

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

ISO/IEC JTC 1/SC 22

Programming Languages

Document Type: Defect Report

Document Title: Defect Report 3 for ISO/IEC 1539-1:2004, Programming languages – Fortran

Document Source: SC 22/WG 5 Convener

Document Status: For information and review when voting on SC 22 N 4343.

Action ID: FYI

Due Date:

No. of Pages: 26

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

ISO/IEC JTC1/SC22/WG5-N1730

 Defect reports that led to Corrigendum 3 and responses to them

 Stan Whitlock

* W E F03/0050 Questions about internal files
* W E F03/0079 Value of decimal exponent for a real zero value
* W I F03/0080 Formatted output of a negative real zero value
* W E F03/0086 Elemental and BIND(C)
* W E F03/0088 Defined operations/assignments and
 VOLATILE/ASYNCHRONOUS
* W E F03/0089 Interoperability of non-BIND derived types
* W E F03/0092 Procedure characteristics and unlimited
 polymorphic
* W E F03/0093 Allocatable array on intrinsic assignment with
 scalar expr
* W E F03/0094 Final subroutine and VALUE attribute
* W I F03/0095 Bounds remapped pointer assignment and ASSOCIATED
* W E F03/0097 Blanks as separators in NAMELIST input
* W E F03/0101 Is UDDTIO output suitable for namelist and
 list-directed input
* W I F03/0104 Deallocation and finalization of bounds-remapped
 pointers
* W E F03/0106 Inquire by unit inconsistencies
* W E F03/0107 Are the IEEE_* elemental routines required
* W C F03/0108 Is IEEE_SUPPORT_NAN consistent with the other
 IEEE_SUPPORT functions

--

NUMBER: F03/0050
TITLE: Questions about internal files
KEYWORDS: internal file, data transfer
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

QUESTIONS:

Question 1:

Fortran 2003 does not seem to prohibit this kind of recursive internal
input/output. Was this program intended to be standard-conforming?

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

If so, then what does the program print?

MODULE m1
 CHARACTER(20) :: ifile = ''
CONTAINS
 CHARACTER(3) FUNCTION foo()
 WRITE(ifile, *) 'QWERTY'
 foo = 'abc'
 END FUNCTION
END MODULE

PROGRAM ex1
 USE m1
 WRITE(ifile, *) 'xyz', foo(), 'zyx'
 PRINT *, ifile
END PROGRAM

Question 2:

Fortran 2003 does not seem to prohibit this kind of recursive internal
input/output. Was this program intended to be standard-conforming?
If so, then what does the program print?

MODULE m2
 CHARACTER(20) :: ifile = 'abc def ghi jkl mno '
 CHARACTER(3) :: char
CONTAINS
 CHARACTER(3) FUNCTION foo()
 READ(ifile, *) char
 foo = 'abc'
 END FUNCTION
END MODULE

PROGRAM ex2
 USE m2
 WRITE(ifile, *) 'xyz', foo(), 'zyx'
 PRINT *, ifile
 PRINT *, char
END PROGRAM

Question 3:

Fortran 2003 does not appear to prohibit modifying a character

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

variable when it is being used as an internal file in a data transfer
statement that is currently executing. Was this program intended to
be standard-conforming? If so, then what does the program print?

MODULE m3
 CHARACTER(20) :: ifile = ''
CONTAINS
 CHARACTER(3) FUNCTION foo()
 ifile = 'bad thing to do?'
 foo = 'abc'
 END FUNCTION
END MODULE

PROGRAM ex3
 USE m3
 WRITE(ifile, *) 'xyz', foo(), 'zyx'
 PRINT *, ifile
 PRINT *, flag
END PROGRAM

Question 4:

Fortran 2003 does not appear to prohibit referencing a character
variable when it is being used as an internal file in a data transfer
statement that is currently executing. Was this program intended to
be standard-conforming? If so, then what does the program print?

MODULE m4
 CHARACTER(20) :: ifile = ''
 LOGICAL :: flag = .FALSE.
CONTAINS
 CHARACTER(3) FUNCTION foo()
 IF (ifile == ' xyz') THEN
 flag = .TRUE.
 END IF
 foo = 'abc'
 END FUNCTION
END MODULE

PROGRAM ex4
 USE m4
 WRITE(ifile, *) 'xyz', foo(), 'zyx'
 PRINT *, ifile

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

 PRINT *, flag
END PROGRAM

ANSWER:

All of these examples were intended to be prohibited.
Edits are provided to prohibit referencing or defining a variable used
as an internal unit as a result of evaluating any output list items,
or transferring values to any input list item.

EDITS:

In section 9.5.3.4, after the seventh paragraph:
 "If an internal file has been specified, an input/output list item
 shall not be in the file or associated with the file."

add these paragraphs [196:29+]:

 "During the execution of an output statement that specifies an
 internal file, no part of that internal file shall be referenced,
 defined, or become undefined as the result of evaluating any output
 list item.

 During the execution of an input statement that specifies an
 internal file, no part of that internal file shall be defined or
 become undefined as the result of transferring a value to any
 input list item."

SUBMITTED BY: Rob James

HISTORY: 05-141 m171 F03/0050 Submitted
 06-368 m178 Passed by J3 meeting
 07-272 m181 Passed as changed by J3 letter ballot #13
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0079
TITLE: Value of decimal exponent for a real zero value
KEYWORDS: Data edit descriptors, Numeric editing, decimal exponent,
 zero value
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

QUESTION:

 In formatted output, what is the value of the
 decimal exponent produced for a real zero value
 under the D, E, EN, ES, and G edit descriptors?

ANSWER:

 In such a case, the decimal exponent should have
 the value zero whether or not a nonzero scale factor
 is in effect. Edits are supplied to make this clear.

DISCUSSION:

The Fortran 2003 standard does not specify what the value of the
decimal exponent of a real zero value should be under formatted
output. Every implementation of which Sun is aware uses the value
zero for the decimal exponent unless a nonzero scale factor is in
effect. Different implementations format real zeros differently under
nonzero scale factors, but the difference is mainly in the form of the
mantissa and not the exponent.

EDITS:

[227:15+] At the end of the numbered list in 10.6.1 "Numeric
 editing", add:

 "(7) On output of a real zero value, the digits in the
 exponent field shall all be zero."

SUBMITTED BY: Michael Ingrassia

HISTORY: 06-125 m175 F03/0079 Submitted
 07-281r2 m182 Passed by J3 meeting
 08-133r2 m183 Passed by letter ballot #15 08-101
 08-164 m184 Passed by WG5 ballot N1722-N1726

--

NUMBER: F03/0080
TITLE: Formatted output of a negative real zero value
KEYWORDS: formatted output, negative zero, IEEE

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

DEFECT TYPE: Interpretation
STATUS: Passed by WG5 ballot

QUESTION:

 Suppose a Fortran processor's representation of the real zero
 value is signed. When a negative real zero value is written
 using formatted output, does the Fortran 2003 standard require
 the representation of the zero value in the output field to be
 prefixed with a minus sign?

ANSWER:

 Yes, the negative sign is required to appear in formatted output
 of a negative zero value. In subclause 10.6.1, list item (3) at
 [227:3-4] says "The representation of a negative internal value
 in the field shall be prefixed with a minus sign." For a
 processor that distinguishes between positive and negative zero,
 there is no exemption for output at [38:1-6]. For the case of
 IEEE reals, the IEEE_IS_NEGATIVE function at [375:25] explicitly
 says that -0.0 is "negative".

EDITS:

None.

SUBMITTED BY: Michael Ingrassia

HISTORY: 06-126 m175 F03/0080 Submitted
 07-282r1 m182 Passed by J3 meeting
 08-133r2 m183 Passed by letter ballot #15 08-101
 08-164 m184 Passed by WG5 ballot N1722-N1726

--

NUMBER: F03/0086
TITLE: Elemental and BIND(C)
KEYWORDS: Elemental, BIND(C), ENTRY
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

QUESTION:

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

 Is it allowed for a procedure to have both the BIND(C) and
 elemental attributes?

 Constraint C1242 disallows trivial ways of writing an elemental
 BIND(C) procedure. However, the following example achieves the
 effect for sub_c without violating the syntactic constraint.

 elemental subroutine sub(x)
 entry sub_c(x) bind(c)
 end subroutine sub

ANSWER:

 No, it is not allowed. Constraint C1242 was intended to disallow
 the combination of elemental and BIND(C), but it inadvertently
 failed to cover the case shown in the above example.

EDITS

 Replace C1242 in subclause 12.5.2.1 with
 [280:6-7]
 "C1242 An elemental procedure shall not have the BIND attribute.".

SUBMITTED BY: Richard Maine

HISTORY: 07-101 m179 Submitted F03/0086
 07-101 m179 Passed by J3 meeting
 07-272 m181 Passed as changed by J3 letter ballot #13
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0088
TITLE: Defined operations/assignments and VOLATILE/ASYNCHRONOUS
KEYWORDS: Defined operations, defined assignment, VOLATILE,
 ASYNCHRONOUS
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

PROBLEM:

 Fortran 2008 Unresolved Technical issue 097 asked a question that
 also affects Fortran 2003. Consider this example:

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

 INTERFACE ASSIGNMENT(=)
 SUBROUTINE s(a,b)
 REAL,INTENT(OUT),VOLATILE :: a(1,*)
 REAL,INTENT(IN) :: b(:)
 END SUBROUTINE
 END
 REAL,POINTER :: p(:,:),q(:)
 ...
 CALL s(p,q) ! Violation of constraint C1233 [271:9-11],
 ! associating P with A
 p = q ! No constraint violation because
 ! <actual-arg> syntax is not being used

QUESTION:

 Did Fortran 2003 intend to enforce constraints on <actual-arg> in
 defined assignment?

ANSWER:

 Yes, the <actual-arg> constraints and restrictions should be enforced
 in defined assignment and in defined operator evaluation.

 Edits are provided below to do this.

EDITS:

 [262:16] add at the end of the paragraph
 "All restrictions and constraints that apply to actual arguments
 in a reference to the function also apply to the corresponding
 operands in the expression as if they were used as actual
 arguments."

 [263:12] insert after "the second argument."
 "All restrictions and constraints that apply to actual arguments
 in a reference to the subroutine also apply to the left-hand side
 and to the right-hand side enclosed in parentheses as if they were
 used as actual arguments."

SUBMITTED BY: Stan Whitlock

HISTORY: 07-172 m179 Submitted F03/0088 {see 07-171 for F08 fix}

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

 07-172 m179 Passed by J3 meeting
 07-272 m181 Passed as changed by J3 letter ballot #13
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0089
TITLE: Interoperability of non-BIND derived types
KEYWORDS: Interoperability, derived type
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

INTRODUCTION

Subclause 15.2.3 of 04-007 says [398:9-12]:

 "A Fortran derived type is interoperable with a C struct type if the
 derived-type definition of the Fortran type specifies BIND(C)
 (4.5.1), the Fortran derived type and the C struct type have the
 same number of components, and the components of the Fortran
 derived type have types and type parameters that are interoperable
 with the types of the corresponding components of the struct type."

QUESTIONS

 1. Is a Fortran derived type for which BIND(C) is not specified
 interoperable with any C struct type?

 2. Does a Fortran derived type interoperate with a C struct type
 that has a different number of components?

 3. Does a Fortran derived type interoperate with a C struct type
 that specifies the same components in a different order?

 4. Does a Fortran derived type with a pointer or allocatable
 component that has interoperable type and type parameters
 interoperate with any C struct type?

ANSWERS:

None of these Fortran derived types are interoperable with any C
struct type.

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

EDITS:

 [398:9] Replace "if" by "if and only if".

SUBMITTED BY: Van Snyder

HISTORY: 07-213 m180 Submitted F03/0089
 07-213r2 m180 Passed by J3 meeting
 07-272 m181 Passed by J3 letter ballot #13
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0092
TITLE: Procedure characteristics and unlimited polymorphic
KEYWORDS: Procedure, unlimited polymorphic
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

QUESTION:

Consider

 abstract interface
 function foo (x)
 class(*) x
 class(*), pointer :: foo
 end function
 end interface

 procedure (foo), pointer :: proc_ptr
 procedure (foo), :: proc_tgt

 proc_ptr => proc_tgt

According to the rules of procedure pointer assignment at [144:39-41],
proc_ptr and proc_tgt are required to have the same interface
characteristics. However because an unlimited polymorphic entity is
not considered to have a declared type, the rules for characteristics
of dummy data objects [256:26-32] and characteristics of function
results [257:2-8] are not applicable. In addition, rules at [145:5-6]
require that proc_ptr and proc_tgt have the same function return type.
This also does not apply to unlimited polymorphic data.

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

Is the example intended to be standard-conforming?

ANSWER:

Yes, the example was intended to be standard-conforming.
An edit is provided to clarify this.

The characteristics however are adequately defined. FOO, and thus
both PROC_PTR and PROC_TGT have no type, but are polymorphic; this
precisely characterises an unlimited polymorphic entity. Only the
requirement of type matching in 7.4.2.2 is incorrect.

EDITS to 04-007:

[145:5] After "the same type"
 insert " or both be unlimited polymorphic".

SUBMITTED BY: Jim Xia

HISTORY: 07-247 m181 F03/0092 Submitted
 07-247r1 m181 Passed by J3 meeting
 07-279/321 m182 Passed as changed by J3 letter ballot #14
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0093
TITLE: Allocatable array on intrinsic assignment with scalar expr
KEYWORDS: allocatable array, intrinsic assignment
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

QUESTION:

Consider

 CHARACTER(:), ALLOCATABLE :: str(:)
 ALLOCATE (CHARACTER(1) :: str(0:9))
 str = 'reallocate?'

According to the third paragraph of 7.4.1.3, the variable STR should
be deallocated on this assignment because it has a deferred length

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

type parameter different from the <expr> ('reallocate?'); it should
then be allocated with its length type parameter the same as that of
the <expr> and with the shape and bounds of <expr>. But the STR
cannot be allocated with the shape and bounds of the <expr> since it
is a scalar.

The standard, however, provides a possible interpretation for the
shape of <expr> two paragraphs later where it says
 "If <expr> is a scalar and <variable> is an array, the <expr> is
 treated as if it were an array of the same shape as <variable>
 with every element of the array equal to the scalar value of
 <expr>."

Q(1). Should the variable STR be reallocated in this case?

Q(2). If so, what are the values of its length type parameter, shape
 and bounds?

ANSWER:

(1) Yes, STR should be reallocated - that is the purpose of the
 combination of ALLOCATABLE and deferred type parameters. If
 the user does not wish for automatic reallocation he can use
 "str(:) = 'do not reallocate'" instead.

(2) The length parameter of str after the assignment is 11 (the value
 returned by LEN('reallocate?')). The shape and bounds should be
 unchanged. An edit is provided to clarify this.

Note that the standard does not forbid, but does not specify semantics
for,

 str = 'oops'

when STR is an unallocated array with a deferred length parameter.
An edit is supplied to make it clear that this is not allowed.

Note also that this applies to parameterized derived types with
deferred type parameters.

EDITS:

[139:22-] Insert new sentence at beginning of paragraph

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

 "If <variable> is an unallocated allocatable array, <expr> shall
 have the same rank as <variable>."

[139:25] Change "corresponding type parameters of <expr>,"
 to "corresponding type parameter of <expr>."

[139:25] Before ", with the shape of <expr>"
 Insert ". If <variable> is an array and <expr> is scalar it
 is allocated with the same bounds as before,
 otherwise it is allocated".

SUBMITTED BY: Jim Xia

HISTORY: 07-248 m181 F03/0093 Submitted
 07-248r2 m181 Passed by J3 meeting
 07-279/321 m182 Passed as changed by J3 letter ballot #14
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721
 N1727 m184 Note edit changes in F2003 Corrigendum 3

The second [139:25] edit leaves a "," after the insertion. The edit
should read:

 [139:25] Replace ", with" with
 ". If <variable> is an array and <expr> is scalar it
 is allocated with the same bounds as before,
 otherwise it is allocated with".

N1727 combines the 2 edits on [139:25] above as

 In the second sentence of the third paragraph of the subclause,
 change "corresponding type parameters of <expr>," to "corresponding
 type parameter of <expr>. If variable is an array and <expr> is scalar
 it is allocated with the same bounds as before, otherwise it is
 allocated".

--

NUMBER: F03/0094
TITLE: Final subroutine and VALUE attribute
KEYWORDS: Final subroutine, VALUE
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

QUESTION:

Currently, the F03 standard allows the VALUE attribute to be specified
for the dummy argument of a final subroutine. This seems to defeat
the purpose of final subroutine, which is intended to apply to the
finalizable entity (the actual argument) itself.

Should the dummy argument of a final subroutine be allowed to have the
VALUE attribute?

ANSWER:

No, the VALUE attribute should not be allowed.
An edit is provided to correct this oversight.

EDITS to 04-007:

[58:14] In the last sentence of C473 in 4.5.5 "Final subroutines",
 replace "not be INTENT(OUT)"
 with "not have the INTENT(OUT) or VALUE attribute".

SUBMITTED BY: Jim Xia

HISTORY: 07-249 m181 F03/0094 Submitted
 07-249r1 m181 Passed by J3 meeting
 07-279/321 m182 Passed by J3 letter ballot #14
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0095
TITLE: Bounds remapped pointer assignment and ASSOCIATED
KEYWORDS: pointer assignment, bounds-remapping, ASSOCIATED
DEFECT TYPE: Interpretation
STATUS: Passed by WG5 ballot

QUESTION:

Case (v) of intrinsic inquiry function ASSOCIATED [305:5-9] says

 If TARGET is present and is an array target, the result is true
 if the target associated with POINTER and TARGET have the same
 shape, are neither of size zero nor arrays whose elements are

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

 zero-sized storage sequences, and occupy the same storage units
 in array element order. Otherwise, the result is false. If
 POINTER is disassociated, the result is false.

This will cause the intrinsic to return false if the POINTER is
pointer assigned to the TARGET with bounds-remapping (POINTER and
TARGET can be of different ranks). The same issue also exists for
case (vii).

Is the POINTER associated with the TARGET if the POINTER is pointer
assigned to the TARGET with bounds-remapping?

ANSWER:

No, it is not intended that ASSOCIATED(POINTER, TARGET) return true
after pointer assignment using a bounds-remapping that changes the
shape or rank. This was a conscious decision made in response to a
Fortran 90 interpretation request concerning dummy arguments that are
different shaped versions of the same array in the calling procedure.

EDITS to 04-007:

none

SUBMITTED BY: Jim Xia

HISTORY: 07-259 m181 F03/0095 Submitted
 07-259r2 m181 Passed by J3 meeting
 07-279/321 m182 Passed by J3 letter ballot #14
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0097
TITLE: Blanks as separators in NAMELIST input
KEYWORDS: Namelist input, blanks, separators
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

QUESTION:

1) Was it intended that blanks be allowed as separators in Namelist
 Input?

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

Consider a namelist input fragment:

 I = 3 J = 4

 Page 243:12 says that the name-value subsequences are separated by
 value separators.

 Page 243:5 says that namelist value separators are the same as
 list directed value separators.

 Page 239:7 says those value separators are "...blanks between
 values" and then defines what the values are.

 The "J" above isn't a value, so the blanks aren't separators and
 the fragment is illegal for namelist input

2) Is there a similar problem with namelist comments as in this
 fragment?

 I = 3 ! this is a namelist comment

 Page 245:29-30 says that a name-value subsequence is separated
 from the ! in a comment by a value separator.

ANSWER:

1) Yes, it was intended to allow blanks as separators for namelist
input. Edits are supplied to correct the wording in the standard.

2) Yes, there is a similar problem with comments. The fragment is
intended to be legal. The edits correct the error.

EDITS:

[243:5] Replace the paragraph by
 "A value separator for namelist formatting is a value separator
 for list-directed formatting (10.9), or one or more contiguous
 blanks between a nonblank value and the following object
 designator or "!" comment initiator."

SUBMITTED BY: Dick Hendrickson

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

HISTORY: 07-267 m181 F03/0097 Submitted
 07-267r2 m181 Passed by J3 meeting
 07-279/321 m182 Passed as changed by J3 letter ballot #14
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0101
TITLE: Is UDDTIO output suitable for namelist and list-directed input
KEYWORDS: UDDTIO, list-directed I/O, namelist I/O
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

QUESTION:

The first paragraph of 10.9.2 says that the form of the values
produced by list-directed output is the same as that required for
input. It also says values are separated blanks or commas, etc.

The first paragraph of 10.10.2 has similar words for namelist output.
It also requires that the variable name be produced in upper case and
that the output consist of name-value pairs.

Is it intended that output produced by user-defined derived-type
output routines conform to these rules?

ANSWER:

No, it was not intended to constrain the user-defined derived-type
output values. There should be an exception similar to the one for
adjacent undelimited character values. User-defined derived-type
output fields do not need to be readable by either namelist or
list-directed input.

EDITS:

[241:5] Add at the end of the paragraph
"The form of the values produced by a user-defined derived-type output
routine invoked during list-directed output is specified by the
invoked routine. This form need not be compatible with list-directed
input."

[246:4] After "and logical values" add ", and output produced by

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

user-defined derived-type output"

[246:7] Add at the end of the paragraph
"The form of the output produced by a user-defined derived-type output
routine invoked during namelist output is specified by the
invoked routine. This form need not be compatible with namelist
input."

SUBMITTED BY: Dick Hendrickson

HISTORY: 07-275 m181 F03/0101 Submitted
 07-275r2 m181 Passed by J3 meeting
 07-279/321 m182 Passed as changed by J3 letter ballot #14
 08-155 m184 Passed by WG5 ballot #4 N1711-N1721

--

NUMBER: F03/0104
TITLE: Deallocation and finalization of bounds-remapped pointers
KEYWORDS: deallocate, finalization, bounds-remapping, pointer
DEFECT TYPE: Interpretation
STATUS: Passed by WG5 ballot

INTRODUCTION:

Consider the following example assuming a derived type of X is
declared previously and made accessible to the current scoping unit,

 type(X), pointer :: a(:), b(:,:)

 allocate (a(100))
 b(1:10, 1:10) => a

 DEALLOCATE (b)

QUESTION:

 (a) Is DEALLOCATE (b) in the example intended to be standard
 conforming?

 (b) If the answer to (a) is yes, and also assume type X has
 finalizers of both rank-one and rank-two, then which finalizer
 should be invoked by the DEALLOCATE statement.

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

ANSWER:

 (a) Yes, the example is intended to be standard conforming. The
 deallocation of pointer b should be executed successfully.

 (b) The Standard is clear about how the finalizations are
 processed in this case. In 4.5.5.1, the first step in
 invoking the appropriate final subroutine requires a
 finalizer matching the rank of the entity being finalized.
 In this case, object b is being finalized and therefore the
 rank-two final subroutine of type X will be invoked with
 object b as the actual argument.

EDITS:

 None.

SUBMITTED BY: Jim Xia

HISTORY: 07-299 m182 F03/0104 Submitted; Passed by J3 meeting
 08-133r2 m183 Passed by letter ballot #15 08-101
 08-164 m184 Passed by WG5 ballot N1722-N1726

--

NUMBER: F03/0106
TITLE: Inquire by unit inconsistencies
KEYWORDS: inquire, unit, not connected
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

QUESTION:

There are many things that can be inquired about, such as ACTION
or READ, that are purely file or connection properties. In
some cases, such as ACTION, the specifier description includes
"If there is no connection [the result is] the value UNDEFINED"
or similar words. In other cases, such as READ, there seems
to be a tacit assumption that there is a file connected to the
unit. The descriptions refer to "the file" and don't specify a
result if there is no connection. In most cases, there is a
phrase like "if the processor is unable to determine if the

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

file ... [the result is] {UNDEFINED, UNKNOWN, -1, etc.}".

Question 1) Are the inquire specifiers DIRECT, ENCODING,
FORMATTED, NAMED, NEXTREC, NUMBER, POS, READ, READWRITE,
SEQUENTIAL, SIZE, STREAM, UNFORMATTED, and WRITE allowed
in an INQUIRE by unit when there is no file connected to the
unit?

Question 2) If so, should the descriptions for the above
specifiers be clarified by adding phrases such as "if there is
no file specified or connected" to the "UNKNOWN" result
descriptions?

ANSWER:

Question 1) Yes. In an inquiry by unit, the specifiers have
little meaning when there is no file connected to the unit.
However, the standard should specify the results.

Question 2) Yes, edits are supplied below.

Note: 9.9.1.15 NAMED= [213:10] needs no edit; the value will be
 false if the unit specified by UNIT= is not connected to
 a file

EDITS:

9.9.1.8 DIRECT= At [212:15], add to the end of the last sentence
 "or if the unit specified by UNIT= is not connected to a file"

9.9.1.9 ENCODING= At [212:21], after "file" insert "or if the unit
 specified by UNIT= is not connected to a file"

9.9.1.12 FORMATTED= At [212:36], add to the end of the last sentence
 "or if the unit specified by UNIT= is not connected to a file"

9.9.1.16 NEXTREC= At [213:15], change "or if" to ", if" and
 At [213:16], after "condition" insert ", or if
 the unit specified by UNIT= is not connected to a file"

9.9.1.17 NUMBER= Replace [213:20-21] with
 "Execution of an INQUIRE by file statement causes the
 <scalar-int-variable> in the NUMBER= specifier to be assigned the

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

 value of the external unit number of the unit that is connected
 to the file. If there is no unit connected to the file, the
 value -1 is assigned. Execution of an INQUIRE by unit statement
 causes the <scalar-int-variable> to be assigned the value specified
 by UNIT=."

9.9.1.21 POS= At [214:19], change "or if" to ", if" and
 At [214:20], after "conditions" insert ", or if the
 unit specified by UNIT= is not connected to a file"

9.9.1.23 READ= At [215:2], add to the end of the last sentence
 "or if the unit specified by UNIT= is not connected to a file"

9.9.1.24 READWRITE= At [215:7], add to the end of the last sentence
 "or if the unit specified by UNIT= is not connected to a file"

9.9.1.27 SEQUENTIAL= At [215:26], add to the end of the last sentence
 "or if the unit specified by UNIT= is not connected to a file"

9.9.1.29 SIZE= At [215:34], after "determined" insert "or if the unit
 specified by UNIT= is not connected to a file"

9.9.1.30 STREAM= At [216:5], add to the end of the last sentence
 "or if the unit specified by UNIT= is not connected to a file"

9.9.1.31 UNFORMATTED= At [216:10], add to the end of the last sentence
 "or if the unit specified by UNIT= is not connected to a file"

9.9.1.32 WRITE= At [216:15], add to the end of the last sentence
 "or if the unit specified by UNIT= is not connected to a file"

SUBMITTED BY: Dick Hendrickson

HISTORY: 07-309 m182 F03/0106 Submitted
 07-309r1 m182 Answer based on 07-310; Passed by J3 meeting
 08-133r2 m183 Passed letter ballot #15 08-101
 08-164 m184 Passed WG5 ballot #5 N1722-N1726
 N1727 m184 Note edit changes in F2003 Corrigendum 3

In the edit to 9.9.1.17, N1727 puts "scalar-int-variable" in italics,
ie, <scalar-int-variable>.

--

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

NUMBER: F03/0107
TITLE: Are the IEEE_* elemental routines required
KEYWORDS: IEEE, elemental routines
DEFECT TYPE: Erratum
STATUS: Passed by WG5 ballot

QUESTION:

The descriptions for all of the IEEE elemental intrinsics listed in
14.9 say something like "shall not be invoked if
IEEE_SUPPORT_DATATYPE(X) is false".

I believe this was to allow a careful programmer to do something
like

 if (IEEE_SUPPORT_DATATYPE(x)) then
 x = IEEE_SCALB(x,2)
 else
 x = x*4
 endif

and program around partial IEEE support.

But 14.9.2 says that "IEEE_ARITHMETIC contains the following
[routines] for which IEEE_SUPPORT_DATATYPE(X) [is] true"

I'd read that as saying the functions aren't there for cases where
IEEE_SUPPORT_DATATYPE is false. But, then, there is no way to
program around their absence. The example above will fail at load
time because IEEE_SCALB is absent.

If a processor provides the IEEE_ARITHMETIC module must it
provide versions of all of the intrinsics for all of the available
datatypes, including those for which IEEE_SUPPORT_DATATYPE() is false?

ANSWER:

Yes, edits are provided to make this clear.

DISCUSSION: It was intended that the above coding snippet could be
used by a careful programmer to program portably for processors which
have varying degrees of IEEE support. This might require processors

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

to provide some stub function for each routine and for each non-IEEE
datatype they support. If a program invokes one of the stub routines,
it is a run-time programming error. Nevertheless, a program which
has references to the routines, but doesn't invoke them, must load
and execute.

EDITS:

In the first paragraph of subclause 14.9.2 [370:8-9] Replace

 "for reals X and Y for which IEEE_SUPPORT_DATATYPE(X) and
 IEEE_SUPPORT_DATATYPE(Y) are true"

 with

 "for all reals X and Y"

NOTE:

The following note should be inserted at the end of the section on
IEEE arithmetic in a future standard:

"The standard requires that code such as

 if (IEEE_SUPPORT_DATATYPE(x)) then
 x = IEEE_SCALB(x,2)
 else
 x = x*4
 endif

be executable. The elemental functions in the IEEE_ARITHMETIC
module (14.9.2) must exist for all real kinds supported by the
processor, even if IEEE_SUPPORT_DATATYPE returns false for
some kinds. However, if IEEE_SUPPORT_DATATYPE returns false
for a particular kind, these functions must not be invoked
with arguments of that kind. This allows a careful programmer
to write programs that work on processors that do not support
IEEE arithmetic for all real kinds.

The processor might provide stub routines which allow the program
to link and execute, but which will abort if they are invoked."

SUBMITTED BY: Dick Hendrickson

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

HISTORY: 07-312 m182 F03/0107 Submitted
 07-312r2 m182 Passed by J3 meeting
 08-133r2 m183 Passed letter ballot #15 08-101
 08-164 m184 Passed WG5 ballot #5 N1722-N1726

--

NUMBER: F03/0108
TITLE: Is IEEE_SUPPORT_NAN consistent with the other IEEE_SUPPORT
 functions
KEYWORDS: IEEE_SUPPORT_NAN, IEEE support functions
DEFECT TYPE: Clarification
STATUS: Passed by WG5 ballot

QUESTION:

The restriction of IEEE_IS_NAN requires that IEEE_SUPPORT_NAN returns
the value true. The restrictions for the similar functions
IEEE_IS_{FINITE, NEGATIVE, and NORMAL} all require that
IEEE_SUPPORT_DATATYPE be true. This is a much stronger restriction.

Should IEEE_SUPPORT_NAN also require that IEEE_SUPPORT_DATATYPE
return true?

ANSWER:

No. The IEEE_SUPPORT_NAN restriction is weaker than requiring
IEEE_SUPPORT_DATATYPE but IEEE_SUPPORT_NAN is sufficient.
IEEE_SUPPORT_DATATYPE is used in IEEE_IS_FINITE, IEEE_IS_NEGATIVE,
and IEEE_IS_NORMAL because there are no IEEE_SUPPORT_* inquiry
functions to query support for finite, negative, or normal.
IEEE_SUPPORT_INF asks about infinities not finites and
IEEE_SUPPORT_DENORMAL only covers denormals and not the other
non-finites (NaNs and Infinities).

EDITS:

None.

SUBMITTED BY: Dick Hendrickson

HISTORY: 07-328 m182 F03/0108 Submitted

 ISO/IEC JTC 1/SC 22 N 4342 2008-05-19

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

 07-328r2 m182 Passed by J3 meeting
 08-133r2 m183 Passed letter ballot #15 08-101
 08-164 m184 Passed WG5 ballot #5 N1722-N1726

--

