&’ , ’\’ , or digits.

32558 A line can be split by substituting a <newline> character
32559 into it. The application shall escape the <newline> in the
32560 replacement by preceding it by a backslash. A substitution
32561 shall be considered to have been performed even if the
32562 replacement string is identical to the string that it
32563 replaces. Any backslash used to alter the default meaning of
32564 a subsequent character shall be discarded from the BRE or the
32565 replacement before evaluating the BRE or using the
32566 replacement.

32567 The value of flags shall be zero or more of:

32568 n Substitute for the nth occurrence only of the BRE found within the |
32569 pattern space.

32570 g Globally substitute for all non-overlapping instances of the BRE
32571 rather than just the first one. If both g and n are specified, the results
32572 are unspecified.

32573 p Write the pattern space to standard output if a replacement was
32574 made.

32575 w wfile Write. Append the pattern space to wfile if a replacement was made.
32576 A conforming application shall precede the wfile argument with one
32577 or more <blank> characters. If the w flag is not the last flag value |
32578 given in a concatenation of multiple flag values, the results are
32579 undefined.

32580 [2addr]t [label]
32581 Test. Branch to the : command verb bearing the label if any substitutions have been
32582 made since the most recent reading of an input line or execution of a t. If label is
32583 not specified, branch to the end of the script.

32584 [2addr]w wfile
32585 Append (write) the pattern space to wfile . |

32586 [2addr]x Exchange the contents of the pattern and hold spaces.

32587 [2addr]y/string1/string2/
32588 Replace all occurrences of characters in string1 with the corresponding characters
32589 in string2 . If a backslash followed by an ’n’ appear in string1 or string2 , the two |
32590 characters shall be handled as a single <newline> character. If the number of
32591 characters in string1 and string2 are not equal, or if any of the characters in string1
32592 appear more than once, the results are undefined. Any character other than
32593 backslash or <newline> can be used instead of slash to delimit the strings. If the
32594 delimiter is not n, within string1 and string2 , the delimiter itself can be used as a
32595 literal character if it is preceded by a backslash. If a backslash character is
32596 immediately followed by a backslash character in string1 or string2 , the two
32597 backslash characters shall be counted as a single literal backslash character. The
32598 meaning of a backslash followed by any character that is not ’n’ , a backslash, or |
32599 the delimiter character is undefined.

3056 Technical Standard (2000) (Draft July 31, 2000)

Utilities sed

32600 [0addr]:label Do nothing. This command bears a label to which the b and t commands branch.

32601 [1addr]= Write the following to standard output:

32602 "%d\n", < current line number >

32603 [0addr] Ignore this empty command.

32604 [0addr]# Ignore the ’#’ and the remainder of the line (treat them as a comment), with the
32605 single exception that if the first two characters in the script are "#n" , the default
32606 output shall be suppressed; this shall be the equivalent of specifying −n on the
32607 command line.

32608 EXIT STATUS
32609 The following exit values shall be returned:

32610 0 Successful completion.

32611 >0 An error occurred.

32612 CONSEQUENCES OF ERRORS
32613 Default.

32614 APPLICATION USAGE
32615 Regular expressions match entire strings, not just individual lines, but a <newline> character is
32616 matched by ’\n’ in a sed RE; a <newline> character is not allowed by the general definition of |
32617 regular expression in IEEE Std. 1003.1-200x. Also note that ’\n’ cannot be used to match a |
32618 <newline> character at the end of an arbitrary input line; <newline> characters appear in the
32619 pattern space as a result of the N editing command.

32620 EXAMPLES
32621 This sed script simulates the BSD cat −s command, squeezing excess blank lines from standard
32622 input.

32623 sed −n ’
32624 # Write non-empty lines.
32625 /./ {
32626 p
32627 d
32628 }
32629 # Write a single empty line, then look for more empty lines.
32630 /ˆ$/ p
32631 # Get next line, discard the held <newline> (empty line),
32632 # and look for more empty lines.
32633 :Empty
32634 /ˆ$/ {
32635 N
32636 s/.//
32637 b Empty
32638 }
32639 # Write the non-empty line before going back to search
32640 # for the first in a set of empty lines.
32641 p
32642 ’

Shell and Utilities, Issue 6 3057

sed Utilities

32643 RATIONALE
32644 This volume of IEEE Std. 1003.1-200x requires implementations to support at least ten distinct
32645 wfiles, matching historical practice on many implementations. Implementations are encouraged
32646 to support more, but portable applications should not exceed this limit.

32647 The exit status codes specified here are different from those in System V. System V returns 2 for
32648 garbled sed commands, but returns zero with its usage message or if the input file could not be
32649 opened. The standard developers considered this to be a bug.

32650 The manner in which the l command writes non-printable characters was changed to avoid the
32651 historical backspace-overstrike method, and other requirements to achieve unambiguous output
32652 were added. See the RATIONALE for ed (on page 2546) for details of the format chosen, which is
32653 the same as that chosen for sed.

32654 This volume of IEEE Std. 1003.1-200x requires implementations to provide pattern and hold
32655 spaces of at least 8 192 bytes, larger than the 4 000 bytes spaces used by some historical
32656 implementations, but less than the 20 480 bytes limit used in an early proposal. Implementations
32657 are encouraged to allocate dynamically larger pattern and hold spaces as needed.

32658 The requirements for acceptance of <blank> and <space> characters in command lines has been |
32659 made more explicit than in early proposals to describe clearly the historical practice and to |
32660 remove confusion about the phrase ‘‘protect initial blanks [sic] and tabs from the stripping that |
32661 is done on every script line’’ that appears in much of the historical documentation of the sed |
32662 utility description of text. (Not all implementations are known to have stripped <blank> |
32663 characters from text lines, although they all have allowed leading <blank> characters preceding |
32664 the address on a command line.) |

32665 The treatment of ’#’ comments differs from the SVID which only allows a comment as the first
32666 line of the script, but matches BSD-derived implementations. The comment character is treated
32667 as a command, and it has the same properties in terms of being accepted with leading <blank> |
32668 characters; the BSD implementation has historically supported this. |

32669 Early proposals required that a script_file have at least one non-comment line. Some historical
32670 implementations have behaved in unexpected ways if this were not the case. The standard
32671 developers considered that this was incorrect behavior and that application developers should
32672 not have to avoid this feature. A correct implementation of this volume of IEEE Std. 1003.1-200x
32673 shall permit script_files that consist only of comment lines.

32674 Early proposals indicated that if −e and −f options were intermixed, all −e options were
32675 processed before any −f options. This has been changed to process them in the order presented
32676 because it matches historical practice and is more intuitive.

32677 The treatment of the p flag to the s command differs between System V and BSD-based systems
32678 when the default output is suppressed. In the two examples:

32679 echo a | sed ’s/a/A/p’
32680 echo a | sed −n ’s/a/A/p’

32681 This volume of IEEE Std. 1003.1-200x, BSD, System V documentation, and the SVID indicate that
32682 the first example should write two lines with A, whereas the second should write one. Some
32683 System V systems write the A only once in both examples because the p flag is ignored if the −n
32684 option is not specified.

32685 This is a case of a diametrical difference between systems that could not be reconciled through
32686 the compromise of declaring the behavior to be unspecified. The SVID/BSD/System V
32687 documentation behavior was adopted for this volume of IEEE Std. 1003.1-200x because:

3058 Technical Standard (2000) (Draft July 31, 2000)

Utilities sed

32688 • No known documentation for any historic system describes the interaction between the p
32689 flag and the −n option.

32690 • The selected behavior is more correct as there is no technical justification for any interaction
32691 between the p flag and the −n option. A relationship between −n and the p flag might imply
32692 that they are only used together, but this ignores valid scripts that interrupt the cyclical
32693 nature of the processing through the use of the D, d, q, or branching commands. Such scripts
32694 rely on the p suffix to write the pattern space because they do not make use of the default
32695 output at the ‘‘bottom’’ of the script.

32696 • Because the −n option makes the p flag unnecessary, any interaction would only be useful if
32697 sed scripts were written to run both with and without the −n option. This is believed to be
32698 unlikely. It is even more unlikely that programmers have coded the p flag expecting it to be
32699 unnecessary. Because the interaction was not documented, the likelihood of a programmer
32700 discovering the interaction and depending on it is further decreased.

32701 • Finally, scripts that break under the specified behavior produce too much output instead of
32702 too little, which is easier to diagnose and correct.

32703 The form of the substitute command that uses the n suffix was limited to the first 512 matches in
32704 an early proposal. This limit has been removed because there is no reason an editor processing
32705 lines of {LINE_MAX} length should have this restriction. The command s/a/A/2047 should be
32706 able to substitute the 2 047th occurrence of a on a line.

32707 The b, t, and : commands are documented to ignore leading white space, but no mention is
32708 made of trailing white space. Historical implementations of sed assigned different locations to
32709 the labels ’x’ and "x " . This is not useful, and leads to subtle programming errors, but it is
32710 historical practice, and changing it could theoretically break working scripts. Implementors are
32711 encouraged to provide warning messages about labels that are never used or jumps to labels
32712 that do not exist.

32713 Historically, the sed ! and } editing commands did not permit multiple commands on a single
32714 line using a semicolon as a command delimiter. Implementations are permitted, but not
32715 required, to support this extension.

32716 FUTURE DIRECTIONS
32717 None.

32718 SEE ALSO
32719 awk , ed, grep

32720 CHANGE HISTORY
32721 First released in Issue 2.

32722 Issue 4
32723 Aligned with the ISO/IEC 9945-2: 1993 standard.

32724 Issue 5
32725 FUTURE DIRECTIONS section added.

32726 Issue 6
32727 The following new requirements on POSIX implementations derive from alignment with the
32728 Single UNIX Specification:

32729 • Implementations are required to support at least ten wfile arguments in an editing command.

32730 The EXTENDED DESCRIPTION is changed to align with the IEEE P1003.2b draft standard.

Shell and Utilities, Issue 6 3059

sh Utilities

32731 NAME
32732 sh — shell, the standard command language interpreter

32733 SYNOPSIS
32734 sh [−abCefhimnuvx][−o option][+abCefhmnuvx][+o option] |
32735 [command_file [argument ...]] |

32736 sh −c [−abCefhimnuvx][−o option][+abCefhimnuvx][+o option] command_string |
32737 [command_name [argument ...]] |

32738 sh −s [−abCefhimnuvx][−o option][+abCefhimnuvx][+o option][argument] |

32739 DESCRIPTION |
32740 The sh utility is a command language interpreter that shall execute commands read from a
32741 command line string, the standard input, or a specified file. The application shall ensure that the
32742 commands to be executed are expressed in the language described in Chapter 2 (on page 2235).

32743 Path name expansion does not fail due to the size of a file. |

32744 Notes to Reviewers |
32745 This section with side shading will not appear in the final copy. - Ed. |

32746 D3, XCU, ERN 215: Text here is unclear. There is nothing under the stat command that permits it |
32747 to fail on a very large file. |

32748 Shell input and output redirections have an implementation-defined offset maximum that is |
32749 established in the open file description. |

32750 OPTIONS
32751 The sh utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
32752 Utility Syntax Guidelines, with an extension for support of a leading plus sign (’+’) as noted |
32753 below. |

32754 The −a, −b, −C, −e, −f, −m, −n, −o option , −u, −v, and −x options are described as part of the set
32755 utility in Section 2.15 (on page 2276). The option letters derived from the set special built-in shall |
32756 also be accepted with a leading plus sign (’+’) instead of a leading hyphen (meaning the reverse
32757 case of the option as described in this volume of IEEE Std. 1003.1-200x). |

32758 The following additional options shall be supported:

32759 −c Read commands from the command_string operand. Set the value of special
32760 parameter 0 (see Section 2.5.2 (on page 2241)) from the value of the command_name
32761 operand and the positional parameters ($1, $2, and so on) in sequence from the
32762 remaining argument operands. No commands shall be read from the standard
32763 input.

32764 −i Specify that the shell is interactive ; see below. An implementation may treat
32765 specifying the −i option as an error if the real user ID of the calling process does
32766 not equal the effective user ID or if the real group ID does not equal the effective
32767 group ID.

32768 −s Read commands from the standard input.

32769 If there are no operands and the −c option is not specified, the −s option shall be assumed.

32770 If the −i option is present, or if there are no operands and the shell’s standard input and standard
32771 error are attached to a terminal, the shell is considered to be interactive .

3060 Technical Standard (2000) (Draft July 31, 2000)

Utilities sh

32772 OPERANDS
32773 The following operands shall be supported:

32774 − A single hyphen is treated as the first operand and then ignored. If both ’ −’ and
32775 " −−" are given as arguments, or if other operands precede the single hyphen, the
32776 results are undefined.

32777 argument The positional parameters ($1, $2, and so on) shall be set to arguments, if any.

32778 command_file The path name of a file containing commands. If the path name contains one or
32779 more slash characters, the implementation attempts to read that file; the file need
32780 not be executable. If the path name does not contain a slash character:

32781 • The implementation shall attempt to read that file from the current working
32782 directory; the file need not be executable.

32783 • If the file is not in the current working directory, the implementation may
32784 perform a search for an executable file using the value of PATH, as described in
32785 Section 2.9.1.1 (on page 2257).

32786 Special parameter 0 (see Section 2.5.2 (on page 2241)) shall be set to the value of
32787 command_file . If sh is called using a synopsis form that omits command_file , special
32788 parameter 0 shall be set to the value of the first argument passed to sh from its
32789 parent (for example, argv[0] for a C program), which is normally a path name used
32790 to execute the sh utility.

32791 command_name
32792 A string assigned to special parameter 0 when executing the commands in
32793 command_string . If command_name is not specified, special parameter 0 shall be set
32794 to the value of the first argument passed to sh from its parent (for example, argv[0]
32795 for a C program), which is normally a path name used to execute the sh utility.

32796 command_string
32797 A string that shall be interpreted by the shell as one or more commands, as if the
32798 string were the argument to the system() function defined in the System Interfaces
32799 volume of IEEE Std. 1003.1-200x. If the command_string operand is an empty string,
32800 sh shall exit with a zero exit status.

32801 STDIN
32802 The standard input shall be used only if one of the following is true:

32803 • The −s option is specified.

32804 • The −c option is not specified and no operands are specified.

32805 • The script executes one or more commands that require input from standard input (such as a
32806 read command that does not redirect its input).

32807 See the INPUT FILES section.

32808 When the shell is using standard input and it invokes a command that also uses standard input,
32809 the shell shall ensure that the standard input file pointer points directly after the command it has
32810 read when the command begins execution. It shall not read ahead in such a manner that any
32811 characters intended to be read by the invoked command are consumed by the shell (whether
32812 interpreted by the shell or not) or that characters that are not read by the invoked command are
32813 not seen by the shell. When the command expecting to read standard input is started
32814 asynchronously by an interactive shell, it is unspecified whether characters are read by the
32815 command or interpreted by the shell.

Shell and Utilities, Issue 6 3061

sh Utilities

32816 If the standard input to sh is a FIFO or terminal device and is set to non-blocking reads, then sh
32817 shall enable blocking reads on standard input. This shall remain in effect when the command
32818 completes.

32819 INPUT FILES
32820 The input file shall be a text file, except that line lengths shall be unlimited. If the input file is
32821 empty or consists solely of blank lines or comments, or both, sh shall exit with a zero exit status.

32822 ENVIRONMENT VARIABLES
32823 The following environment variables shall affect the execution of sh:

32824 ENV This variable, when and only when an interactive shell is invoked, shall be
32825 subjected to parameter expansion (see Section 2.6.2 (on page 2245)) by the shell,
32826 and the resulting value shall be used as a path name of a file containing shell
32827 commands to execute in the current environment. The file need not be executable.
32828 If the expanded value of ENV is not an absolute path name, the results are
32829 unspecified. ENV shall be ignored if the real and effective user IDs or real and |
32830 effective group IDs of the process are different. |

32831 FCEDIT This variable, when expanded by the shell, determines the default value for the −e
32832 editor option’s editor option-argument. If FCEDIT is null or unset, ed shall be used
32833 as the editor. This volume of IEEE Std. 1003.1-200x specifies the effects of this
32834 variable only for systems supporting the User Portability Utilities option.

32835 HISTFILE Determine a path name naming a command history file. If the HISTFILE variable is
32836 not set, the shell may attempt to access or create a file .sh_history in the directory
32837 referred to by the HOME environment variable. If the shell cannot obtain both read
32838 and write access to, or create, the history file, it shall use an unspecified
32839 mechanism that allows the history to operate properly. (References to history
32840 ‘‘file’’ in this section shall be understood to mean this unspecified mechanism in
32841 such cases.) An implementation may choose to access this variable only when
32842 initializing the history file; this initialization shall occur when fc or sh first attempt
32843 to retrieve entries from, or add entries to, the file, as the result of commands issued
32844 by the user, the file named by the ENV variable, or implementation-defined system |
32845 start-up files. (The initialization process for the history file can be dependent on the |
32846 system start-up files, in that they may contain commands that effectively preempt
32847 the user’s settings of HISTFILE and HISTSIZE. For example, function definition
32848 commands are recorded in the history file, unless the set −o nolog option is set. If
32849 the system administrator includes function definitions in some system start-up file
32850 called before the ENV file, the history file is initialized before the user gets a chance
32851 to influence its characteristics.) In some historical shells, the history file is
32852 initialized just after the ENV file has been processed. Therefore, it is |
32853 implementation-defined whether changes made to HISTFILE after the history file |
32854 has been initialized are effective. Implementations may choose to disable the
32855 history list mechanism for users with appropriate privileges who do not set
32856 HISTFILE; the specific circumstances under which this occurs are |
32857 implementation-defined. If more than one instance of the shell is using the same |
32858 history file, it is unspecified how updates to the history file from those shells
32859 interact. As entries are deleted from the history file, they shall be deleted oldest
32860 first. It is unspecified when history file entries are physically removed from the
32861 history file. This volume of IEEE Std. 1003.1-200x specifies the effects of this
32862 variable only for systems supporting the User Portability Utilities option.

32863 HISTSIZE Determine a decimal number representing the limit to the number of previous
32864 commands that are accessible. If this variable is unset, an unspecified default

3062 Technical Standard (2000) (Draft July 31, 2000)

Utilities sh

32865 greater than or equal to 128 shall be used. The maximum number of commands in
32866 the history list is unspecified, but shall be at least 128. An implementation may
32867 choose to access this variable only when initializing the history file, as described
32868 under HISTFILE. Therefore, it is unspecified whether changes made to HISTSIZE
32869 after the history file has been initialized are effective.

32870 HOME Determine the path name of the user’s home directory. The contents of HOME are
32871 used in Tilde Expansion as described in Section 2.6.1 (on page 2244). This volume
32872 of IEEE Std. 1003.1-200x specifies the effects of this variable only for systems
32873 supporting the User Portability Utilities option.

32874 IFS Input field separators : a string treated as a list of characters that shall be used for
32875 field splitting and to split lines into words with the read command. See Section
32876 2.6.5 (on page 2249). If IFS is not set, the shell shall behave as if the value of IFS
32877 were the <space>, <tab>, and <newline> characters. Implementations may ignore
32878 the value of IFS in the environment at the time sh is invoked, treating IFS as if it
32879 were not set.

32880 LANG Provide a default value for the internationalization variables that are unset or null.
32881 If LANG is unset or null, the corresponding value from the implementation- |
32882 defined default locale shall be used. If any of the internationalization variables |
32883 contains an invalid setting, the utility shall behave as if none of the variables had
32884 been defined.

32885 LC_ALL If set to a non-empty string value, override the values of all the other
32886 internationalization variables.

32887 LC_COLLATE
32888 Determine the behavior of range expressions, equivalence classes and multi-
32889 character collating elements within pattern matching.

32890 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
32891 characters (for example, single-byte as opposed to multi-byte characters in
32892 arguments and input files), which characters are defined as letters (character class
32893 alpha), and the behavior of character classes within pattern matching.

32894 LC_MESSAGES
32895 Determine the locale that should be used to affect the format and contents of
32896 diagnostic messages written to standard error.

32897 MAIL Determine a path name of the user’s mailbox file for purposes of incoming mail
32898 notification. If this variable is set, the shell shall inform the user if the file named by
32899 the variable is created or if its modification time has changed. Informing the user
32900 shall be accomplished by writing a string of unspecified format to standard error
32901 prior to the writing of the next primary prompt string after the completion of an
32902 interval defined by the MAILCHECK variable. The user shall be informed only if
32903 MAIL is set and MAILPATH is not set. This volume of IEEE Std. 1003.1-200x
32904 specifies the effects of this variable only for systems supporting the User
32905 Portability Utilities option.

32906 MAILCHECK
32907 Establish a decimal integer value that specifies how often (in seconds) the shell
32908 shall check for the arrival of mail in the files specified by the MAILPATH or MAIL
32909 variables. The default value shall be 600 seconds. If set to zero, the shell shall check
32910 before issuing each primary prompt. This volume of IEEE Std. 1003.1-200x
32911 specifies the effects of this variable only for systems supporting the User
32912 Portability Utilities option.

Shell and Utilities, Issue 6 3063

sh Utilities

32913 MAILPATH Provide a list of path names and optional messages separated by colons. If this
32914 variable is set, the shell shall inform the user if any of the files named by the
32915 variable are created or if any of their modification times change. (See the preceding
32916 entry for MAIL for descriptions of mail arrival and user informing.) Each path
32917 name can be followed by ’%’ and a string that shall be subjected to parameter
32918 expansion and written to standard error when the modification time changes. If a
32919 ’%’ character in the path name is preceded by a backslash, it shall be treated as a
32920 literal ’%’ in the path name. The default message is unspecified.

32921 The MAILPATH environment variable takes precedence over the MAIL variable.
32922 This volume of IEEE Std. 1003.1-200x specifies the effects of this variable only for
32923 systems supporting the User Portability Utilities option.

32924 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

32925 PATH Establish a string formatted as described in the Base Definitions volume of |
32926 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables, used to effect command |
32927 interpretation; see Section 2.9.1.1 (on page 2257).

32928 PWD This variable shall represent an absolute path name of the current working
32929 directory. Assignments to this variable may be ignored unless the value is an
32930 absolute path name of the current working directory and there are no file name
32931 components of dot or dot-dot.

32932 ASYNCHRONOUS EVENTS
32933 Default.

32934 STDOUT
32935 See the STDERR section.

32936 STDERR
32937 Except as otherwise stated (by the descriptions of any invoked utilities or in interactive mode),
32938 standard error is used only for diagnostic messages.

32939 OUTPUT FILES
32940 None.

32941 EXTENDED DESCRIPTION
32942 See Chapter 2. The following additional capabilities are supported on systems supporting the
32943 User Portability Utilities option.

32944 Command History List

32945 When the sh utility is being used interactively, it shall maintain a list of commands previously
32946 entered from the terminal in the file named by the HISTFILE environment variable. The type,
32947 size, and internal format of this file are unspecified. Multiple sh processes can share access to the
32948 file for a user, if file access permissions allow this; see the description of the HISTFILE
32949 environment variable.

3064 Technical Standard (2000) (Draft July 31, 2000)

Utilities sh

32950 Command Line Editing

32951 When sh is being used interactively from a terminal, the current command and the command
32952 history (see fc (on page 2646)) can be edited using vi-mode command line editing. This mode
32953 uses commands, described below, similar to a subset of those described in the vi utility.
32954 Implementations may offer other command line editing modes corresponding to other editing
32955 utilities.

32956 The command set −o vi shall enable vi-mode editing and place sh into vi insert mode (see
32957 Command Line Editing (vi-mode)). This command also shall disable any other editing mode
32958 that the implementation may provide. The command set +o vi disables vi-mode editing.

32959 Certain block-mode terminals may be unable to support shell command line editing. If a
32960 terminal is unable to provide either edit mode, it need not be possible to set −o vi when using the
32961 shell on this terminal.

32962 In the following sections, the characters erase, interrupt, kill , and end-of-file are those set by the
32963 stty utility.

32964 Command Line Editing (vi-mode)

32965 With vi-mode enabled, sh can be switched between insert mode and command mode.

32966 When in insert mode, an entered character shall be inserted into the command line, except as
32967 noted in vi Line Editing Insert Mode. Upon entering sh and after termination of the previous
32968 command, sh shall be in insert mode.

32969 Typing an escape character shall switch sh into command mode (see vi Line Editing Command
32970 Mode (on page 3066)). In command mode, an entered character shall either invoke a defined
32971 operation, is used as part of a multi-character operation, or is treated as an error. A character that
32972 is not recognized as part of an editing command shall terminate any specific editing command
32973 and shall alert the terminal. Typing the interrupt character in command mode shall cause sh to
32974 terminate command line editing on the current command line, reissue the prompt on the next
32975 line of the terminal, and reset the command history (see fc (on page 2646)) so that the most
32976 recently executed command is the previous command (that is, the command that was being
32977 edited when it was interrupted is not reentered into the history).

32978 In the following sections, the phrase ‘‘move the cursor to the beginning of the word’’ shall mean
32979 ‘‘move the cursor to the first character of the current word’’ and the phrase ‘‘move the cursor to
32980 the end of the word’’ shall mean ‘‘move the cursor to the last character of the current word’’. The
32981 phrase ‘‘beginning of the command line’’ indicates the point between the end of the prompt
32982 string issued by the shell (or the beginning of the terminal line, if there is no prompt string) and
32983 the first character of the command text.

32984 vi Line Editing Insert Mode

32985 While in insert mode, any character typed shall be inserted in the current command line, unless
32986 it is from the following set.

32987 <newline> Execute the current command line being edited.

32988 erase Delete the character previous to the current cursor position and move the current
32989 cursor position back one character. In insert mode, characters shall be erased from
32990 both the screen and the buffer when backspacing.

32991 interrupt Terminate command line editing with the same effects as described for
32992 interrupting command mode; see Command Line Editing (vi-mode).

Shell and Utilities, Issue 6 3065

sh Utilities

32993 kill Clear all the characters from the input line.

32994 <control>-V Insert the next character input, even if the character is otherwise a special insert
32995 mode character.

32996 <control>-W Delete the characters from the one preceding the cursor to the preceding word
32997 boundary. The word boundary in this case is the closer to the cursor of either the
32998 beginning of the line or a character that is in neither the blank nor punct character
32999 classification of the current locale.

33000 end-of-file Interpreted as the end of input in sh. This interpretation shall occur only at the
33001 beginning of an input line. If end-of-file is entered other than at the beginning of the
33002 line, the results are unspecified.

33003 <ESC> Place sh into command mode.

33004 vi Line Editing Command Mode

33005 In command mode for the command line editing feature, decimal digits not beginning with 0
33006 that precede a command letter shall be remembered. Some commands use these decimal digits
33007 as a count number that affects the operation.

33008 The term motion command represents one of the commands:

33009 <space > 0 b F l W ˆ $; E f T w | , B e h t

33010 Any command that modifies the current line shall cause a copy of the current line to be made at
33011 the end of the command history, the current line shall become that copy, and the edit is
33012 performed on that copy.

33013 Any command that is preceded by count shall take a count (the numeric value of any preceding
33014 decimal digits). Unless otherwise noted, this count shall cause the specified operation to repeat
33015 by the number of times specified by the count. Also unless otherwise noted, a count that is out of
33016 range is considered an error condition and shall alert the terminal, but neither the cursor
33017 position, nor the command line, shall change.

33018 The terms word and bigword are used as defined in the vi description. The term save buffer
33019 corresponds to the term unnamed buffer in vi.

33020 The following commands shall be recognized in command mode:

33021 <newline> Execute the current command line being edited.

33022 <control>-L Redraw the current command line. Position the cursor at the same location on the
33023 new command line.

33024 # Insert the character ’#’ at the beginning of the current command line and treat the
33025 current command line as a comment. This line shall be entered into the command
33026 history; see fc (on page 2646).

33027 = Display the possible shell word expansions (see Section 2.6 (on page 2244)) of the
33028 bigword at the current command line position. These expansions shall be
33029 displayed on subsequent terminal lines. If the bigword contains none of the
33030 characters ’?’ , ’*’ , or ’[’ , an asterisk (’*’) shall be implicitly assumed at the
33031 end. If any directories are matched, these expansions shall have a ’/’ character
33032 appended. After the expansion, the line shall be redrawn, the cursor is repositioned
33033 at the current cursor position, and sh shall be placed in command mode.

33034 \ Perform path name expansion (see Section 2.6.6 (on page 2249)) on the current
33035 bigword, up to the largest set of characters that can be matched uniquely. If the

3066 Technical Standard (2000) (Draft July 31, 2000)

Utilities sh

33036 bigword contains none of the characters ’?’ , ’*’ , or ’[’ , an asterisk (’*’) shall
33037 be implicitly assumed at the end. This maximal expansion then shall replace the
33038 original bigword in the command line, and the cursor shall be placed after this
33039 expansion. If the resulting bigword completely and uniquely matches a directory, a
33040 ’/’ character shall be inserted directly after the bigword. If some other file is
33041 completely matched, a single <space> character shall be inserted after the bigword.
33042 After this operation, sh shall be placed in insert mode.

33043 * Perform path name expansion on the current bigword and insert all expansions
33044 into the command to replace the current bigword, with each expansion separated
33045 by a single <space> character. If at the end of the line, the current cursor position
33046 shall be moved to the first column position following the expansions and sh shall
33047 be placed in insert mode. Otherwise, the current cursor position shall be the last
33048 column position of the first character after the expansions and sh shall be placed in
33049 insert mode. If the current bigword contains none of the characters ’?’ , ’*’ , or
33050 ’[’ , before the operation, an asterisk shall be implicitly assumed at the end.

33051 @letter Insert the value of the alias named _letter . The symbol letter represents a single
33052 alphabetic character from the portable character set; implementations may support
33053 additional characters as an extension. If the alias _letter contains other editing
33054 commands, these commands shall be performed as part of the insertion. If no alias
33055 _letter is enabled, this command shall have no effect.

33056 [count]˜ Convert, if the current character is a lowercase letter, to the equivalent uppercase
33057 letter and vice versa, as prescribed by the current locale. The current cursor position
33058 then shall be advanced by one character. If the cursor was positioned on the last
33059 character of the line, the case conversion shall occur, but the cursor shall not
33060 advance. If the ’˜’ command is preceded by a count , that number of characters
33061 shall be converted, and the cursor shall be advanced to the character position after
33062 the last character converted. If the count is larger than the number of characters
33063 after the cursor, this shall not be considered an error; the cursor shall advance to
33064 the last character on the line.

33065 [count]. Repeat the most recent non-motion command, even if it was executed on an earlier
33066 command line. If the previous command was preceded by a count , and no count is
33067 given on the ’.’ command, the count from the previous command shall be
33068 included as part of the repeated command. If the ’.’ command is preceded by a
33069 count , this shall override any count argument to the previous command. The count
33070 specified in the ’.’ command shall become the count for subsequent ’.’
33071 commands issued without a count.

33072 [number]v Invoke the vi editor to edit the current command line in a temporary file. When the
33073 editor exits, the commands in the temporary file shall be executed. If a number is
33074 prefixed to the command, it specifies the command number in the command
33075 history to be edited, rather than the current command line.

33076 [count]l (ell)
33077 [count]<space>
33078 Move the current cursor position to the next character position. If the cursor was
33079 positioned on the last character of the line, the terminal shall be alerted and the
33080 cursor shall not be advanced. If the count is larger than the number of characters
33081 after the cursor, this shall not be considered an error; the cursor shall advance to
33082 the last character on the line.

33083 [count]h Move the current cursor position to the countth (default 1) previous character
33084 position. If the cursor was positioned on the first character of the line, the terminal

Shell and Utilities, Issue 6 3067

sh Utilities

33085 shall be alerted and the cursor shall not be moved. If the count is larger than the
33086 number of characters before the cursor, this shall not be considered an error; the
33087 cursor shall move to the first character on the line.

33088 [count]w Move to the start of the next word. If the cursor was positioned on the last
33089 character of the line, the terminal shall be alerted and the cursor shall not be
33090 advanced. If the count is larger than the number of words after the cursor, this shall
33091 not be considered an error; the cursor shall advance to the last character on the
33092 line.

33093 [count]W Move to the start of the next bigword. If the cursor was positioned on the last
33094 character of the line, the terminal shall be alerted and the cursor shall not be
33095 advanced. If the count is larger than the number of bigwords after the cursor, this
33096 shall not be considered an error; the cursor shall advance to the last character on
33097 the line.

33098 [count]e Move to the end of the current word. If at the end of a word, move to the end of the
33099 next word. If the cursor was positioned on the last character of the line, the
33100 terminal shall be alerted and the cursor shall not be advanced. If the count is larger
33101 than the number of words after the cursor, this shall not be considered an error; the
33102 cursor shall advance to the last character on the line.

33103 [count]E Move to the end of the current bigword. If at the end of a bigword, move to the
33104 end of the next bigword. If the cursor was positioned on the last character of the
33105 line, the terminal shall be alerted and the cursor shall not be advanced. If the count
33106 is larger than the number of bigwords after the cursor, this shall not be considered
33107 an error; the cursor shall advance to the last character on the line.

33108 [count]b Move to the beginning of the current word. If at the beginning of a word, move to
33109 the beginning of the previous word. If the cursor was positioned on the first
33110 character of the line, the terminal shall be alerted and the cursor shall not be
33111 moved. If the count is larger than the number of words preceding the cursor, this
33112 shall not be considered an error; the cursor shall return to the first character on the
33113 line.

33114 [count]B Move to the beginning of the current bigword. If at the beginning of a bigword,
33115 move to the beginning of the previous bigword. If the cursor was positioned on the
33116 first character of the line, the terminal shall be alerted and the cursor shall not be
33117 moved. If the count is larger than the number of bigwords preceding the cursor,
33118 this shall not be considered an error; the cursor shall return to the first character on
33119 the line.

33120 ^ Move the current cursor position to the first character on the input line that is not a
33121 <blank> character.

33122 $ Move to the last character position on the current command line.

33123 0 (Zero.) Move to the first character position on the current command line.

33124 [count] | Move to the countth character position on the current command line. If no number
33125 is specified, move to the first position. The first character position shall be
33126 numbered 1. If the count is larger than the number of characters on the line, this
33127 shall not be considered an error; the cursor shall be placed on the last character on
33128 the line.

33129 [count]fc Move to the first occurrence of the character ’c’ that occurs after the current
33130 cursor position. If the cursor was positioned on the last character of the line, the
33131 terminal shall be alerted and the cursor shall not be advanced. If the character ’c’

3068 Technical Standard (2000) (Draft July 31, 2000)

Utilities sh

33132 does not occur in the line after the current cursor position, the terminal shall be
33133 alerted and the cursor shall not be moved.

33134 [count]Fc Move to the first occurrence of the character ’c’ that occurs before the current
33135 cursor position. If the cursor was positioned on the first character of the line, the
33136 terminal shall be alerted and the cursor shall not be moved. If the character ’c’
33137 does not occur in the line before the current cursor position, the terminal shall be
33138 alerted and the cursor shall not be moved.

33139 [count]tc Move to the character before the first occurrence of the character ’c’ that occurs
33140 after the current cursor position. If the cursor was positioned on the last character
33141 of the line, the terminal shall be alerted and the cursor shall not be advanced. If the
33142 character ’c’ does not occur in the line after the current cursor position, the
33143 terminal shall be alerted and the cursor shall not be moved.

33144 [count]Tc Move to the character after the first occurrence of the character ’c’ that occurs
33145 before the current cursor position. If the cursor was positioned on the first
33146 character of the line, the terminal shall be alerted and the cursor shall not be
33147 moved. If the character ’c’ does not occur in the line before the current cursor
33148 position, the terminal shall be alerted and the cursor shall not be moved.

33149 [count]; Repeat the most recent f, F, t, or T command. Any number argument on that
33150 previous command shall be ignored. Errors are those described for the repeated
33151 command.

33152 [count], Repeat the most recent f, F, t, or T command. Any number argument on that
33153 previous command shall be ignored. However, reverse the direction of that
33154 command.

33155 a Enter insert mode after the current cursor position. Characters that are entered
33156 shall be inserted before the next character.

33157 A Enter insert mode after the end of the current command line.

33158 i Enter insert mode at the current cursor position. Characters that are entered are
33159 inserted before the current character.

33160 I Enter insert mode at the beginning of the current command line.

33161 R Enter insert mode, replacing characters from the command line beginning at the
33162 current cursor position.

33163 [count]cmotion
33164 Delete the characters between the current cursor position and the cursor position
33165 that would result from the specified motion command. Then enter insert mode
33166 before the first character following any deleted characters. If count is specified, it
33167 shall be applied to the motion command. A count shall be ignored for the following
33168 motion commands:

33169 0 ^ $ c

33170 If the motion command is the character ’c’ , the current command line shall be
33171 cleared and insert mode shall be entered. If the motion command would move the
33172 current cursor position toward the beginning of the command line, the character
33173 under the current cursor position shall not be deleted. If the motion command
33174 would move the current cursor position toward the end of the command line, the
33175 character under the current cursor position shall be deleted. If the count is larger
33176 than the number of characters between the current cursor position and the end of
33177 the command line toward which the motion command would move the cursor,

Shell and Utilities, Issue 6 3069

sh Utilities

33178 this shall not be considered an error; all of the remaining characters in the
33179 aforementioned range shall be deleted and insert mode shall be entered. If the
33180 motion command is invalid, the terminal shall be alerted, the cursor shall not be
33181 moved, and no text shall be deleted.

33182 C Delete from the current character to the end of the line and enter insert mode at the
33183 new end-of-line.

33184 S Clear the entire current command line and enter insert mode.

33185 [count]rc Replace the current character with the character ’c’ . With a number count ,
33186 replace the current and the following count−1 characters. After this command, the
33187 current cursor position shall be on the last character that was changed. If the count
33188 is larger than the number of characters after the cursor, this shall not be considered
33189 an error; all of the remaining characters shall be changed.

33190 [count]_ Append a <space> character after the current character position and then append
33191 the last bigword in the previous input line after the <space> character. Then enter
33192 insert mode after the last character just appended. With a number count , append
33193 the countth bigword in the previous line.

33194 [count]x Delete the character at the current cursor position and place the deleted characters
33195 in the save buffer. If the cursor was positioned on the last character of the line, the
33196 character shall be deleted and the cursor position shall be moved to the previous
33197 character (the new last character). If the count is larger than the number of
33198 characters after the cursor, this shall not be considered an error; all the characters
33199 from the cursor to the end of the line shall be deleted.

33200 [count]X Delete the character before the current cursor position and place the deleted
33201 characters in the save buffer. The character under the current cursor position shall
33202 not change. If the cursor was positioned on the first character of the line, the
33203 terminal shall be alerted, and the X command shall have no effect. If the line
33204 contained a single character, the X command shall have no effect. If the line
33205 contained no characters, the terminal shall be alerted and the cursor shall not be
33206 moved. If the count is larger than the number of characters before the cursor, this
33207 shall not be considered an error; all the characters from before the cursor to the
33208 beginning of the line shall be deleted.

33209 [count]dmotion
33210 Delete the characters between the current cursor position and the character
33211 position that would result from the motion command. A number count repeats the
33212 motion command count times. If the motion command would move toward the
33213 beginning of the command line, the character under the current cursor position
33214 shall not be deleted. If the motion command is d, the entire current command line
33215 shall be cleared. If the count is larger than the number of characters between the
33216 current cursor position and the end of the command line toward which the motion
33217 command would move the cursor, this shall not be considered an error; all of the
33218 remaining characters in the aforementioned range shall be deleted. The deleted
33219 characters shall be placed in the save buffer.

33220 D Delete all characters from the current cursor position to the end of the line. The
33221 deleted characters shall be placed in the save buffer.

33222 [count]ymotion
33223 Yank (that is, copy) the characters from the current cursor position to the position
33224 resulting from the motion command into a save buffer. A number count shall be
33225 applied to the motion command. If the motion command would move toward the

3070 Technical Standard (2000) (Draft July 31, 2000)

Utilities sh

33226 beginning of the command line, the character under the current cursor position
33227 shall not be included in the set of yanked characters. If the motion command is y,
33228 the entire current command line shall be yanked into the save buffer. The current
33229 cursor position shall be unchanged. If the count is larger than the number of
33230 characters between the current cursor position and the end of the command line
33231 toward which the motion command would move the cursor, this shall not be
33232 considered an error; all of the remaining characters in the aforementioned range
33233 shall be yanked.

33234 Y Yank the characters from the current cursor position to the end of the line into the
33235 save buffer. The current character position shall be unchanged.

33236 [count]p Put a copy of the current contents of the save buffer after the current cursor
33237 position. The current cursor position shall be advanced to the last character put
33238 from the save buffer. A count shall indicate how many copies of the save buffer
33239 shall be put.

33240 [count]P Put a copy of the current contents of the save buffer before the current cursor
33241 position. The current cursor position shall be moved to the last character put from
33242 the save buffer. A count shall indicate how many copies of the save buffer shall be
33243 put.

33244 u Undo the last command that modified the text of the current command line.

33245 U Undo all changes made to the current command line since first entering command
33246 mode on the line.

33247 [count]k
33248 [count]− Replace the current command line with the previous command line in the shell
33249 command history. The cursor shall be positioned on the first character of the new
33250 command. A count preceding the command shall have the same effect as
33251 executing the command count times. If a k or − command retreats past the
33252 maximum number of commands in effect for this shell (affected by the HISTSIZE
33253 environment variable), the terminal shall be alerted and the command shall have
33254 no effect.

33255 [count]j
33256 [count]+ Replace the current command line with the next command line in the shell
33257 command history. The cursor shall be positioned on the first character of the new
33258 command. The command history position shall be remembered, and any k or −
33259 command, or j or + command, shall decrement or increment that position and then
33260 shall fetch the line at the new position. If a j or + command advances past the most
33261 recent line in the history, the current command line shall be restored to the
33262 contents before the first k or −.

33263 [number]G Replace the current command line with the contents of the oldest command line
33264 stored in the shell command history. With a number number, replace the current
33265 command line with the contents of command number in the history.

33266 /string<newline>
33267 Move backward through the command history, searching for the specified string,
33268 beginning with the previous command line. If it is not found, the current
33269 command line shall be unchanged. If it is found in a previous line, this command
33270 shall behave equivalently to a set of k commands to reach that line. If string begins
33271 with ’ˆ’ , the characters after the ’ˆ’ shall be matched only at the beginning of a
33272 line.

Shell and Utilities, Issue 6 3071

sh Utilities

33273 ?string<newline>
33274 Move forward through the command history, searching for the specified string. If
33275 it is not found, the current command line shall be unchanged. If the string is found
33276 in the current command line, the current cursor position shall be moved to the
33277 beginning of that string. If it is found in the history, this command shall behave
33278 equivalently to a set of j commands to reach that line. If string begins with ’ˆ’ , the
33279 characters after the ’ˆ’ shall be matched only at the beginning of a line.

33280 n Repeat the most recent / or ? command.

33281 N Repeat the most recent / or ? command, reversing the direction of the search.

33282 EXIT STATUS
33283 The following exit values shall be returned:

33284 0 The script to be executed consisted solely of zero or more blank lines or comments, or
33285 both.
33286 1-125 A non-interactive shell detected a syntax, redirection or variable assignment error.
33287 127 A specified command_file could not be found by a non-interactive shell.

33288 Otherwise, the shell shall return the exit status of the last command it invoked or attempted to
33289 invoke (see also the exit utility in Section 2.15 (on page 2276)).

33290 CONSEQUENCES OF ERRORS
33291 See Section 2.8.1 (on page 2255).

33292 APPLICATION USAGE
33293 Standard input and standard error are the files that determine whether a shell is interactive
33294 when −i is not specified. For example:

33295 sh > file

33296 and:

33297 sh 2> file

33298 create interactive and non-interactive shells, respectively. Although both accept terminal input,
33299 the results of error conditions are different, as described in Section 2.8.1 (on page 2255); in the
33300 second example a redirection error encountered by a special built-in utility aborts the shell.

33301 A portable application must protect its first operand, if it starts with a plus sign, by preceding it |
33302 with the " −−" argument that denotes the end of the options. |

33303 Applications should note that the standard PATH to the shell cannot be assumed to be either |
33304 /bin/sh or /usr/bin/sh, and should be determined by interrogation of the PATH returned by |
33305 getconf PATH, ensuring that the returned path name is an absolute path name and not a shell |
33306 built in. |

33307 For example, to determine the location of the standard sh utility: |

33308 command −v sh

33309 On some systems this might return: |

33310 /usr/xpg4/bin/sh

33311 Furthermore, on systems that support executable scripts (the "#!" construct), it is |
33312 recommended that applications using executable scripts install them using getconf −v to |
33313 determine the shell path name and update the "#!" script appropriately as it is being installed |
33314 (for example, with sed). For example: |

3072 Technical Standard (2000) (Draft July 31, 2000)

Utilities sh

33315 # |
33316 # Installation time script to install correct POSIX shell path name |
33317 # |
33318 # Get list of paths to check |
33319 # |
33320 Sifs=$IFS |
33321 IFS=: |
33322 set $(getconf PATH) |
33323 IFS=$Sifs |
33324 # |
33325 # Check each path for ’sh’ |
33326 # |
33327 for i in $@ |
33328 do |
33329 if [−f ${i}/sh]; |
33330 then |
33331 Pshell=${i}/sh |
33332 fi |
33333 done |
33334 # |
33335 # This is the list of scripts to update. They should be of the |
33336 # form ’${name}.source’ and will be transformed to ’${name}’. |
33337 # Each script should begin: |
33338 # |
33339 # !INSTALLSHELLPATH −p |
33340 # |
33341 scripts="a b c" |
33342 # |
33343 # Transform each script |
33344 # |
33345 for i in ${scripts} |
33346 do |
33347 sed −e "s|INSTALLSHELLPATH|${Pshell}|" < ${i}.source > ${i} |
33348 done |

33349 EXAMPLES |

33350 1. Execute a shell command from a string:

33351 sh −c "cat myfile"

33352 2. Execute a shell script from a file in the current directory:

33353 sh my_shell_cmds

33354 RATIONALE
33355 The sh utility and the set special built-in utility share a common set of options.

33356 The KornShell ignores the contents of IFS upon entry to the script. A conforming application
33357 cannot rely on importing IFS. One justification for this, beyond security considerations, is to
33358 assist possible future shell compilers. Allowing IFS to be imported from the environment
33359 prevents many optimizations that might otherwise be performed via dataflow analysis of the
33360 script itself.

33361 The text in the STDIN section about non-blocking reads concerns an instance of sh that has been
33362 invoked, probably by a C-language program, with standard input that has been opened using

Shell and Utilities, Issue 6 3073

sh Utilities

33363 the O_NONBLOCK flag; see open() in the System Interfaces volume of IEEE Std. 1003.1-200x. If
33364 the shell did not reset this flag, it would immediately terminate because no input data would be
33365 available yet and that would be considered the same as end-of-file.

33366 The options associated with a restricted shell (command name rsh and the −r option) were
33367 excluded because the standard developers considered that the implied level of security could
33368 not be achieved and they did not want to raise false expectations.

33369 On systems that support set-user-ID scripts, a historical trapdoor has been to link a script to the
33370 name −i. When it is called by a sequence such as |

33371 sh − |

33372 or by: |

33373 #! usr/bin/sh − |

33374 the historical systems have assumed that no option letters follow. Thus, this volume of |
33375 IEEE Std. 1003.1-200x allows the single hyphen to mark the end of the options, in addition to the
33376 use of the regular " −−" argument, because it was considered that the older practice was so
33377 pervasive. An alternative approach is taken by the KornShell, where real and effective
33378 user/group IDs must match for an interactive shell; this behavior is specifically allowed by this
33379 volume of IEEE Std. 1003.1-200x.

33380 Note: There are other problems with set-user-ID scripts that the two approaches described
33381 here do not resolve.

33382 The default messages for the various MAIL-related messages are unspecified because they vary
33383 across implementations. Typical messages are:

33384 "you have mail\n"

33385 or:

33386 "you have new mail\n"

33387 It is important that the descriptions of command line editing refer to the same shell as that in |
33388 IEEE Std. 1003.1-200x so that interactive users can also be application programmers without |
33389 having to deal with programmatic differences in their two environments. It is also essential that |
33390 the utility name sh be specified because this explicit utility name is too firmly rooted in historical |
33391 practice of application programs for it to change.

33392 Consideration was given to mandating a diagnostic message when attempting to set vi-mode on
33393 terminals that do not support command line editing. However, it is not historical practice for the
33394 shell to be cognizant of all terminal types and thus be able to detect inappropriate terminals in
33395 all cases. Implementations are encouraged to supply diagnostics in this case whenever possible,
33396 rather than leaving the user in a state where editing commands work incorrectly.

33397 In early proposals, the KornShell-derived emacs mode of command line editing was included,
33398 even though the emacs editor itself was not. The community of emacs proponents was adamant
33399 that the full emacs editor not be included in this volume of IEEE Std. 1003.1-200x because they
33400 were concerned that an attempt to standardize this very powerful environment would
33401 encourage vendors to ship versions conforming strictly to this volume of IEEE Std. 1003.1-200x,
33402 but lacking the extensibility required by the community. The author of the original emacs
33403 program also expressed his desire to omit the program. Furthermore, there were a number of
33404 historical systems that did not include emacs, or included it without supporting it, but there were
33405 very few that did not include and support vi. The shell emacs command line editing mode was
33406 finally omitted from this volume of IEEE Std. 1003.1-200x because it became apparent that the
33407 KornShell version and the editor being distributed with the GNU system had diverged in some

3074 Technical Standard (2000) (Draft July 31, 2000)

Utilities sh

33408 respects. The author of emacs requested that the POSIX emacs mode either be deleted or have a
33409 significant number of unspecified conditions. Although the KornShell author agreed to consider
33410 changes to bring the shell into alignment, the standard developers decided to defer specification
33411 at this time, rather than attempting to agree on a specific subset of emacs late within the
33412 development of this volume of IEEE Std. 1003.1-200x. It is assumed that the emacs and KornShell
33413 developers will converge on a definition acceptable to both groups, and this may be used as a
33414 model for a future version of this volume of IEEE Std. 1003.1-200x. In the interim,
33415 implementations are free to offer additional command line editing modes based on the exact
33416 models of editors their users are most comfortable with.

33417 Early proposals had the following list entry in vi Line Editing Insert Mode (on page 3065):

33418 \ If followed by the erase or kill character, that character shall be inserted into the input line.
33419 Otherwise, the backslash itself shall be inserted into the input line.

33420 However, this is not actually a feature of sh command line editing insert mode, but one of some
33421 historical terminal line drivers. Some conforming implementations continue to do this when the
33422 stty iexten flag is set.

33423 FUTURE DIRECTIONS
33424 None.

33425 SEE ALSO
33426 cd , echo , pwd , test, umask , the System Interfaces volume of IEEE Std. 1003.1-200x, dup(), exec,
33427 exit(), fork (), pipe(), signal(), system(), ulimit(), umask(), wait()

33428 CHANGE HISTORY
33429 First released in Issue 2.

33430 Issue 4
33431 Aligned with the ISO/IEC 9945-2: 1993 standard.

33432 Description of the shell command language and special built-ins moved to Chapter 2 (on page
33433 2235).

33434 Issue 5
33435 FUTURE DIRECTIONS section added.

33436 Text is added to the DESCRIPTION for the Large File Summit proposal.

33437 Issue 6
33438 The Open Group corrigenda item U029/2 has been applied, correcting the second SYNOPSIS.

33439 The Open Group corrigenda item U027/3 has been applied, correcting a typographical error.

33440 The following new requirements on POSIX implementations derive from alignment with the
33441 Single UNIX Specification:

33442 • The option letters derived from the set special built-in are also accepted with a leading plus
33443 sign (’+’).

33444 • Large file extensions are added:

33445 — Path name expansion does not fail due to the size of a file.

33446 — Shell input and output redirections have an implementation-defined offset maximum |
33447 that is established in the open file description.

33448 In the ENVIRONMENT VARIABLES section, the text ‘‘user’s home directory’’ is updated to
33449 ‘‘directory referred to by the HOME environment variable’’.

Shell and Utilities, Issue 6 3075

sh Utilities

33450 Descriptions for the ENV and PWD environment variables are included to align with the
33451 IEEE P1003.2b draft standard.

33452 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3076 Technical Standard (2000) (Draft July 31, 2000)

Utilities sleep

33453 NAME
33454 sleep — suspend execution for an interval

33455 SYNOPSIS
33456 sleep time

33457 DESCRIPTION
33458 The sleep utility shall suspend execution for at least the integral number of seconds specified by
33459 the time operand.

33460 OPTIONS
33461 None.

33462 OPERANDS
33463 The following operand shall be supported:

33464 time A non-negative decimal integer specifying the number of seconds for which to
33465 suspend execution.

33466 STDIN
33467 Not used.

33468 INPUT FILES
33469 None.

33470 ENVIRONMENT VARIABLES
33471 The following environment variables shall affect the execution of sleep:

33472 LANG Provide a default value for the internationalization variables that are unset or null.
33473 If LANG is unset or null, the corresponding value from the implementation- |
33474 defined default locale shall be used. If any of the internationalization variables |
33475 contains an invalid setting, the utility shall behave as if none of the variables had
33476 been defined.

33477 LC_ALL If set to a non-empty string value, override the values of all the other
33478 internationalization variables.

33479 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
33480 characters (for example, single-byte as opposed to multi-byte characters in
33481 arguments).

33482 LC_MESSAGES
33483 Determine the locale that should be used to affect the format and contents of
33484 diagnostic messages written to standard error.

33485 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

33486 ASYNCHRONOUS EVENTS
33487 If the sleep utility receives a SIGALRM signal, one of the following actions shall be taken:

33488 1. Terminate normally with a zero exit status.

33489 2. Effectively ignore the signal.

33490 3. Provide the default behavior for signals described in the ASYNCHRONOUS EVENTS
33491 section of Section 1.11 (on page 2224). This could include terminating with a non-zero exit
33492 status.

33493 The sleep utility shall take the standard action for all other signals.

Shell and Utilities, Issue 6 3077

sleep Utilities

33494 STDOUT
33495 Not used.

33496 STDERR
33497 Used only for diagnostic messages.

33498 OUTPUT FILES
33499 None.

33500 EXTENDED DESCRIPTION
33501 None.

33502 EXIT STATUS
33503 The following exit values shall be returned:

33504 0 The execution was successfully suspended for at least time seconds, or a SIGALRM signal
33505 was received. See the ASYNCHRONOUS EVENTS section.

33506 >0 An error occurred.

33507 CONSEQUENCES OF ERRORS
33508 Default.

33509 APPLICATION USAGE
33510 None.

33511 EXAMPLES
33512 The sleep utility can be used to execute a command after a certain amount of time, as in:

33513 (sleep 105; command) &

33514 or to execute a command every so often, as in:

33515 while true
33516 do
33517 command
33518 sleep 37
33519 done

33520 RATIONALE
33521 The exit status is allowed to be zero when sleep is interrupted by the SIGALRM signal because
33522 most implementations of this utility rely on the arrival of that signal to notify them that the
33523 requested finishing time has been successfully attained. Such implementations thus do not
33524 distinguish this situation from the successful completion case. Other implementations are
33525 allowed to catch the signal and go back to sleep until the requested time expires or to provide
33526 the normal signal termination procedures.

33527 As with all other utilities that take integral operands and do not specify subranges of allowed
33528 values, sleep is required by this volume of IEEE Std. 1003.1-200x to deal with time requests of up
33529 to 2 147 483 647 seconds. This may mean that some implementations have to make multiple calls
33530 to the delay mechanism of the underlying operating system if its argument range is less than
33531 this.

33532 FUTURE DIRECTIONS
33533 None.

33534 SEE ALSO
33535 wait , the System Interfaces volume of IEEE Std. 1003.1-200x, alarm(), sleep()

3078 Technical Standard (2000) (Draft July 31, 2000)

Utilities sleep

33536 CHANGE HISTORY
33537 First released in Issue 2.

33538 Issue 4
33539 Aligned with the ISO/IEC 9945-2: 1993 standard.

Shell and Utilities, Issue 6 3079

sort Utilities

33540 NAME
33541 sort — sort, merge, or sequence check text files

33542 SYNOPSIS
33543 sort [−m][−o output][−bdfinru][−t char][−k keydef] ... [file ...] |

33544 sort −c [−bdfinru][−t char][−k keydef] ... file |

33545 DESCRIPTION |
33546 The sort utility shall perform one of the following functions:

33547 1. Sort lines of all the named files together and write the result to the specified output.

33548 2. Merge lines of all the named (presorted) files together and write the result to the specified
33549 output.

33550 3. Check that a single input file is correctly presorted.

33551 Comparisons shall be based on one or more sort keys extracted from each line of input (or, if no |
33552 sort keys are specified, the entire line up to, but not including, the terminating <newline> |
33553 character), and shall be performed using the collating sequence of the current locale. |

33554 OPTIONS
33555 The sort utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
33556 12.2, Utility Syntax Guidelines, and the −k keydef option should follow the −b, −d, −f, −i, −n, and |
33557 −r options.

33558 The following options shall be supported:

33559 −c Check that the single input file is ordered as specified by the arguments and the
33560 collating sequence of the current locale. No output shall be produced; only the exit
33561 code shall be affected.

33562 −m Merge only; the input file shall be assumed to be already sorted.

33563 −o output Specify the name of an output file to be used instead of the standard output. This
33564 file can be the same as one of the input files.

33565 −u Unique: suppress all but one in each set of lines having equal keys. If used with
33566 the −c option, check that there are no lines with duplicate keys, in addition to
33567 checking that the input file is sorted.

33568 The following options shall override the default ordering rules. When ordering options appear
33569 independent of any key field specifications, the requested field ordering rules shall be applied
33570 globally to all sort keys. When attached to a specific key (see −k), the specified ordering options
33571 shall override all global ordering options for that key.

33572 −d Specify that only <blank> characters and alphanumeric characters, according to
33573 the current setting of LC_CTYPE, shall be significant in comparisons. The behavior
33574 is undefined for a sort key to which −i or −n also applies.

33575 −f Consider all lowercase characters that have uppercase equivalents, according to
33576 the current setting of LC_CTYPE, to be the uppercase equivalent for the purposes
33577 of comparison.

33578 −i Ignore all characters that are non-printable, according to the current setting of
33579 LC_CTYPE.

33580 −n Restrict the sort key to an initial numeric string, consisting of optional <blank>
33581 characters, optional minus sign, and zero or more digits with an optional radix
33582 character and thousands separators (as defined in the current locale), which shall

3080 Technical Standard (2000) (Draft July 31, 2000)

Utilities sort

33583 be sorted by arithmetic value. An empty digit string shall be treated as zero.
33584 Leading zeros and signs on zeros shall not affect ordering.

33585 −r Reverse the sense of comparisons.

33586 The treatment of field separators can be altered using the options:

33587 −b Ignore leading <blank> characters when determining the starting and ending
33588 positions of a restricted sort key. If the −b option is specified before the first −k
33589 option, it shall be applied to all −k options. Otherwise, the −b option can be
33590 attached independently to each −k field_start or field_end option-argument (see
33591 below).

33592 −t char Use char as the field separator character; char shall not be considered to be part of a
33593 field (although it can be included in a sort key). Each occurrence of char shall be
33594 significant (for example, <char><char> delimits an empty field). If −t is not
33595 specified, <blank> characters shall be used as default field separators; each
33596 maximal non-empty sequence of <blank> characters that follows a non-<blank>
33597 character shall be a field separator.

33598 Sort keys can be specified using the options:

33599 −k keydef The keydef argument is a restricted sort key field definition. The format of this
33600 definition is:

33601 field_start [type][, field_end [type]]

33602 where field_start and field_end define a key field restricted to a portion of the line
33603 (see the EXTENDED DESCRIPTION section), and type is a modifier from the list of
33604 characters ’b’ , ’d’ , ’f’ , ’i’ , ’n’ , ’r’ . The ’b’ modifier shall behave like the
33605 −b option, but applies only to the field_start or field_end to which it is attached. The
33606 other modifiers shall behave like the corresponding options, but shall apply only
33607 to the key field to which they are attached; they shall have this effect if specified
33608 with field_start , field_end , or both. If any modifier is attached to a field_start or to a
33609 field_end , no option shall apply to either. Implementations shall support at least
33610 nine occurrences of the −k option, which shall be significant in command line
33611 order. If no −k option is specified, a default sort key of the entire line shall be used.

33612 When there are multiple key fields, later keys shall be compared only after all
33613 earlier keys compare equal. Except when the −u option is specified, lines that
33614 otherwise compare equal shall be ordered as if none of the options −d, −f, −i, −n, or
33615 −k were present (but with −r still in effect, if it was specified) and with all bytes in
33616 the lines significant to the comparison. The order in which lines that still compare
33617 equal are written is unspecified.

33618 OPERANDS
33619 The following operand shall be supported:

33620 file A path name of a file to be sorted, merged, or checked. If no file operands are
33621 specified, or if a file operand is ’ −’ , the standard input shall be used.

33622 STDIN
33623 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ .
33624 See the INPUT FILES section.

Shell and Utilities, Issue 6 3081

sort Utilities

33625 INPUT FILES
33626 The input files shall be text files, except that the sort utility shall add a <newline> character to
33627 the end of a file ending with an incomplete last line.

33628 ENVIRONMENT VARIABLES
33629 The following environment variables shall affect the execution of sort:

33630 LANG Provide a default value for the internationalization variables that are unset or null.
33631 If LANG is unset or null, the corresponding value from the implementation- |
33632 defined default locale shall be used. If any of the internationalization variables |
33633 contains an invalid setting, the utility shall behave as if none of the variables had
33634 been defined.

33635 LC_ALL If set to a non-empty string value, override the values of all the other
33636 internationalization variables.

33637 LC_COLLATE
33638 Determine the locale for ordering rules.

33639 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
33640 characters (for example, single-byte as opposed to multi-byte characters in
33641 arguments and input files) and the behavior of character classification for the −b,
33642 −d, −f, −i, and −n options.

33643 LC_MESSAGES
33644 Determine the locale that should be used to affect the format and contents of
33645 diagnostic messages written to standard error.

33646 LC_NUMERIC
33647 Determine the locale for the definition of the radix character and thousands
33648 separator for the −n option.

33649 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

33650 ASYNCHRONOUS EVENTS
33651 Default.

33652 STDOUT
33653 Unless the −o or −c options are in effect, the standard output shall contain the sorted input.

33654 STDERR
33655 Used for diagnostic messages. A warning message about correcting an incomplete last line of an
33656 input file may be generated, but need not affect the final exit status.

33657 OUTPUT FILES
33658 If the −o option is in effect, the sorted input shall be written to the file output . |

33659 EXTENDED DESCRIPTION
33660 The notation:

33661 −k field_start [type][, field_end [type]]

33662 shall define a key field that begins at field_start and ends at field_end inclusive, unless field_start
33663 falls beyond the end of the line or after field_end , in which case the key field is empty. A missing
33664 field_end shall mean the last character of the line.

33665 A field comprises a maximal sequence of non-separating characters and, in the absence of option
33666 −t, any preceding field separator.

33667 The field_start portion of the keydef option-argument shall have the form:

3082 Technical Standard (2000) (Draft July 31, 2000)

Utilities sort

33668 field_number [. first_character]

33669 Fields and characters within fields shall be numbered starting with 1. The field_number and
33670 first_character pieces, interpreted as positive decimal integers, shall specify the first character to
33671 be used as part of a sort key. If .first_character is omitted, it shall refer to the first character of the
33672 field.

33673 The field_end portion of the keydef option-argument shall have the form:

33674 field_number [. last_character]

33675 The field_number shall be as described above for field_start. The last_character piece, interpreted
33676 as a non-negative decimal integer, shall specify the last character to be used as part of the sort
33677 key. If last_character evaluates to zero or .last_character is omitted, it shall refer to the last
33678 character of the field specified by field_number.

33679 If the −b option or b type modifier is in effect, characters within a field shall be counted from the
33680 first non-<blank> character in the field. (This shall apply separately to first_character and
33681 last_character.)

33682 EXIT STATUS
33683 The following exit values shall be returned:

33684 0 All input files were output successfully, or −c was specified and the input file was correctly
33685 sorted.

33686 1 Under the −c option, the file was not ordered as specified, or if the −c and −u options were
33687 both specified, two input lines were found with equal keys.

33688 >1 An error occurred.

33689 CONSEQUENCES OF ERRORS
33690 Default.

33691 APPLICATION USAGE
33692 The default value for −t, <blank> character, has different properties from, for example, |
33693 −t"<space>". If a line contains: |

33694 <space><space>foo

33695 the following treatment would occur with default separation as opposed to specifically selecting
33696 a <space> character:

__
33697 Field Default −t "<space>"__
33698 1 <space><space>foo empty
33699 2 empty empty
33700 3 empty foo__LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

33701 The leading field separator itself is included in a field when −t is not used. For example, this
33702 command returns an exit status of zero, meaning the input was already sorted:

33703 sort −c −k 2 <<eof
33704 y<tab>b
33705 x<space>a
33706 eof

33707 (assuming that a <tab> character precedes the <space> character in the current collating
33708 sequence). The field separator is not included in a field when it is explicitly set via −t. This is
33709 historical practice and allows usage such as:

Shell and Utilities, Issue 6 3083

sort Utilities

33710 sort −t "|" −k 2n <<eof
33711 Atlanta|425022|Georgia
33712 Birmingham|284413|Alabama
33713 Columbia|100385|South Carolina
33714 eof

33715 where the second field can be correctly sorted numerically without regard to the non-numeric
33716 field separator.

33717 The wording in the OPTIONS section clarifies that the −b, −d, −f, −i, −n, and −r options have to
33718 come before the first sort key specified if they are intended to apply to all specified keys. The
33719 way it is described in this volume of IEEE Std. 1003.1-200x matches historical practice, not |
33720 historical documentation. The results are unspecified if these options are specified after a −k |
33721 option.

33722 The −f option might not work as expected in locales where there is not a one-to-one mapping
33723 between an uppercase and a lowercase letter.

33724 EXAMPLES

33725 1. The following command sorts the contents of infile with the second field as the sort key:

33726 sort −k 2,2 infile

33727 2. The following command sorts, in reverse order, the contents of infile1 and infile2, placing
33728 the output in outfile and using the second character of the second field as the sort key
33729 (assuming that the first character of the second field is the field separator):

33730 sort −r −o outfile −k 2.2,2.2 infile1 infile2

33731 3. The following command sorts the contents of infile1 and infile2 using the second non-
33732 <blank> character of the second field as the sort key:

33733 sort −k 2.2b,2.2b infile1 infile2

33734 4. The following command prints the System V password file (user database) sorted by the
33735 numeric user ID (the third colon-separated field):

33736 sort −t : −k 3,3n /etc/passwd

33737 5. The following command prints the lines of the already sorted file infile, suppressing all
33738 but one occurrence of lines having the same third field:

33739 sort −um −k 3.1,3.0 infile

33740 RATIONALE
33741 Examples in some historical documentation state that options −um with one input file keep the
33742 first in each set of lines with equal keys. This behavior was deemed to be an implementation
33743 artifact and was not standardized.

33744 The −z option was omitted; it is not standard practice on most systems and is inconsistent with
33745 using sort to sort several files individually and then merge them together. The text concerning −z
33746 in historical documentation appeared to require implementations to determine the proper buffer
33747 length during the sort phase of operation, but not during the merge.

33748 The −y option was omitted because of non-portability. The −M option, present in System V, was
33749 omitted because of non-portability in international usage.

33750 An undocumented −T option exists in some implementations. It is used to specify a directory for
33751 intermediate files. Implementations are encouraged to support the use of the TMPDIR
33752 environment variable instead of adding an option to support this functionality.

3084 Technical Standard (2000) (Draft July 31, 2000)

Utilities sort

33753 The −k option was added to satisfy two objections. First, the zero-based counting used by sort is
33754 not consistent with other utility conventions. Second, it did not meet syntax guideline
33755 requirements.

33756 Historical documentation indicates that ‘‘setting −n implies −b’’. The description of −n already
33757 states that optional leading <blank>s are tolerated in doing the comparison. If −b is enabled,
33758 rather than implied, by −n, this has unusual side effects. When a character offset is used in a
33759 column of numbers (for example, to sort modulo 100), that offset is measured relative to the
33760 most significant digit, not to the column. Based upon a recommendation from the author of the
33761 original sort utility, the −b implication has been omitted from this volume of
33762 IEEE Std. 1003.1-200x, and an application wishing to achieve the previously mentioned side
33763 effects has to code the −b flag explicitly. |

33764 FUTURE DIRECTIONS
33765 None.

33766 SEE ALSO
33767 comm, join , uniq, the System Interfaces volume of IEEE Std. 1003.1-200x, toupper()

33768 CHANGE HISTORY
33769 First released in Issue 2.

33770 Issue 4
33771 Aligned with the ISO/IEC 9945-2: 1993 standard. |

33772 Issue 6 |
33773 IEEE PASC Interpretation 1003.2 #174 is applied, updating the DESCRIPTION of comparisons. |

33774 IEEE PASC Interpretation 1003.2 #168 is applied. |

Shell and Utilities, Issue 6 3085

split Utilities

33775 NAME
33776 split — split files into pieces

33777 SYNOPSIS
33778 UP split [−l line_count][−a suffix_length][file [name]]

33779 split −b n[k|m][−a suffix_length][file [name]]
33780

33781 DESCRIPTION
33782 The split utility shall read an input file and write one or more output files. The default size of
33783 each output file shall be 1 000 lines. The size of the output files can be modified by specification
33784 of the −b or −l options. Each output file shall be created with a unique suffix. The suffix shall
33785 consist of exactly suffix_length lowercase letters from the POSIX locale. The letters of the suffix
33786 shall be used as if they were a base-26 digit system, with the first suffix to be created consisting
33787 of all ’a’ characters, the second with a ’b’ replacing the last ’a’ , and so on, until a name of all
33788 ’z’ characters is created. By default, the names of the output files shall be ’x’ , followed by a
33789 two-character suffix from the character set as described above, starting with "aa" , "ab" , "ac" ,
33790 and so on, and continuing until the suffix "zz" , for a maximum of 676 files.

33791 If the number of files required exceeds the maximum allowed by the suffix length provided,
33792 such that the last allowable file would be larger than the requested size, the split utility shall fail
33793 after creating the last file with a valid suffix; split shall not delete the files it created with valid
33794 suffixes. If the file limit is not exceeded, the last file created shall contain the remainder of the
33795 input file, and may be smaller than the requested size.

33796 OPTIONS
33797 The split utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
33798 12.2, Utility Syntax Guidelines. |

33799 The following options shall be supported:

33800 −a suffix_length
33801 Use suffix_length letters to form the suffix portion of the file names of the split file.
33802 If −a is not specified, the default suffix length shall be two. If the sum of the name
33803 operand and the suffix_length option-argument would create a file name exceeding
33804 {NAME_MAX} bytes, an error shall result; split shall exit with a diagnostic
33805 message and no files shall be created.

33806 −b n Split a file into pieces n bytes in size.

33807 −b nk Split a file into pieces n*1024 bytes in size.

33808 −b nm Split a file into pieces n*1 048 576 bytes in size.

33809 −l line_count Specify the number of lines in each resulting file piece. The line_count argument is
33810 an unsigned decimal integer. The default is 1 000. If the input does not end with a
33811 <newline> character, the partial line shall be included in the last output file.

33812 OPERANDS
33813 The following operands shall be supported:

33814 file The path name of the ordinary file to be split. If no input file is given or file is ’ −’ ,
33815 the standard input shall be used.

33816 name The prefix to be used for each of the files resulting from the split operation. If no
33817 name argument is given, ’x’ shall be used as the prefix of the output files. The
33818 combined length of the basename of prefix and suffix_length cannot exceed
33819 {NAME_MAX} bytes. See the OPTIONS section.

3086 Technical Standard (2000) (Draft July 31, 2000)

Utilities split

33820 STDIN
33821 See the INPUT FILES section.

33822 INPUT FILES
33823 Any file can be used as input.

33824 ENVIRONMENT VARIABLES
33825 The following environment variables shall affect the execution of split:

33826 LANG Provide a default value for the internationalization variables that are unset or null.
33827 If LANG is unset or null, the corresponding value from the implementation- |
33828 defined default locale shall be used. If any of the internationalization variables |
33829 contains an invalid setting, the utility shall behave as if none of the variables had
33830 been defined.

33831 LC_ALL If set to a non-empty string value, override the values of all the other
33832 internationalization variables.

33833 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
33834 characters (for example, single-byte as opposed to multi-byte characters in
33835 arguments and input files).

33836 LC_MESSAGES
33837 Determine the locale that should be used to affect the format and contents of
33838 diagnostic messages written to standard error.

33839 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

33840 ASYNCHRONOUS EVENTS
33841 Default.

33842 STDOUT
33843 Not used.

33844 STDERR
33845 Used only for diagnostic messages.

33846 OUTPUT FILES
33847 The output files contain portions of the original input file; otherwise, unchanged.

33848 EXTENDED DESCRIPTION
33849 None.

33850 EXIT STATUS
33851 The following exit values shall be returned:

33852 0 Successful completion.

33853 >0 An error occurred.

33854 CONSEQUENCES OF ERRORS
33855 Default.

Shell and Utilities, Issue 6 3087

split Utilities

33856 APPLICATION USAGE
33857 None. |

33858 EXAMPLES
33859 In the following examples foo is a text file that contains 5 000 lines.

33860 1. Create five files, xaa, xab, xac, xad, and xae:

33861 split foo

33862 2. Create five files, but the suffixed portion of the created files consists of three letters, xaaa,
33863 xaab, xaac, xaad, and xaae:

33864 split −a 3 foo

33865 3. Create three files with four-letter suffixes and a supplied prefix, bar_aaaa, bar_aaab, and
33866 bar_aaac:

33867 split −a 4 −l 2000 foo bar_

33868 4. Create as many files as are necessary to contain at most 20*1 024 bytes, each with the
33869 default prefix of x and a five-letter suffix:

33870 split −a 5 −b 20k foo

33871 RATIONALE
33872 The −b option was added to provide a mechanism for splitting files other than by lines. While
33873 most uses of the −b option are for transmitting files over networks, some believed it would have
33874 additional uses.

33875 The −a option was added to overcome the limitation of being able to create only 676 files.

33876 Consideration was given to deleting this utility, using the rationale that the function provided
33877 by this utility is available via the csplit utility (see csplit (on page 2492)). Upon reconsideration of
33878 the purpose of the User Portability Extension, it was decided to retain both this utility and the
33879 csplit utility because users use both utilities and have historical expectations of their behavior.
33880 Furthermore, the splitting on byte boundaries in split cannot be duplicated with the historical
33881 csplit.

33882 The text ‘‘split shall not delete the files it created with valid suffixes’’ would normally be
33883 assumed, but since the related utility, csplit, does delete files under some circumstances, the
33884 historical behavior of split is made explicit to avoid misinterpretation.

33885 FUTURE DIRECTIONS
33886 None.

33887 SEE ALSO
33888 csplit

33889 CHANGE HISTORY
33890 First released in Issue 2.

33891 Issue 4
33892 Aligned with the ISO/IEC 9945-2: 1993 standard.

33893 Issue 6
33894 This utility is now marked as part of the User Portability Utilities option.

33895 The APPLICATION USAGE section is added.

33896 The obsolescent SYNOPSIS is removed.

3088 Technical Standard (2000) (Draft July 31, 2000)

Utilities strings

33897 NAME
33898 strings — find printable strings in files

33899 SYNOPSIS
33900 UP strings [−a][−t format][−n number][file ...]
33901

33902 DESCRIPTION
33903 The strings utility shall look for printable strings in regular files and shall write those strings to |
33904 standard output. A printable string is any sequence of four (by default) or more printable
33905 characters terminated by a <newline> or NUL character. Additional implementation-defined |
33906 strings may be written; see localedef. |

33907 OPTIONS
33908 The strings utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
33909 12.2, Utility Syntax Guidelines. |

33910 The following options shall be supported:

33911 −a Scan files in their entirety. If −a is not specified, it is implementation-defined what |
33912 portion of each file is scanned for strings. |

33913 −n number Specify the minimum string length, where the number argument is a positive
33914 decimal integer. The default shall be 4.

33915 −t format Write each string preceded by its byte offset from the start of the file. The format
33916 shall be dependent on the single character used as the format option-argument:

33917 d The offset shall be written in decimal.

33918 o The offset shall be written in octal.

33919 x The offset shall be written in hexadecimal.

33920 OPERANDS
33921 The following operand shall be supported:

33922 file A path name of a regular file to be used as input. If no file operand is specified, the
33923 strings utility shall read from the standard input.

33924 STDIN
33925 See the INPUT FILES section.

33926 INPUT FILES
33927 The input files named by the utility arguments or the standard input shall be regular files of any
33928 format.

33929 ENVIRONMENT VARIABLES
33930 The following environment variables shall affect the execution of strings:

33931 LANG Provide a default value for the internationalization variables that are unset or null.
33932 If LANG is unset or null, the corresponding value from the implementation- |
33933 defined default locale shall be used. If any of the internationalization variables |
33934 contains an invalid setting, the utility shall behave as if none of the variables had
33935 been defined.

33936 LC_ALL If set to a non-empty string value, override the values of all the other
33937 internationalization variables.

33938 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
33939 characters (for example, single-byte as opposed to multi-byte characters in

Shell and Utilities, Issue 6 3089

strings Utilities

33940 arguments and input files) and to identify printable strings.

33941 LC_MESSAGES
33942 Determine the locale that should be used to affect the format and contents of
33943 diagnostic messages written to standard error.

33944 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

33945 ASYNCHRONOUS EVENTS
33946 Default.

33947 STDOUT
33948 Strings found shall be written to the standard output, one per line.

33949 When the −t option is not specified, the format of the output shall be:

33950 "%s", < string >

33951 With the −t o option, the format of the output shall be:

33952 "%o %s", < byte offset >, < string >

33953 With the −t x option, the format of the output shall be:

33954 "%x %s", < byte offset >, < string >

33955 With the −t d option, the format of the output shall be:

33956 "%d %s", < byte offset >, < string >

33957 STDERR
33958 Used only for diagnostic messages.

33959 OUTPUT FILES
33960 None.

33961 EXTENDED DESCRIPTION
33962 None.

33963 EXIT STATUS
33964 The following exit values shall be returned:

33965 0 Successful completion.

33966 >0 An error occurred.

33967 CONSEQUENCES OF ERRORS
33968 Default.

33969 APPLICATION USAGE
33970 By default the data area (as opposed to the text, ‘‘bss’’ or header areas) of a binary executable file
33971 is scanned. Implementations document which areas are scanned.

33972 Some historical implementations do not require NUL or <newline> character terminators for
33973 strings to permit those languages that do not use NUL as a string terminator to have their strings
33974 written. |

33975 EXAMPLES
33976 None.

3090 Technical Standard (2000) (Draft July 31, 2000)

Utilities strings

33977 RATIONALE
33978 Apart from rationalizing the option syntax and slight difficulties with object and executable
33979 binary files, strings is specified to match historical practice closely. The −a and −n options were
33980 introduced to replace the non-conforming − and −number options.

33981 The −o option historically means different things on different implementations. Some use it to
33982 mean ‘‘offset in decimal’’, while others use it as ‘‘offset in octal’’. Instead of trying to decide which
33983 way would be least objectionable, the −t option was added. It was originally named −O to mean
33984 ‘‘offset’’, but was changed to −t to be consistent with od.

33985 The ISO C standard function isprint() is restricted to a domain of unsigned char. This volume of
33986 IEEE Std. 1003.1-200x requires implementations to write strings as defined by the current locale.

33987 FUTURE DIRECTIONS
33988 None.

33989 SEE ALSO
33990 nm

33991 CHANGE HISTORY
33992 First released in Issue 4.

33993 Issue 6
33994 This utility is now marked as part of the User Portability Utilities option.

33995 The obsolescent SYNOPSIS is removed.

33996 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 3091

strip Utilities

33997 NAME
33998 strip — remove unnecessary information from executable files (DEVELOPMENT)

33999 SYNOPSIS
34000 SD strip file ...
34001

34002 DESCRIPTION
34003 The strip utility shall remove from executable files named by the file operands any information
34004 the implementor deems unnecessary for execution of those files. The nature of that information
34005 is unspecified. The effect of strip shall be similar to the use of the −s option to cc, c99, or fort77. |

34006 OPTIONS
34007 None.

34008 OPERANDS
34009 The following operand shall be supported:

34010 file A path name referring to an executable file.

34011 STDIN
34012 Not used.

34013 INPUT FILES
34014 The input files shall be in the form of executable files successfully produced by any compiler
34015 defined by this volume of IEEE Std. 1003.1-200x.

34016 ENVIRONMENT VARIABLES
34017 The following environment variables shall affect the execution of strip:

34018 LANG Provide a default value for the internationalization variables that are unset or null.
34019 If LANG is unset or null, the corresponding value from the implementation- |
34020 defined default locale shall be used. If any of the internationalization variables |
34021 contains an invalid setting, the utility shall behave as if none of the variables had
34022 been defined.

34023 LC_ALL If set to a non-empty string value, override the values of all the other
34024 internationalization variables.

34025 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
34026 characters (for example, single-byte as opposed to multi-byte characters in
34027 arguments).

34028 LC_MESSAGES
34029 Determine the locale that should be used to affect the format and contents of
34030 diagnostic messages written to standard error.

34031 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

34032 ASYNCHRONOUS EVENTS
34033 Default.

34034 STDOUT
34035 Not used.

34036 STDERR
34037 Used only for diagnostic messages.

3092 Technical Standard (2000) (Draft July 31, 2000)

Utilities strip

34038 OUTPUT FILES
34039 The strip utility shall produce executable files of unspecified format.

34040 EXTENDED DESCRIPTION
34041 None.

34042 EXIT STATUS
34043 The following exit values shall be returned:

34044 0 Successful completion.

34045 >0 An error occurred.

34046 CONSEQUENCES OF ERRORS
34047 Default.

34048 APPLICATION USAGE
34049 None.

34050 EXAMPLES
34051 None.

34052 RATIONALE
34053 Historically, this utility has been used to remove the symbol table from an executable file. It was
34054 included since it is known that the amount of symbolic information can amount to several
34055 megabytes; the ability to remove it in a portable manner was deemed important, especially for
34056 smaller systems.

34057 The behavior of strip is said to be the same as the −s option to a compiler. While the end result is
34058 essentially the same, it is not required to be identical. The same effect can be achieved with
34059 either −s during a compile or a strip on the final object file.

34060 FUTURE DIRECTIONS
34061 None.

34062 SEE ALSO
34063 ar , c99 , fort77 |

34064 CHANGE HISTORY
34065 First released in Issue 2.

34066 Issue 4
34067 Aligned with the ISO/IEC 9945-2: 1993 standard.

34068 Issue 6
34069 This utility is now marked as part of the Software Development Utilities option.

Shell and Utilities, Issue 6 3093

stty Utilities

34070 NAME
34071 stty — set the options for a terminal

34072 SYNOPSIS
34073 stty [−a| −g]

34074 stty operands

34075 DESCRIPTION
34076 The stty utility shall set or report on terminal I/O characteristics for the device that is its
34077 standard input. Without options or operands specified, it shall report the settings of certain
34078 characteristics, usually those that differ from implementation-defined defaults. Otherwise, it |
34079 shall modify the terminal state according to the specified operands. Detailed information about
34080 the modes listed in the first five groups below are described in the Base Definitions volume of |
34081 IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. Operands in the Combination |
34082 Modes group (see Combination Modes (on page 3099)) are implemented using operands in the
34083 previous groups. Some combinations of operands are mutually-exclusive on some terminal
34084 types; the results of using such combinations are unspecified.

34085 Typical implementations of this utility require a communications line configured to use the
34086 termios interface defined in the System Interfaces volume of IEEE Std. 1003.1-200x. On systems
34087 where none of these lines are available, and on lines not currently configured to support the
34088 termios interface, some of the operands need not affect terminal characteristics.

34089 OPTIONS
34090 The stty utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
34091 12.2, Utility Syntax Guidelines. |

34092 The following options shall be supported:

34093 −a Write to standard output all the current settings for the terminal.

34094 −g Write to standard output all the current settings in an unspecified form that can be
34095 used as arguments to another invocation of the stty utility on the same system. The
34096 form used shall not contain any characters that would require quoting to avoid
34097 word expansion by the shell; see Section 2.6 (on page 2244).

34098 OPERANDS
34099 The following operands shall be supported to set the terminal characteristics.

34100 Control Modes

34101 parenb (−parenb) Enable (disable) parity generation and detection. This has the effect of setting
34102 (not setting) PARENB in the termios c_cflag field, as defined in the Base |
34103 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34104 Interface. |

34105 parodd (−parodd)Select odd (even) parity. This shall have the effect of setting (not setting)
34106 PARODD in the termios c_cflag field, as defined in the Base Definitions |
34107 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34108 cs5 cs6 cs7 cs8 Select character size, if possible. This shall have the effect of setting CS5, CS6,
34109 CS7, and CS8, respectively, in the termios c_cflag field, as defined in the Base |
34110 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34111 Interface. |

34112 number Set terminal baud rate to the number given, if possible. If the baud rate is set
34113 to zero, the modem control lines shall not be longer asserted. This shall have
34114 the effect of setting the input and output termios baud rate values as defined |

3094 Technical Standard (2000) (Draft July 31, 2000)

Utilities stty

34115 in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General |
34116 Terminal Interface. |

34117 ispeed number Set terminal input baud rate to the number given, if possible. If the input baud
34118 rate is set to zero, the input baud rate shall be specified by the value of the
34119 output baud rate. This shall have the effect of setting the input termios baud |
34120 rate values as defined in the Base Definitions volume of IEEE Std. 1003.1-200x, |
34121 Chapter 11, General Terminal Interface. |

34122 ospeed number Set terminal output baud rate to the number given, if possible. If the output
34123 baud rate is set to zero, the modem control lines shall no longer be asserted.
34124 This shall have the effect of setting the output termios baud rate values as |
34125 defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, |
34126 General Terminal Interface. |

34127 hupcl (−hupcl) Stop asserting modem control lines (do not stop asserting modem control
34128 lines) on last close. This shall have the effect of setting (not setting) HUPCL in
34129 the termios c_cflag field, as defined in the Base Definitions volume of |
34130 IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34131 hup (−hup) Same as hupcl(−hupcl).

34132 cstopb (−cstopb) Use two (one) stop bits per character. This shall have the effect of setting (not
34133 setting) CSTOPB in the termios c_cflag field, as defined in the Base Definitions |
34134 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34135 cread (−cread) Enable (disable) the receiver. This shall have the effect of setting (not setting)
34136 CREAD in the termios c_cflag field, as defined in the Base Definitions volume |
34137 of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34138 clocal (−clocal) Assume a line without (with) modem control. This shall have the effect of
34139 setting (not setting) CLOCAL in the termios c_cflag field, as defined in the |
34140 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General |
34141 Terminal Interface. |

34142 It is unspecified whether stty shall report an error if an attempt to set a Control Mode fails.

34143 Input Modes

34144 ignbrk (−ignbrk) Ignore (do not ignore) break on input. This shall have the effect of setting (not
34145 setting) IGNBRK in the termios c_iflag field, as defined in the Base Definitions |
34146 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34147 brkint (−brkint) Signal (do not signal) INTR on break. This shall have the effect of setting (not
34148 setting) BRKINT in the termios c_iflag field, as defined in the Base Definitions |
34149 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34150 ignpar (−ignpar) Ignore (do not ignore) bytes with parity errors. This shall have the effect of
34151 setting (not setting) IGNPAR in the termios c_iflag field, as defined in the Base |
34152 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34153 Interface. |

34154 parmrk (−parmrk)
34155 Mark (do not mark) parity errors. This shall have the effect of setting (not
34156 setting) PARMRK in the termios c_iflag field, as defined in the Base |
34157 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34158 Interface. |

Shell and Utilities, Issue 6 3095

stty Utilities

34159 inpck (−inpck) Enable (disable) input parity checking. This shall have the effect of setting (not
34160 setting) INPCK in the termios c_iflag field, as defined in the Base Definitions |
34161 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34162 istrip (−istrip) Strip (do not strip) input characters to seven bits. This shall have the effect of
34163 setting (not setting) ISTRIP in the termios c_iflag field, as defined in the Base |
34164 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34165 Interface. |

34166 inlcr (−inlcr) Map (do not map) NL to CR on input. This shall have the effect of setting (not
34167 setting) INLCR in the termios c_iflag field, as defined in the Base Definitions |
34168 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34169 igncr (−igncr) Ignore (do not ignore) CR on input. This shall have the effect of setting (not
34170 setting) IGNCR in the termios c_iflag field, as defined in the Base Definitions |
34171 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34172 icrnl (−icrnl) Map (do not map) CR to NL on input. This shall have the effect of setting (not
34173 setting) ICRNL in the termios c_iflag field, as defined in the Base Definitions |
34174 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34175 ixon (−ixon) Enable (disable) START/STOP output control. Output from the system is
34176 stopped when the system receives STOP and started when the system receives
34177 START. This shall have the effect of setting (not setting) IXON in the termios
34178 c_iflag field, as defined in the Base Definitions volume of |
34179 IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34180 XSI ixany (−ixany) Allow any character to restart output. This shall have the effect of setting (not
34181 setting) IXANY in the termios c_iflag field, as defined in the Base Definitions |
34182 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34183 ixoff (−ixoff) Request that the system send (not send) STOP characters when the input
34184 queue is nearly full and START characters to resume data transmission. This
34185 shall have the effect of setting (not setting) IXOFF in the termios c_iflag field, |
34186 as defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter |
34187 11, General Terminal Interface. |

34188 Output Modes

34189 opost (−opost) Post-process output (do not post-process output; ignore all other output
34190 modes). This shall have the effect of setting (not setting) OPOST in the
34191 termios c_oflag field, as defined in the Base Definitions volume of |
34192 IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34193 XSI ocrnl (−ocrnl) Map (do not map) CR to NL on output This shall have the effect of setting
34194 (not setting) OCRNL in the termios c_oflag field, as defined in the Base |
34195 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34196 Interface. |

34197 onocr (−onocr) Do not (do) output CR at column zero. This shall have the effect of setting (not
34198 setting) ONOCR in the termios c_oflag field, as defined in the Base Definitions |
34199 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34200 onlret (−onlret) The terminal newline key performs (does not perform) the CR function. This
34201 shall have the effect of setting (not setting) ONLRET in the termios c_oflag |
34202 field, as defined in the Base Definitions volume of IEEE Std. 1003.1-200x, |
34203 Chapter 11, General Terminal Interface. |

3096 Technical Standard (2000) (Draft July 31, 2000)

Utilities stty

34204 ofill (−ofill) Use fill characters (use timing) for delays. This shall have the effect of setting
34205 (not setting) OFILL in the termios c_oflag field, as defined in the Base |
34206 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34207 Interface. |

34208 ofdel (−ofdel) Fill characters are DELs (NULs). This shall have the effect of setting (not
34209 setting) OFDEL in the termios c_oflag field, as defined in the Base Definitions |
34210 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34211 cr0 cr1 cr2 cr3 Select the style of delay for CRs. This shall have the effect of setting (not
34212 setting) CRDLY to CR1, CR2, CR3, or CR4, respectively, in the termios c_oflag |
34213 field, as defined in the Base Definitions volume of IEEE Std. 1003.1-200x, |
34214 Chapter 11, General Terminal Interface. |

34215 nl0 nl1 Select the style of delay for NL. This has the effect of setting (not setting)
34216 NLDLY to NL0 or NL1, respectively, in the termios c_oflag field, as defined in |
34217 the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General |
34218 Terminal Interface. |

34219 tab0 tab1 tab2 tab3
34220 Select the style of delay for horizontal tabs. This shall have the effect of setting
34221 (not setting) TABDLY to TAB0, TAB1, TAB2, or TAB3, respectively, in the
34222 termios c_oflag field, as defined in the Base Definitions volume of |
34223 IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. Note that TAB3 |
34224 has the effect of expanding <tab>s to <space>s. |

34225 tabs (−tabs) |
34226 Synonym for tab0 (tab3). |

34227 bs0 bs1 Select the style of delay for backspaces. This shall have the effect of setting
34228 (not setting) BSDLY to BS0 or BS1, respectively, in the termios c_oflag field, as |
34229 defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, |
34230 General Terminal Interface. |

34231 ff0 ff1 Select the style of delay for form-feeds. This shall have the effect of setting
34232 (not setting) FFDLY to FF0 or FF1, respectively, in the termios c_oflag field, as |
34233 defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, |
34234 General Terminal Interface. |

34235 vt0 vt1 Select the style of delay for vertical-tabs. This shall have the effect of setting
34236 (not setting) VTDLY to VT0 or VT1, respectively, in the termios c_oflag field, |
34237 as defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter |
34238 11, General Terminal Interface. |

34239 Local Modes

34240 isig (−isig) Enable (disable) the checking of characters against the special control
34241 characters INTR, QUIT, and SUSP. This shall have the effect of setting (not
34242 setting) ISIG in the termios c_lflag field, as defined in the Base Definitions |
34243 volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface. |

34244 icanon (−icanon) Enable (disable) canonical input (ERASE and KILL processing). This shall
34245 have the effect of setting (not setting) ICANON in the termios c_lflag field, as |
34246 defined in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, |
34247 General Terminal Interface. |

34248 iexten (−iexten)
34249 Enable (disable) any implementation-defined special control characters not |

Shell and Utilities, Issue 6 3097

stty Utilities

34250 currently controlled by icanon, isig, ixon, or ixoff. This shall have the effect of
34251 setting (not setting) IEXTEN in the termios c_lflag field, as defined in the Base |
34252 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34253 Interface. |

34254 echo (−echo) Echo back (do not echo back) every character typed. This shall have the effect
34255 of setting (not setting) ECHO in the termios c_lflag field, as defined in the Base |
34256 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34257 Interface. |

34258 echoe (−echoe) The ERASE character visually erases (does not erase) the last character in the
34259 current line from the display, if possible. This shall have the effect of setting
34260 (not setting) ECHOE in the termios c_lflag field, as defined in the Base |
34261 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34262 Interface. |

34263 echok (−echok) Echo (do not echo) NL after KILL character. This shall have the effect of
34264 setting (not setting) ECHOK in the termios c_lflag field, as defined in the Base |
34265 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34266 Interface. |

34267 echonl (−echonl) Echo (do not echo) NL, even if echo is disabled. This shall have the effect of
34268 setting (not setting) ECHONL in the termios c_lflag field, as defined in the |
34269 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General |
34270 Terminal Interface. |

34271 noflsh (−noflsh) Disable (enable) flush after INTR, QUIT, SUSP. This shall have the effect of
34272 setting (not setting) NOFLSH in the termios c_lflag field, as defined in the Base |
34273 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34274 Interface. |

34275 tostop (−tostop) Send SIGTTOU for background output. This shall have the effect of setting
34276 (not setting) TOSTOP in the termios c_lflag field, as defined in the Base |
34277 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
34278 Interface. |

34279 Special Control Character Assignments

34280 <control>-character string
34281 Set <control>-character to string. If <control>-character is one of the character sequences in |
34282 the first column of the following table, the corresponding Base Definitions volume of |
34283 IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface control character from the |
34284 second column shall be recognized. This has the effect of setting the corresponding element
34285 of the termios c_cc array (see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter |
34286 13, Headers, <termios.h>). |

3098 Technical Standard (2000) (Draft July 31, 2000)

Utilities stty

34287 Table 4-19 Control Character Names in stty |
__

34288 Control Character c_cc Subscript Description__
34289 eof VEOF EOF character
34290 eol VEOL EOL character
34291 erase VERASE ERASE character
34292 intr VINTR INTR character
34293 kill VKILL KILL character
34294 quit VQUIT QUIT character
34295 susp VSUSP SUSP character
34296 start VSTART START character
34297 stop VSTOP STOP character__LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

34298 If string is a single character, the control character shall be set to that character. If string is
34299 the two-character sequence "ˆ −" or the string undef, the control character shall be set to
34300 _POSIX_VDISABLE , if it is in effect for the device; if _POSIX_VDISABLE is not in effect for
34301 the device, it shall be treated as an error. In the POSIX locale, if string is a two-character
34302 sequence beginning with circumflex (’ˆ’), and the second character is one of those listed in
34303 the "ˆc" column of the following table, the control character shall be set to the
34304 corresponding character value in the Value column of the table.

34305 Table 4-20 Circumflex Control Characters in stty

34306 ^c Value ^c Value ^c Value___
34307 a, A <SOH> l , L <FF> w, W <ETB>
34308 b, B <STX> m, M <CR> x , X <CAN>
34309 c , C <ETX> n, N <SO> y , Y
34310 d, D <EOT> o, O <SI> z , Z <SUB>
34311 e, E <ENQ> p, P <DLE> [<ESC>
34312 f , F <ACK> q, Q <DC1> \ <FS>
34313 g, G <BEL> r , R <DC2>] <GS>
34314 h, H <BS> s , S <DC3> ^ <RS>
34315 i , I <HT> t , T <DC4> _ <US>
34316 j , J <LF> u, U <NAK> ?
34317 k , K <VT> v , V <SYN>___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

34318 min number
34319 time number
34320 Set the value of min or time to number. MIN and TIME are used in non-canonical mode
34321 input processing (icanon).

34322 Combination Modes

34323 saved settings
34324 Set the current terminal characteristics to the saved settings produced by the −g option.

34325 evenp or parity
34326 Enable parenb and cs7; disable parodd.

34327 oddp
34328 Enable parenb, cs7, and parodd.

34329 −parity, −evenp, or −oddp
34330 Disable parenb, and set cs8.

Shell and Utilities, Issue 6 3099

stty Utilities

34331 XSI raw (−raw or cooked)
34332 Enable (disable) raw input and output. Raw mode shall be equivalent to setting:

34333 stty cs8 erase ˆ − kill ˆ − intr ˆ − \
34334 quit ˆ − eof ˆ − eol ˆ − −post −inpck

34335 nl (−nl)
34336 Enable (disable) icrnl. In addition, −nl unsets inlcr and igncr. |

34337 ek Reset ERASE and KILL characters back to system defaults.

34338 sane Reset all modes to some reasonable, unspecified, values.

34339 STDIN
34340 Although no input is read from standard input, standard input is used to get the current
34341 terminal I/O characteristics and to set new terminal I/O characteristics.

34342 INPUT FILES
34343 None.

34344 ENVIRONMENT VARIABLES
34345 The following environment variables shall affect the execution of stty:

34346 LANG Provide a default value for the internationalization variables that are unset or null.
34347 If LANG is unset or null, the corresponding value from the implementation- |
34348 defined default locale shall be used. If any of the internationalization variables |
34349 contains an invalid setting, the utility shall behave as if none of the variables had
34350 been defined.

34351 LC_ALL If set to a non-empty string value, override the values of all the other
34352 internationalization variables.

34353 LC_CTYPE This variable determines the locale for the interpretation of sequences of bytes of
34354 text data as characters (for example, single-byte as opposed to multi-byte
34355 characters in arguments) and which characters are in the class print.

34356 LC_MESSAGES
34357 Determine the locale that should be used to affect the format and contents of
34358 diagnostic messages written to standard error.

34359 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

34360 ASYNCHRONOUS EVENTS
34361 Default.

34362 STDOUT
34363 If operands are specified, no output shall be produced.

34364 If the −g option is specified, stty shall write to standard output the current settings in a form that
34365 can be used as arguments to another instance of stty on the same system.

34366 If the −a option is specified, all of the information as described in the OPERANDS section shall
34367 be written to standard output. Unless otherwise specified, this information shall be written as
34368 <space>-separated tokens in an unspecified format, on one or more lines, with an unspecified
34369 number of tokens per line. Additional information may be written.

34370 If no options or operands are specified, an unspecified subset of the information written for the
34371 −a option shall be written.

34372 If speed information is written as part of the default output, or if the −a option is specified and if
34373 the terminal input speed and output speed are the same, the speed information shall be written

3100 Technical Standard (2000) (Draft July 31, 2000)

Utilities stty

34374 as follows:

34375 "speed %d baud;", < speed >

34376 Otherwise, speeds shall be written as:

34377 "ispeed %d baud; ospeed %d baud;", < ispeed >, < ospeed >

34378 In locales other than the POSIX locale, the word baud may be changed to something more
34379 appropriate in those locales.

34380 If control characters are written as part of the default output, or if the −a option is specified,
34381 control characters shall be written as:

34382 "%s = %s;", < control-character name >, < value >

34383 where <value> is either the character, or some visual representation of the character if it is non- |
34384 printable, or the string undef if the character is disabled.

34385 STDERR
34386 Used only for diagnostic messages.

34387 OUTPUT FILES
34388 None.

34389 EXTENDED DESCRIPTION
34390 None.

34391 EXIT STATUS
34392 The following exit values shall be returned:

34393 0 The terminal options were read or set successfully.

34394 >0 An error occurred.

34395 CONSEQUENCES OF ERRORS
34396 Default.

34397 APPLICATION USAGE
34398 The −g flag is designed to facilitate the saving and restoring of terminal state from the shell level.
34399 For example, a program may:

34400 saveterm="$(stty −g)" # save terminal state
34401 stty (new settings) # set new state
34402 ... # ...
34403 stty $saveterm # restore terminal state

34404 Since the format is unspecified, the saved value is not portable across systems.

34405 Since the −a format is so loosely specified, scripts that save and restore terminal settings should
34406 use the −g option.

34407 EXAMPLES
34408 None.

34409 RATIONALE
34410 The original stty description was taken directly from System V and reflected the System V
34411 terminal driver termio. It has been modified to correspond to the terminal driver termios.

34412 Output modes are specified only for XSI-conformant systems. All implementations are expected |
34413 to provide stty operands corresponding to all of the output modes they support. |

Shell and Utilities, Issue 6 3101

stty Utilities

34414 The stty utility is primarily used to tailor the user interface of the terminal, such as selecting the |
34415 preferred ERASE and KILL characters. As an application programming utility, stty can be used |
34416 within shell scripts to alter the terminal settings for the duration of the script.

34417 The termios section states that individual disabling of control characters is possible through the
34418 option _POSIX_VDISABLE. If enabled, two conventions currently exist for specifying this:
34419 System V uses "ˆ −" , and BSD uses undef. Both are accepted by stty in this volume of
34420 IEEE Std. 1003.1-200x. The other BSD convention of using the letter ’u’ was rejected because it
34421 conflicts with the actual letter ’u’ , which is an acceptable value for a control character.

34422 Early proposals did not specify the mapping of "ˆc" to control characters because the control
34423 characters were not specified in the POSIX locale character set description file requirements. The |
34424 control character set is now specified in the Base Definitions volume of IEEE Std. 1003.1-200x, |
34425 Chapter 3, Definitions so the historical mapping is specified. Note that although the mapping |
34426 corresponds to control-character key assignments on many terminals that use the
34427 ISO/IEC 646: 1991 standard (or ASCII) character encodings, the mapping specified here is to the
34428 control characters, not their keyboard encodings.

34429 Since termios supports separate speeds for input and output, two new options were added to
34430 specify each distinctly.

34431 Some historical implementations use standard input to get and set terminal characteristics;
34432 others use standard output. Since input from a login TTY is usually restricted to the owner while
34433 output to a TTY is frequently open to anyone, using standard input provides fewer chances of
34434 accidentally (or maliciously) altering the terminal settings of other users. Using standard input
34435 also allows stty −a and stty −g output to be redirected for later use. Therefore, usage of standard
34436 input is required by this volume of IEEE Std. 1003.1-200x. |

34437 FUTURE DIRECTIONS
34438 None.

34439 SEE ALSO
34440 The Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface |

34441 CHANGE HISTORY
34442 First released in Issue 2.

34443 Issue 4
34444 Aligned with the ISO/IEC 9945-2: 1993 standard.

34445 Issue 5
34446 The description of tabs is clarified.

34447 FUTURE DIRECTIONS section added.

34448 Issue 6
34449 The legacy items iuclc(−iuclc), xcase, olcuc(−olcuc), lcase(−lcase), and LCASE(−LCASE), are
34450 removed.

3102 Technical Standard (2000) (Draft July 31, 2000)

Utilities tabs

34451 NAME
34452 tabs — set terminal tabs

34453 SYNOPSIS
34454 UP XSI tabs [−n| −a| −a2| −c| −c2| −c3| −f| −p| −s| −u][+m[n]] [−T type]

34455 tabs [−T type][+[n]] n1 [, n2,...]
34456

34457 DESCRIPTION
34458 The tabs utility shall display a series of characters that first clears the hardware terminal tab
34459 XSI settings and then initializes the tab stops at the specified positions and optionally adjusts the
34460 margin.

34461 The phrase ‘‘tab-stop position N’’ shall be taken to mean that, from the start of a line of output,
34462 tabbing to position N shall cause the next character output to be in the (N+1)th column position
34463 on that line. The maximum number of tab stops allowed is terminal-dependent.

34464 It need not be possible to implement tabs on certain terminals. If the terminal type obtained from
34465 the TERM environment variable or −T option represents such a terminal, an appropriate
34466 diagnostic message shall be written to standard error and tabs shall exit with a status greater
34467 than zero.

34468 OPTIONS
34469 The tabs utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
34470 XSI 12.2, Utility Syntax Guidelines, except for various extensions: the options −a2, −c2, and −c3 are |
34471 multi-character. |

34472 The following options shall be supported:

34473 −n Specify repetitive tab stops separated by a uniform number of column positions, n,
34474 where n is a single-digit decimal number. The default usage of tabs with no
34475 arguments shall be equivalent to tabs−8. When −0 is used, the tab stops shall be
34476 cleared and no new ones set.

34477 XSI −a 1,10,16,36,72
34478 Assembler, applicable to some mainframes.

34479 XSI −a2 1,10,16,40,72
34480 Assembler, applicable to some mainframes.

34481 XSI −c 1,8,12,16,20,55
34482 COBOL, normal format.

34483 XSI −c2 1,6,10,14,49
34484 COBOL, compact format (columns 1-6 omitted).

34485 XSI −c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
34486 COBOL compact format (columns 1-6 omitted), with more tabs than −c2.

34487 XSI −f 1,7,11,15,19,23
34488 FORTRAN

34489 XSI −p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
34490 PL/1

34491 XSI −s 1,10,55
34492 SNOBOL

34493 XSI −u 1,12,20,44
34494 Assembler, applicable to some mainframes.

Shell and Utilities, Issue 6 3103

tabs Utilities

34495 −T type Indicate the type of terminal. If this option is not supplied and the TERM variable
34496 is unset or null, an unspecified default terminal type shall be used. The setting of
34497 type shall take precedence over the value in TERM. |

34498 OPERANDS
34499 The following operand shall be supported:

34500 n1[,n2,. . .] A single command line argument that consists of tab-stop values separated using
34501 either commas or <blank> characters. The application shall ensure that the tab-
34502 stop values are positive decimal integers in strictly ascending order. If any number
34503 (except the first one) is preceded by a plus sign, it is taken as an increment to be
34504 added to the previous value. For example, the tab lists 1,10,20,30 and 1,10,+10,+10
34505 are considered to be identical.

34506 STDIN
34507 Not used.

34508 INPUT FILES
34509 None.

34510 ENVIRONMENT VARIABLES
34511 The following environment variables shall affect the execution of tabs:

34512 LANG Provide a default value for the internationalization variables that are unset or null.
34513 If LANG is unset or null, the corresponding value from the implementation- |
34514 defined default locale shall be used. If any of the internationalization variables |
34515 contains an invalid setting, the utility shall behave as if none of the variables had
34516 been defined.

34517 LC_ALL If set to a non-empty string value, override the values of all the other
34518 internationalization variables.

34519 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
34520 characters (for example, single-byte as opposed to multi-byte characters in
34521 arguments).

34522 LC_MESSAGES
34523 Determine the locale that should be used to affect the format and contents of
34524 diagnostic messages written to standard error.

34525 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

34526 TERM Determine the terminal type. If this variable is unset or null, and if the −T option is
34527 not specified, an unspecified default terminal type shall be used.

34528 ASYNCHRONOUS EVENTS
34529 Default.

34530 STDOUT
34531 If standard output is a terminal, the appropriate sequence to clear and set the tab stops may be
34532 written to standard output in an unspecified format. If standard output is not a terminal,
34533 undefined results occur.

34534 STDERR
34535 Used only for diagnostic messages.

3104 Technical Standard (2000) (Draft July 31, 2000)

Utilities tabs

34536 OUTPUT FILES
34537 None.

34538 EXTENDED DESCRIPTION
34539 None.

34540 EXIT STATUS
34541 The following exit values shall be returned:

34542 0 Successful completion.

34543 >0 An error occurred.

34544 CONSEQUENCES OF ERRORS
34545 Default.

34546 APPLICATION USAGE
34547 This utility makes use of the terminal’s hardware tabs and the stty tabs option.

34548 This utility is not recommended for application use.

34549 Some integrated display units might not have escape sequences to set tab stops, but may be set
34550 by internal system calls. On these terminals, tabs works if standard output is directed to the
34551 terminal; if output is directed to another file, however, tabs fails. |

34552 EXAMPLES
34553 None.

34554 RATIONALE
34555 Consideration was given to having the tput utility handle all of the functions described in tabs.
34556 However, the separate tabs utility was retained because it seems more intuitive to use a
34557 command named tabs than tput with a new option. The POSIX Shell and Utilities tput does not
34558 support setting or clearing tabs, and no known historical version of tabs supports the capability
34559 of setting arbitrary tab stops.

34560 The System V tabs interface is very complex; the version in this volume of IEEE Std. 1003.1-200x
34561 has a reduced feature list. There was considerable sentiment for specifying only a means of
34562 resetting the tabs back to a known state—presumably the ‘‘standard’’ of tabs every eight
34563 positions. The following features were omitted:

34564 • Setting tab stops tailored for certain programming languages; the standard developers were
34565 concerned that it would be difficult to decide which languages to include and where the tabs
34566 should be.

34567 • Setting tab stops via the first line in a file, using −−file . Since even the SVID has no complete
34568 explanation of this feature, it is doubtful that it is in widespread use.

34569 • Setting the left margin using +mn. As this does not work with all terminal types, it was
34570 omitted.

34571 In an early proposal, a −t tablist option was added for consistency with expand; this was later
34572 removed when inconsistencies with the historical list of tabs were identified.

34573 Consideration was given to adding a −p option that would output the current tab settings so
34574 that they could be saved and then later restored. This was not accepted because querying the tab
34575 stops of the terminal is not a capability in historical terminfo or termcap facilities and might not be
34576 supported on a wide range of terminals.

Shell and Utilities, Issue 6 3105

tabs Utilities

34577 FUTURE DIRECTIONS
34578 None.

34579 SEE ALSO
34580 expand , stty , unexpand

34581 CHANGE HISTORY
34582 First released in Issue 2.

34583 Issue 4
34584 Aligned with the ISO/IEC 9945-2: 1993 standard.

34585 Issue 6
34586 This utility is now marked as part of the User Portability Utilities option.

34587 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3106 Technical Standard (2000) (Draft July 31, 2000)

Utilities tail

34588 NAME
34589 tail — copy the last part of a file

34590 SYNOPSIS
34591 tail [−f][−c number | −n number][file]

34592 DESCRIPTION
34593 The tail utility shall copy its input file to the standard output beginning at a designated place.

34594 Copying shall begin at the point in the file indicated by the −c number or −n number options. The
34595 option-argument number shall be counted in units of lines or bytes, according to the options −n
34596 and −c. Both line and byte counts start from 1.

34597 Tails relative to the end of the file may be saved in an internal buffer, and thus may be limited in
34598 length. Such a buffer, if any, is no smaller than {LINE_MAX}*10 bytes.

34599 OPTIONS
34600 The tail utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
34601 12.2, Utility Syntax Guidelines. |

34602 The following options shall be supported:

34603 −c number The application shall ensure that the number option-argument is a decimal integer
34604 whose sign affects the location in the file, measured in bytes, to begin the copying:

34605 Sign Copying Starts___
34606 + Relative to the beginning of the file.
34607 − Relative to the end of the file.
34608 none Relative to the end of the file.___LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

34609 The origin for counting shall be 1; that is, −c +1 represents the first byte of the file,
34610 −c −1 the last.

34611 −f If the input file is a regular file or if the file operand specifies a FIFO, do not
34612 terminate after the last line of the input file has been copied, but read and copy
34613 further bytes from the input file when they become available. If no file operand is
34614 specified and standard input is a pipe, the −f option shall be ignored. If the input
34615 file is not a FIFO, pipe, or regular file, it is unspecified whether or not the −f option
34616 shall be ignored.

34617 −n number This option is equivalent to −c number, except the starting location in the file shall
34618 be measured in lines instead of bytes. The origin for counting shall be 1; that is, −n
34619 +1 represents the first line of the file, −n −1 the last.

34620 If neither −c nor −n is specified, −n 10 shall be assumed.

34621 OPERANDS
34622 The following operand shall be supported:

34623 file A path name of an input file. If no file operands are specified, the standard input
34624 shall be used.

34625 STDIN
34626 The standard input shall be used only if no file operands are specified. See the INPUT FILES
34627 section.

Shell and Utilities, Issue 6 3107

tail Utilities

34628 INPUT FILES
34629 If the −c option is specified, the input file can contain arbitrary data; otherwise, the input file
34630 shall be a text file.

34631 ENVIRONMENT VARIABLES
34632 The following environment variables shall affect the execution of tail:

34633 LANG Provide a default value for the internationalization variables that are unset or null.
34634 If LANG is unset or null, the corresponding value from the implementation- |
34635 defined default locale shall be used. If any of the internationalization variables |
34636 contains an invalid setting, the utility shall behave as if none of the variables had
34637 been defined.

34638 LC_ALL If set to a non-empty string value, override the values of all the other
34639 internationalization variables.

34640 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
34641 characters (for example, single-byte as opposed to multi-byte characters in
34642 arguments and input files).

34643 LC_MESSAGES
34644 Determine the locale that should be used to affect the format and contents of
34645 diagnostic messages written to standard error.

34646 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

34647 ASYNCHRONOUS EVENTS
34648 Default.

34649 STDOUT
34650 The designated portion of the input file shall be written to standard output.

34651 STDERR
34652 Used only for diagnostic messages.

34653 OUTPUT FILES
34654 None.

34655 EXTENDED DESCRIPTION
34656 None.

34657 EXIT STATUS
34658 The following exit values shall be returned:

34659 0 Successful completion.

34660 >0 An error occurred.

34661 CONSEQUENCES OF ERRORS
34662 Default.

3108 Technical Standard (2000) (Draft July 31, 2000)

Utilities tail

34663 APPLICATION USAGE
34664 The −c option should be used with caution when the input is a text file containing multi-byte
34665 characters; it may produce output that does not start on a character boundary.

34666 Although the input file to tail can be any type, the results might not be what would be expected
34667 on some character special device files or on file types not described by the System Interfaces
34668 volume of IEEE Std. 1003.1-200x. Since this volume of IEEE Std. 1003.1-200x does not specify the
34669 block size used when doing input, tail need not read all of the data from devices that only
34670 perform block transfers.

34671 EXAMPLES
34672 The −f option can be used to monitor the growth of a file that is being written by some other
34673 process. For example, the command:

34674 tail −f fred

34675 prints the last ten lines of the file fred, followed by any lines that are appended to fred between
34676 the time tail is initiated and killed. As another example, the command:

34677 tail −f −c 15 fred

34678 prints the last 15 bytes of the file fred, followed by any bytes that are appended to fred between
34679 the time tail is initiated and killed.

34680 RATIONALE
34681 This version of tail was created to allow conformance to the Utility Syntax Guidelines. The
34682 historical −b option was omitted because of the general non-portability of block-sized units of
34683 text. The −c option historically meant ‘‘characters’’, but this volume of IEEE Std. 1003.1-200x
34684 indicates that it means ‘‘bytes’’. This was selected to allow reasonable implementations when
34685 multi-byte characters are possible; it was not named −b to avoid confusion with the historical
34686 −b.

34687 The origin of counting both lines and bytes is 1, matching all widespread historical
34688 implementations.

34689 The restriction on the internal buffer is a compromise between the historical System V
34690 implementation of 4 096 bytes and the BSD 32 768 bytes.

34691 The −f option has been implemented as a loop that sleeps for 1 second and copies any bytes that
34692 are available. This is sufficient, but if more efficient methods of determining when new data are
34693 available are developed, implementations are encouraged to use them.

34694 Historical documentation indicates that tail ignores the −f option if the input file is a pipe (pipe
34695 and FIFO on systems that support FIFOs). On BSD-based systems, this has been true; on System
34696 V-based systems, this was true when input was taken from standard input, but it did not ignore
34697 the −f flag if a FIFO was named as the file operand. Since the −f option is not useful on pipes and
34698 all historical implementations ignore −f if no file operand is specified and standard input is a
34699 pipe, this volume of IEEE Std. 1003.1-200x requires this behavior. However, since the −f option is
34700 useful on a FIFO, this volume of IEEE Std. 1003.1-200x also requires that if standard input is a
34701 FIFO or a FIFO is named, the −f option shall not be ignored. Although historical behavior does
34702 not ignore the −f option for other file types, this is unspecified so that implementations are
34703 allowed to ignore the −f option if it is known that the file cannot be extended.

34704 This was changed to the current form based on comments noting that −c was almost never used
34705 without specifying a number and that there was no need to specify −l if −n number was given.

Shell and Utilities, Issue 6 3109

tail Utilities

34706 FUTURE DIRECTIONS
34707 None.

34708 SEE ALSO
34709 head

34710 CHANGE HISTORY
34711 First released in Issue 2.

34712 Issue 4
34713 Aligned with the ISO/IEC 9945-2: 1993 standard.

34714 Issue 6
34715 The obsolescent SYNOPSIS lines and associated text are removed.

34716 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3110 Technical Standard (2000) (Draft July 31, 2000)

Utilities talk

34717 NAME
34718 talk — talk to another user

34719 SYNOPSIS
34720 UP talk address [terminal]
34721

34722 DESCRIPTION
34723 The talk utility is a two-way, screen-oriented communication program.

34724 When first invoked, talk shall send a message similar to:

34725 Message from < unspecified string >
34726 talk: connection requested by your_address
34727 talk: respond with: talk your_address

34728 to the specified address. At this point, the recipient of the message can reply by typing:

34729 talk your_address

34730 Once communication is established, the two parties can type simultaneously, with their output
34731 displayed in separate regions of the screen. Characters shall be processed as follows:

34732 • Typing the alert character shall alert the recipient’s terminal.

34733 • Typing <control>-L shall cause the sender’s screen regions to be refreshed.

34734 • Typing the erase and kill characters shall affect the sender’s terminal in the manner described
34735 by the termios interface in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, |
34736 General Terminal Interface. |

34737 • Typing the interrupt or end-of-file characters shall terminate the local talk utility. Once the
34738 talk session has been terminated on one side, the other side of the talk session shall be notified
34739 that the talk session has been terminated and shall be able to do nothing except exit.

34740 • Typing characters from LC_CTYPE classifications print or space shall cause those characters
34741 to be sent to the recipient’s terminal.

34742 • When and only when the stty iexten local mode is enabled, the existence and processing of
34743 additional special control characters and multi-byte or single-byte functions shall be |
34744 implementation-defined. |

34745 • Typing other non-printable characters shall cause implementation-defined sequences of |
34746 printable characters to be sent to the recipient’s terminal. |

34747 Permission to be a recipient of a talk message can be denied or granted by use of the mesg utility.
34748 However, a user’s privilege may further constrain the domain of accessibility of other users’
34749 terminals. The talk utility shall fail when the user lacks the appropriate privileges to perform the
34750 requested action.

34751 Certain block-mode terminals do not have all the capabilities necessary to support the
34752 simultaneous exchange of messages required for talk. When this type of exchange cannot be
34753 supported on such terminals, the implementation may support an exchange with reduced levels
34754 of simultaneous interaction or it may report an error describing the terminal-related deficiency.

34755 OPTIONS
34756 None.

Shell and Utilities, Issue 6 3111

talk Utilities

34757 OPERANDS
34758 The following operands shall be supported:

34759 address The recipient of the talk session. One form of address is the <user name>, as returned
34760 by the who utility. Other address formats and how they are handled are
34761 unspecified.

34762 terminal If the recipient is logged in more than once, the terminal argument can be used to
34763 indicate the appropriate terminal name. If terminal is not specified, the talk message
34764 shall be displayed on one or more accessible terminals in use by the recipient. The
34765 format of terminal shall be the same as that returned by the who utility.

34766 STDIN
34767 Characters read from standard input shall be copied to the recipient’s terminal in an unspecified
34768 manner. If standard input is not a terminal, talk shall write a diagnostic message and exit with a
34769 non-zero status.

34770 INPUT FILES
34771 None.

34772 ENVIRONMENT VARIABLES
34773 The following environment variables shall affect the execution of talk:

34774 LANG Provide a default value for the internationalization variables that are unset or null.
34775 If LANG is unset or null, the corresponding value from the implementation- |
34776 defined default locale shall be used. If any of the internationalization variables |
34777 contains an invalid setting, the utility shall behave as if none of the variables had
34778 been defined.

34779 LC_ALL If set to a non-empty string value, override the values of all the other
34780 internationalization variables.

34781 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
34782 characters (for example, single-byte as opposed to multi-byte characters in
34783 arguments and input files). If the recipient’s locale does not use an LC_CTYPE
34784 equivalent to the sender’s, the results are undefined.

34785 LC_MESSAGES
34786 Determine the locale that should be used to affect the format and contents of
34787 diagnostic messages written to standard error and informative messages written to
34788 standard output.

34789 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

34790 TERM Determine the name of the invoker’s terminal type. If this variable is unset or null,
34791 an unspecified default terminal type shall be used.

34792 ASYNCHRONOUS EVENTS
34793 When the talk utility receives a SIGINT signal, the utility shall terminate and exit with a zero
34794 status. It shall take the standard action for all other signals.

34795 STDOUT
34796 If standard output is a terminal, characters copied from the recipient’s standard input may be
34797 written to standard output. Standard output also may be used for diagnostic messages. If
34798 standard output is not a terminal, talk shall exit with a non-zero status.

3112 Technical Standard (2000) (Draft July 31, 2000)

Utilities talk

34799 STDERR
34800 None.

34801 OUTPUT FILES
34802 None.

34803 EXTENDED DESCRIPTION
34804 None.

34805 EXIT STATUS
34806 The following exit values shall be returned:

34807 0 Successful completion.

34808 >0 An error occurred or talk was invoked on a terminal incapable of supporting it.

34809 CONSEQUENCES OF ERRORS
34810 Default.

34811 APPLICATION USAGE
34812 Because the handling of non-printable, non-<space> characters is tied to the stty description of
34813 iexten, implementation extensions within the terminal driver can be accessed. For example,
34814 some implementations provide line editing functions with certain control character sequences. |

34815 EXAMPLES
34816 None.

34817 RATIONALE
34818 The write utility was included in this volume of IEEE Std. 1003.1-200x since it can be
34819 implemented on all terminal types. The talk utility, which cannot be implemented on certain
34820 terminals, was considered to be a ‘‘better’’ communications interface. Both of these programs are
34821 in widespread use on historical implementations. Therefore, both utilities have been specified.

34822 All references to networking abilities (talking to a user on another system) were removed as
34823 being outside the scope of this volume of IEEE Std. 1003.1-200x.

34824 Historical BSD and System V versions of talk terminate both of the conversations when either
34825 user breaks out of the session. This can lead to adverse consequences if a user unwittingly
34826 continues to enter text that is interpreted by the shell when the other terminates the session.
34827 Therefore, the version of talk specified by this volume of IEEE Std. 1003.1-200x requires both
34828 users to terminate their end of the session explicitly.

34829 Only messages sent to the terminal of the invoking user can be internationalized in any way:

34830 • The original ‘‘Message from <unspecified string> . . .’’ message sent to the terminal of the
34831 recipient cannot be internationalized because the environment of the recipient is as yet
34832 inaccessible to the talk utility. The environment of the invoking party is irrelevant.

34833 • Subsequent communication between the two parties cannot be internationalized because the
34834 two parties may specify different languages in their environment (and non-portable
34835 characters cannot be mapped from one language to another).

34836 • Neither party can be required to communicate in a language other than C and/or the one
34837 specified by their environment because unavailable terminal hardware support (for example,
34838 fonts) may be required.

34839 The text in the STDOUT section reflects the usage of the verb ‘‘display’’ in this section; some talk
34840 implementations actually use standard output to write to the terminal, but this volume of
34841 IEEE Std. 1003.1-200x does not require that to be the case.

Shell and Utilities, Issue 6 3113

talk Utilities

34842 The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
34843 require that they all use or accept the same format.

34844 The handling of non-printable characters is partially implementation-defined because the details |
34845 of mapping them to printable sequences is not needed by the user. Historical implementations,
34846 for security reasons, disallow the transmission of non-printable characters that may send
34847 commands to the other terminal.

34848 FUTURE DIRECTIONS
34849 None.

34850 SEE ALSO
34851 mesg, who , write, the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General |
34852 Terminal Interface |

34853 CHANGE HISTORY
34854 First released in Issue 4.

34855 Issue 6
34856 This utility is now marked as part of the User Portability Utilities option.

3114 Technical Standard (2000) (Draft July 31, 2000)

Utilities tee

34857 NAME
34858 tee — duplicate standard input

34859 SYNOPSIS
34860 tee [−ai][file ...]

34861 DESCRIPTION
34862 The tee utility shall copy standard input to standard output, making a copy in zero or more files.
34863 The tee utility shall not buffer output.

34864 If the −a option is not specified, output files shall be written (see Section 1.7.1.4 (on page 2209). |

34865 OPTIONS
34866 The tee utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
34867 12.2, Utility Syntax Guidelines. |

34868 The following options shall be supported:

34869 −a Append the output to the files. |

34870 −i Ignore the SIGINT signal.

34871 OPERANDS
34872 The following operands shall be supported:

34873 file A path name of an output file. Processing of at least 13 file operands shall be
34874 supported.

34875 STDIN
34876 The standard input can be of any type.

34877 INPUT FILES
34878 None.

34879 ENVIRONMENT VARIABLES
34880 The following environment variables shall affect the execution of tee:

34881 LANG Provide a default value for the internationalization variables that are unset or null.
34882 If LANG is unset or null, the corresponding value from the implementation- |
34883 defined default locale shall be used. If any of the internationalization variables |
34884 contains an invalid setting, the utility shall behave as if none of the variables had
34885 been defined.

34886 LC_ALL If set to a non-empty string value, override the values of all the other
34887 internationalization variables.

34888 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
34889 characters (for example, single-byte as opposed to multi-byte characters in
34890 arguments).

34891 LC_MESSAGES
34892 Determine the locale that should be used to affect the format and contents of
34893 diagnostic messages written to standard error.

34894 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

34895 ASYNCHRONOUS EVENTS
34896 Default, except that if the −i option was specified, SIGINT shall be ignored.

Shell and Utilities, Issue 6 3115

tee Utilities

34897 STDOUT
34898 The standard output shall be a copy of the standard input.

34899 STDERR
34900 Used only for diagnostic messages.

34901 OUTPUT FILES
34902 If any file operands are specified, the standard input shall be copied to each named file.

34903 EXTENDED DESCRIPTION
34904 None.

34905 EXIT STATUS
34906 The following exit values shall be returned:

34907 0 The standard input was successfully copied to all output files.

34908 >0 An error occurred.

34909 CONSEQUENCES OF ERRORS
34910 If a write to any successfully opened file operand fails, writes to other successfully opened file
34911 operands and standard output shall continue, but the exit status shall be non-zero. Otherwise,
34912 the default actions specified in Section 1.11 (on page 2224) apply.

34913 APPLICATION USAGE
34914 The tee utility is usually used in a pipeline, to make a copy of the output of some utility.

34915 The file operand is technically optional, but tee is no more useful than cat when none is specified.

34916 EXAMPLES
34917 Save an unsorted intermediate form of the data in a pipeline:

34918 ... | tee unsorted | sort > sorted

34919 RATIONALE
34920 The buffering requirement means that tee is not allowed to use ISO C standard fully buffered or
34921 line-buffered writes. It does not mean that tee has to do 1-byte reads followed by 1-byte writes.

34922 It should be noted that early versions of BSD ignore any invalid options and accept a single ’ −’
34923 as an alternative to −i. They also print a message if unable to open a file:

34924 "tee: cannot access %s\n", < pathname >

34925 Historical implementations ignore write errors. This is explicitly not permitted by this volume of
34926 IEEE Std. 1003.1-200x.

34927 Some historical implementations use O_APPEND when providing append mode; others use the
34928 lseek() function to seek to the end of file after opening the file without O_APPEND. This volume
34929 of IEEE Std. 1003.1-200x requires functionality equivalent to using O_APPEND; see Section
34930 1.7.1.4 (on page 2209).

34931 FUTURE DIRECTIONS
34932 None.

34933 SEE ALSO
34934 cat

34935 CHANGE HISTORY
34936 First released in Issue 2.

3116 Technical Standard (2000) (Draft July 31, 2000)

Utilities tee

34937 Issue 4
34938 Aligned with the ISO/IEC 9945-2: 1993 standard. |

34939 Issue 6 |
34940 IEEE PASC Interpretation 1003.2 #168 is applied. |

Shell and Utilities, Issue 6 3117

test Utilities

34941 NAME
34942 test — evaluate expression

34943 SYNOPSIS
34944 test [expression]

34945 [[expression]]

34946 DESCRIPTION
34947 The test utility shall evaluate the expression and indicates the result of the evaluation by its exit
34948 status. An exit status of zero indicates that the expression evaluated as true and an exit status of
34949 1 indicates that the expression evaluated as false.

34950 In the second form of the utility, which uses "[]" rather than test, the application shall ensure
34951 that the square brackets are separate arguments.

34952 OPTIONS
34953 The test utility shall not recognize the " −−" argument in the manner specified by guideline 10 in |
34954 the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, Utility Syntax Guidelines. |

34955 No options shall be supported.

34956 OPERANDS
34957 The application shall ensure that all operators and elements of primaries are presented as
34958 separate arguments to the test utility.

34959 The following primaries can be used to construct expression:

34960 −b file True if file exists and is a block special file.

34961 −c file True if file exists and is a character special file.

34962 −d file True if file exists and is a directory.

34963 −e file True if file exists.

34964 −f file True if file exists and is a regular file.

34965 −g file True if file exists and its set group ID flag is set.

34966 −h file True if file exists and is a symbolic link.

34967 −n string True if the length of string is non-zero.

34968 −p file True if file is a named pipe (FIFO).

34969 −r file True if file exists and is readable. True shall indicate that permission to read from
34970 file will be granted, as defined in Section 1.7.1.4 (on page 2209).

34971 −s file True if file exists and has a size greater than zero.

34972 −t file_descriptor
34973 True if the file whose file descriptor number is file_descriptor is open and is
34974 associated with a terminal.

34975 −u file True if file exists and its set-user-ID flag is set.

34976 −w file True if file exists and is writable. True shall indicate that permission to write from
34977 file will be granted, as defined in Section 1.7.1.4 (on page 2209).

34978 −x file True if file exists and is executable. True if file exists and is executable. True shall
34979 indicate that permission to execute file will be granted, as defined in Section 1.7.1.4
34980 (on page 2209). If file is a directory, true shall indicate that permission to search file
34981 will be granted.

3118 Technical Standard (2000) (Draft July 31, 2000)

Utilities test

34982 −z string True if the length of string string is zero.

34983 string True if the string string is not the null string.

34984 s1 = s2 True if the strings s1 and s2 are identical.

34985 s1 != s2 True if the strings s1 and s2 are not identical.

34986 n1 −eq n2 True if the integers n1 and n2 are algebraically equal.

34987 n1 −ne n2 True if the integers n1 and n2 are not algebraically equal.

34988 n1 −gt n2 True if the integer n1 is algebraically greater than the integer n2.

34989 n1 −ge n2 True if the integer n1 is algebraically greater than or equal to the integer n2.

34990 n1 −lt n2 True if the integer n1 is algebraically less than the integer n2.

34991 n1 −le n2 True if the integer n1 is algebraically less than or equal to the integer n2.

34992 XSI expression1 −a expression2
34993 True if both expression1 and expression2 are true. The −a binary primary is left
34994 associative. It has a higher precedence than −o.

34995 XSI expression1 −o expression2
34996 True if either expression1 or expression2 is true. The −o binary primary is left
34997 associative.

34998 With the exception of the −h file primary, if a file argument is a symbolic link, test shall evaluate
34999 the expression by resolving the symbolic link and using the file referenced by the link.

35000 These primaries can be combined with the following operators:

35001 ! expression True if expression is false.

35002 XSI (expression) True if expression is true. The parentheses can be used to alter the normal
35003 precedence and associativity.

35004 The primaries with two elements of the form:

35005 −primary_operator primary_operand

35006 are known as unary primaries . The primaries with three elements in either of the two forms:

35007 primary_operand −primary_operator primary_operand

35008 primary_operand primary_operator primary_operand

35009 are known as binary primaries . Additional implementation-defined operators and |
35010 primary_operators may be provided by implementations. They shall be of the form −operator
35011 where the first character of operator is not a digit.

35012 The algorithm for determining the precedence of the operators and the return value that shall be
35013 generated is based on the number of arguments presented to test. (However, when using the
35014 "[...]" form, the right-bracket final argument shall not be counted in this algorithm.)

35015 In the following list, $1, $2, $3, and $4 represent the arguments presented to test:

35016 0 arguments: Exit false (1).

35017 1 argument: Exit true (0) if $1 is not null; otherwise, exit false.

35018 2 arguments: • If $1 is ’!’ , exit true if $2 is null, false if $2 is not null.

35019 • If $1 is a unary primary, exit true if the unary test is true, false if the unary
35020 test is false.

Shell and Utilities, Issue 6 3119

test Utilities

35021 • Otherwise, produce unspecified results.

35022 3 arguments: • If $2 is a binary primary, perform the binary test of $1 and $3.

35023 • If $1 is ’!’ , negate the two-argument test of $2 and $3.

35024 • If $1 is ’(’ and $3 is ’)’ , perform the unary test of $2. |

35025 • Otherwise, produce unspecified results.

35026 4 arguments: • If $1 is ’!’ , negate the three-argument test of $2, $3, and $4.

35027 XSI • If $1 is ’(’ and $4 is ’)’ , perform the two-argument test of $2 and $3.

35028 • Otherwise, the results are unspecified.

35029 XSI >4 arguments: The results are unspecified. On XSI-conformant systems, combinations of |
35030 primaries and operators shall be evaluated using the precedence and |
35031 associativity rules described previously. In addition, the string comparison |
35032 binary primaries ’=’ and "!=" shall have a higher precedence than any |
35033 unary primary.

35034 STDIN
35035 Not used.

35036 INPUT FILES
35037 None.

35038 ENVIRONMENT VARIABLES
35039 The following environment variables shall affect the execution of test:

35040 LANG Provide a default value for the internationalization variables that are unset or null.
35041 If LANG is unset or null, the corresponding value from the implementation- |
35042 defined default locale shall be used. If any of the internationalization variables |
35043 contains an invalid setting, the utility shall behave as if none of the variables had
35044 been defined.

35045 LC_ALL If set to a non-empty string value, override the values of all the other
35046 internationalization variables.

35047 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
35048 characters (for example, single-byte as opposed to multi-byte characters in
35049 arguments).

35050 LC_MESSAGES
35051 Determine the locale that should be used to affect the format and contents of
35052 diagnostic messages written to standard error.

35053 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

35054 ASYNCHRONOUS EVENTS
35055 Default.

35056 STDOUT
35057 Not used.

35058 STDERR
35059 Used only for diagnostic messages.

3120 Technical Standard (2000) (Draft July 31, 2000)

Utilities test

35060 OUTPUT FILES
35061 None.

35062 EXTENDED DESCRIPTION
35063 None.

35064 EXIT STATUS
35065 The following exit values shall be returned:

35066 0 expression evaluated to true.

35067 1 expression evaluated to false or expression was missing.

35068 >1 An error occurred.

35069 CONSEQUENCES OF ERRORS
35070 Default.

35071 APPLICATION USAGE
35072 Scripts should be careful when dealing with user-supplied input that could be confused with
35073 primaries and operators. Unless the application writer knows all the cases that produce input to
35074 the script, invocations like:

35075 test "$1" −a "$2"

35076 should be written as:

35077 test "$1" && test "$2"

35078 to avoid problems if a user supplied values such as $1 set to ’!’ and $2 set to the null string.
35079 That is, in cases where maximal portability is of concern, replace:

35080 test expr1 −a expr2

35081 with:

35082 test expr1 && test expr2

35083 and replace:

35084 test expr1 −o expr2

35085 with:

35086 test expr1 || test expr2

35087 but note that, in test, −a has higher precedence than −o while "&&" and "||" have equal
35088 precedence in the shell.

35089 Parentheses or braces can be used in the shell command language to effect grouping.

35090 Parentheses must be escaped when using sh; for example:

35091 test \(expr1 −a expr2 \) −o expr3

35092 This command is not always portable outside XSI-conformant systems. The following form can
35093 be used instead:

35094 (test expr1 && test expr2) || test expr3

35095 The two commands:

35096 test "$1"
35097 test ! "$1"

Shell and Utilities, Issue 6 3121

test Utilities

35098 could not be used reliably on some historical systems. Unexpected results would occur if such a
35099 string expression were used and $1 expanded to ’!’ , ’(’ , or a known unary primary. Better
35100 constructs are:

35101 test −n "$1"
35102 test −z "$1"

35103 respectively.

35104 Historical systems have also been unreliable given the common construct:

35105 test "$response" = "expected string"

35106 One of the following is a more reliable form:

35107 test "X$response" = "Xexpected string"
35108 test "expected string" = "$response"

35109 Note that the second form assumes that expected string could not be confused with any unary
35110 primary. If expected string starts with ’ −’ , ’(’ , ’!’ , or even ’=’ , the first form should be used
35111 instead. Using the preceding rules without the XSI marked extensions, any of the three |
35112 comparison forms is reliable, given any input. (However, note that the strings are quoted in all |
35113 cases.)

35114 Because the string comparison binary primaries, ’=’ and "!=" , have a higher precedence than
35115 any unary primary in the greater than 4 argument case, unexpected results can occur if
35116 arguments are not properly prepared. For example, in:

35117 test −d $1 −o −d $2

35118 If $1 evaluates to a possible directory name of ’=’ , the first three arguments are considered a
35119 string comparison, which shall cause a syntax error when the second −d is encountered. One of
35120 the following forms prevents this; the second is preferred:

35121 test \(−d "$1" \) −o \(−d "$2" \)
35122 test −d "$1" || test −d "$2"

35123 Also in the greater than 4 argument case:

35124 test "$1" = "bat" −a "$2" = "ball"

35125 Syntax errors occur if $1 evaluates to ’(’ or ’!’ . One of the following forms prevents this; the
35126 third is preferred:

35127 test "X$1" = "Xbat" −a "X$2" = "Xball"
35128 test "$1" = "bat" && test "$2" = "ball"
35129 test "X$1" = "Xbat" && test "X$2" = "Xball"

35130 EXAMPLES

35131 1. Exit if there are not two or three arguments (two variations):

35132 if [$# −ne 2 −a $# −ne 3]; then exit 1; fi
35133 if [$# −lt 2 −o $# −gt 3]; then exit 1; fi

35134 2. Perform a mkdir if a directory does not exist:

35135 test ! −d tempdir && mkdir tempdir

35136 3. Wait for a file to become non-readable:

35137 while test −r thefile
35138 do

3122 Technical Standard (2000) (Draft July 31, 2000)

Utilities test

35139 sleep 30
35140 done
35141 echo ’"thefile" is no longer readable’

35142 4. Perform a command if the argument is one of three strings (two variations):

35143 if ["$1" = "pear"] || ["$1" = "grape"] || ["$1" = "apple"]
35144 then
35145 command
35146 fi

35147 case "$1" in
35148 pear|grape|apple) command ;;
35149 esac

35150 RATIONALE
35151 The KornShell-derived conditional command (double bracket [[]]) was removed from the shell
35152 command language description in an early proposal. Objections were raised that the real
35153 problem is misuse of the test command ([), and putting it into the shell is the wrong way to fix
35154 the problem. Instead, proper documentation and a new shell reserved word (!) are sufficient.

35155 Tests that require multiple test operations can be done at the shell level using individual
35156 invocations of the test command and shell logicals, rather than using the error-prone −o flag of
35157 test.

35158 XSI-conformant systems support more than four arguments.

35159 XSI-conformant systems support the combining of primaries with the following constructs:

35160 expression1 −a expression2
35161 True if both expression1 and expression2 are true.

35162 expression1 −o expression2
35163 True if at least one of expression1 and expression2 are true.

35164 (expression)
35165 True if expression is true.

35166 In evaluating these more complex combined expressions, the following precedence rules are
35167 used:

35168 • The unary primaries have higher precedence than the algebraic binary primaries.

35169 • The unary primaries have lower precedence than the string binary primaries.

35170 • The unary and binary primaries have higher precedence than the unary string primary.

35171 • The ! operator has higher precedence than the −a operator, and the −a operator has higher
35172 precedence than the −o operator.

35173 • The −a and −o operators are left associative.

35174 • The parentheses can be used to alter the normal precedence and associativity.

35175 The BSD and System V versions of −f are not the same. The BSD definition was:

35176 −f file True if file exists and is not a directory.

35177 The SVID version (true if the file exists and is a regular file) was chosen for this volume of
35178 IEEE Std. 1003.1-200x because its use is consistent with the −b, −c, −d, and −p operands (file
35179 exists and is a specific file type).

Shell and Utilities, Issue 6 3123

test Utilities

35180 The −e primary, possessing similar functionality to that provided by the C shell, was added
35181 because it provides the only way for a shell script to find out if a file exists without trying to
35182 open the file. Since implementations are allowed to add additional file types, a portable script
35183 cannot use:

35184 test −b foo −o −c foo −o −d foo −o −f foo −o −p foo

35185 to find out if foo is an existing file.) On historical BSD systems, the existence of a file could be
35186 determined by:

35187 test −f foo −o −d foo

35188 but there was no easy way to determine that an existing file was a regular file. An early proposal
35189 used the KornShell −a primary (with the same meaning), but this was changed to −e because
35190 there were concerns about the high probability of humans confusing the −a primary with the −a
35191 binary operator.

35192 The following option was not included because it was undocumented in most implementations, |
35193 has been removed from some implementations (including System V), and the functionality is
35194 provided by the shell (see Section 2.6.2 (on page 2245).

35195 −l string The length of the string string.

35196 The −b, −c, −g, −p, −u, and −x operands are derived from the SVID; historical BSD does not
35197 provide them. The −k operand is derived from System V; historical BSD does not provide it.

35198 On historical BSD systems, test −w directory always returned false because test tried to open the
35199 directory for writing, which always fails.

35200 Some additional primaries newly invented or from the KornShell appeared in an early proposal
35201 as part of the conditional command ([[]]): s1 > s2, s1 < s2, str = pattern , str != pattern , f1 −nt f2 , f1
35202 −ot f2 , and f1 −ef f2 . They were not carried forward into the test utility when the conditional
35203 command was removed from the shell because they have not been included in the test utility
35204 built into historical implementations of the sh utility.

35205 The −t file_descriptor primary is shown with a mandatory argument because the grammar is
35206 ambiguous if it can be omitted. Historical implementations have allowed it to be omitted,
35207 providing a default of 1.

35208 FUTURE DIRECTIONS
35209 None.

35210 SEE ALSO
35211 find

35212 CHANGE HISTORY
35213 First released in Issue 2.

35214 Issue 4
35215 Aligned with the ISO/IEC 9945-2: 1993 standard.

35216 Issue 5
35217 FUTURE DIRECTIONS section added.

35218 Issue 6
35219 The −h operand is added for symbolic links, and access permission requirements are clarified for
35220 the −r, −w, and −x operands to align with the IEEE P1003.2b draft standard.

35221 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3124 Technical Standard (2000) (Draft July 31, 2000)

Utilities time

35222 NAME
35223 time — time a simple command

35224 SYNOPSIS
35225 UP time [−p] utility [argument ...]
35226

35227 DESCRIPTION
35228 The time utility shall invoke the utility named by the utility operand with arguments supplied as
35229 the argument operands and write a message to standard error that lists timing statistics for the
35230 utility. The message shall include the following information:

35231 • The elapsed (real) time between invocation of utility and its termination.

35232 • The User CPU time, equivalent to the sum of the tms_utime and tms_cutime fields returned by
35233 the times() function defined in the System Interfaces volume of IEEE Std. 1003.1-200x for the
35234 process in which utility is executed.

35235 • The System CPU time, equivalent to the sum of the tms_stime and tms_cstime fields returned
35236 by the times() function for the process in which utility is executed.

35237 The precision of the timing shall be no less than the granularity defined for the size of the clock
35238 tick unit on the system, but the results shall be reported in terms of standard time units (for
35239 example, 0.02 seconds, 00:00:00.02, 1m33.75s, 365.21 seconds), not numbers of clock ticks.

35240 When time is used as part of a pipeline, the times reported are unspecified, except when it is the
35241 sole command within a grouping command (see Section 2.9.4.1 (on page 2261)) in that pipeline.
35242 For example, the commands on the left are unspecified; those on the right report on utilities a
35243 and c, respectively:

35244 time a | b | c { time a } | b | c
35245 a | b | time c a | b | (time c)

35246 OPTIONS
35247 The time utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
35248 12.2, Utility Syntax Guidelines. |

35249 The following option shall be supported:

35250 −p Write the timing output to standard error in the format shown in the STDERR
35251 section.

35252 OPERANDS
35253 The following operands shall be supported:

35254 utility The name of a utility that is to be invoked. If the utility operand names any of the
35255 special built-in utilities in Section 2.15 (on page 2276), the results are undefined.

35256 argument Any string to be supplied as an argument when invoking the utility named by the
35257 utility operand.

35258 STDIN
35259 Not used.

35260 INPUT FILES
35261 None.

Shell and Utilities, Issue 6 3125

time Utilities

35262 ENVIRONMENT VARIABLES
35263 The following environment variables shall affect the execution of time:

35264 LANG Provide a default value for the internationalization variables that are unset or null.
35265 If LANG is unset or null, the corresponding value from the implementation- |
35266 defined default locale shall be used. If any of the internationalization variables |
35267 contains an invalid setting, the utility shall behave as if none of the variables had
35268 been defined.

35269 LC_ALL If set to a non-empty string value, override the values of all the other
35270 internationalization variables.

35271 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
35272 characters (for example, single-byte as opposed to multi-byte characters in
35273 arguments).

35274 LC_MESSAGES
35275 Determine the locale that should be used to affect the format and contents of
35276 diagnostic and informative messages written to standard error.

35277 LC_NUMERIC
35278 Determine the locale for numeric formatting.

35279 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

35280 PATH Determine the search path that shall be used to locate the utility to be invoked; see |
35281 the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment |
35282 Variables. |

35283 ASYNCHRONOUS EVENTS
35284 Default.

35285 STDOUT
35286 Not used.

35287 STDERR
35288 The standard error shall be used to write the timing statistics. If −p is specified, the following
35289 format shall be used in the POSIX locale:

35290 "real %f\nuser %f\nsys %f\n", < real seconds >, < user seconds >,
35291 <system seconds >

35292 where each floating-point number shall be expressed in seconds. The precision used may be less
35293 than the default six digits of %f, but shall be sufficiently precise to accommodate the size of the
35294 clock tick on the system (for example, if there were 60 clock ticks per second, at least two digits
35295 shall follow the radix character). The number of digits following the radix character shall be no
35296 less than one, even if this always results in a trailing zero. The implementation may append
35297 white space and additional information following the format shown here.

35298 OUTPUT FILES
35299 None.

35300 EXTENDED DESCRIPTION
35301 None.

35302 EXIT STATUS
35303 If the utility utility is invoked, the exit status of time shall be the exit status of utility ; otherwise,
35304 the time utility shall exit with one of the following values:

3126 Technical Standard (2000) (Draft July 31, 2000)

Utilities time

35305 1-125 An error occurred in the time utility.

35306 126 The utility specified by utility was found but could not be invoked.

35307 127 The utility specified by utility could not be found.

35308 CONSEQUENCES OF ERRORS
35309 Default.

35310 APPLICATION USAGE
35311 The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
35312 an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
35313 utility exited with an error indication’’. The value 127 was chosen because it is not commonly
35314 used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
35315 values above 128 can be confused with termination due to receipt of a signal. The value 126 was
35316 chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
35317 scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
35318 between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
35319 exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
35320 any other reason. |

35321 EXAMPLES
35322 It is frequently desirable to apply time to pipelines or lists of commands. This can be done by
35323 placing pipelines and command lists in a single file; this file can then be invoked as a utility, and
35324 the time applies to everything in the file.

35325 Alternatively, the following command can be used to apply time to a complex command:

35326 time sh −c ’ complex-command-line ’

35327 RATIONALE
35328 The time utility when originally proposed for this volume of IEEE Std. 1003.1-200x, was rejected
35329 because it was not useful for portable applications:

35330 • The underlying CPU definitions from the System Interfaces volume of IEEE Std. 1003.1-200x
35331 are vague, so the numeric output could not be compared accurately between systems or even
35332 between invocations.

35333 • The creation of portable benchmark programs was outside the scope this volume of
35334 IEEE Std. 1003.1-200x.

35335 However, time does fit in the scope of user portability. Human judgement can be applied to the
35336 analysis of the output, and it could be very useful in hands-on debugging of applications or in
35337 providing subjective measures of system performance. Hence it has been included in this
35338 volume of IEEE Std. 1003.1-200x.

35339 The default output format has been left unspecified because historical implementations differ
35340 greatly in their style of depicting this numeric output. The −p option was invented to provide
35341 scripts a common means of obtaining this information.

35342 In the KornShell, time is a shell reserved word that can be used to time an entire pipeline, rather
35343 than just a simple command. The POSIX definition has been worded to allow this
35344 implementation. Consideration was given to invalidating this approach because of the historical
35345 model from the C shell and System V shell. However, since the System V time utility historically
35346 has not produced accurate results in pipeline timing (because the constituent processes are not
35347 all owned by the same parent process, as allowed by POSIX), it did not seem worthwhile to
35348 break historical KornShell usage.

Shell and Utilities, Issue 6 3127

time Utilities

35349 The term utility is used, rather than command , to highlight the fact that shell compound
35350 commands, pipelines, special built-ins, and so on, cannot be used directly. However, utility
35351 includes user application programs and shell scripts, not just the standard utilities.

35352 FUTURE DIRECTIONS
35353 None.

35354 SEE ALSO
35355 sh, the System Interfaces volume of IEEE Std. 1003.1-200x, times()

35356 CHANGE HISTORY
35357 First released in Issue 2.

35358 Issue 4
35359 Aligned with the ISO/IEC 9945-2: 1993 standard.

35360 Issue 6
35361 This utility is now marked as part of the User Portability Utilities option.

3128 Technical Standard (2000) (Draft July 31, 2000)

Utilities touch

35362 NAME
35363 touch — change file access and modification times

35364 SYNOPSIS
35365 touch [−acm][−r ref_file | −t time] file ...

35366 DESCRIPTION
35367 The touch utility shall change the modification times, access times, or both of files. The
35368 modification time shall be equivalent to the value of the st_mtime member of the stat structure
35369 for a file, as described in the System Interfaces volume of IEEE Std. 1003.1-200x; the access time
35370 shall be equivalent to the value of st_atime .

35371 The time used can be specified by the −t time option-argument, the corresponding time fields of
35372 the file referenced by the −r ref_file option-argument, or the date_time operand, as specified in the
35373 following sections. If none of these are specified, touch shall use the current time (the value
35374 returned by the equivalent of the time() function defined in the System Interfaces volume of
35375 IEEE Std. 1003.1-200x).

35376 For each file operand, touch shall perform actions equivalent to the following functions defined
35377 in the System Interfaces volume of IEEE Std. 1003.1-200x:

35378 1. If file does not exist, a creat() function call is made with the file operand used as the path
35379 argument and the value of the bitwise-inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP,
35380 S_IWGRP, S_IROTH, and S_IWOTH used as the mode argument.

35381 2. The utime() function is called with the following arguments:

35382 a. The file operand is used as the path argument.

35383 b. The utimbuf structure members actime and modtime are determined as described in
35384 the OPTIONS section.

35385 OPTIONS
35386 The touch utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
35387 12.2, Utility Syntax Guidelines. |

35388 The following options shall be supported:

35389 −a Change the access time of file . Do not change the modification time unless −m is
35390 also specified.

35391 −c Do not create a specified file if it does not exist. Do not write any diagnostic
35392 messages concerning this condition.

35393 −m Change the modification time of file . Do not change the access time unless −a is
35394 also specified.

35395 −r ref_file Use the corresponding time of the file named by the path name ref_file instead of
35396 the current time.

35397 −t time Use the specified time instead of the current time. The option-argument shall be a
35398 decimal number of the form:

35399 [[CC] YY] MMDDhhmm[. SS]

35400 where each two digits represents the following:

35401 MM The month of the year [01-12].

35402 DD The day of the month [01-31].

Shell and Utilities, Issue 6 3129

touch Utilities

35403 hh The hour of the day [00-23].

35404 mm The minute of the hour [00-59].

35405 CC The first two digits of the year (the century).

35406 YY The second two digits of the year.

35407 SS The second of the minute [00-61].

35408 Both CC and YY shall be optional. If neither is given, the current year shall be
35409 assumed. If YY is specified, but CC is not, CC shall be derived as follows:

35410 If YY is: CC becomes:________________________
35411 69-99 19
35412 00-68 20________________________L

L
L
L

L
L
L
L

L
L
L
L

35413 The resulting time shall be affected by the value of the TZ environment variable. If
35414 the resulting time value precedes the Epoch, touch shall exit immediately with an
35415 error status. The range of valid times past the Epoch is implementation-defined, |
35416 but it shall extend to at least the time 0 hours, 0 minutes, 0 seconds, January 1, |
35417 2038, Coordinated Universal Time. Some systems may not be able to represent |
35418 dates beyond the January 18, 2038, because they use signed int as a time holder.

35419 The range for SS is (00-61) rather than (00-59) because of leap seconds. If SS is 60 or
35420 61, and the resulting time, as affected by the TZ environment variable, does not
35421 refer to a leap second, the resulting time shall be one or two seconds after a time
35422 where SS is 59. If SS is not given a value, it is assumed to be zero.

35423 If neither the −a nor −m options were specified, touch shall behave as if both the −a and −m
35424 options were specified.

35425 OPERANDS
35426 The following operands shall be supported:

35427 file A path name of a file whose times shall be modified.

35428 STDIN
35429 Not used.

35430 INPUT FILES
35431 None.

35432 ENVIRONMENT VARIABLES
35433 The following environment variables shall affect the execution of touch:

35434 LANG Provide a default value for the internationalization variables that are unset or null.
35435 If LANG is unset or null, the corresponding value from the implementation- |
35436 defined default locale shall be used. If any of the internationalization variables |
35437 contains an invalid setting, the utility shall behave as if none of the variables had
35438 been defined.

35439 LC_ALL If set to a non-empty string value, override the values of all the other
35440 internationalization variables.

35441 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
35442 characters (for example, single-byte as opposed to multi-byte characters in
35443 arguments).

35444 LC_MESSAGES
35445 Determine the locale that should be used to affect the format and contents of

3130 Technical Standard (2000) (Draft July 31, 2000)

Utilities touch

35446 diagnostic messages written to standard error.

35447 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

35448 TZ Determine the timezone to be used for interpreting the time option-argument.

35449 ASYNCHRONOUS EVENTS
35450 Default.

35451 STDOUT
35452 Not used.

35453 STDERR
35454 Used only for diagnostic messages.

35455 OUTPUT FILES
35456 None.

35457 EXTENDED DESCRIPTION
35458 None.

35459 EXIT STATUS
35460 The following exit values shall be returned:

35461 0 The utility executed successfully and all requested changes were made.

35462 >0 An error occurred.

35463 CONSEQUENCES OF ERRORS
35464 Default.

35465 APPLICATION USAGE
35466 The interpretation of time is taken to be seconds since the Epoch (see the Base Definitions volume |
35467 of IEEE Std. 1003.1-200x, Section 4.12, Seconds Since the Epoch). It should be noted that |
35468 implementations conforming to the System Interfaces volume of IEEE Std. 1003.1-200x do not |
35469 take leap seconds into account when computing seconds since the Epoch. When SS=60 is used,
35470 the resulting time always refers to 1 plus seconds since the Epoch for a time when SS=59.

35471 Although the −t time option-argument specifies values in 1969, the access time and modification |
35472 time fields are defined in terms of seconds since the Epoch (midnight on 1 January 1970 UTC). |
35473 Therefore, depending on the value of TZ when touch is run, there is never more than a few valid |
35474 hours in 1969 and there need not be any valid times in 1969.

35475 One ambiguous situation occurs if −t time is not specified, −r ref_file is not specified, and the first
35476 operand is an eight or ten-digit decimal number. A portable script can avoid this problem by
35477 using:

35478 touch −− file

35479 or:

35480 touch ./file

35481 in this case.

35482 EXAMPLES
35483 None.

35484 RATIONALE
35485 The functionality of touch is described almost entirely through references to functions in the
35486 System Interfaces volume of IEEE Std. 1003.1-200x. In this way, there is no duplication of effort
35487 required for describing such side effects as the relationship of user IDs to the user database,

Shell and Utilities, Issue 6 3131

touch Utilities

35488 permissions, and so on.

35489 There are some significant differences between the touch utility in this volume of
35490 IEEE Std. 1003.1-200x and those in System V and BSD systems. They are upward-compatible for
35491 historical applications from both implementations:

35492 1. In System V, an ambiguity exists when a path name that is a decimal number leads the
35493 operands; it is treated as a time value. In BSD, no time value is allowed; files may only be
35494 touched to the current time. The −t time construct solves these problems for future portable
35495 applications (note that the −t option is not historical practice).

35496 2. The inclusion of the century digits, CC , is also new. Note that a ten-digit time value is
35497 treated as if YY , and not CC , were specified. The caveat about the range of dates following
35498 the Epoch was included as recognition that some implementations are not able to
35499 represent dates beyond 18 January 2038 because they use signed int as a time holder.

35500 The −r option was added because several comments requested this capability. This option was
35501 named −f in an early proposal, but was changed because the −f option is used in the BSD version
35502 of touch with a different meaning.

35503 At least one historical implementation of touch incremented the exit code if −c was specified and
35504 the file did not exist. This volume of IEEE Std. 1003.1-200x requires exit status zero if no errors
35505 occur.

35506 FUTURE DIRECTIONS
35507 Applications should use the −r or −t options.

35508 SEE ALSO
35509 date , the System Interfaces volume of IEEE Std. 1003.1-200x, creat(), time(), <sys/stat.h>

CHANGE35510 HISTORY
35511 First released in Issue 2.

35512 Issue 4
35513 Aligned with the ISO/IEC 9945-2: 1993 standard.

35514 Issue 6
35515 The obsolescent date_time operand is removed.

35516 The Open Group corrigenda item U027/1 has been applied. This extends the range of valid time
35517 past the Epoch to at least the time 0 hours, 0 minutes, 0 seconds, January 1, 2038, Coordinated
35518 Universal Time. This is a new requirement on POSIX implementations.

35519 Notes to Reviewers
35520 This section with side shading will not appear in the final copy. - Ed.

35521 Should leap seconds be 00-61? c9x infers that it is only 00-60, and astronomers confirm that
35522 double leap seconds do not occur.

3132 Technical Standard (2000) (Draft July 31, 2000)

Utilities tput

35523 NAME
35524 tput — change terminal characteristics

35525 SYNOPSIS
35526 UP tput [−T type] operand ...
35527

35528 DESCRIPTION
35529 The tput utility shall display terminal-dependent information. The manner in which this
35530 information is retrieved is unspecified. The information displayed shall clear the terminal screen,
35531 initialize the user’s terminal, or reset the user’s terminal, depending on the operand given. The
35532 exact consequences of displaying this information are unspecified.

35533 OPTIONS
35534 The tput utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
35535 12.2, Utility Syntax Guidelines. |

35536 The following option shall be supported:

35537 −T type Indicate the type of terminal. If this option is not supplied and the TERM variable
35538 is unset or null, an unspecified default terminal type shall be used. The setting of
35539 type shall take precedence over the value in TERM.

35540 OPERANDS
35541 The following strings shall be supported as operands by the implementation in the POSIX locale:

35542 clear Display the clear-screen sequence.

35543 init Display the sequence that initializes the user’s terminal in an implementation- |
35544 defined manner. |

35545 reset Display the sequence that resets the user’s terminal in an implementation-defined |
35546 manner. |

35547 If a terminal does not support any of the operations described by these operands, this shall not
35548 be considered an error condition.

35549 STDIN
35550 Not used.

35551 INPUT FILES
35552 None.

35553 ENVIRONMENT VARIABLES
35554 The following environment variables shall affect the execution of tput:

35555 LANG Provide a default value for the internationalization variables that are unset or null.
35556 If LANG is unset or null, the corresponding value from the implementation- |
35557 defined default locale shall be used. If any of the internationalization variables |
35558 contains an invalid setting, the utility shall behave as if none of the variables had
35559 been defined.

35560 LC_ALL If set to a non-empty string value, override the values of all the other
35561 internationalization variables.

35562 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
35563 characters (for example, single-byte as opposed to multi-byte characters in
35564 arguments).

35565 LC_MESSAGES
35566 Determine the locale that should be used to affect the format and contents of

Shell and Utilities, Issue 6 3133

tput Utilities

35567 diagnostic messages written to standard error.

35568 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

35569 TERM Determine the terminal type. If this variable is unset or null, and if the −T option is
35570 not specified, an unspecified default terminal type shall be used.

35571 ASYNCHRONOUS EVENTS
35572 Default.

35573 STDOUT
35574 If standard output is a terminal device, it may be used for writing the appropriate sequence to
35575 clear the screen or reset or initialize the terminal. If standard output is not a terminal device,
35576 undefined results occur.

35577 STDERR
35578 Used only for diagnostic messages.

35579 OUTPUT FILES
35580 None.

35581 EXTENDED DESCRIPTION
35582 None.

35583 EXIT STATUS
35584 The following exit values shall be returned:

35585 0 The requested string was written successfully.

35586 1 Unspecified.

35587 2 Usage error.

35588 3 No information is available about the specified terminal type.

35589 4 The specified operand is invalid.

35590 >4 An error occurred.

35591 CONSEQUENCES OF ERRORS
35592 If one of the operands is not available for the terminal, tput continues processing the remaining
35593 operands.

35594 APPLICATION USAGE
35595 The difference between resetting and initializing a terminal is left unspecified, as they vary
35596 greatly based on hardware types. In general, resetting is a more severe action.

35597 Some terminals use control characters to perform the stated functions, and on such terminals it
35598 might make sense to use tput to store the initialization strings in a file or environment variable
35599 for later use. However, because other terminals might rely on system calls to do this work, the
35600 standard output cannot be used in a portable manner, such as the following non-portable
35601 constructs:

35602 ClearVar=‘tput clear‘
35603 tput reset | mailx −s "Wake Up" ddg

35604 EXAMPLES |

35605 1. Initialize the terminal according to the type of terminal in the environmental variable
35606 TERM. This command can be included in a .profile file.

35607 tput init

3134 Technical Standard (2000) (Draft July 31, 2000)

Utilities tput

35608 2. Reset a 450 terminal.

35609 tput −T 450 reset

35610 RATIONALE
35611 The list of operands was reduced to a minimum for the following reasons:

35612 • The only features chosen were those that were likely to be used by human users interacting
35613 with a terminal.

35614 • Specifying the full terminfo set was not considered desirable, but the standard developers did
35615 not want to select among operands.

35616 • This volume of IEEE Std. 1003.1-200x does not attempt to provide applications with
35617 sophisticated terminal handling capabilities, as that falls outside of its assigned scope and
35618 intersects with the responsibilities of other standards bodies.

35619 The difference between resetting and initializing a terminal is left unspecified as this varies
35620 greatly based on hardware types. In general, resetting is a more severe action.

35621 The exit status of 1 is historically reserved for finding out if a Boolean operand is not set.
35622 Although the operands were reduced to a minimum, the exit status of 1 should still be reserved
35623 for the Boolean operands, for those sites that wish to support them.

35624 FUTURE DIRECTIONS
35625 None.

35626 SEE ALSO
35627 stty , tabs

35628 CHANGE HISTORY
35629 First released in Issue 4.

35630 Issue 6
35631 This utility is now marked as part of the User Portability Utilities option.

Shell and Utilities, Issue 6 3135

tr Utilities

35632 NAME
35633 tr — translate characters

35634 SYNOPSIS
35635 tr [−c | −C][−s] string1 string2

35636 tr −s [−c | −C] string1

35637 tr −d [−c | −C] string1

35638 tr −ds [−c | −C] string1 string2

35639 DESCRIPTION
35640 The tr utility shall copy the standard input to the standard output with substitution or deletion
35641 of selected characters. The options specified and the string1 and string2 operands shall control
35642 translations that occur while copying characters and single-character collating elements.

35643 OPTIONS
35644 The tr utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
35645 Utility Syntax Guidelines. |

35646 The following options shall be supported:

35647 −c Complement the set of values specified by string1 . See the EXTENDED
35648 DESCRIPTION section.

35649 −C Complement the set of characters specified by string1 . See the EXTENDED
35650 DESCRIPTION section.

35651 −d Delete all occurrences of input characters that are specified by string1 .

35652 −s Replace instances of repeated characters with a single character, as described in the
35653 EXTENDED DESCRIPTION section.

35654 OPERANDS
35655 The following operands shall be supported:

35656 string1, string2
35657 Translation control strings. Each string shall represent a set of characters to be
35658 converted into an array of characters used for the translation. For a detailed
35659 description of how the strings are interpreted, see the EXTENDED DESCRIPTION
35660 section.

35661 STDIN
35662 The standard input can be any type of file.

35663 INPUT FILES
35664 None.

35665 ENVIRONMENT VARIABLES
35666 The following environment variables shall affect the execution of tr:

35667 LANG Provide a default value for the internationalization variables that are unset or null.
35668 If LANG is unset or null, the corresponding value from the implementation- |
35669 defined default locale shall be used. If any of the internationalization variables |
35670 contains an invalid setting, the utility shall behave as if none of the variables had
35671 been defined.

35672 LC_ALL If set to a non-empty string value, override the values of all the other
35673 internationalization variables.

3136 Technical Standard (2000) (Draft July 31, 2000)

Utilities tr

35674 LC_COLLATE
35675 Determine the locale for the behavior of range expressions and equivalence classes.

35676 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
35677 characters (for example, single-byte as opposed to multi-byte characters in
35678 arguments) and the behavior of character classes.

35679 LC_MESSAGES
35680 Determine the locale that should be used to affect the format and contents of
35681 diagnostic messages written to standard error.

35682 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

35683 ASYNCHRONOUS EVENTS
35684 Default.

35685 STDOUT
35686 The tr output shall be identical to the input, with the exception of the specified transformations.

35687 STDERR
35688 Used only for diagnostic messages.

35689 OUTPUT FILES
35690 None.

35691 EXTENDED DESCRIPTION
35692 The operands string1 and string2 (if specified) define two arrays of characters. The constructs in
35693 the following list can be used to specify characters or single-character collating elements. If any
35694 of the constructs result in multi-character collating elements, tr shall exclude, without a
35695 diagnostic, those multi-character elements from the resulting array.

35696 character Any character not described by one of the conventions below represents itself.

35697 \octal Octal sequences can be used to represent characters with specific coded values. An
35698 octal sequence shall consist of a backslash followed by the longest sequence of one,
35699 two, or three-octal-digit characters (01234567). The sequence shall cause the value
35700 whose encoding is represented by the one, two, or three-digit octal integer to be
35701 placed into the array. If the size of a byte on the system is greater than nine bits, the
35702 valid escape sequence used to represent a byte is implementation-defined. Multi- |
35703 byte characters require multiple, concatenated escape sequences of this type, |
35704 including the leading ’\’ for each byte.

35705 \character The backslash-escape sequences in the Base Definitions volume of |
35706 IEEE Std. 1003.1-200x, Table 5-1, Escape Sequences and Associated Actions (’\\’ , |
35707 ’\a’ , ’\b’ , ’\f’ , ’\n’ , ’\r’ , ’\t’ , ’\v’) shall be supported. The results of
35708 using any other character, other than an octal digit, following the backslash are
35709 unspecified.

35710 c−c Represents the range of collating elements between the range endpoints (as long as
35711 neither endpoint is an octal sequence of the form \octal), inclusive, as defined by
35712 the current setting of the LC_COLLATE locale category. The application shall
35713 ensure that the starting endpoint precedes the second endpoint in the current
35714 collation order. The characters or collating elements in the range shall be placed in
35715 the array in ascending collation sequence.

35716 If either or both of the range endpoints are octal sequences of the form \octal, this
35717 shall represent the range of specific coded values between the two range
35718 endpoints, inclusive.

Shell and Utilities, Issue 6 3137

tr Utilities

35719 [:class:] Represents all characters belonging to the defined character class, as defined by the
35720 current setting of the LC_CTYPE locale category. The following character class
35721 names shall be accepted when specified in string1 :

35722 alnum blank digit lower punct upper
35723 alpha cntrl graph print space xdigit

35724 XSI In addition, character class expressions of the form [:name:] shall be recognized in
35725 those locales where the name keyword has been given a charclass definition in the
35726 LC_CTYPE category.

35727 When both the −d and −s options are specified, any of the character class names
35728 shall be accepted in string2 . Otherwise, only character class names lower or upper
35729 are valid in string2 and then only if the corresponding character class (upper and
35730 lower, respectively) is specified in the same relative position in string1 . Such a
35731 specification shall be interpreted as a request for case conversion. When [: lower :]
35732 appears in string1 and [:upper:] appears in string2 , the arrays shall contain the
35733 characters from the toupper mapping in the LC_CTYPE category of the current
35734 locale. When [:upper:] appears in string1 and [:lower :] appears in string2 , the arrays
35735 shall contain the characters from the tolower mapping in the LC_CTYPE category
35736 of the current locale. The first character from each mapping pair shall be in the
35737 array for string1 and the second character from each mapping pair shall be in the
35738 array for string2 in the same relative position.

35739 Except for case conversion, the characters specified by a character class expression
35740 shall be placed in the array in an unspecified order.

35741 If the name specified for class does not define a valid character class in the current
35742 locale, the behavior is undefined.

35743 [=equiv=] Represents all characters or collating elements belonging to the same equivalence
35744 class as equiv, as defined by the current setting of the LC_COLLATE locale
35745 category. An equivalence class expression shall be allowed only in string1 , or in
35746 string2 when it is being used by the combined −d and −s options. The characters
35747 belonging to the equivalence class shall be placed in the array in an unspecified
35748 order.

35749 [x*n] Represents n repeated occurrences of the character x . Because this expression is
35750 used to map multiple characters to one, it is only valid when it occurs in string2 . If
35751 n is omitted or is zero, it shall be interpreted as large enough to extend the string2-
35752 based sequence to the length of the string1-based sequence. If n has a leading zero,
35753 it shall be interpreted as an octal value. Otherwise, it shall be interpreted as a
35754 decimal value.

35755 When the −d option is not specified:

35756 • Each input character found in the array specified by string1 shall be replaced by the character
35757 in the same relative position in the array specified by string2 . When the array specified by
35758 string2 is shorter that the one specified by string1 , the results are unspecified.

35759 • If the −C option is specified, the complements of the characters specified by string1 (the set of
35760 all characters in the current character set, as defined by the current setting of LC_CTYPE,
35761 except for those actually specified in the string1 operand) shall be placed in the array in
35762 ascending collation sequence, as defined by the current setting of LC_COLLATE.

35763 • If the −c option is specified, the complement of the values specified by string1 shall be placed
35764 in the array in ascending order by binary value.

3138 Technical Standard (2000) (Draft July 31, 2000)

Utilities tr

35765 • Because the order in which characters specified by character class expressions or equivalence
35766 class expressions is undefined, such expressions should only be used if the intent is to map
35767 several characters into one. An exception is case conversion, as described previously.

35768 When the −d option is specified:

35769 • Input characters found in the array specified by string1 shall be deleted.

35770 • When the −C option is specified with −d, all characters except those specified by string1 shall
35771 be deleted. The contents of string2 are ignored, unless the −s option is also specified.

35772 • When the −c option is specified with −d, all values except those specified by string1 shall be
35773 deleted. The contents of string2 shall be ignored, unless the −s option is also specified.

35774 • The same string cannot be used for both the −d and the −s option; when both options are
35775 specified, both string1 (used for deletion) and string2 (used for squeezing) shall be required.

35776 When the −s option is specified, after any deletions or translations have taken place, repeated
35777 sequences of the same character shall be replaced by one occurrence of the same character, if the
35778 character is found in the array specified by the last operand. If the last operand contains a
35779 character class, such as the following example:

35780 tr −s ’[:space:]’

35781 the last operand’s array shall contain all of the characters in that character class. However, in a
35782 case conversion, as described previously, such as:

35783 tr −s ’[:upper:]’ ’[:lower:]’

35784 the last operand’s array shall contain only those characters defined as the second characters in
35785 each of the toupper or tolower character pairs, as appropriate.

35786 An empty string used for string1 or string2 produces undefined results.

35787 EXIT STATUS
35788 The following exit values shall be returned:

35789 0 All input was processed successfully.

35790 >0 An error occurred.

35791 CONSEQUENCES OF ERRORS
35792 Default.

35793 APPLICATION USAGE
35794 If necessary, string1 and string2 can be quoted to avoid pattern matching by the shell.

35795 If an ordinary digit (representing itself) is to follow an octal sequence, the octal sequence must
35796 use the full three digits to avoid ambiguity.

35797 When string2 is shorter than string1 , a difference results between historical System V and BSD
35798 systems. A BSD system pads string2 with the last character found in string2 . Thus, it is possible
35799 to do the following:

35800 tr 0123456789 d

35801 which would translate all digits to the letter ’d’ . Since this area is specifically unspecified in
35802 this volume of IEEE Std. 1003.1-200x, both the BSD and System V behaviors are allowed, but a
35803 portable application cannot rely on the BSD behavior. It would have to code the example in the
35804 following way:

35805 tr 0123456789 ’[d*]’

Shell and Utilities, Issue 6 3139

tr Utilities

35806 It should be noted that, despite similarities in appearance, the string operands used by tr are not
35807 regular expressions.

35808 Unlike some historical implementations, this definition of the tr utility correctly processes NUL
35809 characters in its input stream. NUL characters can be stripped by using:

35810 tr −d ’\000’

35811 EXAMPLES

35812 1. The following example creates a list of all words in file1 one per line in file2, where a word
35813 is taken to be a maximal string of letters.

35814 tr −cs "[:alpha:]" "[\n*]" <file1 >file2

35815 2. The next example translates all lowercase characters in file1 to uppercase and writes the
35816 results to standard output.

35817 tr "[:lower:]" "[:upper:]" <file1

35818 3. This example uses an equivalence class to identify accented variants of the base character |
35819 ’e’ in file1, which are stripped of diacritical marks and written to file2.

35820 tr "[=e=]" e <file1 >file2

35821 RATIONALE
35822 In some early proposals, an explicit option −n was added to disable the historical behavior of
35823 stripping NUL characters from the input. It was considered that automatically stripping NUL
35824 characters from the input was not correct functionality. However, the removal of −n in a later
35825 proposal does not remove the requirement that tr correctly process NUL characters in its input
35826 stream. NUL characters can be stripped by using tr −d ’\000’.

35827 Historical implementations of tr differ widely in syntax and behavior. For example, the BSD
35828 version has not needed the bracket characters for the repetition sequence. The POSIX Shell and
35829 Utilities tr syntax is based more closely on the System V and XPG3 model while attempting to
35830 accommodate historical BSD implementations. In the case of the short string2 padding, the
35831 decision was to unspecify the behavior and preserve System V and XPG3 scripts, which might
35832 find difficulty with the BSD method. The assumption was made that BSD users of tr have to
35833 make accommodations to meet the POSIX Shell and Utilities syntax. Since it is possible to use
35834 the repetition sequence to duplicate the desired behavior, whereas there is no simple way to
35835 achieve the System V method, this was the correct, if not desirable, approach.

35836 The use of octal values to specify control characters, while having historical precedents, is not
35837 portable. The introduction of escape sequences for control characters should provide the
35838 necessary portability. It is recognized that this may cause some historical scripts to break.

35839 An early proposal included support for multi-character collating elements. It was pointed out
35840 that, while tr does employ some syntactical elements from REs, the aim of tr is quite different;
35841 ranges, for example, do not have a similar meaning (‘‘any of the chars in the range matches’’,
35842 versus ‘‘translate each character in the range to the output counterpart’’). As a result, the
35843 previously included support for multi-character collating elements has been removed. What
35844 remains are ranges in current collation order (to support, for example, accented characters),
35845 character classes, and equivalence classes.

35846 In XPG3 the [:class :] and [=equiv=] conventions are shown with double brackets, as in RE syntax.
35847 However, tr does not implement RE principles; it just borrows part of the syntax. Consequently,
35848 [:class :] and [=equiv=] should be regarded as syntactical elements on a par with [x*n], which is
35849 not an RE bracket expression.

3140 Technical Standard (2000) (Draft July 31, 2000)

Utilities tr

35850 The standard developers will consider changes to tr that allow it to translate characters between
35851 different character encodings, or they will consider providing a new utility to accomplish this.

35852 On historical System V systems, a range expression requires enclosing square-brackets, such as:

35853 tr ’[a-z]’ ’[A-Z]’

35854 However, BSD-based systems did not require the brackets, and this convention is used by POSIX
35855 Shell and Utilities to avoid breaking large numbers of BSD scripts:

35856 tr a-z A-Z

35857 The preceding System V script will continue to work because the brackets, treated as regular
35858 characters, are translated to themselves. However, any System V script that relied on a-z
35859 representing the three characters ’ −,’ and ’z’ have to be rewritten as az−.

35860 A prior version of IEEE Std. 1003.1-200x had a −c option that behaved similarly to the −C option,
35861 but did not supply functionality equivalent to the −c option specified in IEEE Std. 1003.1-200x.
35862 This meant that historical practice of being able to specify tr −d\200−\377 (which would delete
35863 all bytes with the top bit set) would have no effect because, in the C locale, bytes with the values
35864 octal 200 to octal 377 are not characters.

35865 The earlier version also said that octal sequences referred to collating elements and could be
35866 placed adjacent to each other to specify multi-byte characters. However, it was noted that this
35867 caused ambiguities because tr would not be able to tell whether adjacent octal sequences were
35868 intending to specify multi-byte characters or multiple single byte characters.
35869 IEEE Std. 1003.1-200x specifies that octal sequences always refer to single byte binary values.

35870 FUTURE DIRECTIONS
35871 None.

35872 SEE ALSO
35873 sed

35874 CHANGE HISTORY
35875 First released in Issue 2.

35876 Issue 4
35877 Aligned with the ISO/IEC 9945-2: 1993 standard.

35878 Issue 6
35879 The −C operand is added, and the description of the −c operand is changed to align with the
35880 IEEE P1003.2b draft standard.

35881 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 3141

true Utilities

35882 NAME
35883 true — return true value

35884 SYNOPSIS
35885 true

35886 DESCRIPTION
35887 The true utility shall return with exit code zero.

35888 OPTIONS
35889 None.

35890 OPERANDS
35891 None.

35892 STDIN
35893 Not used.

35894 INPUT FILES
35895 None.

35896 ENVIRONMENT VARIABLES
35897 None.

35898 ASYNCHRONOUS EVENTS
35899 Default.

35900 STDOUT
35901 Not used.

35902 STDERR
35903 None.

35904 OUTPUT FILES
35905 None.

35906 EXTENDED DESCRIPTION
35907 None.

35908 EXIT STATUS
35909 Default.

35910 CONSEQUENCES OF ERRORS
35911 None.

35912 APPLICATION USAGE
35913 This utility is typically used in shell scripts, as shown in the EXAMPLES section. The special
35914 built-in utility : is sometimes more efficient than true.

35915 EXAMPLES
35916 This command is executed forever:

35917 while true
35918 do
35919 command
35920 done

3142 Technical Standard (2000) (Draft July 31, 2000)

Utilities true

35921 RATIONALE
35922 The true utility has been retained in this volume of IEEE Std. 1003.1-200x, even though the shell
35923 special built-in : provides similar functionality, because true is widely used in historical scripts
35924 and is less cryptic to novice script readers.

35925 FUTURE DIRECTIONS
35926 None.

35927 SEE ALSO
35928 false , Section 2.9 (on page 2256)

35929 CHANGE HISTORY
35930 First released in Issue 2.

35931 Issue 4
35932 Aligned with the ISO/IEC 9945-2: 1993 standard.

Shell and Utilities, Issue 6 3143

tsort Utilities

35933 NAME
35934 tsort — topological sort

35935 SYNOPSIS
35936 XSI tsort [file]
35937

35938 DESCRIPTION
35939 The tsort utility shall write to standard output a totally ordered list of items consistent with a
35940 partial ordering of items contained in the input.

35941 The application shall ensure that the input consists of pairs of items (non-empty strings)
35942 separated by <blank>s. Pairs of different items indicate ordering. Pairs of identical items
35943 indicate presence, but not ordering.

35944 OPTIONS
35945 None.

35946 OPERANDS
35947 The following operand shall be supported:

35948 file A path name of a text file to order. If no file operand is given, the standard input is
35949 used.

35950 STDIN
35951 The standard input shall be a text file that is used if no file operand is given.

35952 INPUT FILES
35953 The input file named by the file operand is a text file.

35954 ENVIRONMENT VARIABLES
35955 The following environment variables shall affect the execution of tsort:

35956 LANG Provide a default value for the internationalization variables that are unset or null.
35957 If LANG is unset or null, the corresponding value from the implementation- |
35958 defined default locale shall be used. If any of the internationalization variables |
35959 contains an invalid setting, the utility shall behave as if none of the variables had
35960 been defined.

35961 LC_ALL If set to a non-empty string value, override the values of all the other
35962 internationalization variables.

35963 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
35964 characters (for example, single-byte as opposed to multi-byte characters in
35965 arguments and input files).

35966 LC_MESSAGES
35967 Determine the locale that should be used to affect the format and contents of
35968 diagnostic messages written to standard error.

35969 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

35970 ASYNCHRONOUS EVENTS
35971 Default.

35972 STDOUT
35973 The standard output shall be a text file consisting of the order list produced from the partially
35974 ordered input.

3144 Technical Standard (2000) (Draft July 31, 2000)

Utilities tsort

35975 STDERR
35976 Used only for diagnostic messages.

35977 OUTPUT FILES
35978 None.

35979 EXTENDED DESCRIPTION
35980 None.

35981 EXIT STATUS
35982 The following exit values shall be returned:

35983 0 Successful completion.

35984 >0 An error occurred.

35985 CONSEQUENCES OF ERRORS
35986 Default.

35987 APPLICATION USAGE
35988 The LC_COLLATE variable need not affect the actions of tsort. The output ordering is not
35989 lexicographic, but depends on the pairs of items given as input.

35990 EXAMPLES
35991 The command:

35992 tsort <<EOF
35993 a b c c d e
35994 g g
35995 f g e f
35996 h h
35997 EOF

35998 produces the output:

35999 a
36000 b
36001 c
36002 d
36003 e
36004 f
36005 g
36006 h

36007 RATIONALE
36008 None.

36009 FUTURE DIRECTIONS
36010 None.

36011 SEE ALSO
36012 None.

36013 CHANGE HISTORY
36014 First released in Issue 2.

36015 Issue 4
36016 Format reorganized.

36017 Internationalized environment variable support mandated.

Shell and Utilities, Issue 6 3145

tsort Utilities

36018 Issue 6
36019 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3146 Technical Standard (2000) (Draft July 31, 2000)

Utilities tty

36020 NAME
36021 tty — return user’s terminal name

36022 SYNOPSIS
36023 tty

36024 DESCRIPTION
36025 The tty utility shall write to the standard output the name of the terminal that is open as
36026 standard input. The name that is used shall be equivalent to the string that would be returned by
36027 the ttyname() function defined in the System Interfaces volume of IEEE Std. 1003.1-200x.

36028 OPTIONS
36029 The tty utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
36030 12.2, Utility Syntax Guidelines. |

36031 OPERANDS
36032 None.

36033 STDIN
36034 While no input is read from standard input, standard input shall be examined to determine
36035 whether or not it is a terminal, and, if so, to determine the name of the terminal.

36036 INPUT FILES
36037 None.

36038 ENVIRONMENT VARIABLES
36039 The following environment variables shall affect the execution of tty:

36040 LANG Provide a default value for the internationalization variables that are unset or null.
36041 If LANG is unset or null, the corresponding value from the implementation- |
36042 defined default locale shall be used. If any of the internationalization variables |
36043 contains an invalid setting, the utility shall behave as if none of the variables had
36044 been defined.

36045 LC_ALL If set to a non-empty string value, override the values of all the other
36046 internationalization variables.

36047 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36048 characters (for example, single-byte as opposed to multi-byte characters in
36049 arguments).

36050 LC_MESSAGES
36051 Determine the locale that should be used to affect the format and contents of
36052 diagnostic messages written to standard error and informative messages written to
36053 standard output.

36054 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36055 ASYNCHRONOUS EVENTS
36056 Default.

36057 STDOUT
36058 If standard input is a terminal device, a path name of the terminal as specified by the ttyname() |
36059 function defined in the System Interfaces volume of IEEE Std. 1003.1-200x shall be written in the
36060 following format:

36061 "%s\n", < terminal name >

36062 Otherwise, a message shall be written indicating that standard input is not connected to a
36063 terminal. In the POSIX locale, the tty utility shall use the format:

Shell and Utilities, Issue 6 3147

tty Utilities

36064 "not a tty\n"

36065 STDERR
36066 Used only for diagnostic messages.

36067 OUTPUT FILES
36068 None.

36069 EXTENDED DESCRIPTION
36070 None.

36071 EXIT STATUS
36072 The following exit values shall be returned:

36073 0 Standard input is a terminal.

36074 1 Standard input is not a terminal.

36075 >1 An error occurred.

36076 CONSEQUENCES OF ERRORS
36077 Default.

36078 APPLICATION USAGE
36079 This utility checks the status of the file open as standard input against that of a system-defined
36080 set of files. It is possible that no match can be found, or that the match found need not be the
36081 same file as that which was opened for standard input (although they are the same device).

36082 The −s option is useful only if the exit code is wanted. It does not rely on the ability to form a
36083 valid path name. Portable applications should use test −t 0.

36084 EXAMPLES
36085 None.

36086 RATIONALE
36087 None.

36088 FUTURE DIRECTIONS
36089 None.

36090 SEE ALSO
36091 The System Interfaces volume of IEEE Std. 1003.1-200x, isatty(), ttyname()

36092 CHANGE HISTORY
36093 First released in Issue 2.

36094 Issue 4
36095 Aligned with the ISO/IEC 9945-2: 1993 standard.

36096 Issue 5
36097 The SYNOPSIS is changed to indicate two forms of the command, with the second form marked
36098 as obsolete. This is a clarification and does not change the functionality published in previous
36099 issues.

3148 Technical Standard (2000) (Draft July 31, 2000)

Utilities type

36100 NAME
36101 type — write a description of command type

36102 SYNOPSIS
36103 XSI type name...
36104

36105 DESCRIPTION
36106 The type utility shall indicate how each argument would be interpreted if used as a command
36107 name.

36108 OPTIONS
36109 None.

36110 OPERANDS
36111 The following operand shall be supported:

36112 name A name to be interpreted.

36113 STDIN
36114 Not used.

36115 INPUT FILES
36116 None.

36117 ENVIRONMENT VARIABLES
36118 The following environment variables shall affect the execution of type:

36119 LANG Provide a default value for the internationalization variables that are unset or null.
36120 If LANG is unset or null, the corresponding value from the implementation- |
36121 defined default locale shall be used. If any of the internationalization variables |
36122 contains an invalid setting, the utility shall behave as if none of the variables had
36123 been defined.

36124 LC_ALL If set to a non-empty string value, override the values of all the other
36125 internationalization variables.

36126 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36127 characters (for example, single-byte as opposed to multi-byte characters in
36128 arguments).

36129 LC_MESSAGES
36130 Determine the locale that should be used to affect the format and contents of
36131 diagnostic messages written to standard error.

36132 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36133 PATH Determine the location of name, as described in the Base Definitions volume of |
36134 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

36135 ASYNCHRONOUS EVENTS
36136 Default.

36137 STDOUT
36138 The standard output of type contains information about each operand in an unspecified format.
36139 The information provided typically identifies the operand as a shell built-in, function, alias, or
36140 keyword, and where applicable, may display the operand’s path name.

Shell and Utilities, Issue 6 3149

type Utilities

36141 STDERR
36142 Used only for diagnostic messages.

36143 OUTPUT FILES
36144 None.

36145 EXTENDED DESCRIPTION
36146 None.

36147 EXIT STATUS
36148 The following exit values shall be returned:

36149 0 Successful completion.

36150 >0 An error occurred.

36151 CONSEQUENCES OF ERRORS
36152 Default.

36153 APPLICATION USAGE
36154 Since type must be aware of the contents of the current shell execution environment (such as the
36155 lists of commands, functions, and built-ins processed by hash), it is always provided as a shell
36156 regular built-in. If it is called in a separate utility execution environment, such as one of the
36157 following:

36158 nohup type writer
36159 find . −type f | xargs type

36160 it might not produce accurate results.

36161 EXAMPLES
36162 None.

36163 RATIONALE
36164 None.

36165 FUTURE DIRECTIONS
36166 None.

36167 SEE ALSO
36168 command

36169 CHANGE HISTORY
36170 First released in Issue 2.

36171 Issue 4
36172 Relocated from the sh description to reflect its status as a regular built-in utility.

3150 Technical Standard (2000) (Draft July 31, 2000)

Utilities ulimit

36173 NAME
36174 ulimit — set or report file size limit

36175 SYNOPSIS
36176 XSI ulimit [−f][blocks]
36177

36178 DESCRIPTION
36179 The ulimit utility shall set or report the file-size writing limit imposed on files written by the
36180 shell and its child processes (files of any size may be read). Only a process with appropriate
36181 privileges can increase the limit.

36182 OPTIONS
36183 The ulimit utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
36184 12.2, Utility Syntax Guidelines. |

36185 The following option shall be supported:

36186 −f Set (or report, if no blocks operand is present), the file size limit in blocks. The −f
36187 option shall also be the default case.

36188 OPERANDS
36189 The following operand shall be supported:

36190 blocks The number of 512-byte blocks to use as the new file size limit.

36191 STDIN
36192 Not used.

36193 INPUT FILES
36194 None.

36195 ENVIRONMENT VARIABLES
36196 The following environment variables shall affect the execution of ulimit:

36197 LANG Provide a default value for the internationalization variables that are unset or null.
36198 If LANG is unset or null, the corresponding value from the implementation- |
36199 defined default locale shall be used. If any of the internationalization variables |
36200 contains an invalid setting, the utility shall behave as if none of the variables had
36201 been defined.

36202 LC_ALL If set to a non-empty string value, override the values of all the other
36203 internationalization variables.

36204 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36205 characters (for example, single-byte as opposed to multi-byte characters in
36206 arguments).

36207 LC_MESSAGES
36208 Determine the locale that should be used to affect the format and contents of
36209 diagnostic messages written to standard error.

36210 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36211 ASYNCHRONOUS EVENTS
36212 Default.

Shell and Utilities, Issue 6 3151

ulimit Utilities

36213 STDOUT
36214 The standard output shall be used when no blocks operand is present. If the current number of
36215 blocks is limited, the number of blocks in the current limit shall be written in the following
36216 format:

36217 "%d\n", < number of 512-byte blocks >

36218 If there is no current limit on the number of blocks, in the POSIX locale the following format
36219 shall be used:

36220 "unlimited\n"

36221 STDERR
36222 Used only for diagnostic messages.

36223 OUTPUT FILES
36224 None.

36225 EXTENDED DESCRIPTION
36226 None.

36227 EXIT STATUS
36228 The following exit values shall be returned:

36229 0 Successful completion.

36230 >0 A request for a higher limit was rejected or an error occurred.

36231 CONSEQUENCES OF ERRORS
36232 Default.

36233 APPLICATION USAGE
36234 Since ulimit affects the current shell execution environment, it is always provided as a shell
36235 regular built-in. If it is called in separate utility execution environment, such as one of the
36236 following:

36237 nohup ulimit −f 10000
36238 env ulimit 10000

36239 it does not affect the file size limit of the caller’s environment.

36240 Once a limit has been decreased by a process, it cannot be increased (unless appropriate
36241 privileges are involved), even back to the original system limit.

36242 EXAMPLES
36243 Set the file size limit to 51 200 bytes:

36244 ulimit −f 100

36245 RATIONALE
36246 None.

36247 FUTURE DIRECTIONS
36248 None.

36249 SEE ALSO
36250 The System Interfaces volume of IEEE Std. 1003.1-200x, ulimit()

36251 CHANGE HISTORY
36252 First released in Issue 2.

3152 Technical Standard (2000) (Draft July 31, 2000)

Utilities ulimit

36253 Issue 4
36254 Relocated from the sh description to reflect its status as a regular built-in utility.

Shell and Utilities, Issue 6 3153

umask Utilities

36255 NAME
36256 umask — get or set the file mode creation mask

36257 SYNOPSIS
36258 umask [−S][mask]

36259 DESCRIPTION
36260 The umask utility shall set the file mode creation mask of the current shell execution
36261 environment (see Section 2.13 (on page 2273)) to the value specified by the mask operand. This
36262 mask shall affect the initial value of the file permission bits of subsequently created files. If umask
36263 is called in a subshell or separate utility execution environment, such as one of the following:

36264 (umask 002)
36265 nohup umask ...
36266 find . −exec umask ... \;

36267 it shall not affect the file mode creation mask of the caller’s environment.

36268 If the mask operand is not specified, the umask utility shall write to standard output the value of
36269 the invoking process’s file mode creation mask.

36270 OPTIONS
36271 The umask utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
36272 12.2, Utility Syntax Guidelines. |

36273 The following option shall be supported:

36274 −S Produce symbolic output.

36275 The default output style is unspecified, but shall be recognized on a subsequent invocation of
36276 umask on the same system as a mask operand to restore the previous file mode creation mask.

36277 OPERANDS
36278 The following operand shall be supported:

36279 mask A string specifying the new file mode creation mask. The string is treated in the
36280 same way as the mode operand described in the the EXTENDED DESCRIPTION
36281 section for chmod.

36282 For a symbolic_mode value, the new value of the file mode creation mask shall be
36283 the logical complement of the file permission bits portion of the file mode specified
36284 by the symbolic_mode string.

36285 In a symbolic_mode value, the permissions op characters ’+’ and ’ −’ shall be
36286 interpreted relative to the current file mode creation mask; ’+’ shall cause the bits
36287 for the indicated permissions to be cleared in the mask; ’ −’ shall cause the bits for
36288 the indicated permissions to be set in the mask.

36289 The interpretation of mode values that specify file mode bits other than the file
36290 permission bits is unspecified.

36291 In the octal integer form of mode, the specified bits are set in the file mode creation |
36292 mask. |

36293 The file mode creation mask shall be set to the resulting numeric value.

36294 The default output of a prior invocation of umask on the same system with no
36295 operand also shall be recognized as a mask operand. |

3154 Technical Standard (2000) (Draft July 31, 2000)

Utilities umask

36296 STDIN
36297 Not used.

36298 INPUT FILES
36299 None.

36300 ENVIRONMENT VARIABLES
36301 The following environment variables shall affect the execution of umask:

36302 LANG Provide a default value for the internationalization variables that are unset or null.
36303 If LANG is unset or null, the corresponding value from the implementation- |
36304 defined default locale shall be used. If any of the internationalization variables |
36305 contains an invalid setting, the utility shall behave as if none of the variables had
36306 been defined.

36307 LC_ALL If set to a non-empty string value, override the values of all the other
36308 internationalization variables.

36309 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36310 characters (for example, single-byte as opposed to multi-byte characters in
36311 arguments).

36312 LC_MESSAGES
36313 Determine the locale that should be used to affect the format and contents of
36314 diagnostic messages written to standard error.

36315 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36316 ASYNCHRONOUS EVENTS
36317 Default.

36318 STDOUT
36319 When the mask operand is not specified, the umask utility shall write a message to standard
36320 output that can later be used as a umask mask operand.

36321 If −S is specified, the message shall be in the following format:

36322 "u=%s,g=%s,o=%s\n", < owner permissions >, < group permissions >,
36323 <other permissions >

36324 where the three values shall be combinations of letters from the set {r, w, x}; the presence of a
36325 letter shall indicate that the corresponding bit is clear in the file mode creation mask.

36326 If a mask operand is specified, there shall be no output written to standard output.

36327 STDERR
36328 Used only for diagnostic messages.

36329 OUTPUT FILES
36330 None.

36331 EXTENDED DESCRIPTION
36332 None.

36333 EXIT STATUS
36334 The following exit values shall be returned:

36335 0 The file mode creation mask was successfully changed, or no mask operand was supplied.

36336 >0 An error occurred.

Shell and Utilities, Issue 6 3155

umask Utilities

36337 CONSEQUENCES OF ERRORS
36338 Default.

36339 APPLICATION USAGE
36340 Since umask affects the current shell execution environment, it is generally provided as a shell
36341 regular built-in.

36342 In contrast to the negative permission logic provided by the file mode creation mask and the
36343 octal number form of the mask argument, the symbolic form of the mask argument specifies those
36344 permissions that are left alone.

36345 EXAMPLES
36346 Either of the commands:

36347 umask a=rx,ug+w

36348 umask 002

36349 sets the mode mask so that subsequently created files have their S_IWOTH bit cleared.

36350 After setting the mode mask with either of the above commands, the umask command can be
36351 used to write out the current value of the mode mask:

36352 $ umask
36353 0002

36354 (The output format is unspecified, but historical implementations use the octal integer mode |
36355 format.) |

36356 $ umask −S
36357 u=rwx,g=rwx,o=rx

36358 Either of these outputs can be used as the mask operand to a subsequent invocation of the umask
36359 utility.

36360 Assuming the mode mask is set as above, the command:

36361 umask g−w

36362 sets the mode mask so that subsequently created files have their S_IWGRP and S_IWOTH bits
36363 cleared.

36364 The command:

36365 umask −− −w

36366 sets the mode mask so that subsequently created files have all their write bits cleared. Note that
36367 mask operands −r, −w, −x or anything beginning with a hyphen, must be preceded by " −−" to
36368 keep it from being interpreted as an option.

36369 RATIONALE
36370 Since umask affects the current shell execution environment, it is generally provided as a shell
36371 regular built-in. If it is called in a subshell or separate utility execution environment, such as one
36372 of the following:

36373 (umask 002)
36374 nohup umask ...
36375 find . −exec umask ... \;

36376 it does not affect the file mode creation mask of the environment of the caller.

36377 The description of the historical utility was modified to allow it to use the symbolic modes of
36378 chmod. The −s option used in early proposals was changed to −S because −s could be confused

3156 Technical Standard (2000) (Draft July 31, 2000)

Utilities umask

36379 with a symbolic_mode form of mask referring to the S_ISUID and S_ISGID bits. |

36380 Notes to Reviewers |
36381 This section with side shading will not appear in the final copy. - Ed.

36382 D1, XCU, ERN 355 suggests we should specify the default output. Suggestions please.

36383 The default output style is implementation-defined to permit implementors to provide |
36384 migration to the new symbolic style at the time most appropriate to their users. An −o flag to
36385 force octal mode output was omitted because the octal mode may not be sufficient to specify all
36386 of the information that may be present in the file mode creation mask when more secure file
36387 access permission checks are implemented.

36388 It has been suggested that trusted systems developers might appreciate ameliorating the
36389 requirement that the mode mask ‘‘affects’’ the file access permissions, since it seems access
36390 control lists might replace the mode mask to some degree. The wording has been changed to say
36391 that it affects the file permission bits, and it leaves the details of the behavior of how they affect
36392 the file access permissions to the description in the System Interfaces volume of
36393 IEEE Std. 1003.1-200x.

36394 FUTURE DIRECTIONS
36395 None.

36396 SEE ALSO
36397 chmod , the System Interfaces volume of IEEE Std. 1003.1-200x, umask()

36398 CHANGE HISTORY
36399 First released in Issue 2.

36400 Issue 4
36401 Aligned with the ISO/IEC 9945-2: 1993 standard.

36402 Issue 6
36403 The following new requirements on POSIX implementations derive from alignment with the
36404 Single UNIX Specification:

36405 • The octal mode is supported.

Shell and Utilities, Issue 6 3157

unalias Utilities

36406 NAME
36407 unalias — remove alias definitions

36408 SYNOPSIS
36409 UP unalias alias-name ...

36410 unalias −a
36411

36412 DESCRIPTION
36413 The unalias utility shall remove the definition for each alias name specified. See Section 2.3.1 (on
36414 page 2239). The aliases shall be removed from the current shell execution environment; see
36415 Section 2.13 (on page 2273).

36416 OPTIONS
36417 The unalias utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
36418 12.2, Utility Syntax Guidelines. |

36419 The following option shall be supported:

36420 −a Remove all alias definitions from the current shell execution environment.

36421 OPERANDS
36422 The following operand shall be supported:

36423 alias-name The name of an alias to be removed.

36424 STDIN
36425 Not used.

36426 INPUT FILES
36427 None.

36428 ENVIRONMENT VARIABLES
36429 The following environment variables shall affect the execution of unalias:

36430 LANG Provide a default value for the internationalization variables that are unset or null.
36431 If LANG is unset or null, the corresponding value from the implementation- |
36432 defined default locale shall be used. If any of the internationalization variables |
36433 contains an invalid setting, the utility shall behave as if none of the variables had
36434 been defined.

36435 LC_ALL If set to a non-empty string value, override the values of all the other
36436 internationalization variables.

36437 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36438 characters (for example, single-byte as opposed to multi-byte characters in
36439 arguments).

36440 LC_MESSAGES
36441 Determine the locale that should be used to affect the format and contents of
36442 diagnostic messages written to standard error.

36443 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36444 ASYNCHRONOUS EVENTS
36445 Default.

3158 Technical Standard (2000) (Draft July 31, 2000)

Utilities unalias

36446 STDOUT
36447 Not used.

36448 STDERR
36449 Used only for diagnostic messages.

36450 OUTPUT FILES
36451 None.

36452 EXTENDED DESCRIPTION
36453 None.

36454 EXIT STATUS
36455 The following exit values shall be returned:

36456 0 Successful completion.

36457 >0 One of the alias-name operands specified did not represent a valid alias definition, or an
36458 error occurred.

36459 CONSEQUENCES OF ERRORS
36460 Default.

36461 APPLICATION USAGE
36462 Since unalias affects the current shell execution environment, it is generally provided as a shell
36463 regular built-in. |

36464 EXAMPLES
36465 None.

36466 RATIONALE
36467 The unalias description is based on that from historical KornShell implementations. Known
36468 differences exist between that and the C shell. The KornShell version was adopted to be
36469 consistent with all the other KornShell features in this volume of IEEE Std. 1003.1-200x, such as
36470 command line editing.

36471 The −a option is the equivalent of the unalias * form of the C shell and is provided to address |
36472 security concerns about unknown aliases entering the environment of a user (or application) |
36473 through the allowable implementation-defined predefined alias route or as a result of an ENV |
36474 file. (Although unalias could be used to simplify the ‘‘secure’’ shell script shown in the command
36475 rationale, it does not obviate the need to quote all command names. An initial call to unalias −a
36476 would have to be quoted in case there was an alias for unalias.)

36477 FUTURE DIRECTIONS
36478 None.

36479 SEE ALSO
36480 alias

36481 CHANGE HISTORY
36482 First released in Issue 4.

36483 Issue 6
36484 This utility is now marked as part of the User Portability Utilities option.

Shell and Utilities, Issue 6 3159

uname Utilities

36485 NAME
36486 uname — return system name

36487 SYNOPSIS
36488 uname [−snrvma]

36489 DESCRIPTION
36490 By default, the uname utility shall write the operating system name to standard output. When
36491 options are specified, symbols representing one or more system characteristics shall be written
36492 to the standard output. The format and contents of the symbols are implementation-defined. On |
36493 systems conforming to the System Interfaces volume of IEEE Std. 1003.1-200x, the symbols |
36494 written shall be those supported by the uname() function as defined in the System Interfaces
36495 volume of IEEE Std. 1003.1-200x.

36496 OPTIONS
36497 The uname utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
36498 12.2, Utility Syntax Guidelines. |

36499 The following options shall be supported:

36500 −a Behave as though all of the options −mnrsv were specified.

36501 −m Write the name of the hardware type on which the system is running to standard
36502 output.

36503 −n Write the name of this node within an implementation-defined communications |
36504 network.

36505 −r Write the current release level of the operating system implementation.

36506 −s Write the name of the implementation of the operating system.

36507 −v Write the current version level of this release of the operating system
36508 implementation.

36509 If no options are specified, the uname utility shall write the operating system name, as if the −s
36510 option had been specified.

36511 OPERANDS
36512 None.

36513 STDIN
36514 Not used.

36515 INPUT FILES
36516 None.

36517 ENVIRONMENT VARIABLES
36518 The following environment variables shall affect the execution of uname:

36519 LANG Provide a default value for the internationalization variables that are unset or null.
36520 If LANG is unset or null, the corresponding value from the implementation- |
36521 defined default locale shall be used. If any of the internationalization variables |
36522 contains an invalid setting, the utility shall behave as if none of the variables had
36523 been defined.

36524 LC_ALL If set to a non-empty string value, override the values of all the other
36525 internationalization variables.

36526 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36527 characters (for example, single-byte as opposed to multi-byte characters in

3160 Technical Standard (2000) (Draft July 31, 2000)

Utilities uname

36528 arguments).

36529 LC_MESSAGES
36530 Determine the locale that should be used to affect the format and contents of
36531 diagnostic messages written to standard error.

36532 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36533 ASYNCHRONOUS EVENTS
36534 Default.

36535 STDOUT
36536 By default, the output shall be a single line of the following form:

36537 "%s\n", < sysname >

36538 If the −a option is specified, the output shall be a single line of the following form:

36539 "%s %s %s %s %s\n", < sysname >, < nodename>, < release >,
36540 <version >, < machine >

36541 Additional implementation-defined symbols may be written; all such symbols shall be written at |
36542 the end of the line of output before the <newline> character.

36543 If options are specified to select different combinations of the symbols, only those symbols shall
36544 be written, in the order shown above for the −a option. If a symbol is not selected for writing, its
36545 corresponding trailing <blank> characters also shall not be written.

36546 STDERR
36547 Used only for diagnostic messages.

36548 OUTPUT FILES
36549 None.

36550 EXTENDED DESCRIPTION
36551 None.

36552 EXIT STATUS
36553 The following exit values shall be returned:

36554 0 The requested information was successfully written.

36555 >0 An error occurred.

36556 CONSEQUENCES OF ERRORS
36557 Default.

36558 APPLICATION USAGE
36559 Note that any of the symbols could include embedded <space> characters, which may affect
36560 parsing algorithms if multiple options are selected for output.

36561 The node name is typically a name that the system uses to identify itself for intersystem
36562 communication addressing.

36563 EXAMPLES
36564 The following command:

36565 uname −sr

36566 writes the operating system name and release level, separated by one or more <blank>
36567 characters.

Shell and Utilities, Issue 6 3161

uname Utilities

36568 RATIONALE
36569 It was suggested that this utility cannot be used portably since the format of the symbols is |
36570 implementation-defined. The POSIX.1 working group could not achieve consensus on defining |
36571 these formats in the underlying uname() function, and there was no expectation that this volume
36572 of IEEE Std. 1003.1-200x would be any more successful. Some applications may still find this
36573 historical utility of value. For example, the symbols could be used for system log entries or for
36574 comparison with operator or user input.

36575 FUTURE DIRECTIONS
36576 None.

36577 SEE ALSO
36578 The System Interfaces volume of IEEE Std. 1003.1-200x, uname()

36579 CHANGE HISTORY
36580 First released in Issue 2.

36581 Issue 4
36582 Aligned with the ISO/IEC 9945-2: 1993 standard.

36583 Issue 4, Version 2
36584 The SYNOPSIS section lists all the valid options.

3162 Technical Standard (2000) (Draft July 31, 2000)

Utilities uncompress

36585 NAME
36586 uncompress — expand compressed data

36587 SYNOPSIS
36588 XSI uncompress [−cfv][file ...]
36589

36590 DESCRIPTION
36591 The uncompress utility shall restore files to their original state after they have been compressed
36592 using the compress utility. If no files are specified, the standard input shall be uncompressed to
36593 the standard output. If the invoking process has appropriate privileges, the ownership, modes,
36594 access time, and modification time of the original file shall be preserved.

36595 This utility shall support the uncompressing of any files produced by the compress utility on the
36596 same implementation. For files produced by compress on other systems, uncompress supports 9 to
36597 14-bit compression (see compress (on page 2477), −b); it is implementation-defined whether |
36598 values of −b greater than 14 are supported. |

36599 OPTIONS
36600 The uncompress utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, |
36601 Section 12.2, Utility Syntax Guidelines. |

36602 The following options shall be supported:

36603 −c Write to standard output; no files are changed.

36604 −f Do not prompt for overwriting files. Except when run in the background, if −f is
36605 not given the user shall be prompted as to whether an existing file should be
36606 overwritten. If the standard input is not a terminal and −f is not given, uncompress
36607 shall write a diagnostic message to standard error and exit with a status greater
36608 than zero.

36609 −v Write messages to standard error concerning the expansion of each file.

36610 OPERANDS
36611 The following operand shall be supported:

36612 file A path name of a file. If file already has the .Z suffix specified, it shall be used as
36613 the input file and the output file shall be named file with the .Z suffix removed.
36614 Otherwise, file shall be used as the name of the output file and file with the .Z
36615 suffix appended shall be used as the input file.

36616 STDIN
36617 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ .

36618 INPUT FILES
36619 Input files shall be in the format produced by the compress utility.

36620 ENVIRONMENT VARIABLES
36621 The following environment variables shall affect the execution of uncompress:

36622 LANG Provide a default value for the internationalization variables that are unset or null.
36623 If LANG is unset or null, the corresponding value from the implementation- |
36624 defined default locale shall be used. If any of the internationalization variables |
36625 contains an invalid setting, the utility shall behave as if none of the variables had
36626 been defined.

36627 LC_ALL If set to a non-empty string value, override the values of all the other
36628 internationalization variables.

Shell and Utilities, Issue 6 3163

uncompress Utilities

36629 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36630 characters (for example, single-byte as opposed to multi-byte characters in
36631 arguments).

36632 LC_MESSAGES
36633 Determine the locale that should be used to affect the format and contents of
36634 diagnostic messages written to standard error.

36635 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36636 ASYNCHRONOUS EVENTS
36637 Default.

36638 STDOUT
36639 When there are no file operands or the −c option is specified, the uncompressed output is written |
36640 to standard output.

36641 STDERR
36642 Prompts shall be written to the standard error output under the conditions specified in the
36643 DESCRIPTION and OPTIONS sections. The prompts shall contain the file path name, but their
36644 format is otherwise unspecified. Otherwise, the standard error output shall be used only for
36645 diagnostic messages.

36646 OUTPUT FILES
36647 Output files are the same as the respective input files to compress.

36648 EXTENDED DESCRIPTION
36649 None.

36650 EXIT STATUS
36651 The following exit values shall be returned:

36652 0 Successful completion.

36653 >0 An error occurred.

36654 CONSEQUENCES OF ERRORS
36655 The input file remains unmodified.

36656 APPLICATION USAGE
36657 The limit of 14 on the compress −b bits argument is to achieve portability to all systems (within
36658 the restrictions imposed by the lack of an explicit published file format). Some systems based on
36659 16-bit architectures cannot support 15 or 16-bit uncompression.

36660 EXAMPLES
36661 None.

36662 RATIONALE
36663 None.

36664 FUTURE DIRECTIONS
36665 None.

36666 SEE ALSO
36667 compress, zcat

36668 CHANGE HISTORY
36669 First released in Issue 4.

3164 Technical Standard (2000) (Draft July 31, 2000)

Utilities uncompress

36670 Issue 4, Version 2
36671 The DESCRIPTION is clarified to state that the ownership, modes, access time, and modification
36672 time of the original file are preserved if the invoking process has appropriate privileges.

36673 Issue 6
36674 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 3165

unexpand Utilities

36675 NAME
36676 unexpand — convert spaces to tabs

36677 SYNOPSIS
36678 UP unexpand [−a| −t tablist][file ...]
36679

36680 DESCRIPTION
36681 The unexpand utility shall copy files or standard input to standard output, converting <blank>
36682 characters at the beginning of each line into the maximum number of <tab> characters followed
36683 by the minimum number of <space> characters needed to fill the same column positions
36684 originally filled by the translated <blank> characters. By default, tabstops shall be set at every
36685 eighth column position. Each <backspace> character shall be copied to the output, and shall
36686 cause the column position count for tab calculations to be decremented; the count shall never be
36687 decremented to a value less than one.

36688 OPTIONS
36689 The unexpand utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, |
36690 Section 12.2, Utility Syntax Guidelines. |

36691 The following options shall be supported:

36692 −a In addition to translating <blank> characters at the beginning of each line, translate
36693 all sequences of two or more <blank> characters immediately preceding a tab stop
36694 to the maximum number of <tab> characters followed by the minimum number of
36695 <space> characters needed to fill the same column positions originally filled by the
36696 translated <blank> characters.

36697 −t tablist Specify the tab stops. The application shall ensure that the tablist option-argument
36698 is a single argument consisting of a single positive decimal integer or multiple
36699 positive decimal integers, separated by <blank> characters or commas, in
36700 ascending order. If a single number is given, tabs shall be set tablist column
36701 positions apart instead of the default 8. If multiple numbers are given, the tabs
36702 shall be set at those specific column positions.

36703 The application shall ensure that each tab-stop position N is an integer value
36704 greater than zero, and the list shall be in strictly ascending order. This is taken to
36705 mean that, from the start of a line of output, tabbing to position N shall cause the
36706 next character output to be in the (N+1)th column position on that line. When the
36707 −t option is not specified, the default shall be the equivalent of specifying −t 8
36708 (except for the interaction with −a, described below).

36709 No <space>-to-<tab> character conversions shall occur for characters at positions
36710 beyond the last of those specified in a multiple tab-stop list.

36711 When −t is specified, the presence or absence of the −a option shall be ignored;
36712 conversion shall not be limited to the processing of leading <blank> characters.

36713 OPERANDS
36714 The following operand shall be supported:

36715 file A path name of a text file to be used as input.

36716 STDIN
36717 See the INPUT FILES section.

3166 Technical Standard (2000) (Draft July 31, 2000)

Utilities unexpand

36718 INPUT FILES
36719 The input files shall be text files.

36720 ENVIRONMENT VARIABLES
36721 The following environment variables shall affect the execution of unexpand:

36722 LANG Provide a default value for the internationalization variables that are unset or null.
36723 If LANG is unset or null, the corresponding value from the implementation- |
36724 defined default locale shall be used. If any of the internationalization variables |
36725 contains an invalid setting, the utility shall behave as if none of the variables had
36726 been defined.

36727 LC_ALL If set to a non-empty string value, override the values of all the other
36728 internationalization variables.

36729 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36730 characters (for example, single-byte as opposed to multi-byte characters in
36731 arguments and input files), the processing of <tab> and <space> characters and for
36732 the determination of the width in column positions each character would occupy
36733 on an output device.

36734 LC_MESSAGES
36735 Determine the locale that should be used to affect the format and contents of
36736 diagnostic messages written to standard error.

36737 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36738 ASYNCHRONOUS EVENTS
36739 Default.

36740 STDOUT
36741 The standard output is equivalent to the input files with the specified <space>-to-<tab>
36742 character conversions.

36743 STDERR
36744 Used only for diagnostic messages.

36745 OUTPUT FILES
36746 None.

36747 EXTENDED DESCRIPTION
36748 None.

36749 EXIT STATUS
36750 The following exit values shall be returned:

36751 0 Successful completion.

36752 >0 An error occurred.

36753 CONSEQUENCES OF ERRORS
36754 Default.

Shell and Utilities, Issue 6 3167

unexpand Utilities

36755 APPLICATION USAGE
36756 One non-intuitive aspect of unexpand is its restriction to leading spaces when neither −a nor −t is
36757 specified. Users who desire to always convert all spaces in a file can easily alias unexpand to use
36758 the −a or −t 8 option. |

36759 EXAMPLES
36760 None.

36761 RATIONALE
36762 On several occasions, consideration was given to adding a −t option to the unexpand utility to
36763 complement the −t in expand (see expand (on page 2636)). The historical intent of unexpand was
36764 to translate multiple <blank>s into tab stops, where tab stops were a multiple of eight column
36765 positions on most UNIX systems. An early proposal omitted −t because it seemed outside the
36766 scope of the UPE; it was not described in any of the base documents. However, hard-coding tab
36767 stops every eight columns was not suitable for the international community and broke historical
36768 precedents for some vendors in the FORTRAN community, so −t was restored in conjunction
36769 with the list of valid extension categories considered by the standard developers. Thus, unexpand
36770 is now the logical converse of expand.

36771 FUTURE DIRECTIONS
36772 None.

36773 SEE ALSO
36774 expand , tabs

36775 CHANGE HISTORY
36776 First released in Issue 4.

36777 Issue 6
36778 This utility is now marked as part of the User Portability Utilities option.

36779 The definition of the LC_CTYPE environment variable is changed to align with the
36780 IEEE P1003.2b draft standard.

36781 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3168 Technical Standard (2000) (Draft July 31, 2000)

Utilities unget

36782 NAME
36783 unget — undo a previous get of an SCCS file (DEVELOPMENT)

36784 SYNOPSIS
36785 XSI unget [−ns][−r SID] file ...
36786

36787 DESCRIPTION
36788 The unget utility shall reverse the effect of a get −e done prior to creating the intended new delta.

36789 OPTIONS
36790 The unget utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
36791 12.2, Utility Syntax Guidelines. |

36792 The following options shall be supported:

36793 −r SID Uniquely identify which delta is no longer intended. (This would have been
36794 specified by get as the new delta.) The use of this option is necessary only if two or
36795 more outstanding get commands for editing on the same SCCS file were done by
36796 the same person (login name).

36797 −s Suppress the writing to standard output of the intended delta’s SID.

36798 −n Retain the file that was obtained by get, which would normally be removed from
36799 the current directory.

36800 OPERANDS
36801 The following operands shall be supported:

36802 file A path name of an existing SCCS file or a directory. If file is a directory, the unget |
36803 utility shall behave as though each file in the directory were specified as a named |
36804 file, except that non-SCCS files (last component of the path name does not begin
36805 with s.) and unreadable files shall be silently ignored.

36806 If a single instance file is specified as ’ −’ , the standard input shall be read; each |
36807 line of the standard input shall be taken to be the name of an SCCS file to be |
36808 processed. Non-SCCS files and unreadable files shall be silently ignored. |

36809 STDIN
36810 The standard input shall be a text file used only when the file operand is specified as ’ −’ . Each
36811 line of the text file shall be interpreted as an SCCS path name.

36812 INPUT FILES
36813 Any SCCS files processed are files of an unspecified format.

36814 ENVIRONMENT VARIABLES
36815 The following environment variables shall affect the execution of unget:

36816 LANG Provide a default value for the internationalization variables that are unset or null.
36817 If LANG is unset or null, the corresponding value from the implementation- |
36818 defined default locale shall be used. If any of the internationalization variables |
36819 contains an invalid setting, the utility shall behave as if none of the variables had
36820 been defined.

36821 LC_ALL If set to a non-empty string value, override the values of all the other
36822 internationalization variables.

36823 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36824 characters (for example, single-byte as opposed to multi-byte characters in
36825 arguments and input files).

Shell and Utilities, Issue 6 3169

unget Utilities

36826 LC_MESSAGES
36827 Determine the locale that should be used to affect the format and contents of
36828 diagnostic messages written to standard error.

36829 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36830 ASYNCHRONOUS EVENTS
36831 Default.

36832 STDOUT
36833 The standard output shall consist of a line for each file, in the following format:

36834 "%s\n", < SID removed from file >

36835 If there is more than one named file or if a directory or standard input is named, each path name
36836 shall be written before each of the preceding lines:

36837 "\n%s:\n", < pathname >

36838 STDERR
36839 Used only for diagnostic messages.

36840 OUTPUT FILES
36841 Any SCCS files updated are files of an unspecified format. During processing of a file , a locking
36842 z-file , as described in get, and a q-file (a working copy of the p-file), may be created and deleted.
36843 The p-file and g-file , as described in get, shall be deleted.

36844 EXTENDED DESCRIPTION
36845 None.

36846 EXIT STATUS
36847 The following exit values shall be returned:

36848 0 Successful completion.

36849 >0 An error occurred.

36850 CONSEQUENCES OF ERRORS
36851 Default.

36852 APPLICATION USAGE
36853 None.

36854 EXAMPLES
36855 None.

36856 RATIONALE
36857 None.

36858 FUTURE DIRECTIONS
36859 None.

36860 SEE ALSO
36861 delta , get, sact

36862 CHANGE HISTORY
36863 First released in Issue 2.

36864 Issue 4
36865 Format reorganized.

36866 Utility Syntax Guidelines support mandated.

3170 Technical Standard (2000) (Draft July 31, 2000)

Utilities unget

36867 Internationalized environment variable support mandated.

36868 Issue 6
36869 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements. |

36870 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements. |

Shell and Utilities, Issue 6 3171

uniq Utilities

36871 NAME
36872 uniq — report or filter out repeated lines in a file

36873 SYNOPSIS
36874 uniq [−c| −d| −u][−f fields][−s char][input_file [output_file]]

36875 DESCRIPTION
36876 The uniq utility shall read an input file comparing adjacent lines, and writes one copy of each
36877 input line on the output. The second and succeeding copies of repeated adjacent input lines shall
36878 not be written.

36879 Repeated lines in the input shall not be detected if they are not adjacent.

36880 OPTIONS
36881 The uniq utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
36882 12.2, Utility Syntax Guidelines. |

36883 The following options shall be supported:

36884 −c Precede each output line with a count of the number of times the line occurred in
36885 the input.

36886 −d Suppress the writing of lines that are not repeated in the input.

36887 −f fields Ignore the first fields fields on each input line when doing comparisons, where
36888 fields is a positive decimal integer. A field is the maximal string matched by the
36889 basic regular expression:

36890 [[:blank:]]*[ˆ[:blank:]]*

36891 If the fields option-argument specifies more fields than appear on an input line, a
36892 null string shall be used for comparison.

36893 −s chars Ignore the first chars characters when doing comparisons, where chars shall be a
36894 positive decimal integer. If specified in conjunction with the −f option, the first
36895 chars characters after the first fields fields shall be ignored. If the chars option-
36896 argument specifies more characters than remain on an input line, a null string shall
36897 be used for comparison.

36898 −u Suppress the writing of lines that are repeated in the input.

36899 OPERANDS
36900 The following operands shall be supported:

36901 input_file A path name of the input file. If the input_file operand is not specified, or if the
36902 input_file is ’ −’ , the standard input is used.

36903 output_file A path name of the output file. If the output_file operand is not specified, the
36904 standard output shall be used. The results are unspecified if the file named by
36905 output_file is the file named by input_file .

36906 STDIN
36907 The standard input shall be used only if no input_file operand is specified or if input_file is ’ −’ .
36908 See the INPUT FILES section.

36909 INPUT FILES
36910 The input file shall be a text file.

3172 Technical Standard (2000) (Draft July 31, 2000)

Utilities uniq

36911 ENVIRONMENT VARIABLES
36912 The following environment variables shall affect the execution of uniq:

36913 LANG Provide a default value for the internationalization variables that are unset or null.
36914 If LANG is unset or null, the corresponding value from the implementation- |
36915 defined default locale shall be used. If any of the internationalization variables |
36916 contains an invalid setting, the utility shall behave as if none of the variables had
36917 been defined.

36918 LC_ALL If set to a non-empty string value, override the values of all the other
36919 internationalization variables.

36920 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36921 characters (for example, single-byte as opposed to multi-byte characters in
36922 arguments and input files) which characters constitute a <blank> character in the
36923 current locale.

36924 LC_MESSAGES
36925 Determine the locale that should be used to affect the format and contents of
36926 diagnostic messages written to standard error.

36927 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36928 ASYNCHRONOUS EVENTS
36929 Default.

36930 STDOUT
36931 The standard output shall be used only if no output_file operand is specified. See the OUTPUT
36932 FILES section.

36933 STDERR
36934 Used only for diagnostic messages.

36935 OUTPUT FILES
36936 If the −c option is specified, the application shall ensure that the output file is empty or each line
36937 shall be of the form:

36938 "%d %s", < number of duplicates >, < line >

36939 otherwise, the application shall ensure that the output file is empty or each line shall be of the
36940 form:

36941 "%s", < line >

36942 EXTENDED DESCRIPTION
36943 None.

36944 EXIT STATUS
36945 The following exit values shall be returned:

36946 0 The utility executed successfully.

36947 >0 An error occurred.

36948 CONSEQUENCES OF ERRORS
36949 Default.

Shell and Utilities, Issue 6 3173

uniq Utilities

36950 APPLICATION USAGE
36951 The sort utility can be used to cause repeated lines to be adjacent in the input file.

36952 EXAMPLES
36953 The following input file data (but flushed left) was used for a test series on uniq:

36954 #01 foo0 bar0 foo1 bar1
36955 #02 bar0 foo1 bar1 foo1
36956 #03 foo0 bar0 foo1 bar1
36957 #04
36958 #05 foo0 bar0 foo1 bar1
36959 #06 foo0 bar0 foo1 bar1
36960 #07 bar0 foo1 bar1 foo0

36961 What follows is a series of test invocations of the uniq utility that use a mixture of uniq options
36962 against the input file data. These tests verify the meaning of adjacent . The uniq utility views the
36963 input data as a sequence of strings delimited by ’\n’ . Accordingly, for the fieldsth member of
36964 the sequence, uniq interprets unique or repreated adjacent lines strictly relative to the fields+1th
36965 member.

36966 1. This first example tests the line counting option, comparing each line of the input file data
36967 starting from the second field:

36968 uniq −c −f 1 uniq_0I.t
36969 1 #01 foo0 bar0 foo1 bar1
36970 1 #02 bar0 foo1 bar1 foo0
36971 1 #03 foo0 bar0 foo1 bar1
36972 1 #04
36973 2 #05 foo0 bar0 foo1 bar1
36974 1 #07 bar0 foo1 bar1 foo0

36975 The number ’2’ , prefixing the fifth line of output, signifies that the uniq utility detected a
36976 pair of repeated lines. Given the input data, this can only be true when uniq is run using
36977 the −f 1 option (which shall cause uniq to ignore the first field on each input line).

36978 2. The second example tests the option to suppress unique lines, comparing each line of the
36979 input file data starting from the second field:

36980 uniq −d −f 1 uniq_0I.t
36981 #05 foo0 bar0 foo1 bar1

36982 3. This test suppresses repeated lines, comparing each line of the input file data starting from
36983 the second field:

36984 uniq −u −f 1 uniq_0I.t
36985 #01 foo0 bar0 foo1 bar1
36986 #02 bar0 foo1 bar1 foo1
36987 #03 foo0 bar0 foo1 bar1
36988 #04
36989 #07 bar0 foo1 bar1 foo0

36990 4. This suppresses unique lines, comparing each line of the input file data starting from the
36991 third character:

36992 uniq −d −s 2 uniq_0I.t

36993 In the last example, the uniq utility found no input matching the above criteria.

3174 Technical Standard (2000) (Draft July 31, 2000)

Utilities uniq

36994 RATIONALE
36995 Some historical implementations have limited lines to be 1 080 bytes in length, which does not
36996 meet the implied {LINE_MAX} limit. |

36997 FUTURE DIRECTIONS
36998 None.

36999 SEE ALSO
37000 comm, sort

37001 CHANGE HISTORY
37002 First released in Issue 2.

37003 Issue 4
37004 Aligned with the ISO/IEC 9945-2: 1993 standard.

37005 Issue 6
37006 The obsolescent SYNOPSIS and associated text are removed.

37007 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 3175

unlink Utilities

37008 NAME
37009 unlink — call the unlink() function

37010 SYNOPSIS
37011 XSI unlink file
37012

37013 DESCRIPTION
37014 The unlink utility shall perform the function call:

37015 unlink(file);

37016 A user may need appropriate privilege to invoke the unlink utility.

37017 OPTIONS
37018 None.

37019 OPERANDS
37020 The following operands shall be supported:

37021 file The path name of an existing file.

37022 STDIN
37023 Not used.

37024 INPUT FILES
37025 Not used.

37026 ENVIRONMENT VARIABLES
37027 The following environment variables shall affect the execution of unlink:

37028 LANG Provide a default value for the internationalization variables that are unset or null.
37029 If LANG is unset or null, the corresponding value from the implementation- |
37030 defined default locale shall be used. If any of the internationalization variables |
37031 contain an invalid setting, the utility behaves as if none of the variables had been
37032 set.

37033 LC_ALL If set to a non-empty string value, override the values of all the other
37034 internationalization variables.

37035 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37036 characters (for example, single-byte as opposed to multi-byte characters in
37037 arguments).

37038 LC_MESSAGES
37039 Determine the locale that should be used to affect the format and contents of
37040 diagnostic messages written to standard error.

37041 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37042 ASYNCHRONOUS EVENTS
37043 Default.

37044 STDOUT
37045 None.

37046 STDERR
37047 Used only for diagnostic messages.

3176 Technical Standard (2000) (Draft July 31, 2000)

Utilities unlink

37048 OUTPUT FILES
37049 None.

37050 EXTENDED DESCRIPTION
37051 None.

37052 EXIT STATUS
37053 The following exit values shall be returned:

37054 0 Successful completion.

37055 >0 An error occurred.

37056 CONSEQUENCES OF ERRORS
37057 Default.

37058 APPLICATION USAGE
37059 None.

37060 EXAMPLES
37061 None.

37062 RATIONALE
37063 None.

37064 FUTURE DIRECTIONS
37065 None.

37066 SEE ALSO
37067 link , rm, the System Interfaces volume of IEEE Std. 1003.1-200x, unlink()

37068 CHANGE HISTORY
37069 First released in Issue 5.

Shell and Utilities, Issue 6 3177

uucp Utilities

37070 NAME
37071 uucp — system-to-system copy

37072 SYNOPSIS
37073 UN XSI uucp [−cCdfjmr][−n user] source-file ... destination-file
37074

37075 DESCRIPTION
37076 The uucp utility shall copy files named by the source-file arguments to the destination-file
37077 argument. The files named can be on local or remote systems.

37078 The uucp utility cannot guarantee support for all character encodings in all circumstances. For
37079 example, transmission data may be restricted to 7 bits by the underlying network, 8-bit data and
37080 file names need not be portable to non-internationalized systems, and so on. Under these
37081 circumstances, it is recommended that only characters defined in the ISO/IEC 646: 1991
37082 standard International Reference Version (equivalent to ASCII) 7-bit range of characters be used,
37083 and that only characters defined in the Portable File Name Character Set be used for naming |
37084 files. The protocol for transfer of files is unspecified by IEEE Std. 1003.1-200x. |

37085 OPTIONS
37086 The uucp utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
37087 12.2, Utility Syntax Guidelines. |

37088 The following options shall be supported:

37089 −c Do not copy local file to the spool directory for transfer to the remote machine
37090 (default).

37091 UN −C Force the copy of local files to the spool directory for transfer.

37092 −d Make all necessary directories for the file copy (default).

37093 UN −f Do not make intermediate directories for the file copy.

37094 UN −j Write the job identification string to standard output. This job identification can be
37095 used by uustat to obtain the status or terminate a job.

37096 −m Send mail to the requester when the copy is completed.

37097 UN −n user Notify user on the remote system that a file was sent.

37098 UN −r Do not start the file transfer; just queue the job.

37099 OPERANDS
37100 The following operands shall be supported:

37101 destination-file, source-file
37102 A path name of a file to be copied to, or from, respectively. Either name can be a
37103 path name on the local machine, or can have the form:

37104 system-name ! pathname

37105 where system-name is taken from a list of system names that uucp knows about.
37106 The destination system-name can also be a list of names such as:

37107 system-name ! system-name !...! system-name ! pathname

37108 in which case, an attempt is made to send the file via the specified route to the
37109 destination. Care should be taken to ensure that intermediate nodes in the route
37110 are willing to forward information.

3178 Technical Standard (2000) (Draft July 31, 2000)

Utilities uucp

37111 The shell pattern matching notation characters ’?’ , ’*’ , and "[...]" appearing
37112 in pathname are expanded on the appropriate system.

37113 Path names can be one of:

37114 1. An absolute path name.

37115 2. A path name preceded by ˜user where user is a login name on the specified
37116 system and is replaced by that user’s login directory. Note that if an invalid
37117 login is specified, the default is to the public directory (called PUBDIR; the
37118 actual location of PUBDIR is implementation-defined). |

37119 3. A path name preceded by ˜/destination where destination is appended to
37120 PUBDIR.

37121 Note: This destination is treated as a file name unless more than one file
37122 is being transferred by this request or the destination is already a
37123 directory. To ensure that it is a directory, follow the destination
37124 with a ’/’ . For example, ˜/dan/ as the destination makes the
37125 directory PUBDIR/dan if it does not exist and put the requested
37126 files in that directory.

37127 4. Anything else is prefixed by the current directory.

37128 If the result is an erroneous path name for the remote system, the copy fails. If the
37129 destination-file is a directory, the last part of the source-file name is used.

37130 The read, write, and execute permissions given by uucp are implementation- |
37131 defined. |

37132 STDIN
37133 Not used.

37134 INPUT FILES
37135 The files to be copied are regular files.

37136 ENVIRONMENT VARIABLES
37137 The following environment variables shall affect the execution of uucp:

37138 LANG Provide a default value for the internationalization variables that are unset or null.
37139 If LANG is unset or null, the corresponding value from the implementation- |
37140 defined default locale shall be used. If any of the internationalization variables |
37141 contains an invalid setting, the utility shall behave as if none of the variables had
37142 been defined.

37143 LC_ALL If set to a non-empty string value, override the values of all the other
37144 internationalization variables.

37145 LC_COLLATE
37146 Determine the locale for the behavior of ranges, equivalence classes and multi-
37147 character collating elements within bracketed file name patterns.

37148 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37149 characters (for example, single-byte as opposed to multi-byte characters in
37150 arguments and input files) and the behavior of character classes within bracketed
37151 file name patterns (for example, "’[[:lower:]]*’").

37152 LC_MESSAGES
37153 Determine the locale that should be used to affect the format and contents of
37154 diagnostic messages written to standard error, and informative messages written

Shell and Utilities, Issue 6 3179

uucp Utilities

37155 to standard output.

37156 LC_TIME Determine the format of date and time strings output by uucp.

37157 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37158 TZ Determine the timezone used with date and time strings.

37159 ASYNCHRONOUS EVENTS
37160 Default.

37161 STDOUT
37162 Not used.

37163 STDERR
37164 Used only for diagnostic messages.

37165 OUTPUT FILES
37166 The output files (which may be on other systems) are copies of the input files.

37167 If the −m is used, mail files are modified.

37168 EXTENDED DESCRIPTION
37169 None.

37170 EXIT STATUS
37171 The following exit values shall be returned:

37172 0 Successful completion.

37173 >0 An error occurred.

37174 CONSEQUENCES OF ERRORS
37175 Default.

37176 APPLICATION USAGE
37177 The domain of remotely accessible files can (and for obvious security reasons usually should) be
37178 severely restricted.

37179 Note that the ’!’ character in addresses has to be escaped when using csh as a command
37180 interpreter because of its history substitution syntax. For ksh and sh the escape is not necessary,
37181 but may be used.

37182 Typical implementations of this utility require a communications line configured to use the Base |
37183 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface, but other |
37184 communications means may be used. On systems where there are no available communications |
37185 means (either temporarily or permanently), this utility shall write an error message describing
37186 the problem and exit with a non-zero exit status.

37187 As noted above, shell metacharacters appearing in path names are expanded on the appropriate
37188 system. On an internationalized system, this is done under the control of local settings of
37189 LC_COLLATE and LC_CTYPE. Thus, care should be taken when using bracketed file name
37190 patterns, as collation and typing rules may vary from one system to another. Also be aware that
37191 certain types of expression (that is, equivalence classes, character classes, and collating symbols)
37192 need not be supported on non-internationalized systems.

37193 EXAMPLES
37194 None.

3180 Technical Standard (2000) (Draft July 31, 2000)

Utilities uucp

37195 RATIONALE
37196 None.

37197 FUTURE DIRECTIONS
37198 None.

37199 SEE ALSO
37200 mailx , uuencode, uustat , uux

37201 CHANGE HISTORY
37202 First released in Issue 2.

37203 Issue 4
37204 Format reorganized.

37205 Split into a separate description.

37206 Utility Syntax Guidelines support mandated.

37207 Internationalized environment variable support mandated.

37208 Presence of the utility mandated, even on systems where no communications are available.

Shell and Utilities, Issue 6 3181

uudecode Utilities

37209 NAME
37210 uudecode — decode a binary file

37211 SYNOPSIS
37212 UP uudecode [−o outfile][file]
37213

37214 DESCRIPTION
37215 The uudecode utility shall read a file, or standard input if no file is specified, that includes data
37216 created by the uuencode utility. The uudecode utility shall scan the input file, searching for data
37217 compatible with one of the formats specified in uuencode and attempt to create or overwrite the
37218 file described by the data (or overridden by the −o option). The path name shall be contained in
37219 the data or specified by the −o option. The file access permission bits and contents for the file to
37220 be produced shall be contained in that data. The mode bits of the created file (other than
37221 standard output) shall be set from the file access permission bits contained in the data; that is,
37222 other attributes of the mode, including the file mode creation mask (see umask), shall not affect
37223 the file being produced.

37224 If the path name of the file to be produced exists, and the user does not have write permission on
37225 that file, uudecode shall terminate with an error. If the path name of the file to be produced exists,
37226 and the user has write permission on that file, the existing file shall be overwritten.

37227 If the input data was produced by uuencode on a system with a different number of bits per byte
37228 than on the target system, the results of uudecode are unspecified.

37229 OPTIONS
37230 The uudecode utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, |
37231 Section 12.2, Utility Syntax Guidelines. |

37232 The following option shall be supported by the implementation:

37233 −o outfile A path name of a file that shall be used instead of any path name contained in the
37234 input data. Specifying an outfile option-argument of /dev/stdout shall indicate
37235 standard output.

37236 OPERANDS
37237 The following operand shall be supported:

37238 file The path name of a file containing the output of uuencode.

37239 STDIN
37240 See the INPUT FILES section.

37241 INPUT FILES
37242 The input files shall be files containing the output of uuencode.

37243 ENVIRONMENT VARIABLES
37244 The following environment variables shall affect the execution of uudecode:

37245 LANG Provide a default value for the internationalization variables that are unset or null.
37246 If LANG is unset or null, the corresponding value from the implementation- |
37247 defined default locale shall be used. If any of the internationalization variables |
37248 contains an invalid setting, the utility shall behave as if none of the variables had
37249 been defined.

37250 LC_ALL If set to a non-empty string value, override the values of all the other
37251 internationalization variables.

37252 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37253 characters (for example, single-byte as opposed to multi-byte characters in

3182 Technical Standard (2000) (Draft July 31, 2000)

Utilities uudecode

37254 arguments and input files).

37255 LC_MESSAGES
37256 Determine the locale that should be used to affect the format and contents of
37257 diagnostic messages written to standard error.

37258 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37259 ASYNCHRONOUS EVENTS
37260 Default.

37261 STDOUT
37262 If the file data header encoded by uuencode is − or /dev/stdout, or the −o /dev/stdout option
37263 overrides the file data, the standard output shall be in the same format as the file originally
37264 encoded by uuencode. Otherwise, the standard output shall not be used.

37265 STDERR
37266 Used only for diagnostic messages.

37267 OUTPUT FILES
37268 The output file shall be in the same format as the file originally encoded by uuencode.

37269 EXTENDED DESCRIPTION
37270 None.

37271 EXIT STATUS
37272 The following exit values shall be returned:

37273 0 Successful completion.

37274 >0 An error occurred.

37275 CONSEQUENCES OF ERRORS
37276 Default.

37277 APPLICATION USAGE
37278 The user who is invoking uudecode must have write permission on any file being created.

37279 The output of uuencode is essentially an encoded bit stream that is not cognizant of byte
37280 boundaries. It is possible that a 9-bit byte target machine can process input from an 8-bit source,
37281 if it is aware of the requirement, but the reverse is unlikely to be satisfying. Of course, the only
37282 data that is meaningful for such a transfer between architectures is generally character data. |

37283 EXAMPLES
37284 None.

37285 RATIONALE
37286 Input files are not necessarily text files, as stated by an early proposal. Although the uuencode
37287 output is a text file, that output could have been wrapped within another file or mail message
37288 that is not a text file.

37289 The −o option is not historical practice, but was added at the request of WG15 so that the user
37290 could override the target path name without having to edit the input data itself.

37291 In early drafts, the [−o outfile] option-argument allowed the use of − to mean standard output.
37292 The symbol − has only been used previously in IEEE Std. 1003.1-200x as a standard input
37293 indicator. The developers of the standard did not wish to overload the meaning of − in this
37294 manner. The /dev/stdout concept exists on most modern systems. The /dev/stdout syntax does
37295 not refer to a new special file. It is just a magic cookie to specify standard output.

Shell and Utilities, Issue 6 3183

uudecode Utilities

37296 FUTURE DIRECTIONS
37297 None.

37298 SEE ALSO
37299 uuencode

37300 CHANGE HISTORY
37301 First released in Issue 4.

37302 Issue 6
37303 This utility is now marked as part of the User Portability Utilities option.

37304 The −o outfile option is added, as specified in the IEEE P1003.2b draft standard.

37305 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3184 Technical Standard (2000) (Draft July 31, 2000)

Utilities uuencode

37306 NAME
37307 uuencode — encode a binary file

37308 SYNOPSIS
37309 UP uuencode [−m][file] decode_pathname
37310

37311 DESCRIPTION
37312 The uuencode utility shall write an encoded version of the named input file, or standard input if
37313 no file is specified, to standard output. The output shall be encoded using one of the algorithms
37314 described in the STDOUT section and shall include the file access permission bits (in chmod octal
37315 or symbolic notation) of the input file and the decode_pathname, for re-creation of the file on
37316 another system that conforms to this volume of IEEE Std. 1003.1-200x.

37317 OPTIONS
37318 The uuencode utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, |
37319 Section 12.2, Utility Syntax Guidelines. |

37320 The following option shall be supported by the implementation:

37321 −m Encode the output using the MIME Base64 algorithm described below. If −m is not
37322 specified, the historical algorithm described in STDOUT shall be used.

37323 OPERANDS
37324 The following operands shall be supported:

37325 decode_pathname
37326 The path name of the file into which the uudecode utility shall place the decoded
37327 file. Specifying a decode_pathname operand of /dev/stdout shall indicate that
37328 uudecode is to use standard output. If there are characters in decode_pathname that
37329 are not in the portable file name character set the results are unspecified.

37330 file A path name of the file to be encoded.

37331 STDIN
37332 See the INPUT FILES section.

37333 INPUT FILES
37334 Input files can be files of any type.

37335 ENVIRONMENT VARIABLES
37336 The following environment variables shall affect the execution of uuencode:

37337 LANG Provide a default value for the internationalization variables that are unset or null.
37338 If LANG is unset or null, the corresponding value from the implementation- |
37339 defined default locale shall be used. If any of the internationalization variables |
37340 contains an invalid setting, the utility shall behave as if none of the variables had
37341 been defined.

37342 LC_ALL If set to a non-empty string value, override the values of all the other
37343 internationalization variables.

37344 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37345 characters (for example, single-byte as opposed to multi-byte characters in
37346 arguments and input files).

37347 LC_MESSAGES
37348 Determine the locale that should be used to affect the format and contents of
37349 diagnostic messages written to standard error.

Shell and Utilities, Issue 6 3185

uuencode Utilities

37350 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37351 ASYNCHRONOUS EVENTS
37352 Default.

37353 STDOUT

37354 uuencode Base64 Algorithm

37355 The standard output shall be a text file (encoded in the character set of the current locale) that
37356 begins with the line:

37357 "begin-base64 ∆%s∆%s\n", < mode>, decode_pathname

37358 and ends with the line:

37359 "====\n"

37360 In both cases, the lines shall have no preceding or trailing <blank>s.

37361 The encoding process represents 24-bit groups of input bits as output strings of four encoded
37362 characters. Preceding from left to right, a 24-bit input group shall be formed by concatenating
37363 three 8-bit input groups. These 24-bit then shall be treated as four concatenated 6-bit groups,
37364 each of which shall be translated into a single digit in the base64 alphabet. When encoding a bit
37365 stream via the base64 encoding, the bit stream shall be presumed to be ordered with the most-
37366 significant bit first. That is, the first bit in the stream shall be the high-order bit in the first byte,
37367 and the eighth bit shall be the low-order bit in the first byte, and so on. Each 6-bit group is used
37368 as an index into an array of 64 printable characters, as shown in Table 4-21.

37369 Table 4-21 uuencode Base64 Values

37370 Value Encoding Value Encoding Value Encoding Value Encoding___
37371 0 A 17 R 34 i 51 z
37372 1 B 18 S 35 j 52 0
37373 2 C 19 T 36 k 53 1
37374 3 D 20 U 37 l 54 2
37375 4 E 21 V 38 m 55 3
37376 5 F 22 W 39 n 56 4
37377 6 G 23 X 40 o 57 5
37378 7 H 24 Y 41 p 58 6
37379 8 I 25 Z 42 q 59 7
37380 9 J 26 a 43 r 60 8
37381 10 K 27 b 44 s 61 9
37382 11 L 28 c 45 t 62 +
37383 12 M 29 d 46 u 63 /
37384 13 N 30 e 47 v
37385 14 O 31 f 48 w (pad) =
37386 15 P 32 g 49 x
37387 16 Q 33 h 50 y___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

37388 The character referenced by the index shall be placed in the output string.

37389 The output stream (encoded bytes) shall be represented in lines of no more than 76 characters
37390 each. All line breaks or other characters not found in the table shall be ignored by decoding
37391 software (see uudecode).

37392 Special processing shall be performed if fewer than 24 bits are available at the end of a message
37393 or encapsulated part of a message. A full encoding quantum shall always be completed at the

3186 Technical Standard (2000) (Draft July 31, 2000)

Utilities uuencode

37394 end of a message. When fewer than 24 input bits are available in an input group, zero bits shall
37395 be added (on the right) to form an integral number of 6-bit groups. Output character positions
37396 that are not required to represent actual input data shall be set to the character ’=’ . Since all
37397 base64 input is an integral number of octets, only the following cases can arise:

37398 1. The final quantum of encoding input is an integral multiple of 24 bits; here, the final unit of
37399 encoded output shall be an integral multiple of 4 characters with no ’=’ padding.

37400 2. The final quantum of encoding input is exactly 8 bits; here, the final unit of encoded output
37401 shall be two characters followed by two ’=’ padding characters.

37402 3. The final quantum of encoding input is exactly 16 bits; here, the final unit of encoded
37403 output shall be three characters followed by one ’=’ padding character.

37404 4. The terminating "====" evaluates to nothing and denotes the end of the encoded data.

37405 uuencode Historical Algorithm

37406 The standard output shall be a text file (encoded in the character set of the current locale) that
37407 begins with the line:

37408 "begin ∆%s∆%s\n" < mode>, < decode_pathname >

37409 and ends with the line:

37410 end\n

37411 In both cases, the lines shall have no preceding or trailing <blank> characters.

37412 The algorithm that shall be used for lines in between begin and end takes three octets as input
37413 and writes four characters of output by splitting the input at six-bit intervals into four octets,
37414 containing data in the lower six bits only. These octets shall be converted to characters by adding
37415 a value of 0x20 to each octet, so that each octet is in the range 0x20-0x5f, and then it shall be
37416 assumed to represent a printable character in the ISO/IEC 646: 1991 standard encoded character
37417 set. It then shall be translated into the corresponding character codes for the codeset in use in the
37418 current locale. (For example, the octet 0x41, representing ’A’ , would be translated to ’A’ in the
37419 current codeset, such as 0xc1 if it were EBCDIC.)

37420 Where the bits of two octets are combined, the least significant bits of the first octet shall be
37421 shifted left and combined with the most significant bits of the second octet shifted right. Thus
37422 the three octets A, B, C shall be converted into the four octets:

37423 0x20 + ((A >> 2) & 0x3F)
37424 0x20 + (((A << 4) | ((B >> 4) & 0xF)) & 0x3F)
37425 0x20 + (((B << 2) | ((C >> 6) & 0x3)) & 0x3F)
37426 0x20 + ((C) & 0x3F)

37427 These octets then shall be translated into the local character set.

37428 Each encoded line contains a length character, equal to the number of characters to be decoded
37429 plus 0x20 translated to the local character set as described above, followed by the encoded
37430 characters. The maximum number of octets to be encoded on each line shall be 45.

37431 STDERR
37432 Used only for diagnostic messages.

37433 OUTPUT FILES
37434 None.

Shell and Utilities, Issue 6 3187

uuencode Utilities

37435 EXTENDED DESCRIPTION
37436 None.

37437 EXIT STATUS
37438 The following exit values shall be returned:

37439 0 Successful completion.

37440 >0 An error occurred.

37441 CONSEQUENCES OF ERRORS
37442 Default.

37443 APPLICATION USAGE
37444 The file is expanded by 35 percent (each three octets become four, plus control information)
37445 causing it to take longer to transmit.

37446 Since this utility is intended to create files to be used for data interchange between systems with
37447 possibly different codesets, and to represent binary data as a text file, the ISO/IEC 646: 1991
37448 standard was chosen for a midpoint in the algorithm as a known reference point. The output
37449 from uuencode is a text file on the local system. If the output were in the ISO/IEC 646: 1991
37450 standard codeset, it might not be a text file (at least because the <newline> characters might not
37451 match), and the goal of creating a text file would be defeated. If this text file was then carried to
37452 another machine with the same codeset, it would be perfectly compatible with that system’s
37453 uudecode. If it was transmitted over a mail system or sent to a machine with a different codeset,
37454 it is assumed that, as for every other text file, some translation mechanism would convert it (by
37455 the time it reached a user on the other system) into an appropriate codeset. This translation only
37456 makes sense from the local codeset, not if the file has been put into a ISO/IEC 646: 1991 standard
37457 representation first. Similarly, files processed by uuencode can be placed in pax archives,
37458 intermixed with other text files in the same codeset.

37459 The algorithm is described in terms of 8-bit quantities, or octets. Since no byte alignment is
37460 implied, it encodes data from machines with any number of bits per byte. However, unless that
37461 encoded data is then decoded on a machine with the same number of bits per byte, the output
37462 might not be useful. |

37463 EXAMPLES
37464 None.

37465 RATIONALE
37466 A new algorithm was added at the request of the international community to parallel work in
37467 RFC 2045 (MIME). As with the historical uuencode format, the Base64 Content-Transfer-Encoding
37468 is designed to represent arbitrary sequences of octets in a form that is not humanly readable. A
37469 65-character subset of the ISO/IEC 646: 1991 standard is used, enabling 6 bits to be represented
37470 per printable character. (The extra 65th character, ’=’ , is used to signify a special processing
37471 function.)

37472 This subset has the important property that it is represented identically in all versions of the
37473 ISO/IEC 646: 1991 standard, including US ASCII, and all characters in the subset are also
37474 represented identically in all versions of EBCDIC. The historical uuencode algorithm does not
37475 share this property, which is the reason that a second algorithm was added to the ISO POSIX-2
37476 standard.

37477 The string "====" was used for the termination instead of the end used in the original format
37478 because the latter is a string that could be valid encoded input.

37479 In an early draft, the −m option was named −b (for Base64), but it was renamed to reflect its
37480 relationship to the RFC 2045. A −u was also present to invoke the default algorithm, but since

3188 Technical Standard (2000) (Draft July 31, 2000)

Utilities uuencode

37481 this was not historical practice, it was omitted as being unnecessary.

37482 See the RATIONALE section in uudecode for the derivation of the /dev/stdout symbol.

37483 FUTURE DIRECTIONS
37484 None.

37485 SEE ALSO
37486 mailx , uudecode

37487 CHANGE HISTORY
37488 First released in Issue 4.

37489 Issue 6
37490 This utility is now marked as part of the User Portability Utilities option.

37491 The Base64 algorithm and the ability to output to /dev/stdout are added as specified in the
37492 IEEE P1003.2b draft standard.

Shell and Utilities, Issue 6 3189

uustat Utilities

37493 NAME
37494 uustat — uucp status inquiry and job control

37495 SYNOPSIS
37496 UN XSI uustat [−q| −k jobid | −r jobid]

37497 XSI uustat [−s system][−u user]

37498 DESCRIPTION
37499 The uustat utility shall display the status of, or cancel, previously specified uucp requests, or
37500 provide general status on uucp connections to other systems.

37501 When no options are given, uustat shall write to standard output the status of all uucp requests
37502 issued by the current user.

37503 Typical implementations of this utility require a communications line configured to use the Base |
37504 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface, but other |
37505 communications means may be used. On systems where there are no available communications |
37506 means (either temporarily or permanently), this utility shall write an error message describing
37507 the problem and exits with a non-zero exit status.

37508 OPTIONS
37509 The uustat utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
37510 12.2, Utility Syntax Guidelines. |

37511 The following options shall be supported:

37512 UN −q Write the jobs queued for each machine.

37513 −k jobid Kill the uucp request whose job identification is jobid . The application shall ensure
37514 that the killed uucp request belongs to the person invoking uustat unless that user
37515 has appropriate privileges.

37516 −r jobid Rejuvenate jobid . The files associated with jobid are touched so that their
37517 modification time is set to the current time. This prevents the cleanup program
37518 from deleting the job until the jobs modification time reaches the limit imposed by
37519 the program.

37520 −s system Write the status of all uucp requests for remote system system.

37521 −u user Write the status of all uucp requests issued by user.

37522 OPERANDS
37523 None.

37524 STDIN
37525 Not used.

37526 INPUT FILES
37527 None.

37528 ENVIRONMENT VARIABLES
37529 The following environment variables shall affect the execution of uustat:

37530 LANG Provide a default value for the internationalization variables that are unset or null.
37531 If LANG is unset or null, the corresponding value from the implementation- |
37532 defined default locale shall be used. If any of the internationalization variables |
37533 contains an invalid setting, the utility shall behave as if none of the variables had
37534 been defined.

3190 Technical Standard (2000) (Draft July 31, 2000)

Utilities uustat

37535 LC_ALL If set to a non-empty string value, override the values of all the other
37536 internationalization variables.

37537 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37538 characters (for example, single-byte as opposed to multi-byte characters in
37539 arguments).

37540 LC_MESSAGES
37541 Determine the locale that should be used to affect the format and contents of
37542 diagnostic messages written to standard error, and informative messages written
37543 to standard output.

37544 LC_TIME Determine the format of date and time strings output by uustat.

37545 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37546 TZ Determine the timezone used with date and time strings.

37547 ASYNCHRONOUS EVENTS
37548 Default.

37549 STDOUT
37550 The standard output shall consist of information about each job selected, in an unspecified
37551 format. The information shall include at least the job ID, the user ID or name, and the remote
37552 system name.

37553 STDERR
37554 Used only for diagnostic messages.

37555 OUTPUT FILES
37556 None.

37557 EXTENDED DESCRIPTION
37558 None.

37559 EXIT STATUS
37560 The following exit values shall be returned:

37561 0 Successful completion.

37562 >0 An error occurred.

37563 CONSEQUENCES OF ERRORS
37564 Default.

37565 APPLICATION USAGE
37566 None.

37567 EXAMPLES
37568 None.

37569 RATIONALE
37570 None.

37571 FUTURE DIRECTIONS
37572 None.

37573 SEE ALSO
37574 uucp

Shell and Utilities, Issue 6 3191

uustat Utilities

37575 CHANGE HISTORY
37576 First released in Issue 2.

37577 Issue 4
37578 Format reorganized.

37579 Utility Syntax Guidelines support mandated.

37580 Internationalized environment variable support mandated.

37581 Presence of the utility mandated, even on systems where no communications are available.

37582 Issue 6
37583 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3192 Technical Standard (2000) (Draft July 31, 2000)

Utilities uux

37584 NAME
37585 uux — remote command execution

37586 SYNOPSIS
37587 XSI uux [−np] command−string

37588 UN XSI uux [−jnp] command−string

37589 DESCRIPTION
37590 The uux utility shall gather zero or more files from various systems, execute a shell pipeline (see
37591 Section 2.9 (on page 2256)) on a specified system, and then send the standard output of the
37592 command to a file on a specified system. Only the first command of a pipeline can have a
37593 system-name! prefix. All other commands in the pipeline shall be executed on the system of the
37594 first command.

37595 The following restrictions are applicable to the shell pipeline processed by uux:

37596 • In gathering files from different systems, path name expansion is not performed by uux.
37597 Thus, a request such as:

37598 uux "c99 remsys!˜/*.c"

37599 would attempt to copy the file named literally *.c to the local system.

37600 • The redirection operators ">>" , "<<" , ">|" , and ">&" shall not be accepted. Any use of |
37601 these redirection operators shall cause this utility to write an error message describing the |
37602 problem and exit with a non-zero exit status. |

37603 • The reserved word ! cannot be used at the head of the pipeline to modify the exit status.

37604 • Alias substitution is not performed.

37605 A file name can be specified as for uucp; it can be an absolute path name, a path name preceded
37606 by ˜name (which is replaced by the corresponding login directory), a path name specified as
37607 ~/dest(dest is prefixed by the public directory called PUBDIR; the actual location of PUBDIR is |
37608 implementation-defined), or a simple file name (which is prefixed by uux with the current |
37609 directory). See uucp (on page 3178) for the details.

37610 The execution of commands on remote systems shall take place in an execution directory known
37611 to the uucp system. All files required for the execution shall be put into this directory unless they
37612 already reside on that machine. Therefore, the application shall ensure that non-local file names
37613 (without path or machine reference) are unique within the uux request.

37614 The uux utility shall attempt to get all files to the execution system. For files that are output files,
37615 the application shall ensure that the file name is escaped using parentheses.

37616 The remote system shall notify the user by mail if the requested command on the remote system
37617 was disallowed or the files were not accessible. This notification can be turned off by the −n
37618 option.

37619 Typical implementations of this utility require a communications line configured to use the Base |
37620 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface, but other |
37621 communications means may be used. On systems where there are no available communications |
37622 means (either temporarily or permanently), this utility shall write an error message describing
37623 the problem and exits with a non-zero exit status.

37624 The uux utility cannot guarantee support for all character encodings in all circumstances. For
37625 example, transmission data may be restricted to 7 bits by the underlying network, 8-bit data and
37626 file names need not be portable to non-internationalized systems, and so on. Under these
37627 circumstances, it is recommended that only characters defined in the ISO/IEC 646: 1991

Shell and Utilities, Issue 6 3193

uux Utilities

37628 standard International Reference Version (equivalent to ASCII) 7-bit range of characters be used
37629 and that only characters defined in the Portable File Name Character Set be used for naming
37630 files.

37631 OPTIONS
37632 The uux utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
37633 12.2, Utility Syntax Guidelines. |

37634 The following options shall be supported:

37635 −p Make the standard input to uux the standard input to the command-string .

37636 UN −j Write the job identification string to standard output. This job identification can be
37637 used by uustat to obtain the status or terminate a job.

37638 −n Do not notify the user if the command fails.

37639 OPERANDS
37640 The following operand shall be supported:

37641 command-string
37642 A string made up of one or more arguments that are similar to normal command
37643 arguments, except that the command and any file names can be prefixed by
37644 system-name!. A null system-name shall be interpreted as the local system.

37645 STDIN
37646 The standard input shall not be used unless the ’ −’ or −p option is specified; in those cases, the
37647 standard input shall be made the standard input of the command-string .

37648 INPUT FILES
37649 Input files shall be selected according to the contents of command-string .

37650 ENVIRONMENT VARIABLES
37651 The following environment variables shall affect the execution of uux:

37652 LANG Provide a default value for the internationalization variables that are unset or null.
37653 If LANG is unset or null, the corresponding value from the implementation- |
37654 defined default locale shall be used. If any of the internationalization variables |
37655 contains an invalid setting, the utility shall behave as if none of the variables had
37656 been defined.

37657 LC_ALL If set to a non-empty string value, override the values of all the other
37658 internationalization variables.

37659 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37660 characters (for example, single-byte as opposed to multi-byte characters in
37661 arguments).

37662 LC_MESSAGES
37663 Determine the locale that should be used to affect the format and contents of
37664 diagnostic messages written to standard error.

37665 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37666 ASYNCHRONOUS EVENTS
37667 Default.

3194 Technical Standard (2000) (Draft July 31, 2000)

Utilities uux

37668 STDOUT
37669 The standard output shall be not used unless the −j option is specified; in that case, the job
37670 identification string shall be written to standard output in the following format:

37671 "%s\n", < jobid >

37672 STDERR
37673 Used only for diagnostic messages.

37674 OUTPUT FILES
37675 Output files shall be created or written, or both, according to the contents of command-string .

37676 If the −n is not used, mail files shall be modified following any command or file-access failures
37677 on the remote system.

37678 EXTENDED DESCRIPTION
37679 None.

37680 EXIT STATUS
37681 The following exit values shall be returned:

37682 0 Successful completion.

37683 >0 An error occurred.

37684 CONSEQUENCES OF ERRORS
37685 Default.

37686 APPLICATION USAGE
37687 Note that, for security reasons, many installations limit the list of commands executable on
37688 behalf of an incoming request from uux. Many sites permit little more than the receipt of mail
37689 via uux.

37690 Any characters special to the command interpreter should be quoted either by quoting the entire
37691 command-string or quoting the special characters as individual arguments.

37692 As noted in uucp, shell pattern matching notation characters appearing in path names are
37693 expanded on the appropriate local system. This is done under the control of local settings of
37694 LC_COLLATE and LC_CTYPE. Thus, care should be taken when using bracketed file name
37695 patterns, as collation and typing rules may vary from one system to another. Also be aware that
37696 certain types of expression (that is, equivalence classes, character classes, and collating symbols)
37697 need not be supported on non-internationalized systems.

37698 EXAMPLES

37699 1. The following command gets file1 from system a and file2 file from system b, executes diff
37700 on the local system, and puts the results in file.diff in the local PUBDIR directory.
37701 (PUBDIR is the uucp public directory on the local system.)

37702 uux "!diff a!/usr/file1 b!/a4/file2 >!˜/file.diff"

37703 2. The following command fails because uux places all files copied to a system in the same
37704 working directory. Although the files xyz are from two different systems, their file names
37705 are the same and conflict.

37706 uux "!diff a!/usr1/xyz b!/usr2/xyz >!˜/xyz.diff"

37707 3. The following command succeeds (assuming diff is permitted on system a) because the file
37708 local to system a is not copied to the working directory, and hence does not conflict the file
37709 from system c.

Shell and Utilities, Issue 6 3195

uux Utilities

37710 uux "a!diff a!/usr/xyz c!/usr/xyz >!˜/xyz.diff"

37711 RATIONALE
37712 None.

37713 FUTURE DIRECTIONS
37714 A version of uux that fully supports the Base Definitions volume of IEEE Std. 1003.1-200x, |
37715 Section 12.2, Utility Syntax Guidelines may be introduced in a future issue. |

37716 SEE ALSO
37717 uucp, uuencode, uustat

37718 CHANGE HISTORY
37719 First released in Issue 2.

37720 Issue 4
37721 Format reorganized.

37722 Exceptions to Utility Syntax Guidelines conformance noted.

37723 Internationalized environment variable support mandated.

37724 Presence of the utility mandated, even on systems where no communications are available.

37725 Issue 6
37726 The obsolescent SYNOPSIS is removed.

37727 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3196 Technical Standard (2000) (Draft July 31, 2000)

Utilities val

37728 NAME
37729 val — validate SCCS files (DEVELOPMENT)

37730 SYNOPSIS
37731 XSI val −

37732 val [−s][−m name][−r SID][−y type] file ...
37733

37734 DESCRIPTION
37735 The val utility shall determine whether the specified file is an SCCS file meeting the
37736 characteristics specified by the options.

37737 OPTIONS
37738 The val utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
37739 12.2, Utility Syntax Guidelines, except that the usage of the ’ −’ operand is not strictly as |
37740 intended by the guidelines (that is, reading options and operands from standard input).

37741 The following options shall be supported:

37742 −m name Specify a name, which is compared with the SCCS %M% keyword in file ; see get
37743 (on page 2685).

37744 −r SID Specify a SID (SCCS Identification String), an SCCS delta number. A check shall be |
37745 made to determine whether the SID is ambiguous (for example, −r 1 is ambiguous |
37746 because it physically does not exist but implies 1.1, 1.2, and so on, which may
37747 exist) or invalid (for example, −r 1.0 or −r 1.1.0 are invalid because neither case can
37748 exist as a valid delta number). If the SID is valid and not ambiguous, a check shall |
37749 be made to determine whether it actually exists. |

37750 −s Silence the diagnostic message normally written to standard output for any error
37751 that is detected while processing each named file on a given command line.

37752 −y type Specify a type , which shall be compared with the SCCS %Y% keyword in file ; see |
37753 get (on page 2685).

37754 OPERANDS
37755 The following operands shall be supported:

37756 file A path name of an existing SCCS file. If exactly one file operand appears, and it is |
37757 ’ −’ , the standard input shall be read: each line is independently processed as if it |
37758 were a command line argument list. (However, the line is not subjected to any of |
37759 the shell word expansions, such as parameter expansion or quote removal.) |

37760 STDIN
37761 The standard input shall be a text file used only when the file operand is specified as ’ −’ . |

37762 INPUT FILES
37763 Any SCCS files processed are files of an unspecified format.

37764 ENVIRONMENT VARIABLES
37765 The following environment variables shall affect the execution of val:

37766 LANG Provide a default value for the internationalization variables that are unset or null.
37767 If LANG is unset or null, the corresponding value from the implementation- |
37768 defined default locale shall be used. If any of the internationalization variables |
37769 contains an invalid setting, the utility shall behave as if none of the variables had
37770 been defined.

Shell and Utilities, Issue 6 3197

val Utilities

37771 LC_ALL If set to a non-empty string value, override the values of all the other
37772 internationalization variables.

37773 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37774 characters (for example, single-byte as opposed to multi-byte characters in
37775 arguments and input files).

37776 LC_MESSAGES
37777 Determine the locale that should be used to affect the format and contents of
37778 diagnostic messages written to standard error, and informative messages written
37779 to standard output.

37780 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37781 ASYNCHRONOUS EVENTS
37782 Default.

37783 STDOUT
37784 The standard output shall consist of informative messages about either:

37785 1. Each file processed

37786 2. Each command line read from standard input

37787 If the standard input is not used, for each file operand yielding a discrepancy, the output line
37788 shall have the following format:

37789 "%s: %s\n", < pathname >, < unspecified string >

37790 If standard input is used, a line of input shall be written before each of the preceding lines for
37791 files containing discrepancies:

37792 "%s:\n", < input line >

37793 STDERR
37794 Not used.

37795 OUTPUT FILES
37796 None.

37797 EXTENDED DESCRIPTION
37798 None.

37799 EXIT STATUS
37800 The 8-bit code returned by val is a disjunction of the possible errors, that is, it can be interpreted
37801 as a bit string where set bits are interpreted as follows:

37802 0x80 = Missing file argument.
37803 0x40 = Unknown or duplicate option.
37804 0x20 = Corrupted SCCS file.
37805 0x10 = Cannot open file or file not SCCS.
37806 0x08 = SID is invalid or ambiguous.
37807 0x04 = SID does not exist.
37808 0x02 = %Y%, −y mismatch.
37809 0x01 = %M%, −m mismatch.

37810 Note that val can process two or more files on a given command line and can process multiple
37811 command lines (when reading the standard input). In these cases an aggregate code shall be
37812 returned: a logical OR of the codes generated for each command line and file processed.

3198 Technical Standard (2000) (Draft July 31, 2000)

Utilities val

37813 CONSEQUENCES OF ERRORS
37814 Default.

37815 APPLICATION USAGE
37816 Since the val exit status sets the 0x80 bit, shell applications checking "$?" cannot tell if it
37817 terminated due to a missing file argument or receipt of a signal.

37818 EXAMPLES
37819 In a directory with three SCCS files, s.x (of t type ‘‘text’’), s.y, and s.z (a corrupted file), the
37820 following command could produce the output shown:

37821 val − <<EOF
37822 −y source s.x
37823 −m y s.y
37824 s.z
37825 EOF

37826 −y source s.x

37827 s.x: % Y %, −y mismatch
37828 s.z

37829 s.z: corrupted SCCS file

37830 RATIONALE
37831 None.

37832 FUTURE DIRECTIONS
37833 None.

37834 SEE ALSO
37835 admin , delta , get, prs

37836 CHANGE HISTORY
37837 First released in Issue 2.

37838 Issue 4
37839 Format reorganized.

37840 Exceptions to Utility Syntax Guidelines conformance noted.

37841 Internationalized environment variable support mandated.

37842 Issue 6
37843 The Open Group corrigenda item U025/4 has been applied, correcting a typographical error in
37844 the EXIT STATUS. |

37845 The normative text is reworded to emphasise the term ‘‘shall’’ for implementation requirements. |

Shell and Utilities, Issue 6 3199

vi Utilities

37846 NAME
37847 vi — screen-oriented (visual) display editor

37848 SYNOPSIS
37849 UP vi [−rR][−l][−c command][−t tagstring][−w size][file ...]
37850

37851 DESCRIPTION
37852 This utility shall be provided on systems that both support the User Portability Utilities option |
37853 and define the POSIX2_CHAR_TERM symbol. On other systems it is optional.

37854 The vi (visual) utility is a screen-oriented text editor. Only the open and visual modes of the
37855 editor are described in IEEE Std. 1003.1-200x; see the line editor ex for additional editing
37856 capabilities used in vi. The user can switch back and forth between vi and ex and execute ex
37857 commands from within vi.

37858 This reference page uses the term edit buffer to describe the current working text. No specific
37859 implementation is implied by this term. All editing changes are performed on the edit buffer,
37860 and no changes to it shall affect any file until an editor command writes the file.

37861 When using vi, the terminal screen acts as a window into the editing buffer. Changes made to
37862 the editing buffer shall be reflected in the screen display; the position of the cursor on the screen
37863 shall indicate the position within the editing buffer.

37864 Certain terminals do not have all the capabilities necessary to support the complete vi definition.
37865 When these commands cannot be supported on such terminals, this condition shall not produce
37866 an error message such as ‘‘not an editor command’’ or report a syntax error. The implementation
37867 may either accept the commands and produce results on the screen that are the result of an
37868 unsuccessful attempt to meet the requirements of this volume of IEEE Std. 1003.1-200x or report
37869 an error describing the terminal-related deficiency.

37870 OPTIONS
37871 The vi utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section 12.2, |
37872 Utility Syntax Guidelines. |

37873 The following options shall be supported:

37874 −c command See the ex command description of the −c option. |

37875 −l (The letter ell.) Set lisp mode; see Edit Options in ex (on page 2602). |

37876 −r See the ex command description of the −r option.

37877 −R See the ex command description of the −R option.

37878 −t tagstring See the ex command description of the −t option.

37879 −w size See the ex command description of the −w option.

37880 OPERANDS
37881 See the OPERANDS section of the ex command for a description of the operands supported by
37882 the vi command.

37883 STDIN
37884 If standard input is not a terminal device, the results are undefined. The standard input consists
37885 of a series of commands and input text, as described in the EXTENDED DESCRIPTION section.

37886 If a read from the standard input returns an error, or if the editor detects an end-of-file condition
37887 from the standard input, it shall be equivalent to a SIGHUP asynchronous event.

3200 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

37888 INPUT FILES
37889 See the INPUT FILES section of the ex command for a description of the input files supported by
37890 the vi command.

37891 ENVIRONMENT VARIABLES
37892 See the ENVIRONMENT VARIABLES section of the ex command for the environment variables
37893 that affect the execution of the vi command.

37894 ASYNCHRONOUS EVENTS
37895 See the ASYNCHRONOUS EVENTS section of the ex for the asynchronous events that affect the
37896 execution of the vi command.

37897 STDOUT
37898 If standard output is not a terminal device, undefined results occur.

37899 Standard output may be used for writing prompts to the user, for informational messages, and
37900 for writing lines from the file.

37901 STDERR
37902 If standard output is not a terminal device, undefined results occur.

37903 Used only for diagnostic messages.

37904 OUTPUT FILES
37905 See the OUTPUT FILES section of the ex command for a description of the output files
37906 supported by the vi command.

37907 EXTENDED DESCRIPTION
37908 If the terminal does not have the capabilities necessary to support an unspecified portion of the
37909 vi definition, implementations shall start initially in ex mode or open mode. Otherwise, after
37910 initialization, vi shall be in command mode; text input mode can be entered by one of several
37911 commands used to insert or change text. In text input mode, <ESC> can be used to return to
37912 command mode; other uses of <ESC> are described later in this section; see Terminate
37913 Command or Input Mode (on page 3209).

37914 Initialization in ex and vi

37915 See Initialization in ex and vi (on page 2569) for a description of ex and vi initialization for the vi
37916 utility.

37917 Command Descriptions in vi

37918 The following symbols are used in this reference page to represent arguments to commands.

37919 buffer See the description of buffer in the EXTENDED DESCRIPTION section of the ex utility;
37920 see Command Descriptions in ex (on page 2578).

37921 In open and visual mode, when a command synopsis shows both [buffer] and [count]
37922 preceding the command name, they can be specified in either order.

37923 count A positive integer used as an optional argument to most commands, either to give a
37924 repeat count or as a size. This argument is optional and shall default to 1 unless
37925 otherwise specified.

37926 The Synopsis lines for the vi commands <control>-G, <control>-L, <control>-R,
37927 <control>-], %, &, ˆ, D, m, M, Q, u, U, and ZZ do not have count as an optional
37928 argument. Regardless, it shall not be an error to specify a count to these commands, and
37929 any specified count shall be ignored.

Shell and Utilities, Issue 6 3201

vi Utilities

37930 motion An optional trailing argument used by the !, <, >, c, d, and y commands, which is used
37931 to indicate the region of text that shall be affected by the command. The motion can be
37932 either one of the command characters repeated or one of several other vi commands
37933 (listed in the following table). Each of the applicable commands specifies the region of
37934 text matched by repeating the command; each command that can be used as a motion
37935 command specifies the region of text it affects.

37936 Commands that take motion arguments operate on either lines or characters, depending
37937 on the circumstances. When operating on lines, all lines that fall partially or wholly
37938 within the text region specified for the command shall be affected. When operating on
37939 characters, only the exact characters in the specified text region shall be affected. Each
37940 motion command specifies this individually.

37941 When commands that may be motion commands are not used as motion commands,
37942 they shall set the current position to the current line and column as specified.

37943 The following commands shall be valid cursor motion commands:
__

37944 <control>-H ; ‘character
37945 <newline> ? b
37946 <carriage-return> B e
37947 <control>-N E f
37948 <control>-P F h
37949 <space> G j
37950 $ H k
37951 % L l
37952 ’character M n
37953 (N t
37954) T w
37955 + W {
37956 , [[|
37957 -]] }
37958 / ^ 0
37959 ___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

37960 Any count that is specified to a command that has an associated motion command shall
37961 be applied to the motion command. If a count is applied to both the command and its
37962 associated motion command, the effect shall be multiplicative.

37963 The following symbol is used in this section to specify locations in the edit buffer:

37964 current character
37965 The character that is currently displayed by the cursor.

37966 The following symbols are used in this section to specify command actions:

37967 bigword In the POSIX locale, vi shall recognize four kinds of bigwords :

37968 1. A maximal sequence of non-<blank> characters preceded and followed by
37969 <blank> characters or the beginning or end of a line or the edit buffer

37970 2. One or more sequential empty or <blank> character-filled lines

37971 3. The first character in the edit buffer

37972 4. The last character in the edit buffer

37973 word In the POSIX locale, vi shall recognize five kinds of words:

3202 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

37974 1. A maximal sequence of letters, digits, and underscores, delimited at both ends by:

37975 — Characters other than letters, digits, or underscores

37976 — The beginning or end of a line

37977 — The beginning or end of the edit buffer

37978 2. A maximal sequence of characters other than letters, digits, underscores, or
37979 <blank> characters, delimited at both ends by:

37980 — A letter, digit, underscore

37981 — <blank> characters

37982 — The beginning or end of a line

37983 — The beginning or end of the edit buffer

37984 3. One or more sequential empty or <blank> character-filled lines

37985 4. The first character in the edit buffer

37986 5. The last character in the edit buffer

37987 section boundary
37988 A section boundary is one of the following:

37989 1. A line whose first character is a <form-feed> character

37990 2. A line whose first character is an open curly brace (’{’)

37991 3. A line whose first character is a period and whose second and third characters
37992 match a two-character pair in the sections edit option (see ed)

37993 4. A line whose first character is a period and whose only other character matches
37994 the first character of a two-character pair in the sections edit option, where the
37995 second character of the two-character pair is a <space> character

37996 5. The first line of the edit buffer

37997 6. The last line of the edit buffer if the last line of the edit buffer is empty or if it is a
37998]] or } command; otherwise, the last character of the last line of the edit buffer

37999 paragraph boundary
38000 A paragraph boundary is one of the following:

38001 1. A section boundary

38002 2. A line whose first character is a period and whose second and third characters
38003 match a two-character pair in the paragraphs edit option (see ed)

38004 3. A line whose first character is a period and whose only other character matches
38005 the first character of a two-character pair in the paragraphs edit option, where the
38006 second character of the two-character pair is a <space> character

38007 4. One or more sequential empty or <blank> character-filled lines

38008 remembered search direction
38009 See the description of remembered search direction in ed.

38010 sentence boundary
38011 A sentence boundary is one of the following:

Shell and Utilities, Issue 6 3203

vi Utilities

38012 1. A paragraph boundary

38013 2. The first non-<blank> character that occurs after a paragraph boundary

38014 3. The first non-<blank> character that occurs after a period (’.’), exclamation |
38015 mark (’!’), or question mark (’?’), followed by two <space> characters or the |
38016 end of a line; any number of closing parenthesis (’)’), closing brackets (’]’),
38017 double quote (’"’), or single quote (’\’’) characters can appear between the |
38018 punctuation mark and the two <space> characters or end-of-line

38019 Any lines displayed on the screen that logically represent lines after the last line in the edit buffer
38020 shall consist of a single tilde (’˜’) character.

38021 The last line of the screen shall be used to report errors or display informational messages. It
38022 shall also be used to display the input for ‘‘line-oriented commands’’ (/, ?, :, and !). When a line-
38023 oriented command is executed, the editor shall enter text input mode on the last line on the
38024 screen, using the respective command characters as prompt characters. (In the case of the !
38025 command, the associated motion shall be entered by the user before the editor enters text input
38026 mode.) The line entered by the user shall be terminated by a character, a non-<control>-V-
38027 escaped <carriage-return> character, or unescaped <ESC>. It is unspecified if more characters
38028 than require a display width minus one column number of screen columns can be entered.

38029 If any command is executed that overwrites a portion of the screen other than the last line of the
38030 screen (for example, the ex suspend, or ! commands), other than the ex shell command, the user
38031 shall be prompted for a character before the screen is refreshed and the edit session continued.

38032 <tab> characters shall take up the number of columns on the screen set by the tabstop edit
38033 option (see ed), unless there are less than that number of columns before the display margin that
38034 will cause the displayed line to be folded; in this case, they shall only take up the number of
38035 columns up to that boundary.

38036 The cursor shall be placed on the current line and relative to the current column as specified by
38037 each command described in the following sections.

38038 In open mode, if the current line is not already displayed, then it shall be displayed.

38039 In the remainder of the description of the vi utility, the term ‘‘physical line’’ refers to a line in the |
38040 edit buffer and the term ‘‘logical line’’ refers to the line or lines on the display screen used to |
38041 display a physical line. |

38042 In visual mode, if the current line is not displayed, then the lines that are displayed shall be |
38043 expanded, scrolled, or redrawn to cause an unspecified portion of the current line to be
38044 displayed. If the screen is redrawn, no more than the number of logical lines specified by the
38045 value of the window edit option shall be displayed (unless the current line cannot be completely
38046 displayed in the number of logical lines specified by the window edit option) and the current
38047 line shall be positioned as close to the center of the displayed lines as possible (within the
38048 constraints imposed by the distance of the line from the beginning or end of the edit buffer). If
38049 the current line is before the first line in the display and the screen is scrolled, an unspecified
38050 portion of the current line shall be placed on the first line of the display. If the current line is after
38051 the last line in the display and the screen is scrolled, an unspecified portion of the current line
38052 shall be placed on the last line of the display.

38053 In visual mode, if a line from the edit buffer (other than the current line) does not entirely fit into
38054 the lines at the bottom of the display that are available for its presentation, the editor may
38055 choose not to display any portion of the line. The lines of the display that do not contain text
38056 from the edit buffer for this reason shall each consist of a single ’@’ character.

3204 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38057 In visual mode, the editor may choose for unspecified reasons to not update lines in the display
38058 to correspond to the underlying edit buffer text. The lines of the display that do not correctly
38059 correspond to text from the edit buffer for this reason shall consist of a single ’@’ character, and
38060 the <control>-R command shall cause the editor to update the screen to correctly represent the
38061 edit buffer.

38062 Open and visual mode commands that set the current column set it to a column position in the
38063 display, and not a character position in the line. In this case, however, the column position in the
38064 display shall be calculated for a infinite width display; for example, the column related to a
38065 character that is part of a line that has been folded onto additional screen lines will be offset from
38066 the screen column where the physical line begins, not from the beginning of a particular screen
38067 line.

38068 The physical cursor column in the display is based on the value of the current column, as
38069 follows, with each rule applied in turn:

38070 1. If the current column is after the last screen column used by the displayed line, the
38071 physical cursor column shall be set to the last screen column occupied by the last character
38072 in the current line; otherwise, the physical cursor column shall be set to the current
38073 column.

38074 2. If the character of which some portion is displayed in the screen column specified by the
38075 physical cursor column requires more than a single screen column:

38076 a. If in text input mode, the physical cursor column shall be adjusted to the first screen
38077 column in which any portion of that character is displayed.

38078 b. Otherwise, the physical cursor column shall be adjusted to the last screen column in
38079 which any portion of that character is displayed.

38080 The current column shall not be changed by these adjustments to the physical cursor column.

38081 If an error occurs during the parsing or execution of a vi command:

38082 • The terminal shall be alerted. Execution of the vi command shall stop, and the cursor (for
38083 example, the current line and column) shall not be further modified.

38084 • Unless otherwise specified by the following command sections, it is unspecified whether an
38085 informational message shall be displayed.

38086 • Any partially entered vi command shall be discarded.

38087 • If the vi command resulted from a map expansion, all characters from that map expansion
38088 shall be discarded, except as otherwise specified by the map command (see ed).

38089 • If the vi command resulted from the execution of a buffer, no further commands caused by
38090 the execution of the buffer shall be executed.

38091 Page Backwards

38092 Synopsis: [count] <control>-B

38093 If in open mode, the <control>-B command shall behave identically to the z command.
38094 Otherwise, if the current line is the first line of the edit buffer, it shall be an error.

38095 If the window edit option is less than 3, display a screen where the last line of the display shall
38096 be some portion of:

38097 (current first line) −1

Shell and Utilities, Issue 6 3205

vi Utilities

38098 otherwise, display a screen where the first line of the display shall be some portion of:

38099 (current first line) − count x ((window edit option) −2)

38100 If this calculation would result in a line that is before the first line of the edit buffer, the first line
38101 of the display shall display some portion of the first line of the edit buffer.

38102 Current line : If no lines from the previous display remain on the screen, set to the last line of the
38103 display; otherwise, set to (line − the number of new lines displayed on this screen).

38104 Current column : Set to non-<blank>.

38105 Scroll Forward

38106 Synopsis: [count] <control>-D

38107 If the current line is the last line of the edit buffer, it shall be an error.

38108 If no count is specified, count shall default to the count associated with the previous <control>-D
38109 or <control>-U command. If there was no previous <control>-D or <control>-U command, count
38110 shall default to the value of the scroll edit option.

38111 If in open mode, write lines starting with the line after the current line, until count lines or the
38112 last line of the file have been written.

38113 Current line : If the current line + count is past the last line of the edit buffer, set to the last line of
38114 the edit buffer; otherwise, set to the current line + count .

38115 Current column : Set to non-<blank>.

38116 Scroll Forward by Line

38117 Synopsis: [count] <control>-E

38118 Display the line count lines after the last line currently displayed.

38119 If the last line of the edit buffer is displayed, it shall be an error. If there is no line count lines
38120 after the last line currently displayed, the last line of the display shall display some portion of
38121 the last line of the edit buffer.

38122 Current line : Unchanged if the previous current character is displayed; otherwise, set to the first
38123 line displayed.

38124 Current column : Unchanged.

38125 Page Forward

38126 Synopsis: [count] <control>-F

38127 If in open mode, the <control>-F command shall behave identically to the z command.
38128 Otherwise, if the current line is the last line of the edit buffer, it shall be an error.

38129 If the window edit option is less than 3, display a screen where the first line of the display shall
38130 be some portion of:

38131 (current last line) +1

38132 otherwise, display a screen where the first line of the display shall be some portion of:

38133 (current first line) + count x ((window edit option) −2)

38134 If this calculation would result in a line that is after the last line of the edit buffer, the last line of
38135 the display shall display some portion of the last line of the edit buffer.

3206 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38136 Current line : If no lines from the previous display remain on the screen, set to the first line of the
38137 display; otherwise, set to (line + the number of new lines displayed on this screen).

38138 Current column : Set to non-<blank>.

38139 Display Information

38140 Synopsis: <control>-G

38141 This command shall be equivalent to the ex file command .

38142 Move Cursor Backwards

38143 Synopsis: [count] <control>-H
38144 [count] h
38145 the current erase character (see stty)

38146 If there are no characters before the current character on the current line, it shall be an error. If
38147 there are less than count previous characters on the current line, count shall be adjusted to the
38148 number of previous characters on the line.

38149 If used as a motion command:

38150 1. The text region shall be from the character before the starting cursor up to and including
38151 the countth character before the starting cursor.

38152 2. Any text copied to a buffer shall be in character mode.

38153 If not used as a motion command:

38154 Current line : Unchanged.

38155 Current column : Set to (column − the number of columns occupied by count characters ending
38156 with the previous current column).

38157 Move Down

38158 Synopsis: [count] <newline>
38159 [count] <control>-J
38160 [count] <control>-M
38161 [count] <control>-N
38162 [count] j
38163 [count] <carriage-return>
38164 [count] +

38165 If there are less than count lines after the current line in the edit buffer, it shall be an error.

38166 If used as a motion command:

38167 1. The text region shall include the starting line and the next count − 1 lines. |

38168 2. Any text copied to a buffer shall be in line mode.

38169 If not used as a motion command:

38170 Current line : Set to current line+ count .

38171 Current column : Set to non-<blank> for the <carriage-return> character, <control>-M, and +
38172 commands; otherwise, unchanged.

Shell and Utilities, Issue 6 3207

vi Utilities

38173 Clear and Redisplay

38174 Synopsis: <control>-L

38175 If in open mode, clear the screen and redisplay the current line. Otherwise, clear and redisplay
38176 the screen.

38177 Current line : Unchanged.

38178 Current column : Unchanged.

38179 Move Up

38180 Synopsis: [count] <control>-P
38181 [count] k
38182 [count] −

38183 If there are less than count lines before the current line in the edit buffer, it shall be an error.

38184 If used as a motion command:

38185 1. The text region shall include the starting line and the previous count lines.

38186 2. Any text copied to a buffer shall be in line mode.

38187 If not used as a motion command:

38188 Current line : Set to current line − count .

38189 Current column : Set to non-<blank> for the − command; otherwise, unchanged.

38190 Redraw Screen

38191 Synopsis: <control>-R

38192 If any lines have been deleted from the logical screen and flagged as deleted on the terminal
38193 using the @ convention (see the beginning of the EXTENDED DESCRIPTION section), they shall
38194 be redisplayed to match the contents of the edit buffer.

38195 It is unspecified whether lines flagged with @ because they do not fit on the terminal display
38196 shall be affected.

38197 Current line : Unchanged.

38198 Current column : Unchanged.

38199 Scroll Backward

38200 Synopsis: [count] <control>-U

38201 If the current line is the first line of the edit buffer, it shall be an error.

38202 If no count is specified, count shall default to the count associated with the previous <control>-D
38203 or <control>-U command. If there was no previous <control>-D or <control>-U command, count
38204 shall default to the value of the scroll edit option.

38205 Current line : If count is greater than the current line, set to 1; otherwise, set to the current line −
38206 count .

38207 Current column : Set to non-<blank>.

3208 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38208 Scroll Backward by Line

38209 Synopsis: [count] <control>-Y

38210 Display the line count lines before the first line currently displayed.

38211 If the current line is the first line of the edit buffer, it shall be an error. If this calculation would
38212 result in a line that is before the first line of the edit buffer, the first line of the display shall
38213 display some portion of the first line of the edit buffer.

38214 Current line : Unchanged if the previous current character is displayed; otherwise, set to the first
38215 line displayed.

38216 Current column : Unchanged.

38217 Edit the Alternate File

38218 Synopsis: <control>-ˆ

38219 This command shall be equivalent to the ex edit command, with the alternate path name as its
38220 argument.

38221 Terminate Command or Input Mode

38222 Synopsis: <ESC>

38223 If a partial vi command (as defined by at least one, non-count character) has been entered,
38224 discard the count and the command character(s).

38225 Otherwise, if no command characters have been entered, and the <ESC> was the result of a map
38226 expansion, the terminal shall be alerted and the <ESC> character shall be discarded, but it shall
38227 not be an error.

38228 Otherwise, it shall be an error.

38229 Current line : Unchanged.

38230 Current column : Unchanged.

38231 Search for tagstring

38232 Synopsis: <control>-]

38233 If the current character is not a word or <blank> character, it shall be an error.

38234 This command shall be equivalent to the ex tag command, with the argument to that command
38235 defined as follows.

38236 If the current character is a <blank> character:

38237 1. Skip all <blank> characters after the cursor up to the end of the line.

38238 2. If the end of the line is reached, it shall be an error.

38239 Then, the argument to the ex tag command shall be the current character and all subsequent
38240 characters, up to the first non-word character or the end of the line.

Shell and Utilities, Issue 6 3209

vi Utilities

38241 Move Cursor Forward

38242 Synopsis: [count] <space>
38243 [count] l (ell)

38244 If there are less than count characters after the cursor on the current line, count shall be adjusted
38245 to the number of characters after the cursor on the line.

38246 If used as a motion command:

38247 1. If the current or countth character after the cursor is the last character in the line, the text
38248 region shall be comprised of the current character up to and including the last character in
38249 the line. Otherwise, the text region shall be from the current character up to, but not
38250 including, the countth character after the cursor.

38251 2. Any text copied to a buffer shall be in character mode.

38252 If not used as a motion command:

38253 If there are no characters after the current character on the current line, it shall be an error.

38254 Current line : Unchanged.

38255 Current column : Set to the last column that displays any portion of the countth character after the
38256 current character.

38257 Replace Text with Results from Shell Command

38258 Synopsis: [count] ! motion shell-commands <newline>

38259 If the motion command is the ! command repeated:

38260 1. If the edit buffer is empty and no count was supplied, the command shall be the equivalent
38261 of the ex :read ! command, with the text input, and no text shall be copied to any buffer.

38262 2. Otherwise:

38263 a. If there are less than count −1 lines after the current line in the edit buffer, it shall be
38264 an error.

38265 b. The text region shall be from the current line up to and including the next count −1
38266 lines.

38267 Otherwise, the text region shall be the lines in which any character of the text region specified by
38268 the motion command appear.

38269 Any text copied to a buffer shall be in line mode.

38270 This command shall be equivalent to the ex ! command for the specified lines.

38271 Move Cursor to End-of-line

38272 Synopsis: [count] $

38273 It shall be an error if there are less than (count −1) lines after the current line in the edit buffer.

38274 If used as a motion command:

38275 1. If count is 1:

38276 a. It shall be an error if the line is empty.

38277 b. Otherwise, the text region shall consist of all characters from the starting cursor to
38278 the last character in the line, inclusive, and any text copied to a buffer shall be in

3210 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38279 character mode.

38280 2. Otherwise, if the starting cursor position is at or before the first non-<blank> character in
38281 the line, the text region shall consist of the current and the next count −1 lines, and any text
38282 saved to a buffer shall be in line mode.

38283 3. Otherwise, the text region shall consist of all characters from the starting cursor to the last
38284 character in the line that is count −1 lines forward from the current line, and any text copied
38285 to a buffer shall be in character mode.

38286 If not used as a motion command:

38287 Current line : Set to the current line + count−1.

38288 Current column : The current column is set to the last screen column of the last character in the
38289 line, or column position 1 if the line is empty.

38290 The current column shall be adjusted to be on the last screen column of the last character of the
38291 current line as subsequent commands change the current line, until a command changes the
38292 current column.

38293 Move to Matching Character

38294 Synopsis: %

38295 If the character at the current position is not a parenthesis, bracket, or curly brace, search |
38296 forward in the line to the first one of those characters. If no such character is found, it shall be an |
38297 error.

38298 The matching character shall be the parenthesis, bracket, or curly brace matching the
38299 parenthesis, bracket, or curly brace, respectively, that was at the current position or that was
38300 found on the current line.

38301 Matching shall be determined as follows, for an open parenthesis:

38302 1. Set a counter to 1.

38303 2. Search forwards until a parenthesis is found or the end of the edit buffer is reached.

38304 3. If the end of the edit buffer is reached, it shall be an error.

38305 4. If an open parenthesis is found, increment the counter by 1.

38306 5. If a close parenthesis is found, decrement the counter by 1.

38307 6. If the counter is zero, the current character is the matching character.

38308 Matching for a close parenthesis shall be equivalent, except that the search shall be backwards,
38309 from the starting character to the beginning of the buffer, a close parenthesis shall increment the
38310 counter by 1, and an open parenthesis shall decrement the counter by 1.

38311 Matching for brackets and curly braces shall be equivalent, except that searching shall be done
38312 for open and close brackets or open and close curly braces. It is implementation-defined whether |
38313 other characters are searched for and matched as well. |

38314 If used as a motion command:

38315 1. If the matching cursor was after the starting cursor in the edit buffer, and the starting
38316 cursor position was at or before the first non-<blank> character in the starting line, and the
38317 matching cursor position was at or after the last non-<blank> character in the matching
38318 line, the text region shall consist of the current line to the matching line, inclusive, and any
38319 text copied to a buffer shall be in line mode.

Shell and Utilities, Issue 6 3211

vi Utilities

38320 2. If the matching cursor was before the starting cursor in the edit buffer, and the starting
38321 cursor position was at or after the last non-<blank> character in the starting line, and the
38322 matching cursor position was at or before the first non-<blank> character in the matching
38323 line, the text region shall consist of the current line to the matching line, inclusive, and any
38324 text copied to a buffer shall be in line mode.

38325 3. Otherwise, the text region shall consist of the starting character to the matching character,
38326 inclusive, and any text copied to a buffer shall be in character mode.

38327 If not used as a motion command:

38328 Current line : Set to the line where the matching character is located.

38329 Current column : Set to the last column where any portion of the matching character is displayed.

38330 Repeat Substitution

38331 Synopsis: &

38332 Repeat the previous substitution command. This command shall be equivalent to the ex &
38333 command with the current line as its addresses, and without options , count , or flags .

38334 Return to Previous Context at Beginning of Line

38335 Synopsis: ’ character

38336 It shall be an error if there is no line in the edit buffer marked by character .

38337 If used as a motion command:

38338 1. If the starting cursor is after the marked cursor, then the locations of the starting cursor
38339 and the marked cursor in the edit buffer shall be logically swapped.

38340 2. The text region shall consist of the starting line up to and including the marked line, and
38341 any text copied to a buffer shall be in line mode.

38342 If not used as a motion command:

38343 Current line : Set to the line referenced by the mark.

38344 Current column : Set to non-<blank>.

38345 Return to Previous Context

38346 Synopsis: ‘ character

38347 It shall be an error if the marked line is no longer in the edit buffer. If the marked line no longer
38348 contains a character in the saved numbered character position, it shall be as if the marked
38349 position is the first non-<blank> character.

38350 If used as a motion command:

38351 1. It shall be an error if the marked cursor references the same character in the edit buffer as
38352 the starting cursor.

38353 2. If the starting cursor is after the marked cursor, then the locations of the starting cursor
38354 and the marked cursor in the edit buffer shall be logically swapped.

38355 3. If the starting line is empty or the starting cursor is at or before the first non-<blank>
38356 character of the starting line, and the marked cursor line is empty or the marked cursor
38357 references the first character of the marked cursor line, the text region shall consist of all
38358 lines containing characters from the starting cursor to the line before the marked cursor

3212 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38359 line, inclusive, and any text copied to a buffer shall be in line mode.

38360 4. Otherwise, if the marked cursor line is empty or the marked cursor references a character
38361 at or before the first non-<blank> character of the marked cursor line, the region of text
38362 shall be from the starting cursor to the last character of the line before the marked cursor
38363 line, inclusive, and any text copied to a buffer shall be in character mode.

38364 5. Otherwise, the region of text shall be from the starting cursor (inclusive), to the marked
38365 cursor (exclusive), and any text copied to a buffer shall be in character mode.

38366 If not used as a motion command:

38367 Current line : Set to the line referenced by the mark.

38368 Current column : Set to the last column in which any portion of the character referenced by the
38369 mark is displayed.

38370 Return to Previous Section

38371 Synopsis: [[

38372 Move the cursor backward through the edit buffer to the first character of the previous section
38373 boundary, count times.

38374 If used as a motion command:

38375 1. If the starting cursor was at the first character of the starting line or the starting line was
38376 empty, and the first character of the boundary was the first character of the boundary line,
38377 the text region shall consist of the current line up to and including the line where the
38378 countth next boundary starts, and any text copied to a buffer shall be in line mode.

38379 2. If the boundary was the last line of the edit buffer or the last character of the last line of the
38380 edit buffer, the text region shall consist of the last character in the edit buffer up to and
38381 including the starting character, and any text saved to a buffer shall be in character mode.

38382 3. Otherwise, the text region shall consist of the starting character up to but not including the
38383 first character in the countth next boundary, and any text copied to a buffer shall be in
38384 character mode.

38385 If the lisp option is set, a section boundary is also identified by a line with a leading ’(’ . |

38386 If not used as a motion command:

38387 Current line : Set to the line where the countth next boundary in the edit buffer starts.

38388 Current column : Set to the last column in which any portion of the first character of the countth
38389 next boundary is displayed, or column position 1 if the line is empty.

38390 Move to Next Section

38391 Synopsis:]]

38392 Move the cursor forward through the edit buffer to the first character of the next section
38393 boundary, count times.

38394 If used as a motion command:

38395 1. If the starting cursor was at the first character of the starting line or the starting line was
38396 empty, and the first character of the boundary was the first character of the boundary line,
38397 the text region shall consist of the current line up to and including the line where the
38398 countth previous boundary starts, and any text copied to a buffer shall be in line mode.

Shell and Utilities, Issue 6 3213

vi Utilities

38399 2. If the boundary was the first line of the edit buffer, the text region shall consist of the first
38400 character in the edit buffer up to but not including the starting character, and any text
38401 copied to a buffer shall be in character mode.

38402 3. Otherwise, the text region shall consist of the first character in the countth previous section
38403 boundary up to but not including the starting character, and any text copied to a buffer
38404 shall be in character mode.

38405 If the lisp option is set, a section boundary is also identified by a line with a leading ’(’ . |

38406 If not used as a motion command:

38407 Current line : Set to the line where the countth previous boundary in the edit buffer starts.

38408 Current column : Set to the last column in which any portion of the first character of the countth
38409 previous boundary is displayed, or column position 1 if the line is empty.

38410 Move to First Non-<blank> Position on Current Line

38411 Synopsis: ^

38412 If used as a motion command:

38413 1. If the line has no non-<blank> characters, or if the cursor is at the first non-<blank>
38414 character of the line, it shall be an error.

38415 2. If the cursor is before the first non-<blank> character of the line, the text region shall be
38416 comprised of the current character, up to, but not including, the first non-<blank>
38417 character of the line.

38418 3. If the cursor is after the first non-<blank> character of the line, the text region shall be from
38419 the character before the starting cursor up to and including the first non-<blank> character
38420 of the line.

38421 4. Any text copied to a buffer shall be in character mode.

38422 If not used as a motion command:

38423 Current line : Unchanged.

38424 Current column : Set to non-<blank>.

38425 Current and line above

38426 Synopsis: [count] _

38427 If there are less than count −1 lines after the current line in the edit buffer, it shall be an error.

38428 If used as a motion command:

38429 1. If count is less than 2, the text region shall be the current line.

38430 2. Otherwise, the text region shall include the starting line and the next count −1 lines.

38431 3. Any text copied to a buffer shall be in line mode.

38432 If not used as a motion command:

38433 Current line : Set to current line + count −1.

38434 Current column : Set to non-<blank>.

3214 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38435 Move Back to Beginning of Sentence

38436 Synopsis: [count] (

38437 Move backward to the beginning of a sentence. This command shall be equivalent to the [[
38438 command, with the exception that sentence boundaries shall be used instead of section
38439 boundaries.

38440 If the lisp option is set, a LISP s-expression is considered a sentence for this command. |

38441 Move Forward to Beginning of Sentence

38442 Synopsis: [count])

38443 Move forward to the beginning of a sentence. This command shall be equivalent to the]]
38444 command, with the exception that sentence boundaries shall be used instead of section
38445 boundaries.

38446 If the lisp option is set, a LISP s-expression is considered a sentence for this command. |

38447 Move Back to Preceding Paragraph

38448 Synopsis: [count] {

38449 Move back to the beginning of the preceding paragraph. This command shall be equivalent to
38450 the [[command, with the exception that paragraph boundaries shall be used instead of section
38451 boundaries.

38452 Move Forward to Next Paragraph

38453 Synopsis: [count] }

38454 Move forward to the beginning of the next paragraph. This command shall be equivalent to the
38455]] command, with the exception that paragraph boundaries shall be used instead of section
38456 boundaries.

38457 Move to Specific Column Position

38458 Synopsis: [count] |

38459 For the purposes of this command, lines that are too long for the current display and that have
38460 been folded shall be treated as having a single, 1−based, number of columns.

38461 If there are less than count columns in which characters from the current line are displayed on
38462 the screen, count shall be adjusted to be the last column in which any portion of the line is
38463 displayed on the screen.

38464 If used as a motion command: |

38465 1. If the line is empty, or the cursor character is the same as the character on the countth
38466 column of the line, it shall be an error.

38467 2. If the cursor is before the countth column of the line, the text region shall be comprised of
38468 the current character, up to but not including the character on the countth column of the
38469 line.

38470 3. If the cursor is after the countth column of the line, the text region shall be from the
38471 character before the starting cursor up to and including the character on the countth
38472 column of the line.

Shell and Utilities, Issue 6 3215

vi Utilities

38473 4. Any text copied to a buffer shall be in character mode.

38474 If not used as a motion command: |

38475 Current line : Unchanged.

38476 Current column : Set to the last column in which any portion of the character that is displayed in
38477 the count column of the line is displayed.

38478 Reverse Find Character

38479 Synopsis: [count] ,

38480 If the last F, f, T, or t command was F, f, T, or t, this command shall be equivalent to an f, F, t, or
38481 T command, respectively, with the specified count and the same search character.

38482 If there was no previous F, f, T, or t command, it shall be an error.

38483 Repeat

38484 Synopsis: [count] .

38485 Repeat the last !, <, >, A, C, D, I, J, O, P, R, S, X, Y, a, c, d, i, o, p, r, s, x, y, or ˜ command. It shall
38486 be an error if none of these commands have been executed. Commands (other than commands
38487 that enter text input mode) executed as a result of map expansions, shall not change the value of
38488 the last repeatable command.

38489 Repeated commands with associated motion commands shall repeat the motion command as
38490 well; however, any specified count shall replace the count(s) that were originally specified to the
38491 repeated command or its associated motion command.

38492 If the motion component of the repeated command is f, F, t, or T, the repeated command shall
38493 not set the remembered search character for the ; and , commands.

38494 If the repeated command is p or P, and the buffer associated with that command was a numeric
38495 buffer named with a number less than 9, the buffer associated with the repeated command shall
38496 be set to be the buffer named by the name of the previous buffer logically incremented by 1.

38497 If the repeated character is a text input command, the input text associated with that command
38498 is repeated literally:

38499 • Input characters are neither macro or abbreviation-expanded.

38500 • Input characters are not interpreted in any special way with the exception that the <newline>
38501 character and the <carriage-return> character, and <control>-T behave as described in Input
38502 Mode Commands in vi (on page 3235).

38503 Current line : Set as described for the repeated command.

38504 Current column : Set as described for the repeated command.

38505 Find Regular Expression

38506 Synopsis: /

38507 If the input line contains no characters, it shall be equivalent to a line containing only the last
38508 regular expression encountered. The enhanced regular expressions supported by vi are
38509 described in Regular Expressions in ex (on page 2601).

38510 Otherwise, the line shall be interpreted as one or more regular expressions, optionally followed
38511 by an address offset or a vi z command.

3216 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38512 If the regular expression is not the last regular expression on the line, or if a line offset or z
38513 command is specified, the regular expression shall be terminated by an unescaped ’/’
38514 character, which shall not be used as part of the regular expression. If the regular expression is
38515 not the first regular expression on the line, it shall be preceded by zero or more <blank>
38516 characters, a semicolon, zero or more <blank> characters, and a leading ’/’ character, which
38517 shall not be interpreted as part of the regular expression. It shall be an error to precede any
38518 regular expression with any characters other than these.

38519 Each search shall begin from the character after the first character of the last match (or, if it is the
38520 first search, after the cursor). If the wrapscan edit option is set, the search shall continue to the
38521 character before the starting cursor character; otherwise, to the end of the edit buffer. It shall be
38522 an error if any search fails to find a match, and an informational message to this effect shall be
38523 displayed.

38524 An optional address offset (see Addressing in ex (on page 2571)) can be specified after the last
38525 regular expression by including a trailing ’/’ character after the regular expression and
38526 specifying the address offset. This offset will be from the line containing the match for the last
38527 regular expression specified. It shall be an error if the line offset would indicate a line address
38528 less than 1 or greater than the last line in the edit buffer. An address offset of zero shall be
38529 supported. It shall be an error to follow the address offset with any other characters than
38530 <blank> characters.

38531 If not used as a motion command, an optional z command (see Redraw Window (on page 3234))
38532 can be specified after the last regular expression by including a trailing ’/’ character after the
38533 regular expression, zero or more <blank> characters, a ’z’ , zero or more <blank> characters, an
38534 optional new window edit option value, zero or more <blank> characters, and a location
38535 character. The effect shall be as if the z command was executed after the / command. It shall be
38536 an error to follow the z command with any other characters than <blank> characters.

38537 The remembered search direction shall be set to forward.

38538 If used as a motion command:

38539 1. It shall be an error if the last match references the same character in the edit buffer as the
38540 starting cursor.

38541 2. If any address offset is specified, the last match shall be adjusted by the specified offset as
38542 described previously.

38543 3. If the starting cursor is after the last match, then the locations of the starting cursor and the
38544 last match in the edit buffer shall be logically swapped.

38545 4. If any address offset is specified, the text region shall consist of all lines containing
38546 characters from the starting cursor to the last match line, inclusive, and any text copied to a
38547 buffer shall be in line mode.

38548 5. Otherwise, if the starting line is empty or the starting cursor is at or before the first non-
38549 <blank> character of the starting line, and the last match line is empty or the last match
38550 starts at the first character of the last match line, the text region shall consist of all lines
38551 containing characters from the starting cursor to the line before the last match line,
38552 inclusive, and any text copied to a buffer shall be in line mode.

38553 6. Otherwise, if the last match line is empty or the last match begins at a character at or
38554 before the first non-<blank> of the last match line, the region of text shall be from the
38555 current cursor to the last character of the line before the last match line, inclusive, and any
38556 text copied to a buffer shall be in character mode.

Shell and Utilities, Issue 6 3217

vi Utilities

38557 7. Otherwise, the region of text shall be from the current cursor (inclusive), to the first
38558 character of the last match (exclusive), and any text copied to a buffer shall be be in
38559 character mode.

38560 If not used as a motion command:

38561 Current line : If a match is found, set to the last matched line plus the address offset, if any;
38562 otherwise, unchanged.

38563 Current column : Set to the last column on which any portion of the first character in the last
38564 matched string is displayed, if a match is found; otherwise, unchanged.

38565 Move to First Character in Line

38566 Synopsis: 0 (zero)

38567 Move to the first character on the current line. The character ’0’ shall not be interpreted as a
38568 command if it is immediately preceded by a digit.

38569 If used as a motion command:

38570 1. If the cursor character is the first character in the line, it shall be an error.

38571 2. The text region shall be from the character before the cursor character up to and including
38572 the first character in the line.

38573 3. Any text copied to a buffer shall be in character mode.

38574 If not used as a motion command:

38575 Current line : Unchanged.

38576 Current column : The last column in which any portion of the first character in the line is
38577 displayed, or if the line is empty, unchanged.

38578 Execute an ex Command

38579 Synopsis: :

38580 Execute one or more ex commands.

38581 If any portion of the screen other than the last line of the screen was overwritten by any ex
38582 command (except shell), vi shall display a message indicating that it is waiting for an input from
38583 the user, and shall then read a character. This action may also be taken for other, unspecified
38584 reasons.

38585 If the next character entered is a ’:’ , another ex command shall be accepted and executed. Any
38586 other character shall cause the screen to be refreshed and vi shall return to command mode.

38587 Current line : As specified for the ex command.

38588 Current column : As specified for the ex command.

3218 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38589 Repeat Find

38590 Synopsis: [count] ;

38591 This command shall be equivalent to the last F, f, T, or t command, with the specified count , and
38592 with the same search character used for the last F, f, T, or t command. If there was no previous F,
38593 f, T, or t command, it shall be an error.

38594 Shift Left

38595 Synopsis: [count] < motion

38596 If the motion command is the < command repeated:

38597 1. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38598 error.

38599 2. The text region shall be from the current line, up to and including the next count −1 lines.

38600 Shift any line in the text region specified by the count and motion command one shiftwidth (see
38601 the ex shiftwidth option) toward the start of the line, as described by the ex < command. The
38602 unshifted lines shall be copied to the unnamed buffer in line mode.

38603 Current line : If the motion was from the current cursor position toward the end of the edit
38604 buffer, unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
38605 specified by the motion command.

38606 Current column : Set to non-<blank>.

38607 Shift Right

38608 Synopsis: [count] > motion

38609 If the motion command is the > command repeated:

38610 1. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38611 error.

38612 2. The text region shall be from the current line, up to and including the next count −1 lines.

38613 Shift any line with characters in the text region specified by the count and motion command one
38614 shiftwidth (see the ex shiftwidth option) away from the start of the line, as described by the ex >
38615 command. The unshifted lines shall be copied into the unnamed buffer in line mode.

38616 Current line : If the motion was from the current cursor position toward the end of the edit
38617 buffer, unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
38618 specified by the motion command.

38619 Current column : Set to non-<blank>.

38620 Scan Backwards for Regular Expression

38621 Synopsis: ?

38622 Scan backwards; The ? command shall be equivalent to the / command (see Find Regular
38623 Expression (on page 3216)) with the following exceptions:

38624 1. The input prompt shall be a ’?’ .

38625 2. Each search shall begin from the character before the first character of the last match (or, if
38626 it is the first search, the character before the cursor character).

Shell and Utilities, Issue 6 3219

vi Utilities

38627 3. The search direction shall be from the cursor toward the beginning of the edit buffer, and
38628 the wrapscan edit option shall affect whether the search wraps to the end of the edit buffer
38629 and continues.

38630 4. The remembered search direction shall be set to backward.

38631 Execute

38632 Synopsis: @buffer

38633 If the buffer is specified as @, the last buffer executed shall be used. If no previous buffer has been
38634 executed, it shall be an error.

38635 Behave as if the contents of the named buffer were entered as standard input. After each line of a
38636 line-mode buffer, and all but the last line of a character mode buffer, behave as if a <newline>
38637 character were entered as standard input.

38638 If an error occurs during this process, an error message shall be written, and no more characters
38639 resulting from the execution of this command shall be processed.

38640 If a count is specified, behave as if that count were entered as user input before the characters
38641 from the @ buffer were entered.

38642 Current line : As specified for the individual commands.

38643 Current column : As specified for the individual commands.

38644 Reverse Case

38645 Synopsis: [count] ˜

38646 Reverse the case of the current character and the next count −1 characters, such that lowercase
38647 characters that have uppercase counterparts shall be changed to uppercase characters, and
38648 uppercase characters that have lowercase counterparts shall be changed to lowercase characters,
38649 as prescribed by the current locale. No other characters shall be affected by this command.

38650 If there are less than count −1 characters after the cursor in the edit buffer, count shall be adjusted
38651 to the number of characters after the cursor in the edit buffer minus 1.

38652 For the purposes of this command, the next character after the last character on the line shall be
38653 the next character in the edit buffer.

38654 Current line : Set to the line including the (count−1)th character after the cursor.

38655 Current column : Set to the last column in which any portion of the (count−1)th character after the
38656 cursor is displayed.

38657 Reindent

38658 Synopsis: |[count] =[motion] |

38659 If the lisp option is set, reindents the specified lines, as though they were typed in with lisp and
38660 autoindent set.

38661 Current line : Unchanged.

38662 Current column : Move to the first non-<blank> character of the line or the last character if the
38663 line is a blank line. |

3220 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38664 Append

38665 Synopsis: [count] a

38666 Enter text input mode after the current cursor position. No characters already in the edit buffer
38667 shall be affected by this command. A count shall cause the input text to be appended count −1
38668 more times to the end of the input.

38669 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38670 (on page 3235)).

38671 Append at End-of-Line

38672 Synopsis: [count] A

38673 This command shall be equivalent to the vi command:

38674 $ [count] a

38675 (see Append).

38676 Move Backward to Preceding Word

38677 Synopsis: [count] b

38678 With the exception that words are used as the delimiter instead of bigwords, this command shall
38679 be equivalent to the B command.

38680 Move Backward to Preceding Bigword

38681 Synopsis: [count] B

38682 If the edit buffer is empty or the cursor is on the first character of the edit buffer, it shall be an
38683 error. If less than count bigwords begin between the cursor and the start of the edit buffer, count
38684 shall be adjusted to the number of bigword beginnings between the cursor and the start of the
38685 edit buffer.

38686 If used as a motion command:

38687 1. The text region shall be from the first character of the countth previous bigword beginning
38688 up to but not including the cursor character.

38689 2. Any text copied to a buffer shall be in character mode.

38690 If not used as a motion command:

38691 Current line : Set to the line containing the current column .

38692 Current column : Set to the last column upon which any part of the first character of the countth
38693 previous bigword is displayed.

38694 Change

38695 Synopsis: [buffer][count] c motion

38696 If the motion command is the c command repeated:

38697 1. The buffer text shall be in line mode.

38698 2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38699 error.

Shell and Utilities, Issue 6 3221

vi Utilities

38700 3. The text region shall be from the current line up to and including the next count −1 lines.

38701 Otherwise, the buffer text mode and text region shall be as specified by the motion command.

38702 The replaced text shall be copied into buffer, if specified, and into the unnamed buffer. If the text
38703 to be replaced contains characters from more than a single line, or the buffer text is in line mode,
38704 the replaced text shall be copied into the numeric buffers as well.

38705 If the buffer text is in line mode:

38706 1. Any lines that contain characters in the region shall be deleted, and the editor shall enter
38707 text input mode at the beginning of a new line which shall replace the first line deleted.

38708 2. If the autoindent edit option is set, autoindent characters equal to the autoindent
38709 characters on the first line deleted shall be inserted as if entered by the user.

38710 Otherwise, if characters from more than one line are in the region of text:

38711 1. The text shall be deleted.

38712 2. Any text remaining in the last line in the text region shall be appended to the first line in
38713 the region, and the last line in the region shall be deleted.

38714 3. The editor shall enter text input mode after the last character not deleted from the first line
38715 in the text region, if any; otherwise, on the first column of the first line in the region.

38716 Otherwise:

38717 1. If the glyph for ’$’ is smaller than the region, the end of the region shall be marked with a
38718 ’$’ .

38719 2. The editor shall enter text input mode, overwriting the region of text.

38720 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38721 (on page 3235)).

38722 Change to End-of-Line

38723 Synopsis: [buffer][count] C

38724 This command shall be equivalent to the vi command:

38725 [buffer][count] c$

38726 See the c command.

38727 Delete

38728 Synopsis: [buffer][count] d motion

38729 If the motion command is the d command repeated:

38730 1. The buffer text shall be in line mode.

38731 2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38732 error.

38733 3. The text region shall be from the current line up to and including the next count −1 lines.

38734 Otherwise, the buffer text mode and text region shall be as specified by the motion command.

38735 If in open mode, and the current line is deleted, and the line remains on the display, an ’@’
38736 character shall be displayed as the first glyph of that line.

3222 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38737 Delete the region of text into buffer, if specified, and into the unnamed buffer. If the text to be
38738 deleted contains characters from more than a single line, or the buffer text is in line mode, the
38739 deleted text shall be copied into the numeric buffers, as well.

38740 Current line : Set to the first text region line that appears in the edit buffer, unless that line has
38741 been deleted, in which case it shall be set to the last line in the edit buffer, or line 1 if the edit
38742 buffer is empty.

38743 Current column :

38744 1. If the line is empty, set to column position 1.

38745 2. Otherwise, if the buffer text is in line mode or the motion was from the cursor toward the
38746 end of the edit buffer:

38747 a. If a character from the current line is displayed in the current column, set to the last
38748 column that displays any portion of that character.

38749 b. Otherwise, set to the last column in which any portion of any character in the line is
38750 displayed.

38751 3. Otherwise, if a character is displayed in the column that began the text region, set to the
38752 last column that displays any portion of that character.

38753 4. Otherwise, set to the last column in which any portion of any character in the line is
38754 displayed.

38755 Delete to End-of-Line

38756 Synopsis: [buffer] D

38757 Delete the text from the current position to the end of the current line; equivalent to the vi
38758 command:

38759 [buffer] d$

38760 Move to End-of-Word

38761 Synopsis: [count] e

38762 With the exception that words are used instead of bigwords as the delimiter, this command shall
38763 be equivalent to the E command.

38764 Move to End-of-Bigword

38765 Synopsis: [count] E

38766 If the edit buffer is empty it shall be an error. If less than count bigwords end between the cursor
38767 and the end of the edit buffer, count shall be adjusted to the number of bigword endings between
38768 the cursor and the end of the edit buffer.

38769 If used as a motion command:

38770 1. The text region shall be from the last character of the countth next bigword up to and
38771 including the cursor character.

38772 2. Any text copied to a buffer shall be in character mode.

38773 If not used as a motion command:

38774 Current line : Set to the line containing the current column.

Shell and Utilities, Issue 6 3223

vi Utilities

38775 Current column : Set to the last column upon which any part of the last character of the countth
38776 next bigword is displayed.

38777 Find Character in Current Line (Forward)

38778 Synopsis: [count] f character

38779 It shall be an error if count occurrences of the character do not occur after the cursor in the line.

38780 If used as a motion command:

38781 1. The text range shall be from the cursor character up to and including the countth
38782 occurrence of the specified character after the cursor.

38783 2. Any text copied to a buffer shall be in character mode.

38784 If not used as a motion command:

38785 Current line : Unchanged.

38786 Current column : Set to the last column in which any portion of the countth occurrence of the
38787 specified character after the cursor appears in the line.

38788 Find Character in Current Line (Reverse)

38789 Synopsis: [count] F character

38790 It shall be an error if count occurrences of the character do not occur before the cursor in the line.

38791 If used as a motion command:

38792 1. The text region shall be from the countth occurrence of the specified character before the
38793 cursor, up to, but not including the cursor character.

38794 2. Any text copied to a buffer shall be in character mode.

38795 If not used as a motion command:

38796 Current line : Unchanged.

38797 Current column : Set to the last column in which any portion of the countth occurrence of the
38798 specified character before the cursor appears in the line.

38799 Move to Line

38800 Synopsis: [count] G

38801 If count is not specified, it shall default to the last line of the edit buffer. If count is greater than
38802 the last line of the edit buffer, it shall be an error.

38803 If used as a motion command:

38804 1. The text region shall be from the cursor line up to and including the specified line.

38805 2. Any text copied to a buffer shall be in line mode.

38806 If not used as a motion command:

38807 Current line : Set to count if count is specified; otherwise, the last line. |

38808 Current column : Set to non-<blank>.

3224 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38809 Move to Top of Screen

38810 Synopsis: [count] H

38811 If the beginning of the line count greater than the first line of which any portion appears on the |
38812 display does not exist, it shall be an error. |

38813 If used as a motion command:

38814 1. If in open mode, the text region shall be the current line.

38815 2. Otherwise, the text region shall be from the starting line up to and including (the first line
38816 of the display + count −1).

38817 3. Any text copied to a buffer shall be in line mode.

38818 If not used as a motion command:

38819 If in open mode, this command shall set the current column to non-<blank> and do nothing else.

38820 Otherwise, it shall set the current line and current column as follows.

38821 Current line : Set to (the first line of the display + count −1).

38822 Current column : Set to non-<blank>.

38823 Insert Before Cursor

38824 Synopsis: [count] i

38825 Enter text input mode before the current cursor position. No characters already in the edit buffer
38826 shall be affected by this command. A count shall cause the input text to be appended count −1
38827 more times to the end of the input.

38828 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38829 (on page 3235)).

38830 Insert at Beginning of Line

38831 Synopsis: [count] I

38832 This command shall be equivalent to the vi command ˆ[count]i command.

38833 Join

38834 Synopsis: [count] J

38835 If the current line is the last line in the edit buffer, it shall be an error.

38836 This command shall be equivalent to the ex join command with no addresses, and an ex
38837 command count value of 1 if count was not specified or if a count of 1 was specified, and an ex
38838 command count value of count −1 for any other value of count , except that the current line and
38839 column shall be set as follows.

38840 Current line : Unchanged.

38841 Current column : The last column in which any portion of the character following the last
38842 character in the initial line is displayed, or the last character in the line if no characters were
38843 appended.

Shell and Utilities, Issue 6 3225

vi Utilities

38844 Move to Bottom of Screen

38845 Synopsis: [count] L

38846 If the beginning of the line count less than the last line of which any portion appears on the
38847 display does not exist, it shall be an error.

38848 If used as a motion command:

38849 1. If in open mode, the text region shall be the current line.

38850 2. Otherwise, the text region shall include all lines from the starting cursor line to (the last
38851 line of the display −(count −1)).

38852 3. Any text copied to a buffer shall be in line mode.

38853 If not used as a motion command:

38854 1. If in open mode, this command shall set the current column to non-<blank> and do
38855 nothing else.

38856 2. Otherwise, it shall set the current line and current column as follows.

38857 Current line : Set to (the last line of the display −(count −1)).

38858 Current column : Set to non-<blank>.

38859 Mark Position

38860 Synopsis: m letter

38861 This command shall be equivalent to the ex mark command with the specified character as an
38862 argument.

38863 Move to Middle of Screen

38864 Synopsis: M

38865 The middle line of the display shall be calculated as follows:

38866 (the top line of the display) + (((number of lines displayed) +1) /2) −1

38867 If used as a motion command:

38868 1. If in open mode, the text region shall be the current line.

38869 2. Otherwise, the text region shall include all lines from the starting cursor line up to and
38870 including the middle line of the display.

38871 3. Any text copied to a buffer shall be in line mode.

38872 If not used as a motion command:

38873 If in open mode, this command shall set the current column to non-<blank> and do nothing else.

38874 Otherwise, it shall set the current line and current column as follows.

38875 Current line : Set to the middle line of the display.

38876 Current column : Set to non-<blank>.

3226 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38877 Repeat Regular Expression Find (Forward)

38878 Synopsis: n

38879 If the remembered search direction was forward, the n command shall be equivalent to the vi /
38880 command with no characters entered by the user. Otherwise, it shall be equivalent to the vi ?
38881 command with no characters entered by the user.

38882 If the n command is used as a motion command for the ! command, the editor shall not enter
38883 text input mode on the last line on the screen, and shall behave as if the user entered a single ’!’
38884 character as the text input.

38885 Repeat Regular Expression Find (Reverse)

38886 Synopsis: N

38887 Scan for the next match of the last pattern given to / or ?, but in the reverse direction; this is the
38888 reverse of n.

38889 If the remembered search direction was forward, the N command shall be equivalent to the vi ?
38890 command with no characters entered by the user. Otherwise, it shall be equivalent to the vi /
38891 command with no characters entered by the user. If the N command is used as a motion
38892 command for the ! command, the editor shall not enter text input mode on the last line on the
38893 screen, and shall behave as if the user entered a single ! character as the text input.

38894 Insert Empty Line Below

38895 Synopsis: o

38896 Enter text input mode in a new line appended after the current line. A count shall cause the input
38897 text to be appended count −1 more times to the end of the already added text, each time starting
38898 on a new, appended line.

38899 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38900 (on page 3235)).

38901 Insert Empty Line Above

38902 Synopsis: O

38903 Enter text input mode in a new line inserted before the current line. A count shall cause the input
38904 text to be appended count −1 more times to the end of the already added text, each time starting
38905 on a new, appended line.

38906 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38907 (on page 3235)).

38908 Put from Buffer Following

38909 Synopsis: [buffer] p

38910 If no buffer is specified, the unnamed buffer shall be used.

38911 If the buffer text is in line mode, the text shall be appended below the current line, and each line
38912 of the buffer shall become a new line in the edit buffer. A count shall cause the buffer text to be
38913 appended count −1 more times to the end of the already added text, each time starting on a new,
38914 appended line.

38915 If the buffer text is in character mode, the text shall be appended into the current line after the
38916 cursor, and each line of the buffer other than the first and last shall become a new line in the edit

Shell and Utilities, Issue 6 3227

vi Utilities

38917 buffer. A count shall cause the buffer text to be appended count −1 more times to the end of the
38918 already added text, each time starting after the last added character.

38919 Current line : If the buffer text is in line mode, set the line to line +1; otherwise, unchanged.

38920 Current column : If the buffer text is in line mode:

38921 1. If there is a non-<blank> character in the first line of the buffer, set to the last column on
38922 which any portion of the first non-<blank> character in the line is displayed.

38923 2. If there is no non-<blank> character in the first line of the buffer, set to the last column on
38924 which any portion of the last character in the first line of the buffer is displayed.

38925 If the buffer text is in character mode:

38926 1. If the text in the buffer is from more than a single line, then set to the last column on which
38927 any portion of the first character from the buffer is displayed.

38928 2. Otherwise, if the buffer is the unnamed buffer, set to the last column on which any portion
38929 of the last character from the buffer is displayed.

38930 3. Otherwise, set to the first column on which any portion of the first character from the
38931 buffer is displayed.

38932 Put from Buffer Before

38933 Synopsis: [buffer] P

38934 If no buffer is specified, the unnamed buffer shall be used.

38935 If the buffer text is in line mode, the text shall be inserted above the current line, and each line of
38936 the buffer shall become a new line in the edit buffer. A count shall cause the buffer text to be
38937 appended count −1 more times to the end of the already added text, each time starting on a new,
38938 appended line.

38939 If the buffer text is in character mode, the text shall be inserted into the current line before the
38940 cursor, and each line of the buffer other than the first and last shall become a new line in the edit
38941 buffer. A count shall cause the buffer text to be appended count −1 more times to the end of the
38942 already added text, each time starting after the last added character.

38943 Current line : Unchanged.

38944 Current column : If the buffer text is in line mode:

38945 1. If there is a non-<blank> character in the first line of the buffer, set to the last column on
38946 which any portion of that character is displayed.

38947 2. If there is no non-<blank> character in the first line of the buffer, set to the last column on
38948 which any portion of the last character in the first line of the buffer is displayed.

38949 If the buffer text is in character mode:

38950 1. If the buffer is the unnamed buffer, set to the last column on which any portion of the last
38951 character from the buffer is displayed.

38952 2. Otherwise, set to the first column on which any portion of the first character from the
38953 buffer is displayed.

3228 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

38954 Enter ex Mode

38955 Synopsis: Q

38956 Leave visual or open mode and enter ex command mode.

38957 Current line : Unchanged.

38958 Current column : Unchanged.

38959 Replace Character

38960 Synopsis: [count] r character

38961 Notes to Reviewers |
38962 This section with side shading will not appear in the final copy. - Ed. |

38963 D3, XCU, ERN 270: The description of R is not correct. R is not the same as the i command, |
38964 which is what the text describes. Something should be done here when .2b is approved. |

38965 Replace the count characters at and after the cursor with the specified character. If there are less |
38966 than count characters at and after the cursor on the line, it shall be an error.

38967 If character is <control>-V, any next character other than the <newline> shall be stripped of any
38968 special meaning and used as a literal character.

38969 If character is <ESC>, no replacement shall be made and the current line and current column
38970 shall be unchanged.

38971 If character is <carriage-return> or <newline>, count new lines shall be appended to the current
38972 line. All but the last of these lines shall be empty. count characters at and after the cursor shall be
38973 discarded, and any remaining characters after the cursor in the current line shall be moved to the
38974 last of the new lines. If the autoindent edit option is set, they shall be preceded by the same
38975 number of autoindent characters found on the line from which the command was executed.

38976 Current line : Unchanged unless the replacement character is a <carriage-return> or <newline>
38977 character, in which case it shall be set to line + count .

38978 Current column : Set to the last column position on which a portion of the last replaced character
38979 is displayed, or if the replacement character caused new lines to be created, set to non-<blank>.

38980 Replace Characters

38981 Synopsis: R

38982 Enter text input mode at the current cursor position. A count shall cause the input text to be
38983 appended count −1 more times to the end of the input.

38984 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38985 (on page 3235)).

Shell and Utilities, Issue 6 3229

vi Utilities

38986 Substitute Character

38987 Synopsis: [buffer][count] s

38988 This command shall be equivalent to the vi command:

38989 [buffer][count] c<space>

38990 Substitute Lines

38991 Synopsis: [buffer][count] S

38992 This command shall be equivalent to the vi command:

38993 [buffer][count] c_

38994 Move Cursor to Before Character (Forward)

38995 Synopsis: [count] t character

38996 It shall be an error if count occurrences of the character do not occur after the cursor in the line.

38997 If used as a motion command:

38998 1. The text region shall be from the cursor up to but not including the countth occurrence of
38999 the specified character after the cursor.

39000 2. Any text copied to a buffer shall be in character mode.

39001 If not used as a motion command:

39002 Current line : Unchanged.

39003 Current column : Set to the last column in which any portion of the character before the countth
39004 occurrence of the specified character after the cursor appears in the line.

39005 Move Cursor to After Character (Reverse)

39006 Synopsis: [count] T character

39007 It shall be an error if count occurrences of the character do not occur before the cursor in the line.

39008 If used as a motion command:

39009 1. If the character before the cursor is the specified character, it shall be an error.

39010 2. The text region shall be from the character before the cursor up to but not including the
39011 countth occurrence of the specified character before the cursor.

39012 3. Any text copied to a buffer shall be in character mode.

39013 If not used as a motion command:

39014 Current line : Unchanged.

39015 Current column : Set to the last column in which any portion of the character after the countth
39016 occurrence of the specified character before the cursor appears in the line.

3230 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39017 Undo

39018 Synopsis: u

39019 This command shall be equivalent to the ex undo command except that the current line and
39020 current column shall be set as follows:

39021 Current line : Set to the first line added or changed if any; otherwise, move to the line preceding
39022 any deleted text if one exists; otherwise, move to line 1.

39023 Current column : If undoing an ex command, set to the first non-<blank> character.

39024 Otherwise, if undoing a text input command:

39025 1. If the command was an C, c, O, o, R, S, or s command, the current column shall be set to
39026 the value it held when the text input command was entered.

39027 2. Otherwise, set to the last column in which any portion of the first character after the
39028 deleted text is displayed, or, if no characters follow the text deleted from this line, set to the
39029 last column in which any portion of the last character in the line is displayed, or 1 if the line
39030 is empty.

39031 Otherwise, if a single line was modified (that is, not added or deleted) by the u command:

39032 1. If text was added or changed, set to the last column in which any portion of the first
39033 character added or changed is displayed.

39034 2. If text was deleted, set to the last column in which any portion of the first character after
39035 the deleted text is displayed, or, if no characters follow the deleted text, set to the last
39036 column in which any portion of the last character in the line is displayed, or 1 if the line is
39037 empty.

39038 Otherwise, set to non-<blank>.

39039 Undo Current Line

39040 Synopsis: U

39041 Restore the current line to its state immediately before the most recent time that it became the
39042 current line.

39043 Current line : Unchanged.

39044 Current column : Set to the first column in the line in which any portion of the first character in
39045 the line is displayed.

39046 Move to Beginning of Word

39047 Synopsis: [count] w

39048 With the exception that words are used as the delimiter instead of bigwords, this command shall
39049 be equivalent to the W command.

Shell and Utilities, Issue 6 3231

vi Utilities

39050 Move to Beginning of Bigword

39051 Synopsis: [count] W

39052 If the edit buffer is empty, it shall be an error. If there are less than count bigwords between the
39053 cursor and the end of the edit buffer, count shall be adjusted to move the cursor to the last
39054 bigword in the edit buffer.

39055 If used as a motion command:

39056 1. If the associated command is c, count is 1, and the cursor is on a <blank> character, the
39057 region of text shall be the current character and no further action shall be taken.

39058 2. If there are less than count bigwords between the cursor and the end of the edit buffer, then
39059 the command shall succeed, and the region of text shall include the last character of the
39060 edit buffer.

39061 3. If there are <blank> characters or an end-of-line that precede the countth bigword, and the
39062 associated command is c, the region of text shall be up to and including the last character
39063 before the preceding <blank> characters or end-of-line.

39064 4. If there are <blank> characters or an end-of-line that precede the bigword, and the
39065 associated command is d or y, the region of text shall be up to and including the last
39066 <blank> character before the start of the bigword or end-of-line.

39067 5. Any text copied to a buffer shall be in character mode.

39068 If not used as a motion command:

39069 1. If the cursor is on the last character of the edit buffer, it shall be an error.

39070 Current line : Set to the line containing the current column.

39071 Current column : Set to the last column in which any part of the first character of the countth next
39072 bigword is displayed.

39073 Delete Character at Cursor

39074 Synopsis: [buffer][count] x

39075 Delete the count characters at and after the current character into buffer, if specified, and into the
39076 unnamed buffer.

39077 If the line is empty, it shall be an error. If there are less than count characters at and after the
39078 cursor on the current line, count shall be adjusted to the number of characters at and after the
39079 cursor.

39080 Current line : Unchanged.

39081 Current column : If the line is empty, set to column position 1. Otherwise, if there were count or
39082 less characters at and after the cursor on the current line, set to the last column that displays any
39083 part of the last character of the line. Otherwise, unchanged.

3232 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39084 Delete Character Before Cursor

39085 Synopsis: [buffer][count] X

39086 Delete the count characters before the current character into buffer, if specified, and into the
39087 unnamed buffer.

39088 If there are no characters before the current character on the current line, it shall be an error. If
39089 there are less than count previous characters on the current line, count shall be adjusted to the
39090 number of previous characters on the line.

39091 Current line : Unchanged.

39092 Current column : Set to (current column − the width of the deleted characters).

39093 Yank

39094 Synopsis: [buffer][count] y motion

39095 Copy (yank) the region of text into buffer, if specified, and into the unnamed buffer.

39096 If the motion command is the y command repeated:

39097 1. The buffer shall be in line mode.

39098 2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
39099 error.

39100 3. The text region shall be from the current line up to and including the next count −1 lines.

39101 Otherwise, the buffer text mode and text region shall be as specified by the motion command.

39102 Current line : If the motion was from the current cursor position toward the end of the edit
39103 buffer, unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
39104 specified by the motion command.

39105 Current column :

39106 1. If the motion was from the current cursor position toward the end of the edit buffer,
39107 unchanged.

39108 2. Otherwise, if the current line is empty, set to column position 1.

39109 3. Otherwise, set to the last column that displays any part of the first character in the file that
39110 is part of the text region specified by the motion command.

39111 Yank Current Line

39112 Synopsis: [buffer][count] Y

39113 This command shall be equivalent to the vi command:

39114 [buffer][count] y_

Shell and Utilities, Issue 6 3233

vi Utilities

39115 Redraw Window

39116 If in open mode, the z command shall have the Synopsis:

39117 Synopsis: [count] z

39118 If count is not specified, it shall default to the window edit option −1. The z command shall be
39119 equivalent to the ex z command, with a type character of = and a count of count −2, except that
39120 the current line and current column shall be set as follows, and the window edit option shall not
39121 be affected. If the calculation for the count argument would result in a negative number, the
39122 count argument to the ex z command shall be zero. A blank line shall be written after the last line
39123 is written.

39124 Current line : Unchanged.

39125 Current column : Unchanged.

39126 If not in open mode, the z command shall have the following Synopsis:

39127 Synopsis: [line] z [count] character

39128 If line is not specified, it shall default to the current line. If line is specified, but is greater than the
39129 number of lines in the edit buffer, it shall default to the number of lines in the edit buffer.

39130 If count is specified, the value of the window edit option shall be set to count (as described in the
39131 ex window command), and the screen shall be redrawn.

39132 line shall be placed as specified by the following characters:

39133 <newline>, <carriage-return>
39134 Place the beginning of the line on the first line of the display.

39135 . Place the beginning of the line in the center of the display. The middle line of the display
39136 shall be calculated as described for the M command.

39137 − Place an unspecified portion of the line on the last line of the display.

39138 + If line was specified, equivalent to the <newline> case. If line was not specified, display a
39139 screen where the first line of the display shall be (current last line) +1. If there are no lines
39140 after the last line in the display, it shall be an error.

39141 ^ If line was specified, display a screen where the last line of the display shall contain an
39142 unspecified portion of the first line of a display that had an unspecified portion of the
39143 specified line on the last line of the display. If this calculation results in a line before the
39144 beginning of the edit buffer, display the first screen of the edit buffer.

39145 Otherwise, display a screen where the last line of the display shall contain an unspecified
39146 portion of (current first line −1). If this calculation results in a line before the beginning of
39147 the edit buffer, it shall be an error.

39148 Current line : If line and the ’ˆ’ character were specified:

39149 1. If the first screen was displayed as a result of the command attempting to display lines
39150 before the beginning of the edit buffer: if the first screen was already displayed,
39151 unchanged; otherwise, set to (current first line −1).

39152 2. Otherwise, set to the last line of the display.

39153 If line and the ’+’ character were specified, set to the first line of the display.

39154 Otherwise, if line was specified, set to line .

3234 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39155 Otherwise, unchanged.

39156 Current column : Set to non-<blank>.

39157 Exit

39158 Synopsis: ZZ

39159 This command shall be equivalent to the ex xit command with no addresses, trailing !, or file
39160 name (see the ex xit command).

39161 Input Mode Commands in vi

39162 In text input mode, the current line shall consist of zero or more of the following categories:

39163 1. Characters preceding the text input entry point

39164 Characters in this category shall not be modified during text input mode.

39165 2. autoindent characters

39166 autoindent characters shall be automatically inserted into each line that is created in text
39167 input mode, either as a result of entering a <newline> character or <carriage-return>
39168 character while in text input mode, or as an effect of the command itself; for example, O or
39169 o (see the ex autoindent command), as if entered by the user.

39170 It shall be possible to erase autoindent characters with the <control>-D command; it is
39171 unspecified whether they can be erased by <control>-H, <control>-U, and <control>-W
39172 characters. Erasing any autoindent character turns the glyph into erase-columns and
39173 deletes the character from the edit buffer, but does not change its representation on the
39174 screen.

39175 3. Text input characters

39176 Text input characters are the characters entered by the user. Erasing any text input
39177 character turns the glyph into erase-columns and deletes the character from the edit buffer,
39178 but does not change its representation on the screen.

39179 Each text input character entered by the user (that does not have a special meaning) shall
39180 be treated as follows:

39181 a. The text input character shall be appended to the last character in the edit buffer
39182 from the first, second, or third categories.

39183 b. If there are no erase-columns on the screen, the text input command was the R
39184 command, and characters in the fifth category from the original line follow the
39185 cursor, the next such character shall be deleted from the edit buffer. If the slowopen
39186 edit option is not set, the corresponding glyph on the screen shall become erase-
39187 columns.

39188 c. If there are erase-columns on the screen, as many columns as they occupy, or as are
39189 necessary, shall be overwritten to display the text input character. (If only part of a
39190 multi-column glyph is overwritten, the remainder shall be left on the screen, and
39191 continue to be treated as erase-columns; it is unspecified whether the remainder of
39192 the glyph is modified in any way.)

39193 d. If additional screen columns are needed to display the text input character:

39194 1. If the slowopen edit option is set, the text input characters shall be displayed
39195 on subsequent screen columns, overwriting any characters displayed in those
39196 columns.

Shell and Utilities, Issue 6 3235

vi Utilities

39197 2. Otherwise, any characters currently displayed on or after the column on the
39198 screen where the text input character is to be displayed shall be pushed ahead
39199 the number of screen columns necessary to display the rest of the text input
39200 character.

39201 4. Erase-columns

39202 Erase-columns are not logically part of the edit buffer, appearing only on the screen, and
39203 may be overwritten on the screen by subsequent text input characters. When text input
39204 mode ends, all erase-columns shall no longer appear on the screen.

39205 Erase-columns are initially the region of text specified by the c command (see Change (on
39206 page 3221)) however, erasing autoindent or text input characters causes the glyphs of the
39207 erased characters to be treated as erase-columns.

39208 5. Characters following the text region for the c command, or the text input entry point for all
39209 other commands

39210 Characters in this category shall not be modified during text input mode, except as
39211 specified in category 3.b. for the R text input command, or as <blank> characters deleted
39212 when a <newline> character or <carriage-return> character is entered.

39213 It is unspecified whether it is an error to attempt to erase past the beginning of a line that was
39214 created by the entry of a <newline> or <carriage-return> character during text input mode. If it
39215 is not an error, the editor shall behave as if the erasing character was entered immediately after
39216 the last text input character entered on the previous line, and all of the characters on the current
39217 line shall be treated as erase-columns.

39218 When text input mode is entered, or after a text input mode character is entered (except as
39219 specified for the special characters below), the cursor shall be positioned as follows:

39220 1. On the first column that displays any part of the first erase-column, if one exists

39221 2. Otherwise, if the slowopen edit option is set, on the first screen column after the last
39222 character in the first, second, or third categories, if one exists

39223 3. Otherwise, the first column that displays any part of the first character in the fifth category,
39224 if one exists

39225 4. Otherwise, the screen column after the last character in the first, second, or third
39226 categories, if one exists

39227 5. Otherwise, on column position 1

39228 The characters that are updated on the screen during text input mode are unspecified, other than
39229 that the last text input character shall always be updated, and, if the slowopen edit option is not
39230 set, the current cursor character shall always be updated.

39231 The following specifications are for command characters entered during text input mode.

39232 NUL

39233 Synopsis: NUL

39234 If the first character of the text input is a NUL, the most recently input text shall be input as if
39235 entered by the user, and then text input mode shall be exited. The text shall be input literally;
39236 that is, characters are neither macro or abbreviation expanded, nor are any characters interpreted
39237 in any special manner. It is unspecified whether implementations shall support more than 256
39238 bytes of remembered input text.

3236 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39239 <control>-D

39240 Synopsis: <control>-D

39241 The <control>-D character shall have no special meaning when in text input mode for a line-
39242 oriented command (see Command Descriptions in vi (on page 3201)).

39243 This command need not be supported on block-mode terminals.

39244 If the cursor does not follow an autoindent character, or an autoindent character and a ’0’ or
39245 ’ˆ’ character:

39246 1. If the cursor is in column position 1, the <control>-D character shall be discarded and no
39247 further action taken.

39248 2. Otherwise, the <control>-D character shall have no special meaning.

39249 If the last input character was a ’0’ , the cursor shall be moved to column position 1.

39250 Otherwise, if the last input character was a ’ˆ’ , the cursor shall be moved to column position 1.
39251 In addition, the autoindent level for the next input line shall be derived from the same line from
39252 which the autoindent level for the current input line was derived.

39253 Otherwise, the cursor shall be moved back to the column after the previous shiftwidth (see the
39254 ex shiftwidth command) boundary.

39255 All of the glyphs on columns between the starting cursor position and (inclusively) the ending
39256 cursor position shall become erase-columns as described in Input Mode Commands in vi (on
39257 page 3235).

39258 Current line : Unchanged.

39259 Current column : Set to 1 if the <control>-D was preceded by a ’ˆ’ or ’0’ ; otherwise, set to
39260 (column −1) −((column −2) % shiftwidth).

39261 <control>-H

39262 Synopsis: <control>-H

39263 If in text input mode for a line-oriented command, and there are no characters to erase, text
39264 input mode shall be terminated, no further action shall be done for this command, and the
39265 current line and column shall be unchanged.

39266 If there are characters other than autoindent characters that have been input on the current line
39267 before the cursor, the cursor shall move back one character.

39268 Otherwise, if there are autoindent characters on the current line before the cursor, it is |
39269 implementation-defined whether the <control>-H command is an error or if the cursor moves |
39270 back one autoindent character.

39271 Otherwise, if the cursor is in column position 1 and there are previous lines that have been input, |
39272 it is implementation-defined whether the <control>-H command is an error or if it is equivalent |
39273 to entering <control>-H after the last input character on the previous input line.

39274 Otherwise, it shall be an error.

39275 All of the glyphs on columns between the starting cursor position and (inclusively) the ending
39276 cursor position shall become erase-columns as described in Input Mode Commands in vi (on
39277 page 3235).

39278 The current erase character (see stty) shall cause an equivalent action to the <control>-H
39279 command, unless the previously inserted character was a backslash, in which case it shall be as

Shell and Utilities, Issue 6 3237

vi Utilities

39280 if the literal current erase character had been inserted instead of the backslash.

39281 Current line : Unchanged, unless previously input lines are erased, in which case it shall be set to
39282 line −1.

39283 Current column : Set to the first column that displays any portion of the character backed up
39284 over.

39285 <newline>

39286 Synopsis: <newline>
39287 <carriage-return>
39288 <control>-J
39289 <control>-M

39290 If input was part of a line-oriented command, text input mode shall be terminated and the
39291 command shall continue execution with the input provided.

39292 Otherwise, terminate the current line. If there are no characters other than autoindent characters
39293 on the line, all characters on the line shall be discarded. Otherwise, it is unspecified whether the
39294 autoindent characters in the line are modified by entering these characters.

39295 Continue text input mode on a new line appended after the current line. If the slowopen edit
39296 option is set, the lines on the screen below the current line shall not be pushed down, but the
39297 first of them shall be cleared and shall appear to be overwritten. Otherwise, the lines of the
39298 screen below the current line shall be pushed down.

39299 If the autoindent edit option is set, an appropriate number of autoindent characters shall be
39300 added as a prefix to the line as described by the ex autoindent edit option.

39301 All columns after the cursor that are erase-columns (as described in Input Mode Commands in
39302 vi (on page 3235)) shall be discarded.

39303 If the autoindent edit option is set, all <blank> characters immediately following the cursor shall
39304 be discarded.

39305 All remaining characters after the cursor shall be transferred to the new line, positioned after any
39306 autoindent characters.

39307 Current line : Set to current line +1.

39308 Current column : Set to the first column that displays any portion of the first character after the
39309 autoindent characters on the new line, if any, or the first column position after the last
39310 autoindent character, if any, or column position 1.

39311 <control>-T

39312 Synopsis: <control>-T

39313 The <control>-T character shall have no special meaning when in text input mode for a line-
39314 oriented command (see Command Descriptions in vi (on page 3201)).

39315 This command need not be supported on block-mode terminals.

39316 Behave as if the user entered the minimum number of <blank> characters necessary to move the |
39317 cursor forward to the column position after the next shiftwidth (see the ex shiftwidth
39318 command) boundary.

39319 Current line : Unchanged.

3238 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39320 Current column : Set to column + shiftwidth − ((column −1) % shiftwidth).

39321 <control>-U

39322 Synopsis: <control>-U

39323 If there are characters other than autoindent characters that have been input on the current line
39324 before the cursor, the cursor shall move to the first character input after the autoindent
39325 characters.

39326 Otherwise, if there are autoindent characters on the current line before the cursor, it is |
39327 implementation-defined whether the <control>-U command is an error or if the cursor moves to |
39328 the first column position on the line.

39329 Otherwise, if the cursor is in column position 1 and there are previous lines that have been input, |
39330 it is implementation-defined whether the <control>-U command is an error or if it is equivalent |
39331 to entering <control>-U after the last input character on the previous input line.

39332 Otherwise, it shall be an error.

39333 All of the glyphs on columns between the starting cursor position and (inclusively) the ending
39334 cursor position shall become erase-columns as described in Input Mode Commands in vi (on
39335 page 3235).

39336 The current kill character (see stty) shall cause an equivalent action to the <control>-U
39337 command, unless the previously inserted character was a backslash, in which case it shall be as
39338 if the literal current kill character had been inserted instead of the backslash.

39339 Current line : Unchanged, unless previously input lines are erased, in which case it shall be set to
39340 line −1.

39341 Current column : Set to the first column that displays any portion of the last character backed up
39342 over.

39343 <control>-V

39344 Synopsis: <control>-V
39345 <control>-Q

39346 Allow the entry of any subsequent character, other than <control>-J or the <newline> character, |
39347 as a literal character, removing any special meaning that it may have to the editor in text input
39348 mode. If a <control>-V or <control>-Q is entered before a <control>-J or <newline> character,
39349 the <control>-V or <control>-Q character shall be discarded, and the <control>-J or <newline>
39350 shall behave as described in the <newline> command character during input mode.

39351 For purposes of the display only, the editor shall behave as if a ’ˆ’ character was entered, and
39352 the cursor shall be positioned as if overwriting the ’ˆ’ character. When a subsequent character
39353 is entered, the editor shall behave as if that character was entered instead of the original
39354 <control>-V or <control>-Q character.

39355 Current line : Unchanged.

39356 Current column : Unchanged.

Shell and Utilities, Issue 6 3239

vi Utilities

39357 <control>-W

39358 Synopsis: <control>-W

39359 If there are characters other than autoindent characters that have been input on the current line
39360 before the cursor, the cursor shall move back over the last word preceding the cursor (including
39361 any <blank> characters between the end of the last word and the current cursor); the cursor shall
39362 not move to before the first character after the end of any autoindent characters.

39363 Otherwise, if there are autoindent characters on the current line before the cursor, it is |
39364 implementation-defined whether the <control>-W command is an error or if the cursor moves to |
39365 the first column position on the line.

39366 Otherwise, if the cursor is in column position 1 and there are previous lines that have been input, |
39367 it is implementation-defined whether the <control>-W command is an error or if it is equivalent |
39368 to entering <control>-W after the last input character on the previous input line.

39369 Otherwise, it shall be an error.

39370 All of the glyphs on columns between the starting cursor position and (inclusively) the ending
39371 cursor position shall become erase-columns as described in Input Mode Commands in vi (on
39372 page 3235).

39373 Current line : Unchanged, unless previously input lines are erased, in which case it shall be set to
39374 line −1.

39375 Current column : Set to the first column that displays any portion of the last character backed up
39376 over.

39377 <ESC>

39378 Synopsis: <ESC>

39379 If input was part of a line-oriented command:

39380 1. If interrupt was entered, text input mode shall be terminated and the editor shall return to
39381 command mode. The terminal shall be alerted. |

39382 Notes to Reviewers |
39383 This section with side shading will not appear in the final copy. - Ed. |

39384 D3, XCU, ERN 274 says the character ESC is not an interrupt character, so why is point 1 |
39385 here? This will need to be revisited when .2b is approved. I believe this is covered in |
39386 Rationale; see later. |

39387 2. If <ESC> was entered, text input mode shall be terminated and the command shall |
39388 continue execution with the input provided.

39389 Otherwise, terminate text input mode and return to command mode.

39390 Any autoindent characters entered on newly created lines that have no other characters shall be
39391 deleted.

39392 Any leading autoindent and <blank> characters on newly created lines shall be rewritten to be |
39393 the minimum number of <blank> characters possible. |

39394 The screen shall be redisplayed as necessary to match the contents of the edit buffer.

39395 Current line : Unchanged.

3240 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39396 Current column :

39397 1. If there are text input characters on the current line, the column shall be set to the last
39398 column where any portion of the last text input character is displayed.

39399 2. Otherwise, if a character is displayed in the current column, unchanged.

39400 3. Otherwise, set to column position 1.

39401 EXIT STATUS
39402 The following exit values shall be returned:

39403 0 Successful completion.

39404 >0 An error occurred.

39405 CONSEQUENCES OF ERRORS
39406 When any error is encountered and the standard input is not a terminal device file, vi shall not
39407 write the file or return to command or text input mode, and shall terminate with a non-zero exit
39408 status.

39409 Otherwise, when an unrecoverable error is encountered it shall be equivalent to a SIGHUP
39410 asynchronous event.

39411 Otherwise, when an error is encountered, the editor shall behave as specified in Command
39412 Descriptions in vi (on page 3201).

39413 APPLICATION USAGE
39414 None. |

39415 EXAMPLES
39416 None.

39417 RATIONALE
39418 See the RATIONALE for ex for more information on vi. Major portions of the vi utility
39419 specification point to ex to avoid inadvertent divergence. While ex and vi have historically been
39420 implemented as a single utility, this is not required by IEEE Std. 1003.1-200x.

39421 It is recognized that portions of vi would be difficult, if not impossible, to implement
39422 satisfactorily on a block-mode terminal, or a terminal without any form of cursor addressing,
39423 thus it is not a mandatory requirement that such features should work on all terminals. It is the
39424 intention, however, that a vi implementation should provide the full set of capabilities on all
39425 terminals capable of supporting them.

39426 Historically, vi exited immediately if the standard input was not a terminal.
39427 IEEE Std. 1003.1-200x permits, but does not require, this behavior. An end-of-file condition is not
39428 equivalent to an end-of-file character. A common end-of-file character, <control>-D, is
39429 historically a vi command.

39430 The text in the STANDARD OUTPUT section reflects the usage of the verb display in this section;
39431 some implementations of vi use standard output to write to the terminal, but
39432 IEEE Std. 1003.1-200x does not require that to be the case.

39433 Historically, implementations reverted to open mode if the terminal was incapable of
39434 supporting full visual mode. IEEE Std. 1003.1-200x requires this behavior. Historically, the open
39435 mode of vi behaved roughly equivalently to the visual mode, with the exception that only a
39436 single physical line from the edit buffer was kept current at any time. This line was normally
39437 displayed on the next-to-last line of a terminal with cursor addressing (and the last line
39438 performed its normal visual functions for line-oriented commands and messages). In addition,
39439 some few commands behaved differently in open mode than in visual mode.

Shell and Utilities, Issue 6 3241

vi Utilities

39440 IEEE Std. 1003.1-200x requires conformance to historical practice.

39441 Historically, ex and vi implementations have expected text to proceed in the usual
39442 European/Latin order of left to right, top to bottom. There is no requirement in
39443 IEEE Std. 1003.1-200x that this be the case. The specification was deliberately written using
39444 words like ‘‘before’’, ‘‘after’’, ‘‘first’’, and ‘‘last’’ in order to permit implementations to support
39445 the natural text order of the language.

39446 Historically, lines past the end of the edit buffer were marked with single tilde (’˜’) characters;
39447 that is, if the one-based display was 20 lines in length, and the last line of the file was on line one,
39448 then lines 2-20 would contain only a single ’˜’ character.

39449 Historically, the vi editor attempted to display only complete lines at the bottom of the screen (it
39450 did display partial lines at the top of the screen). If a line was too long to fit in its entirety at the
39451 bottom of the screen, the screen lines where the line would have been displayed were displayed
39452 as single ’@’ characters, instead of displaying part of the line. IEEE Std. 1003.1-200x permits, but
39453 does not require, this behavior. Implementations are encouraged to attempt always to display a
39454 complete line at the bottom of the screen when doing scrolling or screen positioning by physical
39455 lines.

39456 Historically, lines marked with ’@’ were also used to minimize output to dumb terminals over
39457 slow lines; that is, changes local to the cursor were updated, but changes to lines on the screen
39458 that were not close to the cursor were simply marked with an ’@’ sign instead of being updated
39459 to match the current text. IEEE Std. 1003.1-200x permits, but does not require this feature
39460 because it is used ever less frequently as terminals become smarter and connections are faster.

39461 Initialization in ex and vi

39462 Historically, vi always had a line in the edit buffer, even if the edit buffer was ‘‘empty’’. For
39463 example:

39464 1. The ex command = executed from visual mode wrote ‘‘1’’ when the buffer was empty.

39465 2. Writes from visual mode of an empty edit buffer wrote files of a single character (a
39466 <newline> character), while writes from ex mode of an empty edit buffer wrote empty
39467 files.

39468 3. Put and read commands into an empty edit buffer left an empty line at the top of the edit
39469 buffer.

39470 For consistency, IEEE Std. 1003.1-200x does not permit any of these behaviors.

39471 Historically, vi did not always return the terminal to its original modes; for example, ICRNL was
39472 modified if it was not originally set. IEEE Std. 1003.1-200x does not permit this behavior.

39473 Command Descriptions in vi

39474 Motion commands are among the most complicated aspects of vi to describe. With some
39475 exceptions, the text region and buffer type effect of a motion command on a vi command are
39476 described on a case-by-case basis. The descriptions of text regions in IEEE Std. 1003.1-200x are
39477 not intended to imply direction; that is, an inclusive region from line n to line n+5 is identical to
39478 a region from line n+5 to line n. This is of more than academic interest—movements to marks
39479 can be in either direction, and, if the wrapscan option is set, so can movements to search points.
39480 Historically, lines are always stored into buffers in text order; that is, from the start of the edit
39481 buffer to the end. IEEE Std. 1003.1-200x requires conformance to historical practice.

39482 Historically, command counts were applied to any associated motion, and were multiplicative
39483 to any supplied motion count. For example, 2cw is the same as c2w, and 2c3w is the same as

3242 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39484 c6w. IEEE Std. 1003.1-200x requires this behavior. Historically, vi commands that used
39485 bigwords, words, paragraphs, and sentences as objects treated groups of empty lines, or lines
39486 that contained only <blank> characters, inconsistently. Some commands treated them as a single
39487 entity, while others treated each line separately. For example, the w, W, and B commands treated
39488 groups of empty lines as individual words; that is, the command would move the cursor to each
39489 new empty line. The e and E commands treated groups of empty lines as a single word; that is,
39490 the first use would move past the group of lines. The b command would just beep at the user, or
39491 if done from the start of the line as a motion command, fail in unexpected ways. If the lines
39492 contained only (or ended with) <blank> characters, the w and W commands would just beep at
39493 the user, the E and e commands would treat the group as a single word, and the B and b
39494 commands would treat the lines as individual words. For consistency and simplicity of
39495 specification, IEEE Std. 1003.1-200x requires that all vi commands treat groups of empty or
39496 <blank> character-filled lines as a single entity, and that movement through lines ending with
39497 <blank> characters be consistent with other movements.

39498 Historically, vi documentation indicated that any number of double quotes were skipped after
39499 punctuation marks at sentence boundaries; however, implementations only skipped single
39500 quotes. IEEE Std. 1003.1-200x requires both to be skipped.

39501 Historically, the first and last characters in the edit buffer were word boundaries. This historical
39502 practice is required by IEEE Std. 1003.1-200x.

39503 Historically, vi attempted to update the minimum number of columns on the screen possible,
39504 which could lead to misleading information being displayed. IEEE Std. 1003.1-200x makes no
39505 requirements other than that the current character being entered is displayed correctly, leaving
39506 all other decisions in this area up to the implementation.

39507 Historically, lines were arbitrarily folded between columns of any characters that required
39508 multiple column positions on the screen, with the exception of tabs, which terminated at the
39509 right-hand margin. IEEE Std. 1003.1-200x permits the former and requires the latter.
39510 Implementations that do not arbitrarily break lines between columns of characters that occupy
39511 multiple column positions should not permit the cursor to rest on a column that does not
39512 contain any part of a character.

39513 The historical vi had a problem in that all movements were by physical lines, not by logical, or
39514 screen, lines. This is often the right thing to do; for example, single line movements, such as j or
39515 k, should work on physical lines. Commands like dj, or j., where . is a change command, only
39516 make sense for physical lines. It is not, however, the right thing to do for screen motion or
39517 scrolling commands like <control>-D, <control>-F, and H. If the window is fairly small, using
39518 physical lines in these cases can result in completely random motion; for example, 1<control>-D
39519 can result in a completely changed screen, without any overlap. This is clearly not what the user
39520 wanted. The problem is even worse in the case of the H, L, and M commands—as they position
39521 the cursor at the first non-<blank> character of the line, they may all refer to the same location in
39522 large lines, and will result in no movement at all.

39523 In addition, if the line is larger than the screen, using physical lines can make it impossible to
39524 display parts of the line—there are not any commands that do not display the beginning of the
39525 line in historical vi, and if both the beginning and end of the line cannot be on the screen at the
39526 same time, the user suffers. Finally, the page and half-page scrolling commands historically
39527 moved to the first non-<blank> character in the new line. If the line is approximately the same
39528 size as the screen, this is inadequate because the cursor before and after a <control>-D command
39529 will refer to the same location on the screen.

39530 Implementations of ex and vi exist that do not have these problems because the relevant
39531 commands (<control>-B, <control>-D, <control>-F, <control>-U, <control>-Y, <control>-E, H, L,
39532 and M) operate on logical screen lines, not physical edit buffer lines.

Shell and Utilities, Issue 6 3243

vi Utilities

39533 IEEE Std. 1003.1-200x does not permit this behavior by default because the standard developers
39534 believed that users would find it too confusing. However, historical practice has been relaxed.
39535 For example, ex and vi historically attempted, albeit sometimes unsuccessfully, to never put part
39536 of a line on the last lines of a screen; for example, if a line would not fit in its entirety, no part of
39537 the line was displayed, and the screen lines corresponding to the line contained single ’@’
39538 characters. This behavior is permitted, but not required by IEEE Std. 1003.1-200x, so that it is
39539 possible for implementations to support long lines in small screens more reasonably without
39540 changing the commands to be logically (instead of physically) oriented. IEEE Std. 1003.1-200x
39541 also permits implementations to refuse to edit any edit buffer containing a line that will not fit
39542 on the screen in its entirety.

39543 The display area (for example, the value of the window edit option) has historically been
39544 ‘‘grown’’, or expanded, to display new text when local movements are done in displays where
39545 the number of lines displayed is less than the maximum possible. Expansion has historically
39546 been the first choice, when the target line is less than the maximum possible expansion value
39547 away. Scrolling has historically been the next choice, done when the target line is less than half a
39548 display away, and otherwise, the screen was redrawn. There were exceptions, however, in that
39549 ex commands generally always caused the screen to be redrawn. IEEE Std. 1003.1-200x does not
39550 specify a standard behavior because there may be external issues, such as connection speed, the
39551 number of characters necessary to redraw as opposed to scroll, or terminal capabilities that
39552 implementations will have to accommodate.

39553 The current line in IEEE Std. 1003.1-200x maps one-to-one to a physical line in the file. The
39554 current column does not. There are two different column values that are described by
39555 IEEE Std. 1003.1-200x. The first is the current column value as set by many of the vi commands.
39556 This value is remembered for the lifetime of the editor. The second column value is the actual
39557 position on the screen where the cursor rests. The two are not always the same. For example,
39558 when the cursor is backed by a multi-column character, the actual cursor position on the screen
39559 has historically been the last column of the character in command mode, and the first column of
39560 the character in input mode.

39561 Commands that set the current line, but that do not set the current cursor value (for example, j
39562 and k) attempt to get as close as possible to the remembered column position, so that the cursor
39563 tends to restrict itself to a vertical column as the user moves around in the edit buffer.
39564 IEEE Std. 1003.1-200x requires conformance to historical practice, requiring that the physical
39565 location of the cursor on the screen be adjusted from the current column value as necessary to
39566 support this historical behavior.

39567 Historically, only a single line (and for some terminals, a single line minus 1 column) of
39568 characters could be entered by the user for the line oriented commands; that is, :, !, /, or ?.
39569 IEEE Std. 1003.1-200x permits, but does not require, this limitation.

39570 Historically, ‘‘soft’’ errors in vi caused the terminal to be alerted, but no error message was
39571 displayed. As a general rule, no error message was displayed for errors in command execution
39572 in vi, when the error resulted from the user attempting an invalid or impossible action, or when
39573 a searched-for object was not found. Examples of soft errors included h at the left margin,
39574 <control>-B or [[at the beginning of the file, 2G at the end of the file, and so on. In addition,
39575 errors such as %,]], },), N, n, f, F, t, and T failing to find the searched-for object were soft as well.
39576 Less consistently, / and ? displayed an error message if the pattern was not found, /, ?, N, and n
39577 displayed an error message if no previous regular expression had been specified, and ; did not
39578 display an error message if no previous f, F, t, or T command had occurred. Also, behavior in
39579 this area might reasonably be based on a runtime evaluation of the speed of a network
39580 connection. Finally, some implementations have provided error messages for soft errors in
39581 order to assist naive users, based on the value of a verbose edit option. IEEE Std. 1003.1-200x
39582 does not list specific errors for which an error message shall be displayed. Implementations

3244 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39583 should conform to historical practice in the absence of any strong reason to diverge.

39584 Page Backwards

39585 The <control>-B and <control>-F commands historically considered it an error to attempt to
39586 page past the beginning or end of the file, whereas the <control>-D and <control>-U commands
39587 simply moved to the beginning or end of the file. For consistency, IEEE Std. 1003.1-200x requires
39588 the latter behavior for all four commands. All four commands still consider it an error if the
39589 current line is at the beginning (<control>-B, <control>-U) or end (<control>-F, <control>-D) of
39590 the file. Historically, the <control>-B and <control>-F commands skip two lines in order to
39591 include overlapping lines when a single command is entered. This makes less sense in the
39592 presence of a count , as there will be, by definition, no overlapping lines. The actual calculation
39593 used by historical implementations of the vi editor for <control>-B was:

39594 ((current first line) − count x (window edit option)) +2

39595 and for <control>-F was:

39596 ((current first line) + count x (window edit option)) −2

39597 This calculation does not work well when intermixing commands with and without counts; for
39598 example, 3<control>-F is not equivalent to entering the <control>-F command three times, and is
39599 not reversible by entering the <control>-B command three times. For consistency with other vi
39600 commands that take counts, IEEE Std. 1003.1-200x requires a different calculation.

39601 Scroll Forward

39602 The 4BSD and System V implementations of vi differed on the initial value used by the scroll
39603 command. 4BSD used:

39604 ((window edit option) +1) /2

39605 while System V used the value of the scroll edit option. The System V version is specified by
39606 IEEE Std. 1003.1-200x because the standard developers believed that it was more intuitive and
39607 permitted the user a method of setting the scroll value initially without also setting the number
39608 of lines that are displayed.

39609 Scroll Forward by Line

39610 Historically, the <control>-E and <control>-Y commands considered it an error if the last and
39611 first lines, respectively, were already on the screen. IEEE Std. 1003.1-200x requires conformance
39612 to historical practice. Historically, the <control>-E and <control>-Y commands had no effect in
39613 open mode. For simplicity and consistency of specification, IEEE Std. 1003.1-200x requires that
39614 they behave as usual, albeit with a single line screen.

39615 Clear and Redisplay

39616 The historical <control>-L command refreshed the screen exactly as it was supposed to be
39617 currently displayed, replacing any ’@’ characters for lines that had been deleted but not
39618 updated on the screen with refreshed ’@’ characters. The intent of the <control>-L command is
39619 to refresh when the screen has been accidentally overwritten; for example, by a write command
39620 from another user, or modem noise.

Shell and Utilities, Issue 6 3245

vi Utilities

39621 Redraw Screen

39622 The historical <control>-R command redisplayed only when necessary to update lines that had
39623 been deleted but not updated on the screen and that were flagged with ’@’ characters. There is
39624 no requirement that the screen be in any way refreshed if no lines of this form are currently
39625 displayed. IEEE Std. 1003.1-200x permits implementations to extend this command to refresh
39626 lines on the screen flagged with ’@’ characters because they are too long to be displayed in the
39627 current framework; however, the current line and column need not be modified.

39628 Search for tagstring

39629 Historically, the first non-<blank> character at or after the cursor was the first character, and all
39630 subsequent characters that were word characters, up to the end of the line, were included. For
39631 example, with the cursor on the leading space or on the ’#’ character in the text "#bar@" , the
39632 tag was "#bar" . On the character ’b’ it was "bar" , and on the ’a’ , it was "ar" .
39633 IEEE Std. 1003.1-200x requires this behavior.

39634 Replace Text with Results from Shell Command

39635 Historically, the <, >, and ! commands considered most cursor motions other than line-oriented
39636 motions an error; for example, the command >/foo<CR> succeeded, while the command >l
39637 failed, even though the text region described by the two commands might be identical. For
39638 consistency, all three commands only consider entire lines and not partial lines, and the region is
39639 defined as any line that contains a character that was specified by the motion.

39640 Move to Matching Character

39641 Other matching characters have been left implementation-defined in order to allow extensions |
39642 such as matching ’<’ and ’>’ for searching HTML, or #ifdef, #else, and #endif for searching C
39643 source.

39644 Repeat Substitution

39645 IEEE Std. 1003.1-200x requires that any c and g flags specified to the previous substitute
39646 command be ignored; however, the r flag may still apply, if supported by the implementation.

39647 Return to Previous (Context or Section)

39648 The [[,]], (,), {, and } commands are all affected by ‘‘section boundaries’’, but in some historical
39649 implementations not all of the commands recognize the same section boundaries. This is a bug,
39650 not a feature, and a unique section-boundary algorithm was not described for each command.
39651 One special case that is preserved is that the sentence command moves to the end of the last line
39652 of the edit buffer while the other commands go to the beginning, in order to preserve the
39653 traditional character cut semantics of the sentence command. Historically, vi section boundaries
39654 at the beginning and end of the edit buffer were the first non-<blank> character on the first and
39655 last lines of the edit buffer if one exists; otherwise, the last character of the first and last lines of
39656 the edit buffer if one exists. To increase consistency with other section locations, this has been
39657 simplified by IEEE Std. 1003.1-200x to the first character of the first and last lines of the edit
39658 buffer, or the first and the last lines of the edit buffer if they are empty.

39659 Sentence boundaries were problematic in the historical vi. They were not only the boundaries as
39660 defined for the section and paragraph commands, but they were the first non-<blank> character
39661 that occurred after those boundaries, as well. Historically, the vi section commands were
39662 documented as taking an optional window size as a count preceding the command. This was not
39663 implemented in historical versions, so IEEE Std. 1003.1-200x requires that the count repeat the
39664 command, for consistency with other vi commands.

3246 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39665 Repeat

39666 Historically, mapped commands other than text input commands could not be repeated using
39667 the period command. IEEE Std. 1003.1-200x requires conformance to historical practice.

39668 The restrictions on the interpretation of special characters (for example, <control>-H) in the
39669 repetition of text input mode commands is intended to match historical practice. For example,
39670 given the input sequence:

39671 iab<control>-H<control>-H<control>-Hdef<escape>

39672 the user should be informed of an error when the sequence is first entered, but not during a
39673 command repetition. The character <control>-T is specifically exempted from this restriction.
39674 Historical implementations of vi ignored <control>-T characters that were input in the original
39675 command during command repetition. IEEE Std. 1003.1-200x prohibits this behavior.

39676 Find Regular Expression

39677 Historically, commands did not affect the line searched to or from if the motion command was a
39678 search (/, ?, N, n) and the final position was the start/end of the line. There were some special
39679 cases and vi was not consistent. IEEE Std. 1003.1-200x does not permit this behavior, for
39680 consistency. Historical implementations permitted, but were unable to handle searches as
39681 motion commands that wrapped (that is, due to the edit option wrapscan) to the original
39682 location. IEEE Std. 1003.1-200x requires that this behavior be treated as an error.

39683 Historically, the syntax "/RE/0" was used to force the command to cut text in line mode.
39684 IEEE Std. 1003.1-200x requires conformance to historical practice.

39685 Historically, in open mode, a z specified to a search command redisplayed the current line
39686 instead of displaying the current screen with the current line highlighted. For consistency and
39687 simplicity of specification, IEEE Std. 1003.1-200x does not permit this behavior.

39688 Historically, trailing z commands were permitted and ignored if entered as part of a search used
39689 as a motion command. For consistency and simplicity of specification, IEEE Std. 1003.1-200x
39690 does not permit this behavior.

39691 Execute an ex Command

39692 Historically, vi implementations restricted the commands that could be entered on the colon
39693 command line (for example, append and change), and some other commands were known to
39694 cause them to fail catastrophically. For consistency, IEEE Std. 1003.1-200x does not permit these
39695 restrictions. When executing an ex command by entering :, it is not possible to enter a <newline>
39696 character as part of the command because it is considered the end of the command. A different
39697 approach is to enter ex command mode by using the vi Q command (and later resuming visual
39698 mode with the ex vi command). In ex command mode, the single-line limitation does not exist.
39699 So, for example, the following is valid:

39700 Q
39701 s/break here/break\
39702 here/
39703 vi

39704 IEEE Std. 1003.1-200x requires that, if the ex command overwrites any part of the screen that
39705 would be erased by a refresh, vi pauses for a character from the user. Historically, this character
39706 could be any character; for example, a character input by the user before the message appeared,
39707 or even a mapped character. This is probably a bug, but implementations that have tried to be
39708 more rigorous by requiring that the user enter a specific character, or that the user enter a
39709 character after the message was displayed, have been forced by user indignation back into

Shell and Utilities, Issue 6 3247

vi Utilities

39710 historical behavior. IEEE Std. 1003.1-200x requires conformance to historical practice.

39711 Shift Left (Right)

39712 Refer to the Rationale for the ! and / commands. Historically, the < and > commands sometimes
39713 moved the cursor to the first non-<blank> character (for example if the command was repeated
39714 or with _ as the motion command), and sometimes left it unchanged. IEEE Std. 1003.1-200x does
39715 not permit this inconsistency, requiring instead that the cursor always move to the first non-
39716 <blank> character. Historically, the < and > commands did not support buffer arguments,
39717 although some implementations allow the specification of an optional buffer. This behavior is
39718 neither required nor disallowed by IEEE Std. 1003.1-200x.

39719 Execute

39720 Historically, buffers could execute other buffers, and loops, infinite and otherwise, were
39721 possible. IEEE Std. 1003.1-200x requires conformance to historical practice. The *buffer syntax of
39722 ex is not required in vi, because it is not historical practice and has been used in some vi
39723 implementations to support additional scripting languages. |

39724 Reverse Case

39725 Historically, the ˜ command ignored any associated count , and acted only on the characters in
39726 the current line. For consistency with other vi commands, IEEE Std. 1003.1-200x requires that an
39727 associated count act on the next count characters, and that the command move to subsequent
39728 lines if warranted by count , to make it possible to modify large pieces of text in a reasonably
39729 efficient manner. There exist vi implementations that optionally require an associated motion
39730 command for the ˜ command. Implementations supporting this functionality are encouraged to
39731 base it on the tildedop edit option and handle the text regions and cursor positioning identically
39732 to the yank command.

39733 Append

39734 Historically, counts specified to the A, a, I, and i commands repeated the input of the first line
39735 count times, and did not repeat the subsequent lines of the input text. IEEE Std. 1003.1-200x
39736 requires that the entire text input be repeated count times.

39737 Move Backward to Preceding Word

39738 Historically, vi became confused if word commands were used as motion commands in empty
39739 files. IEEE Std. 1003.1-200x requires that this be an error. Historical implementations of vi had a
39740 large number of bugs in the word movement commands, and they varied greatly in behavior in
39741 the presence of empty lines, ‘‘words’’ made up of a single character, and lines containing only
39742 <blank> characters. For consistency and simplicity of specification, IEEE Std. 1003.1-200x does
39743 not permit this behavior.

39744 Change to End-of-Line

39745 Some historical implementations of the C command did not behave as described by
39746 IEEE Std. 1003.1-200x when the $ key was remapped because they were implemented by
39747 pushing the $ key onto the input queue and reprocessing it. IEEE Std. 1003.1-200x does not
39748 permit this behavior. Historically, the C, S, and s commands did not copy replaced text into the
39749 numeric buffers. For consistency and simplicity of specification, IEEE Std. 1003.1-200x requires
39750 that they behave like their respective c commands in all respects.

3248 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39751 Delete

39752 Historically, lines in open mode that were deleted were scrolled up, and an @ glyph written over
39753 the beginning of the line. In the case of terminals that are incapable of the necessary cursor
39754 motions, the editor erased the deleted line from the screen. IEEE Std. 1003.1-200x requires
39755 conformance to historical practice; that is, if the terminal cannot display the ’@’ character, the
39756 line cannot remain on the screen.

39757 Delete to End-of-Line

39758 Some historical implementations of the D command did not behave as described by
39759 IEEE Std. 1003.1-200x when the $ key was remapped because they were implemented by
39760 pushing the $ key onto the input queue and reprocessing it. IEEE Std. 1003.1-200x does not
39761 permit this behavior.

39762 Join

39763 An historical oddity of vi is that the commands J, 1J, and 2J are all equivalent.
39764 IEEE Std. 1003.1-200x requires conformance to historical practice. The vi J command is specified
39765 in terms of the ex join command with an ex command count value. The address correction for a
39766 count that is past the end of the edit buffer is necessary for historical compatibility for both ex
39767 and vi.

39768 Mark Position

39769 Historical practice is that only lowercase letters, plus ’‘’ and ’’’ , could be used to mark a
39770 cursor position. IEEE Std. 1003.1-200x requires conformance to historical practice, but
39771 encourages implementations to support other characters as marks as well.

39772 Repeat Regular Expression Find (Forward and Reverse)

39773 Historically, the N and n commands could not be used as motion components for the c
39774 command. With the exception of the cN command, which worked if the search crossed a line
39775 boundary, the text region would be discarded, and the user would not be in text input mode. For
39776 consistency and simplicity of specification, IEEE Std. 1003.1-200x does not permit this behavior.

39777 Insert Empty Line (Below and Above)

39778 Historically, counts to the O and o commands were used as the number of physical lines to
39779 open, if the terminal was dumb and the slowopen option was not set. This was intended to
39780 minimize traffic over slow connections and repainting for dumb terminals. IEEE Std. 1003.1-200x
39781 does not permit this behavior, requiring that a count to the open command behave as for other
39782 text input commands. This change to historical practice was made for consistency, and because a
39783 superset of the functionality is provided by the slowopen edit option.

39784 Put from Buffer (Following and Before)

39785 Historically, counts to the p and P commands were ignored if the buffer was a line mode buffer,
39786 but were (mostly) implemented as described in IEEE Std. 1003.1-200x if the buffer was a
39787 character mode buffer. Because implementations exist that do not have this limitation, and
39788 because pasting lines multiple times is generally useful, IEEE Std. 1003.1-200x requires that count
39789 be supported for all p and P commands.

39790 Historical implementations of vi were widely known to have major problems in the p and P
39791 commands, particularly when unusual regions of text were copied into the edit buffer. The
39792 standard developers viewed these as bugs, and they are not permitted for consistency and

Shell and Utilities, Issue 6 3249

vi Utilities

39793 simplicity of specification.

39794 Historically, a P or p command (or an ex put command executed from open or visual mode)
39795 executed in an empty file, left an empty line as the first line of the file. For consistency and |
39796 simplicity of specification, IEEE Std. 1003.1-200x does not permit this behavior. |

39797 Replace Character

39798 Historically, the r command did not correctly handle the erase and word erase characters as
39799 arguments, nor did it handle an associated count greater than 1 with a <carriage-return>
39800 character argument, for which it replaced count characters with a single <newline> character.
39801 IEEE Std. 1003.1-200x does not permit these inconsistencies.

39802 Historically, the r command permitted the <control>-V escaping of entered characters, such as
39803 <ESC> and the <carriage-return> character; however, it required two leading <control>-V
39804 characters instead of one. IEEE Std. 1003.1-200x requires that this be changed for consistency
39805 with the other text input commands of vi.

39806 Historically, it is an error to enter the r command if there are less than count characters at or after
39807 the cursor in the line. While a reasonable and unambiguous extension would be to permit the r
39808 command on empty lines, it would require that too large a count be adjusted to match the
39809 number of characters at or after the cursor for consistency, which is sufficiently different from
39810 historical practice to be avoided. IEEE Std. 1003.1-200x requires conformance to historical
39811 practice.

39812 Replace Characters

39813 Historically, if there were autoindent characters in the line on which the R command was run,
39814 and autoindent was set, the first <newline> character would be properly indented and no
39815 characters would be replaced by the <newline> character. Each additional <newline> character
39816 would replace n characters, where n was the number of characters that were needed to indent
39817 the rest of the line to the proper indentation level. This behavior is a bug and is not permitted by
39818 IEEE Std. 1003.1-200x.

39819 Undo

39820 Historical practice for cursor positioning after undoing commands was mixed. In most cases,
39821 when undoing commands that affected a single line, the cursor was moved to the start of added
39822 or changed text, or immediately after deleted text. However, if the user had moved from the line
39823 being changed, the column was either set to the first non-<blank> character, returned to the
39824 origin of the command, or remained unchanged. When undoing commands that affected
39825 multiple lines or entire lines, the cursor was moved to the first character in the first line restored.
39826 As an example of how inconsistent this was, a search, followed by an o text input command,
39827 followed by an undo would return the cursor to the location where the o command was entered,
39828 but a cw command followed by an o command followed by an undo would return the cursor to
39829 the first non-<blank> character of the line. IEEE Std. 1003.1-200x requires the most useful of
39830 these behaviors, and discards the least useful, in the interest of consistency and simplicity of
39831 specification.

3250 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39832 Yank

39833 Historically, the yank command did not move to the end of the motion if the motion was in the
39834 forward direction. It moved to the end of the motion if the motion was in the backward
39835 direction, except for the _ command, or for the G and ’ commands when the end of the motion
39836 was on the current line. This was further complicated by the fact that for a number of motion
39837 commands, the yank command moved the cursor but did not update the screen; for example, a
39838 subsequent command would move the cursor from the end of the motion, even though the
39839 cursor on the screen had not reflected the cursor movement for the yank command.
39840 IEEE Std. 1003.1-200x requires that all yank commands associated with backward motions move
39841 the cursor to the end of the motion for consistency, and specifically, to make ’ commands as
39842 motions consistent with search patterns as motions.

39843 Yank Current Line

39844 Some historical implementations of the Y command did not behave as described by
39845 IEEE Std. 1003.1-200x when the ’_’ key was remapped because they were implemented by
39846 pushing the ’_’ key onto the input queue and reprocessing it. IEEE Std. 1003.1-200x does not
39847 permit this behavior.

39848 Redraw Window

39849 Historically, the z command always redrew the screen. This is permitted but not required by
39850 IEEE Std. 1003.1-200x, because of the frequent use of the z command in macros such as map n
39851 nz. for screen positioning, instead of its use to change the screen size. The standard developers
39852 believed that expanding or scrolling the screen offered a better interface for users. The ability to
39853 redraw the screen is preserved if the optional new window size is specified, and in the
39854 <control>-L and <control>-R commands.

39855 The semantics of zˆ are confusing at best. Historical practice is that the screen before the screen
39856 that ended with the specified line is displayed. IEEE Std. 1003.1-200x requires conformance to
39857 historical practice.

39858 Historically, the z command would not display a partial line at the top or bottom of the screen. If
39859 the partial line would normally have been displayed at the bottom of the screen, the command
39860 worked, but the partial line was replaced with ’@’ characters. If the partial line would normally
39861 have been displayed at the top of the screen, the command would fail. For consistency and
39862 simplicity of specification, IEEE Std. 1003.1-200x does not permit this behavior.

39863 Historically, the z command with a line specification of 1 ignored the command. For consistency
39864 and simplicity of specification, IEEE Std. 1003.1-200x does not permit this behavior.

39865 Historically, the z command did not set the cursor column to the first non-<blank> character for
39866 the character if the first screen was to be displayed, and was already displayed. For consistency
39867 and simplicity of specification, IEEE Std. 1003.1-200x does not permit this behavior.

39868 Input Mode Commands in vi

39869 Historical implementations of vi did not permit the the user to erase more than a single line of
39870 input, or to use normal erase characters such as line erase, worderase, and erase to erase
39871 autoindent characters. As there exist implementations of vi that do not have these limitations,
39872 both behaviors are permitted, but only historical practice is required. In the case of these
39873 extensions, vi is required to pause at the autoindent and previous line boundaries.

39874 Historical implementations of vi updated only the portion of the screen where the current cursor
39875 character was displayed. For example, consider the vi input keystrokes:

Shell and Utilities, Issue 6 3251

vi Utilities

39876 iabcd<escape>0C<tab>

39877 Historically, the <tab> character would overwrite the characters "abcd" when it was displayed.
39878 Other implementations replace only the ’a’ character with the <tab> character, and then push
39879 the rest of the characters ahead of the cursor. Both implementations have problems. The
39880 historical implementation is probably visually nicer for the above example; however, for the
39881 keystrokes:

39882 iabcd<ESC>0R<tab><ESC>

39883 the historical implementation results in the string "bcd" disappearing and then magically
39884 reappearing when the <ESC> character is entered. IEEE Std. 1003.1-200x requires the former
39885 behavior when overwriting erase-columns; that is, overwriting characters that are no longer
39886 logically part of the edit buffer, and the latter behavior otherwise.

39887 Historical implementations of vi discarded the <control>-D and <control>-T characters when
39888 they were entered at places where their command functionality was not appropriate.
39889 IEEE Std. 1003.1-200x requires that the <control>-T functionality always be available, and that
39890 <control>-D be treated as any other key when not operating on autoindent characters.

39891 NUL

39892 Some historical implementations of vi limited the number of characters entered using the NUL
39893 input character to 256 bytes. IEEE Std. 1003.1-200x permits this limitation; however,
39894 implementations are encouraged to remove this limit.

39895 <control>-D

39896 See also Rationale for the input mode command <newline>. The hidden assumptions in the
39897 <control>-D command (and in the vi autoindent specification in general) is that <space>
39898 characters take up a single column on the screen and that <tab> characters are comprised of an
39899 integral number of <space> characters.

39900 <newline>

39901 Implementations are permitted to rewrite autoindent characters in the line when <newline>,
39902 <carriage-return>, <control>-D, and <control>-T are entered, or when the shift commands are
39903 used, because historical implementations have both done so and found it necessary to do so. For
39904 example, a <control>-D when the cursor is preceded by a single <tab> character, with tabstop
39905 set to 8, and shiftwidth set to 3, will result in the <tab> character being replaced by several
39906 <space> characters.

39907 <control>-T

39908 See also the Rationale for the input mode command <newline>. Historically, <control>-T only
39909 worked if no non-<blank> characters had yet been input in the current input line. In addition,
39910 the characters inserted by <control>-T were treated as autoindent characters, and could not be
39911 erased using normal user erase characters. Because implementations exist that do not have
39912 these limitations, and as moving to a column boundary is generally useful, IEEE Std. 1003.1-200x
39913 requires that both limitations be removed.

3252 Technical Standard (2000) (Draft July 31, 2000)

Utilities vi

39914 <control>-V

39915 Historically, vi used ˆV, regardless of the value of the literal-next character of the terminal.
39916 IEEE Std. 1003.1-200x requires conformance to historical practice.

39917 The uses described for <control>-V can also be accomplished with <control>-Q, which is useful
39918 on terminals that use <control>-V for the down-arrow function. However, most historical
39919 implementations use <control>-Q for the termios START character, so the editor will generally
39920 not receive the <control>-Q unless stty ixon mode is set to off. (In addition, some historical
39921 implementations of vi explicitly set ixon mode to on, so it was difficult for the user to set it to
39922 off.) Any of the command characters described in IEEE Std. 1003.1-200x can be made ineffective
39923 by their selection as termios control characters, using the stty utility or other methods described
39924 in the System Interfaces volume of IEEE Std. 1003.1-200x.

39925 <ESC>

39926 Historically, SIGINT alerted the terminal when used to end input mode. This behavior is
39927 permitted, but not required, by IEEE Std. 1003.1-200x.

39928 FUTURE DIRECTIONS
39929 None.

39930 SEE ALSO
39931 ex, stty

39932 CHANGE HISTORY
39933 First released in Issue 2.

39934 Issue 4
39935 Aligned with the ISO/IEC 9945-2: 1993 standard.

39936 Issue 5
39937 FUTURE DIRECTIONS section added.

39938 Issue 6
39939 This utility is now marked as part of the User Portability Utilities option.

39940 The APPLICATION USAGE section is added.

39941 The obsolescent SYNOPSIS is removed.

39942 The following new requirements on POSIX implementations derive from alignment with the
39943 Single UNIX Specification:

39944 • The lisp mode is added. |

39945 • The reindent command description is added.

39946 The vi utility has been extensively rewritten for alignment with the IEEE P1003.2b draft
39947 standard.

Shell and Utilities, Issue 6 3253

wait Utilities

39948 NAME
39949 wait — await process completion

39950 SYNOPSIS
39951 wait [pid ...]

39952 DESCRIPTION
39953 When an asynchronous list (see Section 2.9.3.1 (on page 2259)) is started by the shell, the process
39954 ID of the last command in each element of the asynchronous list shall become known in the
39955 current shell execution environment; see Section 2.13 (on page 2273).

39956 If the wait utility is invoked with no operands, it shall wait until all process IDs known to the
39957 invoking shell have terminated and exit with a zero exit status.

39958 If one or more pid operands are specified that represent known process IDs, the wait utility shall
39959 wait until all of them have terminated. If one or more pid operands are specified that represent
39960 unknown process IDs, wait shall treat them as if they were known process IDs that exited with
39961 exit status 127. The exit status returned by the wait utility shall be the exit status of the process
39962 requested by the last pid operand.

39963 The known process IDs are applicable only for invocations of wait in the current shell execution
39964 environment.

39965 OPTIONS
39966 None.

39967 OPERANDS
39968 The following operand shall be supported:

39969 pid One of the following:

39970 1. The unsigned decimal integer process ID of a command, for which the utility
39971 is to wait for the termination.

39972 2. A job control job ID (see the Base Definitions volume of |
39973 IEEE Std. 1003.1-200x, Section 3.205, Job Control Job ID) that identifies a |
39974 background process group to be waited for. The job control job ID notation is |
39975 applicable only for invocations of wait in the current shell execution
39976 environment; see Section 2.13 (on page 2273). The exit status of wait shall be
39977 determined by the last command in the pipeline.

39978 Note: The job control job ID type of pid is only available on systems
39979 supporting the User Portability Utilities option.

39980 STDIN
39981 Not used.

39982 INPUT FILES
39983 None.

39984 ENVIRONMENT VARIABLES
39985 The following environment variables shall affect the execution of wait:

39986 LANG Provide a default value for the internationalization variables that are unset or null.
39987 If LANG is unset or null, the corresponding value from the implementation- |
39988 defined default locale shall be used. If any of the internationalization variables |
39989 contains an invalid setting, the utility shall behave as if none of the variables had
39990 been defined.

3254 Technical Standard (2000) (Draft July 31, 2000)

Utilities wait

39991 LC_ALL If set to a non-empty string value, override the values of all the other
39992 internationalization variables.

39993 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
39994 characters (for example, single-byte as opposed to multi-byte characters in
39995 arguments).

39996 LC_MESSAGES
39997 Determine the locale that should be used to affect the format and contents of
39998 diagnostic messages written to standard error.

39999 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40000 ASYNCHRONOUS EVENTS
40001 Default.

40002 STDOUT
40003 Not used.

40004 STDERR
40005 Used only for diagnostic messages.

40006 OUTPUT FILES
40007 None.

40008 EXTENDED DESCRIPTION
40009 None.

40010 EXIT STATUS
40011 If one or more operands were specified, all of them have terminated or were not known by the
40012 invoking shell, and the status of the last operand specified is known, then the exit status of wait
40013 shall be the exit status information of the command indicated by the last operand specified. If
40014 the process terminated abnormally due to the receipt of a signal, the exit status shall be greater
40015 than 128 and shall be distinct from the exit status generated by other signals, but the exact value
40016 is unspecified. (See the kill −l option.) Otherwise, the wait utility shall exit with one of the
40017 following values:

40018 0 The wait utility was invoked with no operands and all process IDs known by the
40019 invoking shell have terminated.

40020 1-126 The wait utility detected an error.

40021 127 The command identified by the last pid operand specified is unknown.

40022 CONSEQUENCES OF ERRORS
40023 Default.

40024 APPLICATION USAGE
40025 On most implementations, wait is a shell built-in. If it is called in a subshell or separate utility
40026 execution environment, such as one of the following:

40027 (wait)
40028 nohup wait ...
40029 find . −exec wait ... \;

40030 it returns immediately because there are no known process IDs to wait for in those
40031 environments.

40032 Historical implementations of interactive shells have discarded the exit status of terminated
40033 background processes before each shell prompt. Therefore, the status of background processes
40034 was usually lost unless it terminated while wait was waiting for it. This could be a serious

Shell and Utilities, Issue 6 3255

wait Utilities

40035 problem when a job that was expected to run for a long time actually terminated quickly with a
40036 syntax or initialization error because the exit status returned was usually zero if the requested
40037 process ID was not found. This volume of IEEE Std. 1003.1-200x requires the implementation to
40038 keep the status of terminated jobs available until the status is requested, so that scripts like:

40039 j1&
40040 p1=$!
40041 j2&
40042 wait $p1
40043 echo Job 1 exited with status $?
40044 wait $!
40045 echo Job 2 exited with status $?

40046 works without losing status on any of the jobs. The shell is allowed to discard the status of any
40047 process that it determines the application cannot get the process ID from the shell. It is also
40048 required to remember only {CHILD_MAX} number of processes in this way. Since the only way
40049 to get the process ID from the shell is by using the ’!’ shell parameter, the shell is allowed to
40050 discard the status of an asynchronous list if "$!" was not referenced before another
40051 asynchronous list was started. (This means that the shell only has to keep the status of the last
40052 asynchronous list started if the application did not reference "$!" . If the implementation of the
40053 shell is smart enough to determine that a reference to "$!" was not saved anywhere that the
40054 application can retrieve it later, it can use this information to trim the list of saved information.
40055 Note also that a successful call to wait with no operands discards the exit status of all
40056 asynchronous lists.)

40057 If the exit status of wait is greater than 128, there is no way for the application to know if the
40058 waited-for process exited with that value or was killed by a signal. Since most utilities exit with
40059 small values, there is seldom any ambiguity. Even in the ambiguous cases, most applications
40060 just need to know that the asynchronous job failed; it does not matter whether it detected an
40061 error and failed or was killed and did not complete its job normally.

40062 EXAMPLES
40063 Although the exact value used when a process is terminated by a signal is unspecified, if it is
40064 known that a signal terminated a process, a script can still reliably figure out which signal using
40065 kill as shown by the following script:

40066 sleep 1000&
40067 pid=$!
40068 kill −kill $pid
40069 wait $pid
40070 echo $pid was terminated by a SIG$(kill −l $?) signal.

40071 If the following sequence of commands is run in less than 31 seconds:

40072 sleep 257 | sleep 31 &
40073 jobs −l %%

40074 either of the following commands returns the exit status of the second sleep in the pipeline:

40075 wait <pid of sleep 31>
40076 wait %%

40077 RATIONALE
40078 The description of wait does not refer to the waitpid () function from the System Interfaces
40079 volume of IEEE Std. 1003.1-200x because that would needlessly overspecify this interface.
40080 However, the wording means that wait is required to wait for an explicit process when it is given
40081 an argument so that the status information of other processes is not consumed. Historical |

3256 Technical Standard (2000) (Draft July 31, 2000)

Utilities wait

40082 implementations use the wait() function defined in the System Interfaces volume of |
40083 IEEE Std. 1003.1-200x until wait() returns the requested process ID or finds that the requested |
40084 process does not exist. Because this means that a shell script could not reliably get the status of
40085 all background children if a second background job was ever started before the first job finished,
40086 it is recommended that the wait utility use a method such as the functionality provided by the
40087 waitpid () function.

40088 The ability to wait for multiple pid operands was adopted from the KornShell.

40089 This new functionality was added because it is needed to determine the exit status of any
40090 asynchronous list accurately. The only compatibility problem that this change creates is for a
40091 script like

40092 while sleep 60 do
40093 job& echo Job started $(date) as $! done

40094 which causes the shell to monitor all of the jobs started until the script terminates or runs out of
40095 memory. This would not be a problem if the loop did not reference "$!" or if the script would
40096 occasionally wait for jobs it started.

40097 FUTURE DIRECTIONS
40098 None.

40099 SEE ALSO
40100 sh, the System Interfaces volume of IEEE Std. 1003.1-200x, waitpid ()

40101 CHANGE HISTORY
40102 First released in Issue 2.

40103 Issue 4
40104 Aligned with the ISO/IEC 9945-2: 1993 standard.

Shell and Utilities, Issue 6 3257

wc Utilities

40105 NAME
40106 wc — word, line, and byte or character count

40107 SYNOPSIS
40108 wc [−c| −m][−lw][file ...]

40109 DESCRIPTION
40110 The wc utility shall read one or more input files and, by default, write the number of <newline>
40111 characters, words, and bytes contained in each input file to the standard output.

40112 The utility also shall write a total count for all named files, if more than one input file is
40113 specified.

40114 The wc utility shall consider a word to be a non-zero-length string of characters delimited by
40115 white space.

40116 OPTIONS
40117 The wc utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
40118 12.2, Utility Syntax Guidelines. |

40119 The following options shall be supported:

40120 −c Write to the standard output the number of bytes in each input file.

40121 −l Write to the standard output the number of <newline> characters in each input
40122 file.

40123 −m Write to the standard output the number of characters in each input file.

40124 −w Write to the standard output the number of words in each input file.

40125 When any option is specified, wc shall report only the information requested by the specified
40126 options.

40127 OPERANDS
40128 The following operand shall be supported:

40129 file A path name of an input file. If no file operands are specified, the standard input
40130 shall be used.

40131 STDIN
40132 The standard input shall be used only if no file operands are specified. See the INPUT FILES
40133 section.

40134 INPUT FILES
40135 The input files may be of any type.

40136 ENVIRONMENT VARIABLES
40137 The following environment variables shall affect the execution of wc:

40138 LANG Provide a default value for the internationalization variables that are unset or null.
40139 If LANG is unset or null, the corresponding value from the implementation- |
40140 defined default locale shall be used. If any of the internationalization variables |
40141 contains an invalid setting, the utility shall behave as if none of the variables had
40142 been defined.

40143 LC_ALL If set to a non-empty string value, override the values of all the other
40144 internationalization variables.

40145 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40146 characters (for example, single-byte as opposed to multi-byte characters in
40147 arguments and input files) and which characters are defined as white space

3258 Technical Standard (2000) (Draft July 31, 2000)

Utilities wc

40148 characters.

40149 LC_MESSAGES
40150 Determine the locale that should be used to affect the format and contents of
40151 diagnostic messages written to standard error and informative messages written to
40152 standard output.

40153 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40154 ASYNCHRONOUS EVENTS
40155 Default.

40156 STDOUT
40157 By default, the standard output shall contain an entry for each input file of the form:

40158 "%d %d %d %s\n", < newlines >, < words >, < bytes >, < file >

40159 If the −m option is specified, the number of characters shall replace the <bytes> field in this
40160 format.

40161 If any options are specified and the −l option is not specified, the number of <newline>
40162 characters shall not be written.

40163 If any options are specified and the −w option is not specified, the number of words shall not be
40164 written.

40165 If any options are specified and neither −c nor −m is specified, the number of bytes or characters
40166 shall not be written.

40167 If no input file operands are specified, no name shall be written and no <blank> characters
40168 preceding the path name shall be written.

40169 If more than one input file operand is specified, an additional line shall be written, of the same
40170 format as the other lines, except that the word total (in the POSIX locale) shall be written instead
40171 of a path name and the total of each column shall be written as appropriate. Such an additional
40172 line, if any, is written at the end of the output.

40173 STDERR
40174 Used only for diagnostic messages.

40175 OUTPUT FILES
40176 None.

40177 EXTENDED DESCRIPTION
40178 None.

40179 EXIT STATUS
40180 The following exit values shall be returned:

40181 0 Successful completion.

40182 >0 An error occurred.

40183 CONSEQUENCES OF ERRORS
40184 Default.

Shell and Utilities, Issue 6 3259

wc Utilities

40185 APPLICATION USAGE
40186 The −m option is not a switch, but an option at the same level as −c. Thus, to produce the full
40187 default output with character counts instead of bytes, the command required is:

40188 wc −mlw

40189 EXAMPLES
40190 None.

40191 RATIONALE
40192 The output file format pseudo-printf() string differs from the the System V version of wc:

40193 "%7d%7d%7d %s\n"

40194 which produces possibly ambiguous and unparsable results for very large files, as it assumes no
40195 number shall exceed six digits.

40196 Some historical implementations use only <space>, <tab>, and <newline> as word separators.
40197 The equivalent of the ISO C standard isspace() function is more appropriate.

40198 The −c option stands for ‘‘character’’ count, even though it counts bytes. This stems from the
40199 sometimes erroneous historical view that bytes and characters are the same size. Due to
40200 international requirements, the −m option (reminiscent of ‘‘multi-byte’’) was added to obtain
40201 actual character counts.

40202 Early proposals only specified the results when input files were text files. The current
40203 specification more closely matches historical practice. (Bytes, words, and <newline>s are
40204 counted separately and the results are written when an end-of-file is detected.)

40205 Historical implementations of the wc utility only accepted one argument to specify the options
40206 −c, −l, and −w. Some of them also had multiple occurrences of an option cause the
40207 corresponding count to be written multiple times and had the order of specification of the
40208 options affect the order of the fields on output, but did not document either of these. Because
40209 common usage either specifies no options or only one option, and because none of this was
40210 documented, the changes required by this volume of IEEE Std. 1003.1-200x should not break
40211 many historical applications (and do not break any historical portable applications).

40212 FUTURE DIRECTIONS
40213 None.

40214 SEE ALSO
40215 cksum

40216 CHANGE HISTORY
40217 First released in Issue 2.

40218 Issue 4
40219 Aligned with the ISO/IEC 9945-2: 1993 standard.

3260 Technical Standard (2000) (Draft July 31, 2000)

Utilities what

40220 NAME
40221 what — identify SCCS files (DEVELOPMENT)

40222 SYNOPSIS
40223 XSI what [−s] file ...
40224

40225 DESCRIPTION
40226 The what utility shall search the given files for all occurrences of the pattern that get (see get (on
40227 page 2685)) substitutes for %Z% ("@(#)") and shall write to standard output what follows until
40228 the first occurrence of one of the following:

40229 " > newline \ NUL

40230 OPTIONS
40231 The what utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
40232 12.2, Utility Syntax Guidelines. |

40233 The following option is supported:

40234 −s Quit after finding the first occurrence of the pattern in each file.

40235 OPERANDS
40236 The following operands shall be supported:

40237 file A path name of a file to search.

40238 STDIN
40239 Not used.

40240 INPUT FILES
40241 The input files are of any file type.

40242 ENVIRONMENT VARIABLES
40243 The following environment variables shall affect the execution of what:

40244 LANG Provide a default value for the internationalization variables that are unset or null.
40245 If LANG is unset or null, the corresponding value from the implementation- |
40246 defined default locale shall be used. If any of the internationalization variables |
40247 contains an invalid setting, the utility shall behave as if none of the variables had
40248 been defined.

40249 LC_ALL If set to a non-empty string value, override the values of all the other
40250 internationalization variables.

40251 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40252 characters (for example, single-byte as opposed to multi-byte characters in
40253 arguments and input files).

40254 LC_MESSAGES
40255 Determine the locale that should be used to affect the format and contents of
40256 diagnostic messages written to standard error.

40257 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40258 ASYNCHRONOUS EVENTS
40259 Default.

Shell and Utilities, Issue 6 3261

what Utilities

40260 STDOUT
40261 The standard output shall consist of the following for each file operand:

40262 "%s:\n\t%s\n", < pathname >, < identification string >

40263 STDERR
40264 Used only for diagnostic messages.

40265 OUTPUT FILES
40266 None.

40267 EXTENDED DESCRIPTION
40268 None.

40269 EXIT STATUS
40270 The following exit values shall be returned:

40271 0 Any matches were found.

40272 1 Otherwise.

40273 CONSEQUENCES OF ERRORS
40274 Default.

40275 APPLICATION USAGE
40276 The what utility is intended to be used in conjunction with the SCCS command get, which
40277 automatically inserts identifying information, but it can also be used where the information is
40278 inserted by any other means.

40279 When the string "@(#)" is included in a library routine in a shared library, it might not be found
40280 in an a.out file using that library routine.

40281 EXAMPLES
40282 If the C-language program in file f.c contains:

40283 char ident[] = "@(#)identification information";

40284 and f.c is compiled to yield f.o and a.out, then the command:

40285 what f.c f.o a.out

40286 writes:

40287 f.c:
40288 identification information
40289 ...
40290 f.o:
40291 identification information
40292 ...
40293 a.out:
40294 identification information
40295 ...

40296 RATIONALE
40297 None.

40298 FUTURE DIRECTIONS
40299 None.

3262 Technical Standard (2000) (Draft July 31, 2000)

Utilities what

40300 SEE ALSO
40301 get

40302 CHANGE HISTORY
40303 First released in Issue 2.

40304 Issue 4
40305 Format reorganized.

40306 Utility Syntax Guidelines support mandated.

40307 Internationalized environment variable support mandated.

Shell and Utilities, Issue 6 3263

who Utilities

40308 NAME
40309 who — display who is on the system

40310 SYNOPSIS
40311 UP who [−mTu]
40312

40313 XSI who [−mu] −s [−bHlprt][file]

40314 who [−mTu][−abdHlprt][file]

40315 who −q [file]

40316 who am i

40317 who am I
40318

40319 DESCRIPTION
40320 The who utility shall list various pieces of information about accessible users. The domain of |
40321 accessibility is implementation-defined. |

40322 XSI Based on the options given, who can also list the user’s name, terminal line, login time, elapsed
40323 time since activity occurred on the line, and the process ID of the command interpreter for each
40324 current system user.

40325 OPTIONS
40326 The who utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
40327 12.2, Utility Syntax Guidelines. |

40328 The following options shall be supported. The metavariables, such as <line>, refer to fields
40329 described in the STDOUT section.

40330 XSI −a Process the implementation-defined database or named file with the −b, −d, −l, −p, |
40331 −r, −t, −T and −u options turned on.

40332 XSI −b Write the time and date of the last reboot.

40333 XSI −d Write a list of all processes that have expired and not been respawned by the init
40334 system process. The <exit> field appears for dead processes and contains the
40335 termination and exit values of the dead process. This can be useful in determining
40336 why a process terminated.

40337 XSI −H Write column headings above the regular output.

40338 XSI −l (The letter ell.) List only those lines on which the system is waiting for someone to
40339 login. The <name> field is LOGIN in such cases. Other fields are the same as for
40340 user entries except that the <state> field does not exist.

40341 −m Output only information about the current terminal.

40342 XSI −p List any other process that is currently active and has been previously spawned by
40343 init.

40344 XSI −q (Quick.) List only the names and the number of users currently logged on. When
40345 this option is used, all other options are ignored.

40346 XSI −r Write the current run-level of the init process.

40347 XSI −s List only the <name>, <line>, and <time> fields. This is the default case.

40348 XSI −t Indicate the last change to the system clock.

3264 Technical Standard (2000) (Draft July 31, 2000)

Utilities who

40349 −T Show the state of each terminal, as described in the STDOUT section.

40350 XSI −u This option lists only those users who are currently logged in. Output the user’s
40351 ‘‘idle time’’ in addition to any other information. The idle time is the time since
40352 any activity occurred on the user’s terminal. The method of determining this is
40353 XSI unspecified. The <name> is the user’s login name. The <line> is the name of the line
40354 as found in the directory /dev. The <time> is the time that the user logged in. The
40355 <activity> is the number of hours and minutes since activity last occurred on that
40356 particular line. A dot indicates that the terminal has seen activity in the last minute
40357 and is therefore ‘‘current’’. If more than twenty-four hours have elapsed or the line
40358 has not been used since boot time, the entry is marked <old>. This field is useful
40359 when trying to determine whether a person is working at the terminal or not. The
40360 <pid> is the process ID of the user’s login process.

40361 OPERANDS
40362 XSI The following operands shall be supported:

40363 am i, am I In the POSIX locale, limit the output to describing the invoking user, equivalent to
40364 the −m option. The am and i or I must be separate arguments.

40365 file Specify a path name of a file to substitute for the implementation-defined database |
40366 of logged-on users that who uses by default. |

40367 STDIN
40368 Not used.

40369 INPUT FILES
40370 None.

40371 ENVIRONMENT VARIABLES
40372 The following environment variables shall affect the execution of who:

40373 LANG Provide a default value for the internationalization variables that are unset or null.
40374 If LANG is unset or null, the corresponding value from the implementation- |
40375 defined default locale shall be used. If any of the internationalization variables |
40376 contains an invalid setting, the utility shall behave as if none of the variables had
40377 been defined.

40378 LC_ALL If set to a non-empty string value, override the values of all the other
40379 internationalization variables.

40380 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40381 characters (for example, single-byte as opposed to multi-byte characters in
40382 arguments).

40383 LC_MESSAGES
40384 Determine the locale that should be used to affect the format and contents of
40385 diagnostic messages written to standard error.

40386 LC_TIME Determine the locale used for the format and contents of the date and time strings.

40387 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40388 ASYNCHRONOUS EVENTS
40389 Default.

Shell and Utilities, Issue 6 3265

who Utilities

40390 STDOUT
40391 XSI OF XSI-conformant systems shall write the default information to the standard output in the
40392 following general format:

40393 <name>[<state >] <line ><time >[<activity >][<pid >][<comment>][<exit >]

40394 The following format shall be used for the −T option:

40395 "%s %c %s %s\n" <name>, < terminal state >, < terminal name >,
40396 <time of login >

40397 where <terminal state> is one of the following characters:

40398 + The terminal allows write access to other users.

40399 − The terminal denies write access to other users.

40400 ? The terminal write-access state cannot be determined.

40401 In the POSIX locale, the <time of login> shall be equivalent in format to the output of:

40402 date +"%b %e %H:%M"

40403 If the −u option is used with −T, the idle time shall be added to the end of the previous format in
40404 an unspecified format.

40405 STDERR
40406 Used only for diagnostic messages.

40407 OUTPUT FILES
40408 None.

40409 EXTENDED DESCRIPTION
40410 None.

40411 EXIT STATUS
40412 The following exit values shall be returned:

40413 0 Successful completion.

40414 >0 An error occurred.

40415 CONSEQUENCES OF ERRORS
40416 Default.

40417 APPLICATION USAGE
40418 The name init used for the system process is the most commonly used on historical systems, but
40419 it may vary.

40420 The ‘‘domain of accessibility’’ referred to is a broad concept that permits interpretation either on
40421 a very secure basis or even to allow a network-wide implementation like the historical rwho . |

40422 EXAMPLES
40423 None.

40424 RATIONALE
40425 Due to differences between historical implementations, the base options provided were a
40426 compromise to allow users to work with those functions. The standard developers also
40427 considered removing all the options, but felt that these options offered users valuable
40428 functionality. Additional options to match historical systems are available on XSI-conformant
40429 systems.

3266 Technical Standard (2000) (Draft July 31, 2000)

Utilities who

40430 It is recognized that the who command may be of limited usefulness, especially in a multi-level
40431 secure environment. The standard developers considered, however, that having some standard
40432 method of determining the ‘‘accessibility’’ of other users would aid user portability.

40433 No format was specified for the default who output for systems not supporting the XSI
40434 Extension. In such a user-oriented command, designed only for human use, this was not
40435 considered to be a deficiency.

40436 The format of the terminal name is unspecified, but the descriptions of ps, talk, and write require
40437 that they use the same format.

40438 FUTURE DIRECTIONS
40439 None.

40440 SEE ALSO
40441 mesg

40442 CHANGE HISTORY
40443 First released in Issue 2.

40444 Issue 4
40445 Aligned with the ISO/IEC 9945-2: 1993 standard.

40446 Issue 6
40447 This utility is now marked as part of the User Portability Utilities option.

Shell and Utilities, Issue 6 3267

write Utilities

40448 NAME
40449 write — write to another user

40450 SYNOPSIS
40451 UP write user_name [terminal]
40452

40453 DESCRIPTION
40454 The write utility shall read lines from the user’s standard input and write them to the terminal of
40455 another user. When first invoked, it shall write the message:

40456 Message from sender-login-id (sending-terminal) [date] ...

40457 to user_name. When it has successfully completed the connection, the sender’s terminal shall be
40458 alerted twice to indicate that what the sender is typing is being written to the recipient’s
40459 terminal.

40460 If the recipient wants to reply, this can be accomplished by typing:

40461 write sender-login-id [sending-terminal]

40462 upon receipt of the initial message. Whenever a line of input as delimited by a NL, EOF, or EOL |
40463 special character (see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General |
40464 Terminal Interface) is accumulated while in canonical input mode, the accumulated data shall be |
40465 written on the other user’s terminal. Characters shall be processed as follows:

40466 • Typing the <alert> character shall write the alert character to the recipient’s terminal.

40467 • Typing the erase and kill characters shall affect the sender’s terminal in the manner described
40468 by the termios interface in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, |
40469 General Terminal Interface. |

40470 • Typing the interrupt or end-of-file characters shall cause write to write an appropriate
40471 message ("EOT\n" in the POSIX locale) to the recipient’s terminal and exit.

40472 • Typing characters from LC_CTYPE classifications print or space shall cause those characters
40473 to be sent to the recipient’s terminal.

40474 • When and only when the stty iexten local mode is enabled, the existence and processing of
40475 additional special control characters and multi-byte or single-byte functions is |
40476 implementation-defined. |

40477 • Typing other non-printable characters shall cause implementation-defined sequences of |
40478 printable characters to be written to the recipient’s terminal. |

40479 To write to a user who is logged in more than once, the terminal argument can be used to indicate
40480 which terminal to write to; otherwise, the recipient’s terminal is selected in an implementation- |
40481 defined manner and an informational message is written to the sender’s standard output, |
40482 indicating which terminal was chosen.

40483 Permission to be a recipient of a write message can be denied or granted by use of the mesg
40484 utility. However, a user’s privilege may further constrain the domain of accessibility of other
40485 users’ terminals. The write utility shall fail when the user lacks the appropriate privileges to
40486 perform the requested action.

40487 OPTIONS
40488 None.

3268 Technical Standard (2000) (Draft July 31, 2000)

Utilities write

40489 OPERANDS
40490 The following operands shall be supported:

40491 user_name Login name of the person to whom the message shall be written. The application
40492 shall ensure that this operand is of the form returned by the who utility.

40493 terminal Terminal identification in the same format provided by the who utility.

40494 STDIN
40495 Lines to be copied to the recipient’s terminal is read from standard input.

40496 INPUT FILES
40497 None.

40498 ENVIRONMENT VARIABLES
40499 The following environment variables shall affect the execution of write:

40500 LANG Provide a default value for the internationalization variables that are unset or null.
40501 If LANG is unset or null, the corresponding value from the implementation- |
40502 defined default locale shall be used. If any of the internationalization variables |
40503 contains an invalid setting, the utility shall behave as if none of the variables had
40504 been defined.

40505 LC_ALL If set to a non-empty string value, override the values of all the other
40506 internationalization variables.

40507 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40508 characters (for example, single-byte as opposed to multi-byte characters in
40509 arguments and input files). If the recipient’s locale does not use an LC_CTYPE
40510 equivalent to the sender’s, the results are undefined.

40511 LC_MESSAGES
40512 Determine the locale that should be used to affect the format and contents of
40513 diagnostic messages written to standard error and informative messages written to
40514 standard output.

40515 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40516 ASYNCHRONOUS EVENTS
40517 If an interrupt signal is received, write shall write an appropriate message on the recipient’s
40518 terminal and exits with a status of zero. It shall take the standard action for all other signals.

40519 STDOUT
40520 An informational message shall be written to standard output if a recipient is logged in more
40521 than once.

40522 STDERR
40523 Used only for diagnostic messages.

40524 OUTPUT FILES
40525 The recipient’s terminal is used for output.

40526 EXTENDED DESCRIPTION
40527 None.

40528 EXIT STATUS
40529 The following exit values shall be returned:

40530 0 Successful completion.

Shell and Utilities, Issue 6 3269

write Utilities

40531 >0 The addressed user is not logged on or the addressed user denies permission.

40532 CONSEQUENCES OF ERRORS
40533 Default.

40534 APPLICATION USAGE
40535 The talk utility is considered by some users to be a more usable utility on full-screen terminals. |

40536 EXAMPLES
40537 None.

40538 RATIONALE
40539 The write utility was included in this volume of IEEE Std. 1003.1-200x since it can be
40540 implemented on all terminal types. The standard developers considered the talk utility, which
40541 cannot be implemented on certain terminals, to be a ‘‘better’’ communications interface. Both of
40542 these programs are in widespread use on historical implementations. Therefore, the standard
40543 developers decided that both utilities should be specified.

40544 The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
40545 require that they all use or accept the same format.

40546 FUTURE DIRECTIONS
40547 None.

40548 SEE ALSO
40549 mesg, talk , who , the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General |
40550 Terminal Interface |

40551 CHANGE HISTORY
40552 First released in Issue 2.

40553 Issue 4
40554 Aligned with the ISO/IEC 9945-2: 1993 standard.

40555 Issue 5
40556 FUTURE DIRECTIONS section added.

40557 Issue 6
40558 This utility is now marked as part of the User Portability Utilities option.

40559 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3270 Technical Standard (2000) (Draft July 31, 2000)

Utilities xargs

40560 NAME
40561 xargs — construct argument lists and invoke utility

40562 SYNOPSIS
40563 XSI xargs [−t][−p]][−E eofstr] [−I replstr][−L number][−n number [−x]]
40564 [−s size][utility [argument ...]]

40565 DESCRIPTION
40566 The xargs utility shall construct a command line consisting of the utility and argument operands
40567 specified followed by as many arguments read in sequence from standard input as fit in length
40568 and number constraints specified by the options. The xargs utility shall then invoke the
40569 constructed command line and wait for its completion. This sequence shall be repeated until one
40570 of the following occurs:

40571 • An end-of-file condition is detected on standard input.

40572 • The logical end-of-file string (see the −E eofstr option) is found on standard input after
40573 double-quote processing, apostrophe processing, and backslash escape processing (see next
40574 paragraph).

40575 • An invocation of a constructed command line returns an exit status of 255.

40576 The application shall ensure that arguments in the standard input are separated by unquoted
40577 <blank> characters, or unescaped <blank> characters or <newline> characters. A string of zero
40578 or more non-double-quote (’"’) and non-<newline> characters can be quoted by enclosing |
40579 them in double-quotes. A string of zero or more non-apostrophe (’\’’) and non-<newline> |
40580 characters can be quoted by enclosing them in apostrophes. Any unquoted character can be
40581 escaped by preceding it with a backslash. The utility shall be executed one or more times until
40582 the end-of-file is reached or the logical end-of file string is found. The results are unspecified if
40583 the utility named by utility attempts to read from its standard input.

40584 The generated command line length shall be the sum of the size in bytes of the utility name and
40585 each argument treated as strings, including a null byte terminator for each of these strings. The
40586 xargs utility shall limit the command line length such that when the command line is invoked,
40587 the combined argument and environment lists (see the exec family of functions in the System
40588 Interfaces volume of IEEE Std. 1003.1-200x) shall not exceed {ARG_MAX}−2 048 bytes. Within
40589 this constraint, if neither the −n nor the −s option is specified, the default command line length
40590 shall be at least {LINE_MAX}.

40591 OPTIONS
40592 The xargs utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
40593 12.2, Utility Syntax Guidelines. |

40594 The following options shall be supported:

40595 −E eofstr Use eofstr as the logical end-of-file string. If −E is not specified, it is unspecified |
40596 whether the logical end-of-file string is the underscore character (’_’) or the end-
40597 of-file string capability is disabled. When eofstr is the null string, the logical end-
40598 of-file string capability shall be disabled and underscore characters shall be taken
40599 literally. |

40600 XSI −I replstr Insert mode: utility is executed for each line from standard input, taking the entire
40601 line as a single argument, inserting it in arguments for each occurrence of replstr. A
40602 maximum of five arguments in arguments can each contain one or more instances
40603 of replstr. Any <blank> characters at the beginning of each line shall be ignored.
40604 Constructed arguments cannot grow larger than 255 bytes. Option −x is forced on. |

Shell and Utilities, Issue 6 3271

xargs Utilities

40605 XSI −L number The utility shall be executed for each non-empty number lines of arguments from
40606 standard input. The last invocation of utility shall be with fewer lines of arguments
40607 if fewer than number remain. A line is considered to end with the first <newline>
40608 character unless the last character of the line is a <blank> character; a trailing
40609 <blank> character signals continuation to the next non-empty line, inclusive. The |
40610 −L and −n options are mutually-exclusive; the last one specified shall take effect. |

40611 −n number Invoke utility using as many standard input arguments as possible, up to number (a
40612 positive decimal integer) arguments maximum. Fewer arguments shall be used if:

40613 • The command line length accumulated exceeds the size specified by the −s
40614 option (or {LINE_MAX} if there is no −s option).

40615 • The last iteration has fewer than but not zero, operands remaining.

40616 −p Prompt mode: the user is asked whether to execute utility at each invocation. Trace |
40617 mode (−t) is turned on to write the command instance to be executed, followed by
40618 a prompt to standard error. An affirmative response read from /dev/tty shall
40619 execute the command; otherwise, that particular invocation of utility shall be
40620 skipped. |

40621 −s size Invoke utility using as many standard input arguments as possible yielding a
40622 command line length less than size (a positive decimal integer) bytes. Fewer
40623 arguments shall be used if:

40624 • The total number of arguments exceeds that specified by the −n option.

40625 XSI • The total number of lines exceeds that specified by the −L option.

40626 • End-of-file is encountered on standard input before size bytes are accumulated.

40627 Values of size up to at least {LINE_MAX} bytes shall be supported, provided that
40628 the constraints specified in the DESCRIPTION are met. It shall not be considered
40629 an error if a value larger than that supported by the implementation or exceeding
40630 the constraints specified in the DESCRIPTION is given; xargs shall use the largest
40631 value it supports within the constraints.

40632 −t Enable trace mode. Each generated command line shall be written to standard
40633 error just prior to invocation.

40634 −x Terminate if a command line containing number arguments (see the −n option
40635 XSI above) or number lines (see the −L option above) will not fit in the implied or
40636 specified size (see the −s option above).

40637 OPERANDS
40638 The following operands shall be supported:

40639 utility The name of the utility to be invoked, found by search path using the PATH |
40640 environment variable, described in the Base Definitions volume of |
40641 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. If utility is omitted, the |
40642 default shall be the echo utility. If the utility operand names any of the special
40643 built-in utilities in Section 2.15 (on page 2276), the results are undefined.

40644 argument An initial option or operand for the invocation of utility .

40645 STDIN
40646 The standard input shall be a text file. The results are unspecified if an end-of-file condition is
40647 detected immediately following an escaped <newline> character.

3272 Technical Standard (2000) (Draft July 31, 2000)

Utilities xargs

40648 INPUT FILES
40649 The file /dev/tty is used to read responses required by the −p option. |

40650 ENVIRONMENT VARIABLES
40651 The following environment variables shall affect the execution of xargs:

40652 LANG Provide a default value for the internationalization variables that are unset or null.
40653 If LANG is unset or null, the corresponding value from the implementation- |
40654 defined default locale shall be used. If any of the internationalization variables |
40655 contains an invalid setting, the utility shall behave as if none of the variables had
40656 been defined.

40657 LC_ALL If set to a non-empty string value, override the values of all the other
40658 internationalization variables.

40659 LC_COLLATE
40660 Determine the locale for the behavior of ranges, equivalence classes and multi-
40661 character collating elements used in the extended regular expression defined for
40662 the yesexpr locale keyword in the LC_MESSAGES category.

40663 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40664 characters (for example, single-byte as opposed to multi-byte characters in
40665 arguments and input files) and the behavior of character classes used in the
40666 extended regular expression defined for the yesexpr locale keyword in the
40667 LC_MESSAGES category.

40668 LC_MESSAGES
40669 Determine the locale for the processing of affirmative responses and that should be
40670 used to affect the format and contents of diagnostic messages written to standard
40671 error.

40672 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40673 PATH Determine the location of utility , as described in the Base Definitions volume of |
40674 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

40675 ASYNCHRONOUS EVENTS
40676 Default.

40677 STDOUT
40678 Not used.

40679 STDERR
40680 Used for diagnostic messages and the −t and −p options. If the −t option is specified, the utility |
40681 and its constructed argument list shall be written to standard error, as it will be invoked, prior to |
40682 invocation. If −p is specified, a prompt of the following format shall be written (in the POSIX |
40683 locale):

40684 "?..."

40685 at the end of the line of the output from −t. |

40686 OUTPUT FILES
40687 None.

40688 EXTENDED DESCRIPTION
40689 None.

Shell and Utilities, Issue 6 3273

xargs Utilities

40690 EXIT STATUS
40691 The following exit values shall be returned:

40692 0 All invocations of utility returned exit status zero.

40693 1-125 A command line meeting the specified requirements could not be assembled, one or
40694 more of the invocations of utility returned a non-zero exit status, or some other error
40695 occurred.

40696 126 The utility specified by utility was found but could not be invoked.

40697 127 The utility specified by utility could not be found.

40698 CONSEQUENCES OF ERRORS
40699 If a command line meeting the specified requirements cannot be assembled, the utility cannot be
40700 invoked, an invocation of the utility is terminated by a signal, or an invocation of the utility exits
40701 with exit status 255, the xargs utility shall write a diagnostic message and exit without
40702 processing any remaining input.

40703 APPLICATION USAGE
40704 The 255 exit status allows a utility being used by xargs to tell xargs to terminate if it knows no
40705 further invocations using the current data stream succeeds. Thus, utility should explicitly exit
40706 with an appropriate value to avoid accidentally returning with 255.

40707 Note that input is parsed as lines; <blank> characters separate arguments. If xargs is used to
40708 bundle output of commands like find dir −print or ls into commands to be executed, unexpected
40709 results are likely if any file names contain any <blank> characters or <newline> characters. This
40710 can be fixed by using find to call a script that converts each file found into a quoted string that is
40711 then piped to xargs. Note that the quoting rules used by xargs are not the same as in the shell.
40712 They were not made consistent here because existing applications depend on the current rules
40713 and the shell syntax is not fully compatible with it. An easy rule that can be used to transform
40714 any string into a quoted form that xargs interprets correctly is to precede each character in the
40715 string with a backslash.

40716 On implementations with a large value for {ARG_MAX}, xargs may produce command lines
40717 longer than {LINE_MAX}. For invocation of utilities, this is not a problem. If xargs is being used
40718 to create a text file, users should explicitly set the maximum command line length with the −s
40719 option.

40720 The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
40721 an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
40722 utility exited with an error indication’’. The value 127 was chosen because it is not commonly
40723 used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
40724 values above 128 can be confused with termination due to receipt of a signal. The value 126 was
40725 chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
40726 scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
40727 between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
40728 exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
40729 any other reason.

40730 EXAMPLES

40731 1. The following command combines the output of the parenthesised commands onto one |
40732 line, which is then written to the end-of-file log:

40733 (logname; date; printf "%s\n" "$0 $*") | xargs >>log

40734 2. The following command invokes diff with successive pairs of arguments originally typed
40735 as command line arguments (assuming there are no embedded <blank> characters in the

3274 Technical Standard (2000) (Draft July 31, 2000)

Utilities xargs

40736 elements of the original argument list):

40737 printf "%s\n" "$*" | xargs −n 2 −x diff

40738 3. The user is asked which files in the current directory shall be archived. The files are
40739 archived into arch; a , one at a time, or b, many at a time.

40740 a. ls | xargs −p −L 1 ar −r arch

40741 b. ls | xargs −p −L 1 | xargs ar −r arch

40742 4. The following executes with successive pairs of arguments originally typed as command
40743 line arguments:

40744 echo $* | xargs −n 2 diff

40745 5. On XSI-conformant systems, the following moves all files from directory $1 to directory $2, |
40746 and echo each move command just before doing it: |

40747 ls $1 | xargs −I {} −t mv $1/{} $2/{} |

40748 RATIONALE |
40749 The xargs utility was usually found only in System V-based systems; BSD systems included an
40750 apply utility that provided functionality similar to xargs −n number. The SVID lists xargs as a
40751 software development extension. This volume of IEEE Std. 1003.1-200x does not share the view
40752 that it is used only for development, and therefore it is not optional.

40753 The classic application of the xargs utility is in conjunction with the find utility to reduce the
40754 number of processes launched by a simplistic use of the find −exec combination. The xargs utility
40755 is also used to enforce an upper limit on memory required to launch a process. With this basis in
40756 mind, this volume of IEEE Std. 1003.1-200x selected only the minimal features required.

40757 Although the 255 exit status is mostly an accident of historical implementations, it allows a |
40758 utility being used by xargs to tell xargs to terminate if it knows no further invocations using the
40759 current data stream shall succeed. Any non-zero exit status from a utility falls into the 1-125
40760 range when xargs exits. There is no statement of how the various non-zero utility exit status
40761 codes are accumulated by xargs. The value could be the addition of all codes, their highest
40762 value, the last one received, or a single value such as 1. Since no algorithm is arguably better
40763 than the others, and since many of the standard utilities say little more (portably) than
40764 ‘‘pass/fail’’, no new algorithm was invented.

40765 Several other xargs options were withdrawn because simple alternatives already exist within this
40766 volume of IEEE Std. 1003.1-200x. For example, the −e eofstr option can be replaced by features of
40767 sed. The −i replstr option can be just as efficiently performed using a shell for loop. Since xargs
40768 calls an exec function with each input line, the −i option does not usually exploit the grouping
40769 capabilities of xargs.

40770 The requirement that xargs never produce command lines such that invocation of utility is
40771 within 2 048 bytes of hitting the POSIX exec {ARG_MAX} limitations is intended to guarantee
40772 that the invoked utility has room to modify its environment variables and command line
40773 arguments and still be able to invoke another utility. Note that the minimum {ARG_MAX}
40774 allowed by the System Interfaces volume of IEEE Std. 1003.1-200x is 4 096 bytes and the
40775 minimum value allowed by the this volume of IEEE Std. 1003.1-200x is 2 048 bytes; therefore, the
40776 2 048 bytes difference seems reasonable. Note, however, that xargs may never be able to invoke a
40777 utility if the environment passed in to xargs comes close to using {ARG_MAX} bytes.

40778 The version of xargs required by this volume of IEEE Std. 1003.1-200x is required to wait for the
40779 completion of the invoked command before invoking another command. This was done because
40780 historical scripts using xargs assumed sequential execution. Implementations wanting to provide

Shell and Utilities, Issue 6 3275

xargs Utilities

40781 parallel operation of the invoked utilities are encouraged to add an option enabling parallel
40782 invocation, but should still wait for termination of all of the children before xargs terminates
40783 normally.

40784 The −e option was omitted from the ISO POSIX-2: 1993 standard in the belief that the eofstr
40785 option-argument was recognized only when it was on a line by itself and before quote and
40786 escape processing were performed, and that the logical end-of-file processing was only enabled
40787 if a −e option was specified. In that case, a simple sed script could be used to duplicate the −e
40788 functionality. Further investigation revealed that:

40789 • The logical end-of-file string was checked for after quote and escape processing, making a sed
40790 script that provided equivalent functionality much more difficult to write.

40791 • The default was to perform logical end-of-file processing with an underscore as the logical
40792 end-of-file string.

40793 To correct this misunderstanding, the −E eofstr option was adopted from the X/Open Portability |
40794 Guide. Users should note that the description of the −E option matches historical documentation |
40795 of the −e option (which was not adopted because it did not support the Utility Syntax
40796 Guidelines), by saying that if eofstr is the null string, logical end-of-file processing is disabled.
40797 Historical implementations of xargs actually did not disable logical end-of-file processing; they
40798 treated a null argument found in the input as a logical end-of-file string. (A null string argument
40799 could be generated using single or double quotes (’ ’ or " "). Since this behavior was not
40800 documented historically, it is considered to be a bug.

40801 FUTURE DIRECTIONS
40802 None. |

40803 SEE ALSO
40804 echo

40805 CHANGE HISTORY
40806 First released in Issue 2.

40807 Issue 4
40808 Aligned with the ISO/IEC 9945-2: 1993 standard.

40809 Issue 5
40810 Second FUTURE DIRECTION added.

40811 Issue 6
40812 The obsolescent −e, −i, and −l options are removed.

40813 The following new requirements on POSIX implementations derive from alignment with the
40814 Single UNIX Specification:

40815 • The −p option is added.

40816 • In the INPUT FILES section, the file /dev/tty is used to read responses required by the −p
40817 option.

40818 • The STDERR section is updated to describe the −p option.

40819 The description of the −E option is aligned with the ISO POSIX-2: 1993 standard.

40820 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3276 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

40821 NAME
40822 yacc — yet another compiler compiler (DEVELOPMENT)

40823 SYNOPSIS
40824 yacc [−dltv][−b file_prefix][−p sym_prefix] grammar

40825 DESCRIPTION
40826 The yacc utility shall read a description of a context-free grammar in file and write C source code,
40827 conforming to the ISO C standard, to a code file, and optionally header information into a
40828 header file, in the current directory. The C code shall define a function and related routines and
40829 macros for an automaton that executes a parsing algorithm meeting the requirements in
40830 Algorithms (on page 3288).

40831 The form and meaning of the grammar are described in the EXTENDED DESCRIPTION section.

40832 The C source code and header file shall be produced in a form suitable as input for the C
40833 compiler (see c99 (on page 2425)). |

40834 OPTIONS
40835 The yacc utility shall conform to the Base Definitions volume of IEEE Std. 1003.1-200x, Section |
40836 12.2, Utility Syntax Guidelines. |

40837 The following options shall be supported:

40838 −b file_prefix Use file_prefix instead of y as the prefix for all output file names. The code file
40839 y.tab.c, the header file y.tab.h (created when −d is specified), and the description
40840 file y.output (created when −v is specified), shall be changed to file_prefix .tab.c,
40841 file_prefix .tab.h, and file_prefix .output, respectively.

40842 −d Write the header file; by default only the code file is written. The #define
40843 statements that associate the token codes assigned by yacc with the user-declared
40844 token names. This allows source files other than y.tab.c to access the token codes.

40845 −l Produce a code file that does not contain any #line constructs. If this option is not
40846 present, it is unspecified whether the code file or header file contains #line
40847 directives. This should only be used after the grammar and the associated actions
40848 are fully debugged.

40849 −p sym_prefix Use sym_prefix instead of yy as the prefix for all external names produced by yacc.
40850 The names affected shall include the functions yyparse , yylex , and yyerror, and the
40851 variables yylval , yychar , and yydebug. (In the remainder of this section, the six
40852 symbols cited are referenced using their default names only as a notational
40853 convenience.) Local names may also be affected by the −p option; however, the −p
40854 option shall not affect #define symbols generated by yacc.

40855 −t Modify conditional compilation directives to permit compilation of debugging
40856 code in the code file. Runtime debugging statements shall always be contained in
40857 the code file, but by default conditional compilation directives prevent their
40858 compilation.

40859 −v Write a file containing a description of the parser and a report of conflicts
40860 generated by ambiguities in the grammar.

40861 OPERANDS
40862 The following operand is required:

40863 grammar A path name of a file containing instructions, hereafter called grammar, for which a
40864 parser is to be created. The format for the grammar is described in the EXTENDED
40865 DESCRIPTION section.

Shell and Utilities, Issue 6 3277

yacc Utilities

40866 STDIN
40867 Not used.

40868 INPUT FILES
40869 The file grammar shall be a text file formatted as specified in the EXTENDED DESCRIPTION
40870 section.

40871 ENVIRONMENT VARIABLES
40872 The following environment variables shall affect the execution of yacc:

40873 LANG Provide a default value for the internationalization variables that are unset or null.
40874 If LANG is unset or null, the corresponding value from the implementation- |
40875 defined default locale shall be used. If any of the internationalization variables |
40876 contains an invalid setting, the utility shall behave as if none of the variables had
40877 been defined.

40878 LC_ALL If set to a non-empty string value, override the values of all the other
40879 internationalization variables.

40880 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40881 characters (for example, single-byte as opposed to multi-byte characters in
40882 arguments and input files).

40883 LC_MESSAGES
40884 Determine the locale that should be used to affect the format and contents of
40885 diagnostic messages written to standard error.

40886 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40887 The LANG and LC_* variables affect the execution of the yacc utility as stated. The main function
40888 defined in Yacc Library (on page 3288) shall call:

40889 setlocale(LC_ALL, "")

40890 and thus, the program generated by yacc also shall be affected by the contents of these variables
40891 at runtime.

40892 ASYNCHRONOUS EVENTS
40893 Default.

40894 STDOUT
40895 Not used.

40896 STDERR
40897 If shift/reduce or reduce/reduce conflicts are detected in grammar, yacc writes a report of those
40898 conflicts to the standard error in an unspecified format.

40899 Standard error is also used for diagnostic messages.

40900 OUTPUT FILES
40901 The code file, the header file, and the description file shall be text files. All are described in the
40902 following sections.

3278 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

40903 Code File

40904 This file shall contain the C source code for the yyparse routine. It shall contain code for the
40905 various semantic actions with macro substitution performed on them as described in the
40906 EXTENDED DESCRIPTION section. It also shall contain a copy of the #define statements in the
40907 header file. If a %union declaration is used, the declaration for YYSTYPE shall be also included
40908 in this file.

40909 Header File

40910 The header file shall contain #define statements that associate the token numbers with the token
40911 names. This allows source files other than the code file to access the token codes. If a %union
40912 declaration is used, the declaration for YYSTYPE and an extern YYSTYPE yylval declaration shall
40913 be also included in this file.

40914 Description File

40915 The description file shall be a text file containing a description of the state machine
40916 corresponding to the parser, using an unspecified format. Limits for internal tables (see Limits
40917 (on page 3288)) shall also be reported, in an implementation-defined manner. (Some |
40918 implementations may use dynamic allocation techniques and have no specific limit values to
40919 report.)

40920 EXTENDED DESCRIPTION
40921 The yacc command accepts a language that is used to define a grammar for a target language to
40922 be parsed by the tables and code generated by yacc. The language accepted by yacc as a
40923 grammar for the target language is described below using the yacc input language itself.

40924 The input grammar includes rules describing the input structure of the target language and code
40925 to be invoked when these rules are recognized to provide the associated semantic action. The
40926 code to be executed shall appear as bodies of text that are intended to be C-language code. The
40927 C-language inclusions are presumed to form a correct function when processed by yacc into its
40928 output files. The code included in this way shall be executed during the recognition of the target
40929 language.

40930 Given a grammar, the yacc utility generates the files described in the OUTPUT FILES section.
40931 The code file can be compiled and linked using cc or c99. If the declaration and programs |
40932 sections of the grammar file did not include definitions of main , yylex , and yyerror, the compiled
40933 output requires linking with externally supplied version of those functions. Default versions of
40934 main and yyerror are supplied in the yacc library and can be linked in by using the −l y operand to |
40935 c99. The yacc library interfaces need not support interfaces with other than the default yy |
40936 symbol prefix. The application provides the lexical analyzer function, yylex ; the lex utility is
40937 specifically designed to generate such a routine.

40938 Input Language

40939 The application shall ensure that every specification file consists of three sections in order: |
40940 declarations , grammar rules, and programs , separated by double percent signs ("%%"). The
40941 declarations and programs sections can be empty. If the latter is empty, the preceding "%%"
40942 mark separating it from the rules section can be omitted.

40943 The input is free form text following the structure of the grammar defined below.

Shell and Utilities, Issue 6 3279

yacc Utilities

40944 Lexical Structure of the Grammar

40945 The characters <blank>, <newline>, and <form-feed> shall be ignored, except that the
40946 application shall ensure that they do not appear in names or multi-character reserved symbols.
40947 Comments shall be enclosed in "/* ... */" , and can appear wherever a name is valid.

40948 Names are of arbitrary length, made up of letters, periods (’.’), underscores (’_’), and non-
40949 initial digits. Uppercase and lowercase letters are distinct. Portable applications shall not use
40950 names beginning in yy or YY since the yacc parser uses such names. Many of the names appear
40951 in the final output of yacc, and thus they should be chosen to conform with any additional rules
40952 created by the C compiler to be used. In particular they appear in #define statements.

40953 A literal shall consist of a single character enclosed in single-quotes (’\’’). All of the escape |
40954 sequences supported for character constants by the ISO C standard shall be supported by yacc.

40955 The relationship with the lexical analyzer is discussed in detail below.

40956 The application shall ensure that the NUL character is not used in grammar rules or literals.

40957 Declarations Section

40958 The declarations section is used to define the symbols used to define the target language and
40959 their relationship with each other. In particular, much of the additional information required to
40960 resolve ambiguities in the context-free grammar for the target language is provided here.

40961 Usually yacc assigns the relationship between the symbolic names it generates and their
40962 underlying numeric value. The declarations section makes it possible to control the assignment
40963 of these values.

40964 It is also possible to keep semantic information associated with the tokens currently on the parse
40965 stack in a user-defined C-language union, if the members of the union are associated with the
40966 various names in the grammar. The declarations section provides for this as well.

40967 The first group of declarators below all take a list of names as arguments. That list can optionally
40968 be preceded by the name of a C union member (called a tag below) appearing within ’<’ and
40969 ’>’ . (As an exception to the typographical conventions of the rest of this volume of
40970 IEEE Std. 1003.1-200x, in this case <tag> does not represent a metavariable, but the literal angle
40971 bracket characters surrounding a symbol.) The use of tag specifies that the tokens named on this
40972 line shall be of the same C type as the union member referenced by tag . This is discussed in
40973 more detail below.

40974 For lists used to define tokens, the first appearance of a given token can be followed by a
40975 positive integer (as a string of decimal digits). If this is done, the underlying value assigned to it
40976 for lexical purposes is taken to be that number.

40977 %token [<tag>] name [number][name [number]]. . .
40978 Declares names to be a token. If tag is present, the C type for all tokens on this line shall be
40979 declared to be the type referenced by tag . If a positive integer, number, follows a name, that
40980 value shall be assigned to the token.

40981 %left [<tag>] name [number][name [number]]. . .
40982 %right [<tag>] name [number][name [number]]. . .
40983 Declares name to be a token, and assigns precedence to it. One or more lines, each beginning
40984 with one of these symbols, can appear in this section. All tokens on the same line have the
40985 same precedence level and associativity; the lines are in order of increasing precedence or
40986 binding strength. %left denotes that the operators on that line are left associative, and
40987 %right similarly denotes right associative operators. If tag is present, it shall declare a C
40988 type for names as described for %token.

3280 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

40989 %nonassoc [<tag>] name [number][name [number]]. . .
40990 Declares name to be a token, and indicates that this cannot be used associatively. If the
40991 parser encounters associative use of this token it reports an error. If tag is present, it shall
40992 declare a C type for names as described for %token.

40993 %type [<tag>] name. . .
40994 Declares that union member names are non-terminals, and thus it is required to have a tag
40995 field at its beginning. Because it deals with non-terminals only, assigning a token number or
40996 using a literal is also prohibited. If this construct is present, yacc shall perform type
40997 checking; if this construct is not present, the parse stack shall hold only the int type.

40998 Every name used in grammar undefined by a %token, %left, %right, or %nonassoc declaration is
40999 assumed to represent a non-terminal symbol. The yacc utility shall report an error for any non-
41000 terminal symbol that does not appear on the left side of at least one grammar rule.

41001 Once the type, precedence, or token number of a name is specified, it shall not be changed. If the
41002 first declaration of a token does not assign a token number, yacc shall assign a token number.
41003 Once this assignment is made, the token number shall not be changed by explicit assignment.

41004 The following declarators do not follow the previous pattern.

41005 %start name
41006 Declares the non-terminal name to be the start symbol , which represents the largest, most
41007 general structure described by the grammar rules. By default, it is the left-hand side of the
41008 first grammar rule; this default can be overridden with this declaration.

41009 %union { body of union (in C) }
41010 Declares the yacc value stack to be a union of the various types of values desired. By default,
41011 the values returned by actions (see below) and the lexical analyzer shall be integers. The
41012 yacc utility keeps track of types, and it shall insert corresponding union member names in
41013 order to perform strict type checking of the resulting parser.

41014 Alternatively, given that at least one <tag> construct is used, the union can be declared in a
41015 header file (which shall be included in the declarations section by using an #include
41016 construct within %{ and %}), and a typedef used to define the symbol YYSTYPE to
41017 represent this union. The effect of %union is to provide the declaration of YYSTYPE directly
41018 from the yacc input.

41019 %{ . . . %}
41020 C-language declarations and definitions can appear in the declarations section, enclosed by
41021 these marks. These statements shall be copied into the code file, and have global scope
41022 within it so that they can be used in the rules and program sections.

41023 The application shall ensure that the declarations section is terminated by the token %%.

41024 Grammar Rules in yacc

41025 The rules section defines the context-free grammar to be accepted by the function yacc generates,
41026 and associates with those rules C-language actions and additional precedence information. The
41027 grammar is described below, and a formal definition follows.

41028 The rules section is comprised of one or more grammar rules. A grammar rule has the form:

41029 A : BODY ;

41030 The symbol A represents a non-terminal name, and BODY represents a sequence of zero or
41031 more names, literals, and semantic actions that can then be followed by optional precedence rules.
41032 Only the names and literals participate in the formation of the grammar; the semantic actions
41033 and precedence rules are used in other ways. The colon and the semicolon are yacc punctuation.

Shell and Utilities, Issue 6 3281

yacc Utilities

41034 If there are several successive grammar rules with the same left-hand side, the vertical bar ’|’
41035 can be used to avoid rewriting the left-hand side; in this case the semicolon appears only after
41036 the last rule. The BODY part can be empty (or empty of names and literals) to indicate that the
41037 non-terminal symbol matches the empty string.

41038 The yacc utility assigns a unique number to each rule. Rules using the vertical bar notation are
41039 distinct rules. The number assigned to the rule appears in the description file.

41040 The elements comprising a BODY are:

41041 name, literal
41042 These form the rules of the grammar: name is either a token or a non-terminal ; literal
41043 stands for itself (less the lexically required quotation marks).

41044 semantic action
41045 With each grammar rule, the user can associate actions to be performed each time
41046 the rule is recognized in the input process. (Note that the word ‘‘action’’ can also
41047 refer to the actions of the parser—shift, reduce, and so on.)

41048 These actions can return values and can obtain the values returned by previous
41049 actions. These values are kept in objects of type YYSTYPE (see %union). The
41050 result value of the action shall be kept on the parse stack with the left-hand side of
41051 the rule, to be accessed by other reductions as part of their right-hand side. By
41052 using the <tag> information provided in the declarations section, the code
41053 generated by yacc can be strictly type checked and contain arbitrary information. In
41054 addition, the lexical analyzer can provide the same kinds of values for tokens, if
41055 desired.

41056 An action is an arbitrary C statement and as such can do input or output, call
41057 subprograms and alter external variables. An action is one or more C statements
41058 enclosed in curly braces ’{’ and ’}’ .

41059 Certain pseudo-variables can be used in the action. These are macros for access to
41060 data structures known internally to yacc.

41061 $$ The value of the action can be set by assigning it to $$. If type
41062 checking is enabled and the type of the value to be assigned cannot
41063 be determined, a diagnostic message may be generated.

41064 $number This refers to the value returned by the component specified by the
41065 token number in the right side of a rule, reading from left to right;
41066 number can be zero or negative. If it is, it refers to the data associated
41067 with the name on the parser’s stack preceding the leftmost symbol of
41068 the current rule. (That is, "$0" refers to the name immediately
41069 preceding the leftmost name in the current rule, to be found on the
41070 parser’s stack and "$ −1" refers to the symbol to its left.) If number
41071 refers to an element past the current point in the rule, or beyond the
41072 bottom of the stack, the result is undefined. If type checking is
41073 enabled and the type of the value to be assigned cannot be
41074 determined, a diagnostic message may be generated.

41075 $<tag>number
41076 These correspond exactly to the corresponding symbols without the
41077 tag inclusion, but allow for strict type checking (and preclude
41078 unwanted type conversions). The effect is that the macro is expanded
41079 to use tag to select an element from the YYSTYPE union (using
41080 dataname.tag). This is particularly useful if number is not positive.

3282 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

41081 $<tag>$ This imposes on the reference the type of the union member
41082 referenced by tag . This construction is applicable when a reference
41083 to a left context value occurs in the grammar, and provides yacc with
41084 a means for selecting a type.

41085 Actions can occur in the middle of a rule as well as at the end; an action can access
41086 values returned by actions to its left, and in turn the value it returns can be
41087 accessed by actions to its right. An action appearing in the middle of a rule shall be
41088 equivalent to replacing the action with a new non-terminal symbol and adding an
41089 empty rule with that non-terminal symbol on the left-hand side. The semantic
41090 action associated with the new rule shall be equivalent to the original action. The
41091 use of actions within rules might introduce conflicts that would not otherwise
41092 exist.

41093 By default, the value of a rule shall be the value of the first element in it. If the first
41094 element does not have a type (particularly in the case of a literal) and type
41095 checking is turned on by %type an error message shall result.

41096 precedence The keyword %prec can be used to change the precedence level associated with a
41097 particular grammar rule. Examples of this are in cases where a unary and binary
41098 operator have the same symbolic representation, but need to be given different
41099 precedences, or where the handling of an ambiguous if-else construction is
41100 necessary. The reserved symbol %prec can appear immediately after the body of
41101 the grammar rule and can be followed by a token name or a literal. It shall cause
41102 the precedence of the grammar rule to become that of the following token name or
41103 literal. The action for the rule as a whole can follow %prec.

41104 If a program section follows, the application shall ensure that the grammar rules are terminated
41105 by %%.

41106 Programs Section

41107 The programs section can include the definition of the lexical analyzer yylex(), and any other
41108 functions, for example those used in the actions specified in the grammar rules. It is unspecified
41109 whether the programs section precedes or follows the semantic actions in the output file;
41110 therefore, if the application contains any macro definitions and declarations intended to apply to
41111 the code in the semantic actions, it shall place them within "%{ ... %}" in the declarations
41112 section.

41113 Input Grammar

41114 The following input to yacc yields a parser for the input to yacc. This formal syntax takes
41115 precedence over the preceding text syntax description.

41116 The lexical structure is defined less precisely; Lexical Structure of the Grammar (on page 3280)
41117 defines most terms. The correspondence between the previous terms and the tokens below is as
41118 follows.

41119 IDENTIFIER This corresponds to the concept of name, given previously. It also includes
41120 literals as defined previously.

41121 C_IDENTIFIER This is a name, and additionally it is known to be followed by a colon. A literal
41122 cannot yield this token.

41123 NUMBER A string of digits (a non-negative decimal integer).

41124 TYPE, LEFT, MARK, and so on
41125 These correspond directly to %type, %left, %%, and so on.

Shell and Utilities, Issue 6 3283

yacc Utilities

41126 { . . . } This indicates C-language source code, with the possible inclusion of ’$’
41127 macros as discussed previously.

41128 /* Grammar for the input to yacc. */ |
41129 /* Basic entries. */
41130 /* The following are recognized by the lexical analyzer. */

41131 %token IDENTIFIER /* Includes identifiers and literals */
41132 %token C_IDENTIFIER /* identifier (but not literal)
41133 followed by a :. */
41134 %token NUMBER /* [0-9][0-9]* */

41135 /* Reserved words : %type=>TYPE %left=>LEFT, and so on */

41136 %token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

41137 %token MARK /* The %% mark. */
41138 %token LCURL /* The %{ mark. */
41139 %token RCURL /* The }% mark. */

41140 Notes to Reviewers |
41141 This section with side shading will not appear in the final copy. - Ed. |

41142 D3, XCU, ERN 293: An interpretation has been filed against 1003.2 and is likely to change "}%" to |
41143 "%}". |

41144 /* 8-bit character literals stand for themselves; */ |
41145 /* tokens have to be defined for multi-byte characters. */

41146 %start spec

41147 %%

41148 spec : defs MARK rules tail
41149 ;
41150 tail : MARK
41151 {
41152 /* In this action, set up the rest of the file. */
41153 }
41154 | /* Empty; the second MARK is optional. */
41155 ;
41156 defs : /* Empty. */
41157 | defs def
41158 ;
41159 def : START IDENTIFIER
41160 | UNION
41161 {
41162 /* Copy union definition to output. */
41163 }
41164 | LCURL
41165 {
41166 /* Copy C code to output file. */
41167 }
41168 RCURL
41169 | rword tag nlist
41170 ;
41171 rword : TOKEN

3284 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

41172 | LEFT
41173 | RIGHT
41174 | NONASSOC
41175 | TYPE
41176 ;
41177 tag : /* Empty: union tag ID optional. */
41178 | ’<’ IDENTIFIER ’>’
41179 ;
41180 nlist : nmno
41181 | nlist nmno
41182 ;
41183 nmno : IDENTIFIER /* Note: literal invalid with % type. */
41184 | IDENTIFIER NUMBER /* Note: invalid with % type. */
41185 ;

41186 /* Rule section */

41187 rules : C_IDENTIFIER rbody prec
41188 | rules rule
41189 ;
41190 rule : C_IDENTIFIER rbody prec
41191 | ’|’ rbody prec
41192 ;
41193 rbody : /* empty */
41194 | rbody IDENTIFIER
41195 | rbody act
41196 ;
41197 act : ’{’
41198 {
41199 /* Copy action, translate $$, and so on. */
41200 }
41201 ’}’
41202 ;
41203 prec : /* Empty */
41204 | PREC IDENTIFIER
41205 | PREC IDENTIFIER act
41206 | prec ’;’
41207 ;

41208 Conflicts

41209 The parser produced for an input grammar may contain states in which conflicts occur. The
41210 conflicts occur because the grammar is not LALR(1). An ambiguous grammar always contains at
41211 least one LALR(1) conflict. The yacc utility shall resolve all conflicts, using either default rules or
41212 user-specified precedence rules.

41213 Conflicts are either shift/reduce conflicts or reduce/reduce conflicts. A shift/reduce conflict is
41214 where, for a given state and lookahead symbol, both a shift action and a reduce action are
41215 possible. A reduce/reduce conflict is where, for a given state and lookahead symbol, reductions
41216 by two different rules are possible.

41217 The rules below describe how to specify what actions to take when a conflict occurs. Not all
41218 shift/reduce conflicts can be successfully resolved this way because the conflict may be due to
41219 something other than ambiguity, so incautious use of these facilities can cause the language

Shell and Utilities, Issue 6 3285

yacc Utilities

41220 accepted by the parser to be much different from that which was intended. The description file
41221 shall contain sufficient information to understand the cause of the conflict. Where ambiguity is
41222 the reason either the default or explicit rules should be adequate to produce a working parser.

41223 The declared precedences and associativities (see Declarations Section (on page 3280)) are used
41224 to resolve parsing conflicts as follows:

41225 1. A precedence and associativity is associated with each grammar rule; it is the precedence
41226 and associativity of the last token or literal in the body of the rule. If the %prec keyword is
41227 used, it overrides this default. Some grammar rules might not have both precedence and
41228 associativity.

41229 2. If there is a shift/reduce conflict, and both the grammar rule and the input symbol have
41230 precedence and associativity associated with them, then the conflict is resolved in favor of
41231 the action (shift or reduce) associated with the higher precedence. If the precedences are
41232 the same, then the associativity is used; left associative implies reduce, right associative
41233 implies shift, and non-associative implies an error in the string being parsed.

41234 3. When there is a shift/reduce conflict that cannot be resolved by rule 2, the shift is done.
41235 Conflicts resolved this way are counted in the diagnostic output described in Error
41236 Handling.

41237 4. When there is a reduce/reduce conflict, a reduction is done by the grammar rule that
41238 occurs earlier in the input sequence. Conflicts resolved this way are counted in the
41239 diagnostic output described in Error Handling.

41240 Conflicts resolved by precedence or associativity shall not be counted in the shift/reduce and
41241 reduce/reduce conflicts reported by yacc on either standard error or in the description file.

41242 Error Handling

41243 The token error shall be reserved for error handling. The name error can be used in grammar
41244 rules. It indicates places where the parser can recover from a syntax error. The default value of
41245 error shall be 256. Its value can be changed using a %token declaration. The lexical analyzer
41246 should not return the value of error. |

41247 The parser shall detect a syntax error when it is in a state where the action associated with the
41248 lookahead symbol is error. A semantic action can cause the parser to initiate error handling by
41249 executing the macro YYERROR. When YYERROR is executed, the semantic action passes
41250 control back to the parser. YYERROR cannot be used outside of semantic actions.

41251 When the parser detects a syntax error, it normally calls yyerror with the character string
41252 "syntax error" as its argument. The call shall not be made if the parser is still recovering
41253 from a previous error when the error is detected. The parser is considered to be recovering from
41254 a previous error until the parser has shifted over at least three normal input symbols since the
41255 last error was detected or a semantic action has executed the macro yyerrok . The parser shall not
41256 call yyerror when YYERROR is executed.

41257 The macro function YYRECOVERING shall return 1 if a syntax error has been detected and the
41258 parser has not yet fully recovered from it. Otherwise, zero shall be returned.

41259 When a syntax error is detected by the parser, the parser shall check if a previous syntax error
41260 has been detected. If a previous error was detected, and if no normal input symbols have been
41261 shifted since the preceding error was detected, the parser checks if the lookahead symbol is an
41262 endmarker (see Interface to the Lexical Analyzer (on page 3287)). If it is, the parser shall return
41263 with a non-zero value. Otherwise, the lookahead symbol shall be discarded and normal parsing
41264 shall resume.

3286 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

41265 When YYERROR is executed or when the parser detects a syntax error and no previous error has
41266 been detected, or at least one normal input symbol has been shifted since the previous error was
41267 detected, the parser shall pop back one state at a time until the parse stack is empty or the
41268 current state allows a shift over error. If the parser empties the parse stack, it shall return with a
41269 non-zero value. Otherwise, it shall shift over error and then resume normal parsing. If the parser
41270 reads a lookahead symbol before the error was detected, that symbol shall still be the lookahead
41271 symbol when parsing is resumed.

41272 The macro yyerrok in a semantic action shall cause the parser to act as if it has fully recovered
41273 from any previous errors. The macro yyclearin shall cause the parser to discard the current
41274 lookahead token. If the current lookahead token has not yet been read, yyclearin shall have no
41275 effect.

41276 The macro YYACCEPT shall cause the parser to return with the value zero. The macro
41277 YYABORT shall cause the parser to return with a non-zero value.

41278 Interface to the Lexical Analyzer

41279 The yylex function is an integer-valued function that returns a token number representing the kind
41280 of token read. If there is a value associated with the token returned by yylex (see the discussion
41281 of tag above), it shall be assigned to the external variable yylval .

41282 If the parser and yylex do not agree on these token numbers, reliable communication between
41283 them cannot occur. For (one character) literals, the token is simply the numeric value of the
41284 character in the current character set. The numbers for other tokens can either be chosen by yacc,
41285 or chosen by the user. In either case, the #define construct of C is used to allow yylex to return
41286 these numbers symbolically. The #define statements are put into the code file, and the header
41287 file if that file is requested. The set of characters permitted by yacc in an identifier is larger than
41288 that permitted by C. Token names found to contain such characters shall not be included in the
41289 #define declarations.

41290 If the token numbers are chosen by yacc, the tokens other than literals shall be assigned numbers
41291 greater than 256, although no order is implied. A token can be explicitly assigned a number by
41292 following its first appearance in the declarations section with a number. Names and literals not
41293 defined this way retain their default definition. All token numbers assigned by yacc shall be
41294 unique and distinct from the token numbers used for literals and user-assigned tokens. If
41295 duplicate token numbers cause conflicts in parser generation, yacc shall report an error;
41296 otherwise, it is unspecified whether the token assignment is accepted or an error is reported.

41297 The end of the input is marked by a special token called the endmarker, which has a token
41298 number that is zero or negative. (These values are invalid for any other token.) All lexical
41299 analyzers shall return zero or negative as a token number upon reaching the end of their input. If
41300 the tokens up to, but excluding, the endmarker form a structure that matches the start symbol,
41301 the parser shall accept the input. If the endmarker is seen in any other context, it shall be
41302 considered an error.

41303 Completing the Program

41304 In addition to yyparse and yylex , the functions yyerror and main are required to make a complete
41305 program. The application can supply main and yyerror, or those routines can be obtained from
41306 the yacc library.

Shell and Utilities, Issue 6 3287

yacc Utilities

41307 Yacc Library

41308 The following functions appear only in the yacc library accessible through the −l y operand to cc
41309 or c99; they can therefore be redefined by a portable application: |

41310 int main(void)
41311 This function shall call yyparse and exit with an unspecified value. Other actions within this
41312 function are unspecified.

41313 int yyerror(const char *s)
41314 This function shall write the NUL-terminated argument to standard error, followed by a
41315 <newline> character.

41316 The order of the −l y and −l l operands given to cc or c99 is significant; the application shall |
41317 either provide its own main function or ensure that −l y precedes −l l.

41318 Debugging the Parser

41319 The parser generated by yacc shall have diagnostic facilities in it that can be optionally enabled
41320 at either compile time or at runtime (if enabled at compile time). The compilation of the runtime
41321 debugging code is under the control of YYDEBUG, a preprocessor symbol. If YYDEBUG has a
41322 non-zero value, the debugging code shall be included. If its value is zero, the code shall not be
41323 included.

41324 In parsers where the debugging code has been included, the external int yydebug can be used to
41325 turn debugging on (with a non-zero value) and off (zero value) at runtime. The initial value of
41326 yydebug shall be zero.

41327 When −t is specified, the code file shall be built such that, if YYDEBUG is not already defined at
41328 compilation time (using the c99 −D YYDEBUG option, for example), YYDEBUG shall be set |
41329 explicitly to 1. When −t is not specified, the code file shall be built such that, if YYDEBUG is not
41330 already defined, it shall be set explicitly to zero.

41331 The format of the debugging output is unspecified but includes at least enough information to
41332 determine the shift and reduce actions, and the input symbols. It also provides information
41333 about error recovery.

41334 Algorithms

41335 The parser constructed by yacc implements an LALR(1) parsing algorithm as documented in the
41336 literature. It is unspecified whether the parser is table-driven or direct-coded.

41337 A parser generated by yacc shall never request an input symbol from yylex while in a state where
41338 the only actions other than the error action are reductions by a single rule.

41339 The literature of parsing theory defines these concepts.

41340 Limits

41341 The yacc utility may have several internal tables. The minimum maximums for these tables are
41342 shown in the following table. The exact meaning of these values is implementation-defined. The |
41343 implementation shall define the relationship between these values and between them and any |
41344 error messages that the implementation may generate should it run out of space for any internal
41345 structure. An implementation may combine groups of these resources into a single pool as long
41346 as the total available to the user does not fall below the sum of the sizes specified by this section. |

3288 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

41347 Table 4-22 Internal Limits in yacc |
__

41348 Minimum
41349 Limit Maximum Description__
41350 {NTERMS} 126 Number of tokens.
41351 {NNONTERM} 200 Number of non-terminals.
41352 {NPROD} 300 Number of rules.
41353 {NSTATES} 600 Number of states.
41354 Length of rules. The total length, in names
41355 (tokens and non-terminals), of all the rules of the
41356 grammar. The left-hand side is counted for each
41357 rule, even if it is not explicitly repeated, as
41358 specified in Grammar Rules in yacc (on page
41359 3281).

{MEMSIZE} 5 200

41360 Number of actions. ‘‘Actions’’ here (and in the
41361 description file) refer to parser actions (shift,
41362 reduce, and so on) not to semantic actions
41363 defined in Grammar Rules in yacc (on page
41364 3281).

{ACTSIZE} 4 000

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

41365 EXIT STATUS
41366 The following exit values shall be returned:

41367 0 Successful completion.

41368 >0 An error occurred.

41369 CONSEQUENCES OF ERRORS
41370 If any errors are encountered, the run is aborted and yacc exits with a non-zero status. Partial
41371 code files and header files files may be produced. The summary information in the description
41372 file always shall be produced if the −v flag is present.

41373 APPLICATION USAGE
41374 Historical implementations experience name conflicts on the names yacc.tmp, yacc.acts,
41375 yacc.debug, y.tab.c, y.tab.h, and y.output if more than one copy of yacc is running in a single
41376 directory at one time. The −b option was added to overcome this problem. The related problem
41377 of allowing multiple yacc parsers to be placed in the same file was addressed by adding a −p
41378 option to override the previously hard-coded yy variable prefix.

41379 The description of the −p option specifies the minimal set of function and variable names that
41380 cause conflict when multiple parsers are linked together. YYSTYPE does not need to be changed.
41381 Instead, the programmer can use −b to give the header files for different parsers different names,
41382 and then the file with the yylex for a given parser can include the header for that parser. Names
41383 such as yyclearerr do not need to be changed because they are used only in the actions; they do
41384 not have linkage. It is possible that an implementation has other names, either internal ones for
41385 implementing things such as yyclearerr , or providing non-standard features that it wants to
41386 change with −p.

41387 Unary operators that are the same token as a binary operator in general need their precedence
41388 adjusted. This is handled by the %prec advisory symbol associated with the particular grammar
41389 rule defining that unary operator. (See Grammar Rules in yacc (on page 3281).) Applications
41390 are not required to use this operator for unary operators, but the grammars that do not require it
41391 are rare.

Shell and Utilities, Issue 6 3289

yacc Utilities

41392 EXAMPLES
41393 Access to the yacc library is obtained with library search operands to cc or c99. To use the yacc |
41394 library main :

41395 c99 y.tab.c −l y

41396 Both the lex library and the yacc library contain main . To access the yacc main :

41397 c99 y.tab.c lex.yy.c −l y −l l

41398 This ensures that the yacc library is searched first, so that its main is used.

41399 The historical yacc libraries have contained two simple functions that are normally coded by the
41400 application programmer. These library functions are similar to the following code:

41401 #include <locale.h>
41402 int main(void)
41403 {
41404 extern int yyparse();

41405 setlocale(LC_ALL, "");

41406 /* If the following parser is one created by lex, the
41407 application must be careful to ensure that LC_CTYPE
41408 and LC_COLLATE are set to the POSIX locale. */
41409 (void) yyparse();
41410 return (0);
41411 }

41412 #include <stdio.h>

41413 int yyerror(const char *msg)
41414 {
41415 (void) fprintf(stderr, "%s\n", msg);
41416 return (0);
41417 }

41418 RATIONALE
41419 The references in Referenced Documents (on page xv) may be helpful in constructing the parser |
41420 generator. The referenced DeRemer and Pennello article (along with the works it references) |
41421 describes a technique to generate parsers that conform to this volume of IEEE Std. 1003.1-200x.
41422 Work in this area continues to be done, so implementors should consult current literature before
41423 doing any new implementations. The original Knuth article is the theoretical basis for this kind |
41424 of parser, but the tables it generates are impractically large for reasonable grammars and should
41425 not be used. The ‘‘equivalent to’’ wording is intentional to assure that the best tables that are
41426 LALR(1) can be generated.

41427 There has been confusion between the class of grammars, the algorithms needed to generate
41428 parsers, and the algorithms needed to parse the languages. They are all reasonably orthogonal.
41429 In particular, a parser generator that accepts the full range of LR(1) grammars need not generate
41430 a table any more complex than one that accepts SLR(1) (a relatively weak class of LR grammars)
41431 for a grammar that happens to be SLR(1). Such an implementation need not recognize the case,
41432 either; table compression can yield the SLR(1) table (or one even smaller than that) without
41433 recognizing that the grammar is SLR(1). The speed of an LR(1) parser for any class is dependent
41434 more upon the table representation and compression (or the code generation if a direct parser is
41435 generated) than upon the class of grammar that the table generator handles.

41436 The speed of the parser generator is somewhat dependent upon the class of grammar it handles. |
41437 However, the original Knuth article algorithms for constructing LR parsers was judged by its |

3290 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

41438 author to be impractically slow at that time. Although full LR is more complex than LALR(1), as
41439 computer speeds and algorithms improve, the difference (in terms of acceptable wall-clock
41440 execution time) is becoming less significant.

41441 Potential authors are cautioned that the referenced DeRemer and Pennello article previously |
41442 cited identifies a bug (an over-simplification of the computation of LALR(1) lookahead sets) in |
41443 some of the LALR(1) algorithm statements that preceded it to publication. They should take the
41444 time to seek out that paper, as well as current relevant work, particularly Aho’s.

41445 The −b option was added to provide a portable method for permitting yacc to work on multiple
41446 separate parsers in the same directory. If a directory contains more than one yacc grammar, and
41447 both grammars are constructed at the same time (by, for example, a parallel make program),
41448 conflict results. While the solution is not historical practice, it corrects a known deficiency in
41449 historical implementations. Corresponding changes were made to all sections that referenced
41450 the file names y.tab.c (now ‘‘the code file’’), y.tab.h (now ‘‘the header file’’), and y.output (now
41451 ‘‘the description file’’).

41452 The grammar for yacc input is based on System V documentation. The textual description shows
41453 there that the ’;’ is required at the end of the rule. The grammar and the implementation do not
41454 require this. (The use of C_IDENTIFIER causes a reduce to occur in the right place.)

41455 Also, in that implementation, the constructs such as %token can be terminated by a semicolon,
41456 but this is not permitted by the grammar. The keywords such as %token can also appear in
41457 uppercase, which is again not discussed. In most places where ’%’ is used, ’\’ can be
41458 substituted, and there are alternate spellings for some of the symbols (for example, %LEFT can
41459 be "%<" or even "\<").

41460 Historically, <tag> can contain any characters except ’>’ , including white space, in the
41461 implementation. However, since the tag must reference a ISO C standard union member, in
41462 practice conforming implementations need to support only the set of characters for ISO C
41463 standard identifiers in this context.

41464 Some historical implementations are known to accept actions that are terminated by a period.
41465 Historical implementations often allow ’$’ in names. A conforming implementation does not
41466 need to support either of these behaviors.

41467 Deciding when to use %prec illustrates the difficulty in specifying the behavior of yacc. There
41468 may be situations in which the grammar is not, strictly speaking, in error, and yet yacc cannot
41469 interpret it unambiguously. The resolution of ambiguities in the grammar can in many instances
41470 be resolved by providing additional information, such as using %type or %union declarations. It
41471 is often easier and it usually yields a smaller parser to take this alternative when it is
41472 appropriate.

41473 The size and execution time of a program produced without the runtime debugging code is
41474 usually smaller and slightly faster in historical implementations.

41475 Statistics messages from several historical implementations include the following types of
41476 information:

Shell and Utilities, Issue 6 3291

yacc Utilities

41477 n/512 terminals, n/300 non-terminals
41478 n/600 grammar rules, n/1 500 states
41479 n shift/reduce, n reduce/reduce conflicts reported
41480 n/350 working sets used
41481 Memory: states, etc. n/15 000, parser n/15 000
41482 n/600 distinct lookahead sets
41483 n extra closures
41484 n shift entries, n exceptions
41485 n goto entries
41486 n entries saved by goto default
41487 Optimizer space used: input n/15 000, output n/15 000
41488 n table entries, n zero
41489 Maximum spread: n, Maximum offset: n

41490 The report of internal tables in the description file is left implementation-defined because all |
41491 aspects of these limits are also implementation-defined. Some implementations may use |
41492 dynamic allocation techniques and have no specific limit values to report. |

41493 The format of the y.output file is not given because specification of the format was not seen to |
41494 enhance applications portability. The listing is primarily intended to help human users |
41495 understand and debug the parser; use of y.output by a portable application script would be
41496 unusual. Furthermore, implementations have not produced consistent output and no popular
41497 format was apparent. The format selected by the implementation should be human-readable, in
41498 addition to the requirement that it be a text file.

41499 Standard error reports are not specifically described because they are seldom of use to portable
41500 applications and there was no reason to restrict implementations.

41501 Some implementations recognize "={" as equivalent to ’{’ because it appears in historical
41502 documentation. This construction was recognized and documented as obsolete as long ago as
41503 1978, in the referenced Yacc: Yet Another Compiler-Compiler. This volume of IEEE Std. 1003.1-200x
41504 chose to leave it as obsolete and omit it. |

41505 Multi-byte characters should be recognized by the lexical analyzer and returned as tokens. They |
41506 should not be returned as multi-byte character literals. The token error that is used for error |
41507 recovery is normally assigned the value 256 in the historical implementation. Thus, the token |
41508 value 256, which used in many multi-byte character sets, is not available for use as the value of a |
41509 user-defined token. |

41510 FUTURE DIRECTIONS
41511 None.

41512 SEE ALSO
41513 c99 , lex |

41514 CHANGE HISTORY
41515 First released in Issue 2.

41516 Issue 4
41517 Aligned with the ISO/IEC 9945-2: 1993 standard.

41518 Issue 5
41519 FUTURE DIRECTIONS section added.

3292 Technical Standard (2000) (Draft July 31, 2000)

Utilities yacc

41520 Issue 6
41521 Minor changes have been added to align with the IEEE P1003.2b draft standard.

41522 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 3293

zcat Utilities

41523 NAME
41524 zcat — expand and concatenate data

41525 SYNOPSIS
41526 XSI zcat [file ...]
41527

41528 DESCRIPTION
41529 The zcat utility shall write to standard output the uncompressed form of files that have been
41530 compressed using the compress utility. It is the equivalent of uncompress −c. Input files are not
41531 affected.

41532 OPTIONS
41533 None.

41534 OPERANDS
41535 The following operand shall be supported:

41536 file The path name of a file previously processed by the compress utility. If file already
41537 has the .Z suffix specified, it is used as submitted. Otherwise, the .Z suffix is
41538 appended to the file name prior to processing.

41539 STDIN
41540 The standard input shall be used only if no file operands are specified, or if a file operand is ’ −’ .

41541 INPUT FILES
41542 Input files shall be compressed files that are in the format produced by the compress utility.

41543 ENVIRONMENT VARIABLES
41544 The following environment variables shall affect the execution of zcat:

41545 LANG Provide a default value for the internationalization variables that are unset or null.
41546 If LANG is unset or null, the corresponding value from the implementation- |
41547 defined default locale shall be used. If any of the internationalization variables |
41548 contains an invalid setting, the utility shall behave as if none of the variables had
41549 been defined.

41550 LC_ALL If set to a non-empty string value, override the values of all the other
41551 internationalization variables.

41552 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
41553 characters (for example, single-byte as opposed to multi-byte characters in
41554 arguments).

41555 LC_MESSAGES
41556 Determine the locale that should be used to affect the format and contents of
41557 diagnostic messages written to standard error.

41558 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

41559 ASYNCHRONOUS EVENTS
41560 Default.

41561 STDOUT
41562 The compressed files given as input shall be written on standard output in their uncompressed
41563 form.

3294 Technical Standard (2000) (Draft July 31, 2000)

Utilities zcat

41564 STDERR
41565 Used only for diagnostic messages.

41566 OUTPUT FILES
41567 None.

41568 EXTENDED DESCRIPTION
41569 None.

41570 EXIT STATUS
41571 The following exit values shall be returned:

41572 0 Successful completion.

41573 >0 An error occurred.

41574 CONSEQUENCES OF ERRORS
41575 Default.

41576 APPLICATION USAGE
41577 None.

41578 EXAMPLES
41579 None.

41580 RATIONALE
41581 None.

41582 FUTURE DIRECTIONS
41583 None.

41584 SEE ALSO
41585 compress, uncompress

41586 CHANGE HISTORY
41587 First released in Issue 4.

Shell and Utilities, Issue 6 3295

Utilities

41588 |

3296 Technical Standard (2000) (Draft July 31, 2000)

	XCU
	1. Introduction
	2. Shell Command Language
	3. Batch Environment Services
	4. Utilities
	admin
	basename
	c99
	date
	echo
	false
	gencat
	hash
	iconv
	jobs
	kill
	lex
	m4
	newgrp
	od
	paste
	qalter
	read
	sact
	tabs
	ulimit
	val
	wait
	xargs
	yacc
	zcat

