
ISO/IEC JTC1 SC22 WG14 N1021

Date: 2003-09-24

Reference number of document: ISO/IEC DTR 18037

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Techno logy —

Programming languages , their env ironments and s ystem software interfaces —

Extensions for the programming language C to suppo rt embedded p rocessors —

Warning

This document is an ISO/IEC draft Technical Report. It is not an ISO/IEC International Technical Report. It is
distributed for review and comment. It is subject to change without notice and shall not be referred to as an
International Technical Report or International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: Technical Report Type 2
Document subtype: n/a
Document stage: (4) Approval
Document language: E

ISO/IEC DTR 18037

ii © ISO 2003 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56
CH-1211 Geneva 20
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved iii

Contents Page

FOREWORD...VI

INTRODUCTION ...VII

1 GENERAL.. 1

1.1 Scope ...1

1.2 References ...1

1.3 Conformance ..1

2 FIXED-POINT ARITHMETIC ... 2

2.1 Overview and principles of the fixed-point data types..2
2.1.1 The data types..2
2.1.2 Spelling of the new keywords...3
2.1.3 Overflow and Rounding..4
2.1.4 Type conversion, usual arithmetic conversions ...5
2.1.5 Fixed-point constants ...6
2.1.6 Operations involving fixed-point types ...7
2.1.7 Fixed-point functions ..9
2.1.8 Fixed-point definitions <stdfix.h>..11
2.1.9 Formatted I/O functions for fixed-point arguments...11

2.2 Detailed changes to ISO/IEC 9899:1999 ...12

3 NAMED ADDRESS SPACES AND NAMED-REGISTER STORAGE CLASSES .. 37

3.1 Overview and principles of named address spaces...37
3.1.1 Additional address spaces ...37
3.1.2 Address-space type qualifiers ..37
3.1.3 Address space nesting and rules for pointers..38
3.1.4 Standard library support ...39

3.2 Overview and principles of named-register storage classes..39
3.2.1 Access to machine registers ..39
3.2.2 Named-register storage-class specifiers..39
3.2.3 Ensuring correct side effects via objects allocated in registers ...41
3.2.4 Relationship between named registers and I/O-register designators41

3.3 Detailed changes to ISO/IEC 9899:1999 ...41

4 BASIC I/O HARDWARE ADDRESSING.. 49

ISO/IEC DTR 18037

iv © ISO 2003 – All rights reserved

4.1 Rationale ..49
4.1.1 Basic Standardization Objectives...49

4.2 Terminology..49

4.3 Basic I/O Hardware addressing header <iohw.h> ...51
4.3.1 Standardization principles ..51
4.3.2 The abstract model...52

4.4 Specifying I/O registers ..54
4.4.1 I/O-register designators..54
4.4.2 Accesses to individual I/O registers ...54
4.4.3 I/O register buffers..55
4.4.4 I/O groups...56
4.4.5 Direct and indirect designators...57
4.4.6 Operations on I/O groups...57

4.5 Detailed changes to ISO/IEC 9899:1999 ...58

ANNEX A - FIXED-POINT ARITHMETIC .. 65

A.1Fixed-point datatypes ...65
A.1.1 Introduction...65

A.2Number of data bits in _Fract versus _Accum ...68

A.3Possible Data Type Implementations...69

A.4Overflow and Rounding..70

A.5Type conversions, usual arithmetic conversions..71

A.6Operations involving fixed-point types..72

A.7Exception for 1 and –1 Multiplication Results ..72

A.8Linguistic Variables and unsigned _Fract: an example of unsigned fixed-point..........................73

ANNEX B - NAMED ADDRESS SPACES AND NAMED-REGISTER STORAGE CLASSES
... 74

B.1Embedded systems extended memory support...74
B.1.1 Modifiers for named address spaces ...74
B.1.2 Application-defined multiple address space support..75
B.1.3 I/O register definition for intrinsic or user defined address spaces ..76

ANNEX C - IMPLEMENTING THE <IOHW.H> HEADER .. 78

C.1General...78
C.1.1 Recommended steps ...78
C.1.2 Compiler considerations...78

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved v

C.2Overview of I/O Hardware Connection Options ...79
C.2.1 Multi-Addressing and I/O Register Endianness ...79
C.2.2 Address Interleaving...80
C.2.3 I/O Connection Overview: ..80
C.2.4 Generic buffer index...81

C.3I/O-register designators for different I/O addressing methods ...82

C.4Atomic operation...83

C.5Read-modify-write operations and multi-addressing cases. ..83

C.6I/O initialization ...84

C.7Intrinsic Features for I/O Hardware Access ...85

ANNEX D - MIGRATION PATH FOR <IOHW.H> IMPLEMENTATIONS 86

D.1Migration path for <iohw.h> implementations..86

D.2<iohw.h> implementation based on C macros ...86
D.2.1 The access specification method ...86
D.2.2 An <iohw.h> implementation technique ..87
D.2.3 Features ...87
D.2.4 The <iohw.h> header...88
D.2.5 The user’s I/O-register designator definitions ..91
D.2.6 The driver function..92

ANNEX E - FUNCTIONALITY NOT INCLUDED IN THIS TECHNICAL REPORT......... 93

E.1Circular buffers ...93

E.2Complex data types..94

E.3Consideration of BCD data types for Embedded Systems ..94

E.4Modwrap overflow ..94

ANNEX F - C++ COMPATIBILITY AND MIGRATION ISSUES 96

F.1 Fixed-point Arithmetic...96

F.2 Multiple Address Spaces Support ..96

F.3 Basic I/O Hardware Addressing ...96

ISO/IEC DTR 18037

vi © ISO 2003 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other inter-
national organizations, governmental and non-governmental, in liaison with ISO and IEC, also take
part in the work.

Technical Reports are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft Technical Reports adopted by the joint technical committee are circulated to
national bodies for voting. Publication as a Technical Report requires approval by at least 75 % of
the member bodies casting a vote.

The main task of technical committees is to prepare International Standards, but in exceptional
circumstances a technical committee may propose the publication of a Technical Report of one of
the following types:
 type 1, when the required support cannot be obtained for the publication of an International
Standard, despite repeated efforts;
 type 2, when the subject is still under technical development or where for any other reason
there is the future but not immediate possibility of an agreement on an International Standard;
 type 3, when a technical committee has collected data of a different kind from that which is
normally published as an International Standard ("state of the art", for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide
whether they can be transformed into International Standards. Technical Reports of type 3 do not
necessarily have to be reviewed until the data they provide are considered to be no longer valid or
useful.

ISO/IEC TR 18037, which is a Technical Report of type 2, was prepared by Joint Technical
Committee ISO/IEC JTC 1, Information technology, Subcommittee SC22, Programming languages,
their environments, and system software interfaces.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved vii

Introduction

In the fast growing market of embedded systems there is an increasing need to write application
programs in a high-level language such as C. Basically there are two reasons for this trend:
programs for embedded systems become more complex (and hence are difficult to maintain in
assembly language), and processor models for embedded systems have a decreasing lifespan
(which implies more frequent re-adapting of applications to new instruction sets). The code
re-usability achieved by C-level programming is considered to be a major step forward in
addressing these issues.

Various technical areas have been identified where functionality offered by processors (such as
DSPs) that are used in embedded systems cannot easily be exploited by applications written in C.
Examples are fixed-point operations, usage of different memory spaces, low level I/O operations
and others. The current proposal addresses only a few of these technical areas.

Embedded processors are often used to analyze analogue signals and process these signals by
applying filtering algorithms to the data received. Typical applications can be found in all wireless
devices. The common data type used in filtering algorithms is the fixed-point data type, and in order
to achieve the necessary speed, embedded processors are often equipped with special hardware
for fixed-point data. The C language (as defined in ISO/IEC 9899:1999) does not provide support
for fixed-point arithmetic operations, currently leaving programmers with no option but to handcraft
most of their algorithms in assembly language. This Technical Report specifies a fixed-point data
type for C, definable in a range of precision and saturation options. Optimizing C compilers can
generate highly efficient code for fixed-point data as easily as for integer and floating-point data.

Many embedded processors have multiple distinct banks of memory and require that data be
grouped in different banks to achieve maximum performance. Ensuring the simultaneous flow of
data and coefficient data to the multiplier/accumulator of processors designed for FIR filtering, for
example, is critical to their operation. In order to allow the programmer to declare the memory
space from which a specific data object must be fetched, this Technical Report specifies basic
support for multiple address spaces. As a result, optimizing compilers can utilize the ability of
processors that support multiple address spaces, for instance, to read data from two separate
memories in a single cycle to maximize execution speed.

As the C language has matured over the years, various extensions for accessing basic I/O
hardware (iohw) registers have been added to address deficiencies in the language. Today almost
all C compilers for freestanding environments and embedded systems support some method of
direct access to iohw registers from the C source level. However, these extensions have not been
consistent across dialects.
This Technical Report provides an approach to codifying common practice and providing a single
uniform syntax for basic iohw register addressing.

1 General

1.1 Scope

This Technical Report specifies a series of extensions of the programming language C, specified by
the international standard ISO/IEC 9899:1999.

Each clause in this Technical Report deals with a specific topic. The first subclauses of each clause
contain a technical description of the features of the topic. These subclauses provide an overview
but do not contain all the fine details. The last subclause of each clause contains the editorial
changes to the standard necessary to fully specify the topic in the standard, and thereby provides a
complete definition. Additional explanation and rationale are provided in the Annexes.

1.2 References

The following standards contain provisions which, through reference in this text, constitute
provisions of Technical Report. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this Technical
Report are encouraged to investigate the possibility of applying the most recent editions of the
normative documents indicated below. For undated references, the latest edition of the normative
document referred applies. Members of IEC and ISO maintain registers of current valid
International Standards.

ISO/IEC 9899:1999, Information technology – Programming languages, their environments and
system software interfaces – Programming Language C.

1.3 Conformance
This Technical Report presents in three separate clauses specifications for three, in principle
independent, sets of functionality (clause 2: fixed-point arithmetic, clause 3: named address spaces
and named-register storage classes, and clause 4: basic I/O hardware addressing). As this is a
Technical Report there are no conformance requirements and implementers are free to select those
specifications that they need. However, if functionality is implemented from one of the clauses,
implementers are strongly encouraged to implement that clause in full, and not just a part of it.

If, at a later stage, a decision is taken to incorporate some or all of the text of this Technical Report
into the C standard, then at that moment the conformance issues with respect to (parts of) this text
need to be addressed (conformance with respect to freestanding implementations etc.)

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 2

2 Fixed-point arithmetic

2.1 Overview and principles of the fixed-point data types

2.1.1 The data types

For the purpose of this Technical Report, fixed-point data values are either fractional data values
(with value between -1.0 and +1.0), or data values with an integral part and a fractional part. As the
position of the radix point is known implicitly, operations on the values of these data types can be
implemented with (almost) the same efficiency as operations on integral values. Typical usage of
fixed-point data values and operations can be found in applications that convert analogue values to
digital representations and subsequently apply some filtering algorithm. For more information of
fixed-point data types, see clause A.1.1 in the Annex of this Technical Report.

For the purpose of this Technical Report, two groups of fixed-point data types are added to the
C language: the fract types and the accum types. The data value of a fract type has no integral
part, hence values of a fract type are between -1.0 and +1.0. The value range of an accum type
depends on the number of integral bits in the data type.

The fixed-point data types are designated with the corresponding new keywords and type-specifiers
_Fract and _Accum. These type-specifiers can be used in combination with the existing type-
specifiers short, long, signed and unsigned to designate the following twelve fixed-point
types:

unsigned short _Fract unsigned short _Accum
unsigned _Fract unsigned _Accum
unsigned long _Fract unsigned long _Accum
signed short _Fract signed short _Accum
signed _Fract signed _Accum
signed long _Fract signed long _Accum

These twelve types are collectively called the primary fixed-point types. The fixed-point data types

short _Fract short _Accum
_Fract _Accum
long _Fract long _Accum

without either unsigned or signed are aliases for the corresponding signed fixed-point types.

For each primary fixed-point type there is a corresponding (but different) saturating fixed-point type,
designated with the type-specifier _Sat. The primary fixed-point types and the saturating fixed-
point types are collectively called the fixed-point types.

ISO/IEC DTR 18037

3 © ISO 2003 – All rights reserved

An implementation is required to support all above-mentioned twenty-four fixed-point data types.
Just as for integer types, there is no requirement that the types all have different formats.

The fixed-point types are assigned a fixed-point rank. The following types are listed in order of
increasing rank:

 short _Fract, _Fract, long _Fract, short _Accum, _Accum, long _Accum

Each unsigned fixed-point type has the same size (in bytes) and the same rank as its corresponding
signed fixed-point type. Each saturating fixed-point type has the same representation and the same
rank as its corresponding primary fixed-point type.

The bits of an unsigned fixed-point type are divided into padding bits, fractional bits, and integral
bits. The bits of a signed fixed-point type are divided into padding bits, fractional bits, integral bits,
and a sign bit.

The fract fixed-point types have no integral bits; consequently, values of unsigned fract types are in
the range of 0 to 1, and values of signed fract types are in the range of -1 to 1. The minimal formats
for each type are:

signed short _Fract s.7 signed short _Accum s4.7
signed _Fract s.15 signed _Accum s4.15
signed long _Fract s.23 signed long _Accum s4.23

unsigned short _Fract .7 unsigned short _Accum 4.7
unsigned _Fract .15 unsigned _Accum 4.15
unsigned long _Fract .23 unsigned long _Accum 4.23

(For the unsigned formats, the notation "x.y" means x integral bits and y fractional bits, for a total of
x + y non-padding bits. The added "s" in the signed formats denotes the sign bit.)

An implementation may give any of the fixed-point types more fractional bits, and may also give any
of the accum types more integral bits; the relevant restrictions are given in the text for the new
clause 6.2.5 (see clause 2.2 of this Technical Report).

For an example of unsigned fixed-point datatypes see A.8.

2.1.2 Spelling of the new keywords

The natural spelling of the newly introduced keywords _Fract, _Accum and _Sat, is fract,
accum and sat. However, in order to avoid nameclashes in existing programs the new keywords
are handled in the same way as the _Complex keyword in the ISO/IEC 9899:1999 standard: the
formal names of the new keywords start with an underscore, followed by a capital letter, and in the
for fixed-point arithmetic required header <stdfix.h>, these formal names are used to define the

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 4

natural spellings as aliases, and may be used to define other spellings, for instance, in an
environment with pre-existing fixed-point support.

In the code fragments in this Technical Report, the natural spelling will be used.

For information on the usage of the new keywords in a combined C/C++ environment, see Annex F.

2.1.3 Overflow and Rounding

Conversion of a real numeric value to a fixed-point type may overflow and/or may require rounding.
When the source value does not fit within the range of the fixed-point type, the conversion
overflows. Of the two common approaches for fixed-point overflow handling (saturation and
modular wrap-around) only saturation is required by this Technical Report; for a description of
modular wrap-around, see Annex E.4. When calculating the saturated result on fixed-point
overflow, the source value is replaced by the closest available fixed-point value. (For unsigned
fixed-point types, this will be either zero or the maximal positive value of the fixed-point type. For
signed fixed-point types it will be the maximal negative or maximal positive value of the fixed-point
type.)

Overflow behavior is controlled in two ways:

- By using explicit saturating fixed-point types (e.g., _Sat _Fract).

- In the absence of an explicit saturating fixed-point type, overflow behavior is controlled by the
FX_FRACT_OVERFLOW and FX_ACCUM_OVERFLOW pragmas with SAT and DEFAULT as
possible states.
When the state of the FX_FRACT_OVERFLOW pragma is SAT, the overflow behavior on
_Fract types is saturation; otherwise, overflow on _Fract types has undefined behavior.
When the state of the FX_ACCUM_OVERFLOW pragma is SAT, the overflow behavior on
_Accum types is saturation; otherwise, overflow on _Accum types has undefined behavior.
The default state for the FX_FRACT_OVERFLOW and FX_ACCUM_OVERFLOW pragmas is
DEFAULT.
Note: the DEFAULT state of the overflow pragmas is intended to allow implementations to use
the most optimal instruction sequences irrespective of their overflow behavior for those
computations where the actual overflow behavior is not relevant; the actual overflow behavior
may be saturation, or anything else (including modular wrap-around) and may vary between
different occurrences of the same operation, or even between different executions of the same
operation.

If (after any overflow handling) the source value cannot be represented exactly by the fixed-point
type, the source value is rounded to either the closest fixed-point value greater than the source
value (rounded up) or to the closest fixed-point value less than the source value (rounded down).

Processors that support fixed-point arithmetic in hardware have no problems in attaining the
required precision without loss of speed; however, simulations using integer arithmetic may require

ISO/IEC DTR 18037

5 © ISO 2003 – All rights reserved

for multiplication and division extra instructions to get the correct result; often these additional
instructions are not needed if the required precision is 2 ulps1. The FX_FULL_PRECISION
pragma provides a means to inform the implementation when a program requires full precision for
these operations (the state of the FX_FULL_PRECISION pragma is ''on''), or when the relaxed
requirements are allowed (the state of the FX_FULL_PRECISION pragma is ''off''). For more
discussion on this topic see A.4.

Whether rounding is up or down is implementation-defined and may differ for different values and
different situations; an implementation may specify that the rounding is indeterminable.

2.1.4 Type conversion, usual arithmetic conversions

All conversions between a fixed-point type and another arithmetic type (which can be another fixed-
point type) are defined. Overflow and rounding are handled according to the usual rules for the
destination type. Conversions from a fixed-point to an integer type round toward zero. The
rounding of conversions from a fixed-point type to a floating-point type is unspecified.

The usual arithmetic conversions in the C standard (see 6.3.1.8) imply three requirements:
1. given a pair of data types, the usual arithmetic conversions define the common type to be used;
2. then, if necessary, the usual arithmetic conversions require that each operand is converted to

that common type; and
3. it is required that the resulting type after the operation is again of the common type.

For the combination of an integer type and a fixed-point type, or the combination of a fract type and
an accum type the usual arithmetic rules may lead to useless results (converting an integer to a
fixed-point type) or to gratuitous loss of precision.

In order to get useful and attainable results, the usual arithmetic conversions do not apply to the
combination of an integer type and a fixed-point type, or the combination of two fixed-point types.
In these cases:
1. the result of the operation is calculated using the values of the two operands, with their full

precision;
2. if one operand has signed fixed-point type and the other operand has unsigned fixed-point type,

then the unsigned fixed-point operand is converted to its corresponding signed fixed-point type
and the resulting type is the type of the converted operand;

3. the result type is the type with the highest rank, whereby a fixed-point conversion rank is always
greater than an integer conversion rank; if the type of either of the operands is a saturating fixed-
point type, the result type shall be the saturating fixed-point type corresponding to the type with
the highest rank; the resulting value is converted (taking into account rounding and overflow) to
the precision of the resulting type.

1 unit in the last place: precision up to the last bit

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 6

EXAMPLE: in the following code fragment:

fract f = 0.25r;
int i = 3;

f = f * i;

the variable f gets the value 0.75.

Note that as a consequence of the above, in the following fragment

fract r, r1, r2; int i;

r1 = r * i; r2 = r * (fract) i;

the result values r1 and r2 may not be the same.

If one of the operands has a floating type and the other operand has a fixed-point type, the fixed-
point operand is converted to the floating type in the usual way.

It is recommended that a conforming compilation system provide an option to produce a diagnostic
message whenever the usual arithmetic conversions cause a fixed-point operand to be converted to
floating-point.

2.1.5 Fixed-point constants

A fixed-constant is defined analogous to a floating-constant (see 6.4.4.2), with suffixes k (K) and r
(R) for accum type constants and fract type constants; for the short variants the suffix h (H) should
be added as well.

The type of a fixed-point constant depends on its fixed-suffix as follows (note that the suffix is case
insensitive; the table below only give lowercase letters):

Suffix Fixed-point type
hr short _Fract
uhr unsigned short _Fract
r _Fract
ur unsigned _Fract
lr long _Fract
ulr unsigned long _Fract
hk short _Accum
uhk unsigned short _Accum
k _Accum
uk unsigned _Accum

ISO/IEC DTR 18037

7 © ISO 2003 – All rights reserved

lk long _Accum
ulk unsigned long _Accum

A fixed-point constant shall evaluate to a value that is in the range for the indicated type. An
exception to this requirement is made for constants of one of the fract types with value 1; these
constants shall denote the maximal value for the type.

2.1.6 Operations involving fixed-point types

2.1.6.1 Unary operators

2.1.6.1.1 Prefix and postfix increment and decrement operators

The prefix and postfix ++ and -- operators have their usual meaning of adding or subtracting the
integer value 1 to or from the operand and returning the value before or after the addition or
subtraction as the result.

2.1.6.1.2 Unary arithmetic operators

The unary arithmetic operators plus (+) and negation (-) are defined for fixed-point operands, with
the result type being the same as that of the operand. The negation operation is equivalent to
subtracting the operand from the integer value zero. It is not allowed to apply the complement
operator (~) to a fixed-point operand. The result of the logical negation operator ! applied to a
fixed-point operand is 0 if the operand compares unequal to 0, 1 if the value of the operand
compares equal to 0; the result has type int.

2.1.6.2 Binary operators

2.1.6.2.1 Binary arithmetic operators

The binary arithmetic operators +, -, *, and / are supported for fixed-point data types, with their
usual arithmetic meaning, whereby the usual arithmetic conversions for expressions involving fixed-
point type operands, as described in 2.1.4, are applied.

If the result type of an arithmetic operation is a fixed-point type, for operators other than * and /, the
calculated result is the mathematically exact result with overflow handling and rounding performed
to the full precision of the result type as explained in 2.1.3. The * and / operators may return either
this rounded result or, depending of the state of the FX_FULL_PRECISION pragma, the closest
larger or closest smaller value representable by the result fixed-point type. (Between rounding and
this optional adjustment, the multiplication and division operations permit a mathematical error of
almost 2 units in the last place of the result type.)

If the mathematical result of the * operator is exactly 1, the closest smaller value representable by
the fixed point result type may be returned as the result, even if the result type can represent the
value 1 exactly. Correspondingly, if the mathematical result of the * operator is exactly -1, the

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 8

closest larger value representable by the fixed point result type may be returned as the result, even
if the result type can represent the value -1 exactly. The circumstances in which a 1 or -1 result
might be replaced in this manner are implementation-defined.
Note that the special treatment of the values 1 and -1 as result of a * operation, as indicated in this
paragraph, is only included to ensure that certain specific implementations, that otherwise would not
be conformant, can conform to this Technical Report; it is the intention to deprecate this treatment in
future revisions of this specification. For more discussion, see Annex A.7.

If the value of the second operand of the / operator is zero, the behavior is undefined.

According to the rules above, the result type of an arithmetic operation where (at least) one operand
has a fixed-point type is always a fixed-point type. Other combinations of operand and result types
for arithmetic operations are supported through special functions. The generic function names for
these functions are mulifx, divifx, fxdivi and idivfx, where fx stands for one of r, lr,
k, lk, ur, ulr, uk and ulk. The muli functions multiply an integer operand by a fixed-point
operand and return an integer value; the divi functions divide the first (integer) operand by a fixed-
point operand (divifx) yielding a fixed-point type result, or divide two integer operands (fxdivi)
yielding a fixed-point type result; the idivfx functions divide the two fixed-point type operands
(with the same type) and return an integer result.

2.1.6.2.2 Bitwise shift operators

Shifts of fixed-point values using the standard << and >> operators are defined to be equivalent to
multiplication or division by a power of two (including the resulting overflow and rounding behavior).
The right operand must have integer type and must be nonnegative and less than the total number
of (nonpadding) bits of the fixed-point operand (the left operand). The result type is the same as
that of the fixed-point operand. An exact result is calculated and then converted to the result type in
the same way as the other fixed-point arithmetic operators.

2.1.6.2.3 Relational operators, equality operators

The standard relational operators (<, <=, >=, and >) and equality operators (==, and !=) accept
fixed-point operands. When comparing fixed-point values with fixed-point values or integer values,
the values are compared directly; the values of the operands are not converted before the
comparison is made. Otherwise, the usual arithmetic conversions are applied before the
comparison is made.

2.1.6.3 Assignment operators

The standard assignment operators +=, -=, *=, and /= are defined in the usual way when either
operand is fixed-point.

The standard assignment operators <<= and >>= are defined in the usual way when the left
operand is fixed-point.

ISO/IEC DTR 18037

9 © ISO 2003 – All rights reserved

2.1.6.4 Example of fixed-point usage

The following example calculating a scaled dot-product of two fract vectors clarifies how the
fixed-point features are intended to be used.

Example:

fract a[N], b[N], z;
long accum acc = 0;
for (int ix = 0; ix < N; ix++)

acc += (long accum) a[ix] * b[ix];
z = acc >> SCALE;

This example is without any explicit rounding and with default overflow handling.

2.1.7 Fixed-point functions

2.1.7.1 The fixed-point absolute value functions

The absolute value functions absfx, where fx stands for one of hr, r, lr, hk, k or lk, take one
fixed-point type argument (corresponding to fx); the result type is the same as the type of the
argument.

The absolute value functions compute the absolute value of a fixed-point value. If the exact result
value cannot be represented, the saturated result value is returned.

2.1.7.2 The fixed-point rounding functions

The rounding functions roundfx, where fx stands for one of hr, r, lr, hk, k or lk, take two
arguments: a fixed-point argument (corresponding to fx) and an integer argument; the result type is
the same as the type of the first argument. Similarly the rounding functions roundufx take an
unsigned fixed-point argument as first argument, and the result type is the same unsigned
fixed-point type.

The value of the second argument must be nonnegative and less than the number of fractional bits
in the fixed-point type of the first argument. The rounding functions compute the value of the first
argument, rounded to the number of fractional bits specified in the second argument. The rounding
applied is to-nearest, with unspecified rounding direction in the halfway case. Fractional bits beyond
the rounding point are set to zero in the result. If the exact result value cannot be represented, the
saturated result value is returned.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 10

2.1.7.3 The fixed-point bit countls functions

The bit count functions countlsfx, where fx stands for one of hr, r, lr, hk, k, lk, uhr, ur,
ulr, uhk, uk or ulk, take one fixed-point type argument (corresponding to fx); the result type is
int.

The integer return value of the above functions is defined as follows:
- if the value of the fixed-point argument is non-zero, the return value is the largest integer k for

which the expression a<<k does not overflow;
- if the value of the fixed-point argument is zero, an integer value is returned that is at least as

large as N-1, where N is the total number of (nonpadding) bits of the fixed-point type of the
argument.

2.1.7.4 The bitwise fixed-point to integer conversion functions

The bitwise fixed-point to integer conversion functions bitsfx, where fx stands for one of hr, r,
lr, hk, k, lk, uhr, ur, ulr, uhk, uk or ulk, take one fixed-point type argument (corresponding
to fx); the type of the function is an implementation-defined integer type int_fx_t (for signed
fixed-point types) or uint_fx_t (for unsigned fixed-point types), defined in the <stdfix.h>
headerfile, that is large enough to hold all the bits in the fixed-point type.

The bitwise fixed-point to integer conversion functions return an integer value equal to the fixed-
point value of the argument multiplied by 2F, where F is the number of fractional bits in the fixed-
point type. The result type is an integer type big enough to hold all valid result values for the given
fixed-point argument type. For example, if the fract type has 15 fractional bits, then after the
declaration

fract a = 0.5;

the value of bitsr(a) is 0.5 * 2^15 = 0x4000.

2.1.7.5 The bitwise integer to fixed-point conversion functions

The bitwise fixed-point to integer conversion functions fxbits, where fx stands for one of hr, r,
lr, hk, k, lk, uhr, ur, ulr, uhk, uk or ulk, take one argument with type int_fx_t or
uint_fx_t, the result type is a fixed-point type (corresponding to fx).

The bitwise fixed-point to integer conversion functions return an fixed-point value equal to the
integer value of the argument divided by 2F, where F is the number of fractional bits in the fixed-
point result type of the function. For example, if fract has 15 fractional bits, then the value of
rbits(0x2000) is 0.25.

ISO/IEC DTR 18037

11 © ISO 2003 – All rights reserved

2.1.7.6 Type-generic fixed-point functions

The header <stdfix.h> defines the following fixed-point type-generic macros. For each of the
fixed-point absolute value functions in 2.1.7.1, the fixed-point round functions in 2.1.7.2 and the
fixed-point countls functions in 2.1.7.3, a type-generic macro is defined as follows:

type-generic macro
the fixed-point absolute value functions absfx
the fixed-point rounding functions roundfx
the fixed-point countls functions countlsfx

.
2.1.7.7 Fixed-point numeric conversion functions

The fixed-point numeric conversion functions strtofx, where fx stands for one of hr, r, lr, hk,
k, lk, uhr, ur, ulr, uhk, uk or ulk, take two arguments: the first argument has
const char * restrict type, the second argument has char ** restrict type; the
result type is a fixed-point type (corresponding to fx).

Similar to the strtod function, the strtofx functions convert a portion of the string pointed to by
the first argument to a fixed-point representation, with a type corresponding to fx, and return that
fixed-point type value.

2.1.8 Fixed-point definitions <stdfix.h>

In the header <stdfix.h> defines macros that specify the precision of the fixed-point types and
declares functions that support fixed-point arithmetic.

2.1.9 Formatted I/O functions for fixed-point arguments

Additional conversion specifiers for fixed-point arguments are defined as follows:
r for (signed) fract types
R for unsigned fract types
k for (signed) accum types
K for unsigned accum types.

Together with the standard length modifiers h (for short fixed-point arguments) and l (for long fixed-
point arguments) all fixed-point types can be converted in the normal manner. Conversions to and
from infinity and NaN representations are not supported.

The fprintf function and its derived functions with the r, R, k and K conversion formats convert
the argument with a fixed-point type representing a fixed-point number to decimal notation in the
style [-]ddd.ddd, where the number of digits after the decimal point is equal to the precision
specification (i.e., it corresponds to the output format of the f (F) conversion specifier).

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 12

The fscanf function and its derived functions match an optionally signed fixed-point number
whose format is the same as expected for the subject sequence of the corresponding strtofx
function. The corresponding argument of fscanf shall be a pointer to a fixed-point type variable with
a type corresponding to fx.

2.2 Detailed changes to ISO/IEC 9899:1999

This clause details the modifications to ISO/IEC 9899:1999 needed to incorporate the fixed-point
functionality as described in clause 2.1 of this Technical Report. The changes listed in this clause
are limited to syntax and semantics; examples, (forward) references and other descriptive
information are omitted. The modifications are ordered according to the clauses of
ISO/IEC 9899:1999 to which they refer. If a clause of ISO/IEC 9899:1999 is not mentioned, no
changes to that clause are needed. New clauses are indicated with (NEW CLAUSE), however
resulting changes in the existing numbering are not indicated; the clause number mm.nna of new
clause indicates that this clause follows immediately clause mm.nn at the same level.

Clause 5.2.4.2.3 - Characteristics of fixed-point types (NEW CLAUSE)
The characteristics of fixed-point data types are defined in terms of a model that describes a
representation of fixed-point numbers and values that provide information about an implementation's
fixed-point arithmetic. (The fixed-point model is intended to clarify the description of each fixed-point
characteristic and does not require the fixed-point arithmetic of the implementation to be identical.)

Analogous to the Scaled data type, as defined in ISO/IEC 11404:1996 - Language-Independent
Datatypes (LID), a fixed-point number (x) is defined by the following model:

x = s * n * (b f)

with the following parameters:

s sign (±1)
b base or radix of nominator representation (an integer > 1)
p precision (the number of base-b digits in the nominator)
n nominator (nonnegative integer less than b raised to the power p)
f factor (an integer value).

For the purpose of this Technical Report, the following restrictions to the above general model
apply:
- b equals 2: only binary fixed-point is considered;
- (-p) <= f < 0: integer values (f >= 0) are not considered to form part of the fixed-point values, and

the radix dot is assumed to be somewhere between the most significant digit and the least
significant digit in the nominator, or immediately to the left of the most significant digit in the
nominator.

Fixed-point infinities or NaNs are not supported.

ISO/IEC DTR 18037

13 © ISO 2003 – All rights reserved

For fract fixed-point types, f equals (-p): values with (signed) fract fixed-point types are between -1
and 1, values with unsigned fract fixed-point types are between 0 and 1.

For accum fixed-point types, f is between (-p) and zero: the value range of accum fixed-point types
depends on the number of integral bits (f + p) in the type.

If the result type of an arithmetic operation is a fixed-point type, the operation is performed on the
operand values according to the operation's usual mathematical definition, and then overflow
handling and rounding is performed for the result type.

The fixed-point overflow behavior is either saturation or undefined. When calculating the saturated
result on fixed-point overflow, the source value is replaced by the closest available fixed-point value.
(For unsigned fixed-point types, this will be either zero or the most positive value of the fixed-point
type. For signed fixed-point types it will be the most negative or most positive value of the fixed-
point type.)

Overflow behavior is determined as follows:

- If the result type of an arithmetic operation is a saturating fixed-point type (see clause 6.2.5) the
overflow behavior is saturation.

- If the result type is a primary fixed-point type (see clause 6.2.5), overflow behavior is controlled
by the FX_FRACT_OVERFLOW pragma for _Fract types and the FX_ACCUM_OVERFLOW
pragma for _Accum types. These pragmas follows the same scoping rules as existing STDC
pragmas (see clause 6.10.6 of the C standard), and have the following syntax:

#pragma STDC FX_FRACT_OVERFLOW overflow-switch
#pragma STDC FX_ACCUM_OVERFLOW overflow-switch

where overflow-switch is one of SAT or DEFAULT.

When the state of the FX_FRACT_OVERFLOW pragma is SAT, the overflow behavior on
_Fract types is saturation; otherwise, overflow on _Fract types has undefined behavior.
When the state of the FX_ACCUM_OVERFLOW pragma is SAT, the overflow behavior on
_Accum types is saturation; otherwise, overflow on _Accum types has undefined behavior.
The default state for the FX_FRACT_OVERFLOW and FX_ACCUM_OVERFLOW pragmas is
DEFAULT.
Note: the DEFAULT state of the overflow pragmas is intended to allow implementations to use
the most optimal instruction sequences irrespective of their overflow behavior for those
computations where the actual overflow behavior is not relevant; the actual overflow behavior
may be saturation, or anything else (including modular wrap-around) and may vary between
different occurrences of the same operation, or even between different executions of the same
operation.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 14

If (after any overflow handling) the source value cannot be represented exactly by the fixed-point
type, the source value is rounded to either the closest fixed-point value greater than the source
value (rounded up) or to the closest fixed-point value less than the source value (rounded down).

For arithmetic operators other than * and /, the rounded result is returned as the result of the
operation. The * and / operators may return either this rounded result or, depending of the state of
the FX_FULL_PRECISION pragma, the closest larger or closest smaller value representable by
the result fixed-point type. (Between rounding and this optional adjustment, the multiplication and
division operations permit a mathematical error of almost 2 units in the last place of the result type.)

If the mathematical result of the * operator is exactly 1, the closest smaller value representable by
the fixed point result type may be returned as the result, even if the result type can represent the
value 1 exactly. Correspondingly, if the mathematical result of the * operator is exactly -1, the
closest larger value representable by the fixed point result type may be returned as the result, even
if the result type can represent the value -1 exactly. The circumstances in which a 1 or -1 result
might be replaced in this manner are implementation-defined.

Whether rounding is up or down is implementation-defined and may differ for different values and
different situations; an implementation may specify that the rounding is indeterminable.

Functions are supplied for arithmetic operations with different operand type and result type
combinations (for instance, integer times fixed-point yielding integer, or integer divided by integer
yielding a fixed-point type); see 7.18a.6.1.

Clause 6.2.5 - Types, add the following new paragraphs after paragraph 9:

There are six primary signed fixed-point types, designated as short _Fract, _Fract,
long _Fract, short _Accum, _Accum, and long _Accum. For each of the primary signed
fixed-point types, there is a corresponding (but different) primary unsigned fixed-point type
(designated with the keyword unsigned) that uses the same amount of storage and has the same
alignment requirements as its corresponding signed type. The primary signed fixed-point types and
the primary unsigned fixed-point types are collectively called primary fixed-point types.

For each of the primary fixed-point types, there is a corresponding (but different) saturating fixed-
point type (designated with the keyword _Sat) that has the same representation and the same
alignment requirements as its corresponding type. The primary fixed-point types and the saturating
fixed-point types are collectively called fixed-point types.

The six types short _Fract, _Fract, long _Fract, short _Sat _Fract,
_Sat _Fract, and long _Sat _Fract are collectively called signed fract types. The six
types unsigned short _Fract, unsigned _Fract, unsigned long _Fract,
_Sat unsigned short _Fract, _Sat unsigned _Fract, and
_Sat unsigned long _Fract are collectively called unsigned fract types. The signed fract
types and the unsigned fract types are collectively called fract types.

ISO/IEC DTR 18037

15 © ISO 2003 – All rights reserved

The six types short _Accum, _Accum, long _Accum, _Sat short Accum,
_Sat _Accum, and _Sat long Accum are collectively called signed accum types. The six
types unsigned short _Accum, unsigned _Accum, unsigned long _Accum,
_Sat unsigned short _Accum, _Sat unsigned _Accum, and
_Sat unsigned long _Accum are collectively called unsigned accum types. The signed
accum types and the unsigned accum types are collectively called accum types.

Clause 6.2.5 - Types, paragraph 17: change last sentence as follows.

Integer, fixed-point and real floating types are collectively called real types.

Clause 6.2.5 - Types, paragraph 18: change first sentence as follows.

Integer, fixed-point and floating types are collectively called arithmetic types.

Clause 6.2.6.3 - Fixed-point types (NEW CLAUSE)

For unsigned fixed-point types, the bits of the object representation shall be divided into two groups:
value bits and padding bits (there need not be any of the latter). There are two types of value bits:
integral bits and fractional bits; if there are N value bits and L integral bits, then there are (N-L)
fractional bits; for fract types, the number of integral bits is always zero (L=0). For fract types, each
bit shall represent a different power of 2 between 2(-1) and 2(-N), so that objects of that type shall be
capable of representing values from 0 to 1-2(-N) using a pure binary representation. For accum types,
each bit shall represent a different power of 2 between 2(L-1) and 2(L-N), so that objects of that type
shall be capable of representing values from 0 to 2L-2(L-N) using a pure binary representation. These
representations shall be known as the value representations. The values of any padding bits are
unspecified.

For signed fixed-point types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; there shall be exactly
one sign bit. There are two types of value bits: integral bits and fractional bits; if there are N value
bits and L integral bits, then there are (N-L) fractional bits; for fract types, the number of integral bits
is always zero (L=0). For fract types, each value bit shall represent a different power of 2 between
2(-1) and 2(-N), and the sign bit shall represent the value -1; objects with signed fract type shall be
capable of representing values from -1 to 1-2(-N) using a pure binary representation. For accum
types, each value bit shall represent a different power of 2 between 2(L-1) and 2(L-N), and the sign bit
shall represent the value of -2L; objects with signed accum type shall be capable of representing
values from -2L to 2L-2(L-N) using a pure binary representation. These representations shall be known
as the value representations. The values of any padding bits are unspecified.

The precision of a fixed-point type is the number of bits it uses to represent values, excluding any
sign and padding bits. The width of a fixed-point type is the same but including any sign bit; thus for

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 16

unsigned integer types the two values are the same, while for signed integer types the width is one
greater than the precision.

The minimum values for the number of fractional bits and the number of integral bits in the various
fixed-point types are specified in 7.18a.3. An implementation may give any of the fixed-point types
more fractional bits, and may also give any of the accum types more integral bits, subject to the
following restrictions:

- Each unsigned fract type has either the same number of fractional bits as, or one more fractional
bit than, its corresponding signed fract type.

- When arranged in order of increasing rank (see 6.3.1.3a), the number of fractional bits is
nondecreasing for each of the following sets of fixed-point types:
- signed fract types
- unsigned fract types
- signed accum types
- unsigned accum types.

- When arranged in order of increasing rank (see 6.3.1.3a), the number of integral bits is
nondecreasing for each of the following sets of fixed-point types:
- signed accum types
- unsigned accum types

- Each signed accum type has at least as many integral bits as its corresponding unsigned accum
type.

Furthermore, in order to promote consistency amongst implementations, the following are
recommended practice:

- The signed long _Fract type has at least 31 fractional bits.

- Each accum type has at least 8 integral bits.

- Each unsigned accum type has the same number of fractional bits as its corresponding
unsigned fract type.

- Each signed accum type has the same number of fractional bits as either its corresponding
signed fract type or its corresponding unsigned fract type.

Clause 6.3.1.3a - Fixed-point types (NEW CLAUSE)

The fixed-point types are assigned a fixed-point rank. The following types are listed in order of
increasing rank:

 short _Fract, _Fract, long _Fract, short _Accum, _Accum, long _Accum

ISO/IEC DTR 18037

17 © ISO 2003 – All rights reserved

Each unsigned fixed-point type has the same rank as its corresponding signed fixed-point type.
Each saturating fixed-point type has the same rank as its corresponding primary fixed-point type.

All conversions between a fixed-point type and another arithmetic type (which can be another fixed-
point type) are defined. Overflow and rounding are handled according to the usual rules for the
destination type. Conversions from a fixed-point to an integer type round toward zero. The
rounding of conversions from a fixed-point type to a floating-point type is unspecified.

Clause 6.3.1.8 - Usual arithmetic conversions, replace second and third sentence of paragraph 1
with

In most cases, the purpose is to determine a common real type for the operands and result.
(Exceptions often apply for fixed-point operands.)

Clause 6.3.1.8 - Usual arithmetic conversions, after the conversion rule for conversion to float

Otherwise, if one operand has fixed-point type and the other operand has integer type, then
no conversions are needed; the result type shall be the fixed-point type.

Otherwise, if both operands have signed fixed-point types, or if both operands have
unsigned fixed-point types, then no conversions are needed; the result type shall be the
fixed-point type with the higher fixed-point rank; if either of the operands has a saturating
fixed-point type, the result type shall be the saturating fixed-point type corresponding to the
fixed-point type with the higher fixed-point rank.

Otherwise, if one operand has signed fixed-point type and the other operand has unsigned
fixed-point type, the operand with unsigned type is converted to the signed fixed-point type
corresponding to its own unsigned fixed-point type; the result type shall be the signed fixed-
point type with the higher fixed-point rank; if either of the operands has a saturating fixed-
point type, the result type shall be the saturating fixed-point type corresponding to the signed
fixed-point type with the higher fixed-point rank.

Clause 6.4.1 - Keywords, add the following new keywords:

_Accum _Fract _Sat

Clause 6.4.4 - Constants, change the constraints clause to:

The value of a constant shall be in the range of representable values for its type, with exception for
constants of a fract type with a value of exactly 1; such a constant shall denote the maximal value
for the type.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 18

Clause 6.4.4.2a - Fixed-point constants (NEW CLAUSE)

Syntax

fixed-constant:
decimal-fixed-constant
hexadecimal-fixed-constant

decimal-fixed-constant:
fractional-constant exponent-partopt fixed-suffix
digit-sequence exponent-partopt fixed-suffix

hexadecimal-fixed-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part fixed-suffix
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part fixed-suffix

fixed-suffix: unsigned-suffixopt fxp-suffixopt fixed-qual

fxp-suffix:
long-suffix
short-suffix

short-suffix: one of
h H

fixed-qual: one of
k K r R

Description

The description and semantics for a fixed-constant are the same as those for a floating
constant (see 6.4.4.2). If suffixed by the letter r or R, the constant has a fract type; if
suffixed by the letter k or K, the constant has an accum type; if suffixed by the letter h or H,
the constant has a short fract type or a short accum type.

Clause 6.5.7 - Bitwise shift operands, change the constraints clause as follows:

The left operand shall have integer or fixed-point type. The right operand shall have integer type.

Clause 6.5.7 - Bitwise shift operands, replace second and third sentence of paragraph 4 with:

If E1 has a fixed-point type, the value of the result is E1*2E2. If E1 has an unsigned integer type,
the value of the result is E1*2E2, reduced modulo one more than the maximum value representable

ISO/IEC DTR 18037

19 © ISO 2003 – All rights reserved

in the result type. If E1 has a signed integer type and nonnegative value, and E1*2E2 is
representable in the result type, then that is the resulting value; otherwise, the behavior is
undefined.

Clause 6.5.7 - Bitwise shift operands, replace second and third sentence of paragraph 5 with:

If E1 has a fixed-point type, the value of the result is E1*2(-E2). If E1 has an unsigned integer type
or if E1 has a signed integer type and a nonnegative value, the value of the result is the integral part
of the quotient of E1/2E2. If E1 has a signed integer type and a negative value, the resulting value
is implementation-defined.

Clause 6.6 - Constant expressions, change second sentence of paragraph 5 to start with

If a floating expression or a fixed-point expression is evaluated in the translation environment, …

Clause 6.6 - Constant expressions, change first sentence of paragraph 8 as follows:

An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, fixed-point constants, floating constants, enumeration constants, character
constants, and sizeof expressions.

Clause 6.7.2 - Type specifiers, add under Syntax, between long and float:

_Fract
_Accum
_Sat

Clause 6.7.2 - Type specifiers, in paragraph 2 add before float:

- signed short _Fract, or short _Fract
- signed _Fract, or _Fract
- signed long _Fract, or long _Fract
- signed short _Accum, or short _Accum
- signed _Accum, or _Accum
- signed long _Accum, or long _Accum
- unsigned short _Fract
- unsigned _Fract
- unsigned long _Fract
- unsigned short _Accum
- unsigned _Accum
- unsigned long _Accum

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 20

- _Sat signed short _Fract, or _Sat short _Fract
- _Sat signed _Fract, or _Sat _Fract
- _Sat signed long _Fract, or _Sat long _Fract
- _Sat signed short _Accum, or _Sat short _Accum
- _Sat signed _Accum, or _Sat _Accum
- _Sat signed long _Accum, or _Sat long _Accum
- _Sat unsigned short _Fract
- _Sat unsigned _Fract
- _Sat unsigned long _Fract
- _Sat unsigned short _Accum
- _Sat unsigned _Accum
- _Sat unsigned long _Accum

Clause 6.10.6 - Pragma directive, add to the list in paragraph 2:

#pragma STDC FX_FULL_PRECISION on-off-switch
#pragma STDC FX_FRACT_OVERFLOW overflow-switch
#pragma STDC FX_ACCUM_OVERFLOW overflow-switch

overflow-switch: one of
SAT DEFAULT

Clause 7.1.2 - Standard headers, add to paragraph 2:

<stdfix.h>

Clause 7.18a - Fixed-point arithmetic <stdfix.h> (NEW CLAUSE)

7.18a.1 Introduction

The header <stdfix.h> defines macros and declares functions that support fixed-point
arithmetic. Each synopsis specifies a family of functions with, depending on the type of their
parameters and return value, names with r, k, h, l or u prefixes or suffixes which are
corresponding functions with fract type and accum type parameters or return values, with the
optional type specifiers for short, long and unsigned.

The macro

fract

expands to _Fract; the macro

ISO/IEC DTR 18037

21 © ISO 2003 – All rights reserved

accum

expands to _Accum; the macro

sat

expands to _Sat.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros fract, accum and sat.

7.18a.2 Integer types used as return types for the bits conversion functions

The following integer types are introduced as typedefs:

int_hr_t
int_r_t
int_lr_t
int_hk_t
int_k_t
int_lk_t
uint_uhr_t
uint_ur_t
uint_ulr_t
uint_uhk_t
uint_uk_t
uint_ulk_t

The types int_fx_t and uint_fx_t are the return types of the corresponding bitsfx
functions, and are chosen so that the return value can hold all the necessary bits. If there is no
integer type available that is wide enough to hold the necessary bits for certain fixed-point types, the
usage of the type is implementation defined.

7.18a.3 Precision macros

New constants are introduced to denote the behavior and limits of fixed-point arithmetic.

A conforming implementation shall document all the limits specified in this clause, as an addition to
the limits required by the ISO C standard.

The integer values given below shall be replaced by constant expressions suitable for use in
#if preprocessing directives.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 22

The values in the following list shall be replaced by constant expressions with implementation-
defined values with the same type. Except for the various EPSILON values, their implementation-
defined values shall be greater or equal in magnitude (absolute value) to those shown, with the
same sign. For the various EPSILON values, their implementation-defined values shall be less or
equal in magnitude to those shown.

- number of fractional bits for object of type signed short _Fract

SFRACT_FBIT 7

- minimum value for an object of type signed short _Fract

SFRACT_MIN (-0.5HR-0.5HR)

- maximum value for an object of type signed short _Fract

SFRACT_MAX 0.9921875HR // decimal constant
SFRACT_MAX 0X1.FCP-1HR // hex constant

- the least value greater than 0.0HR that is representable in the signed short _Fract type

SFRACT_EPSILON 0.0078125HR // decimal constant
SFRACT_EPSILON 0X1P-7HR // hex constant

- number of fractional bits for object of type unsigned short _Fract

USFRACT_FBIT 7

- maximum value for an object of type unsigned short _Fract

USFRACT_MAX 0.9921875UHR // decimal constant
USFRACT_MAX 0X1.FCP-1UHR // hex constant

- the least value greater than 0.0UHR that is representable in the unsigned short _Fract
type

USFRACT_EPSILON 0.0078125UHR // decimal constant
USFRACT_EPSILON 0X1P-7UHR // hex constant

- number of fractional bits for object of type signed _Fract

FRACT_FBIT 15

- minimum value for an object of type signed _Fract

ISO/IEC DTR 18037

23 © ISO 2003 – All rights reserved

FRACT_MIN (-0.5R-0.5R)

- maximum value for an object of type signed _Fract

FRACT_MAX 0.999969482421875R // decimal constant
FRACT_MAX 0X1.FFFCP-1R // hex constant

- the least value greater than 0.0R that is representable in the signed _Fract type

FRACT_EPSILON 0.000030517578125R // decimal constant
FRACT_EPSILON 0X1P-15R // hex constant

- number of fractional bits for object of type unsigned _Fract

UFRACT_FBIT 15

- maximum value for an object of type unsigned _Fract

UFRACT_MAX 0.999969482421875UR // decimal constant
UFRACT_MAX 0X1.FFFCP-1UR // hex constant

- the least value greater than 0.0UR that is representable in the unsigned _Fract type

UFRACT_EPSILON 0.000030517578125UR // decimal constant
UFRACT_EPSILON 0X1P-15UR // hex constant

- number of fractional bits for object of type signed long _Fract

LFRACT_FBIT 23

- minimum value for an object of type signed long _Fract

LFRACT_MIN (-0.5LR-0.5LR)

- maximum value for an object of type signed long _Fract

LFRACT_MAX 0.99999988079071044921875LR
// decimal constant

LFRACT_MAX 0X1.FFFFFCP-1LR // hex constant

- the least value greater than 0.0LR that is representable in the signed long _Fract type

LFRACT_EPSILON 0.00000011920928955078125LR
// decimal constant

LFRACT_EPSILON 0X1P-23LR // hex constant

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 24

- number of fractional bits for object of type unsigned long _Fract

ULFRACT_FBIT 23

- maximum value for an object of type unsigned long _Fract

ULFRACT_MAX 0.99999988079071044921875ULR
// decimal constant

ULFRACT_MAX 0X1.FFFFFCP-1ULR // hex constant

- the least value greater than 0.0ULR that is representable in the unsigned long _Fract
type

ULFRACT_EPSILON 0.00000011920928955078125ULR
// decimal constant

ULFRACT_EPSILON 0X1P-23ULR // hex constant

- number of fractional bits for object of type signed short _Accum

SACCUM_FBIT 7

- number of integral bits for object of type signed short _Accum

SACCUM_IBIT 4

- minimum value for an object of type signed short _Accum

SACCUM_MIN (-8.0HK-8.0HK)

- maximum value for an object of type signed short _Accum

SACCUM_MAX 15.9921875HK // decimal constant
SACCUM_MAX 0X1.FFCP+3HK // hex constant

- the least value greater than 0.0HK that is representable in the signed short _Accum type

SACCUM_EPSILON 0.0078125HK // decimal constant
SACCUM_EPSILON 0X1P-7HK // hex constant

- number of fractional bits for object of type unsigned short _Accum

USACCUM_FBIT 7

- number of integral bits for object of type unsigned short _Accum

ISO/IEC DTR 18037

25 © ISO 2003 – All rights reserved

USACCUM_IBIT 4

- maximum value for an object of type unsigned short _Accum

USACCUM_MAX 15.9921875UHK // decimal constant
USACCUM_MAX 0X1.FFCP+3UHK // hex constant

- the least value greater than 0.0UHK that is representable in the unsigned short _Accum
type

USACCUM_EPSILON 0.0078125UHK // decimal constant
USACCUM_EPSILON 0X1P-7UHK // hex constant

- number fractional of bits for object of type signed _Accum

ACCUM_FBIT 15

- number of integral bits for object of type signed _Accum

ACCUM_IBIT 4

- minimum value for an object of type signed _Accum

ACCUM_MIN (-8.0K-8.0K)

- maximum value for an object of type signed _Accum

ACCUM_MAX 15.999969482421875K // decimal constant
ACCUM_MAX 0X1.FFFFCP+3K // hex constant

- the least value greater than 0.0K that is representable in the signed _Accum type

ACCUM_EPSILON 0.000030517578125K // decimal constant
ACCUM_EPSILON 0X1P-15K // hex constant

- number fractional of bits for object of type unsigned _Accum

UACCUM_FBIT 15

- number of integral bits for object of type unsigned _Accum

UACCUM_IBIT 4

- maximum value for an object of type unsigned _Accum

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 26

UACCUM_MAX 15.999969482421875UK // decimal constant
UACCUM_MAX 0X1.FFFFCP+3UK // hex constant

- the least value greater than 0.0UK that is representable in the unsigned _Accum type

UACCUM_EPSILON 0.000030517578125UK // decimal constant
UACCUM_EPSILON 0X1P-15UK // hex constant

- number of fractional bits for object of type signed long _Accum

LACCUM_FBIT 23

- number of integral bits for object of type signed long _Accum

LACCUM_IBIT 4

- minimum value for an object of type signed long _Accum

LACCUM_MIN (-8.0LK-8.0LK)

- maximum value for an object of type signed long _Accum

LACCUM_MAX 15.99999988079071044921875LK
// decimal constant

LACCUM_MAX 0X1.FFFFFFCP+3LK // hex constant

- the least value greater than 0.0LK that is representable in the signed long _Accum type

LACCUM_EPSILON 0.00000011920928955078125LK
// decimal constant

LACCUM_EPSILON 0X1P-23LK // hex constant

- number of fractional bits for object of type unsigned long _Accum

ULACCUM_FBIT 23

- number of integral bits for object of type unsigned long _Accum

ULACCUM_IBIT 4

- maximum value for an object of type unsigned long _Accum

ULACCUM_MAX 15.99999988079071044921875ULK
// decimal constant

ISO/IEC DTR 18037

27 © ISO 2003 – All rights reserved

ULACCUM_MAX 0X1.FFFFFFCP+3ULK // hex constant

- the least value greater than 0.0ULK that is representable in the unsigned long _Accum
type

ULACCUM_EPSILON 0.00000011920928955078125ULK
// decimal constant

ULACCUM_EPSILON 0X1P-23ULK // hex constant

7.18a.4 The FX_FULL_PRECISION pragma

Synopsis

#include <stdfix.h>
#pragma STDC FX_FULL_PRECISION on-off-switch

Description

The normal required precision for fixed-point operations is 1 ULP (Unit in the Last Place: precision
upto the last bit). However, in certain environments a precision of 2 ULPs on multiplication and
division operations is enough, and such relaxed requirements may result in a significantly increased
execution speed. The FX_FULL_PRECISION pragma can be used to inform the implementation
that (where the state is ''off'') the relaxed requirements are allowed. If the indicated state is ''on'', the
implementation is required to return results with full precision. Each pragma can occur either
outside external declarations or preceding all explicit declarations and statements inside a
compound statement. When outside external declarations, the pragma takes effect from its
occurrence until another FP_FULL_PRECISION pragma is encountered, or until the end of the
translation unit. When inside a compound statement, the pragma takes effect from its occurrence
until another FP_FULL_PRECISION pragma is encountered (including within a nested compound
statement), or until the end of the compound statement; at the end of a compound statement the
state for the pragma is restored to its condition just before the compound statement. If this pragma
is used in any other context, the behavior is undefined. The default state (''on'' or ''off'') for the
pragma is implementation defined.

7.18a.5 The fixed-point overflow pragmas

Synopsis

#include <stdfix.h>
#pragma STDC FX_FRACT_OVERFLOW overflow-switch
#pragma STDC FX_ACCUM_OVERFLOW overflow-switch

overflow-switch: one of
SAT DEFAULT

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 28

Description

When a value is converted to a primary fixed-point type, the overflow behavior is controlled by either
the FX_FRACT_OVERFLOW or the FX_ACCUM_OVERFLOW pragma, depending on the destination
type. When the state of an overflow pragma is DEFAULT, fixed-point overflow for the
corresponding type has undefined behavior. Otherwise, the overflow behavior is saturation. The
default state of the overflow pragmas is DEFAULT. Each pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
overflow pragma is encountered, or until the end of the translation unit. When inside a compound
statement, a pragma takes effect from its occurrence until another occurrence of the same pragma
is encountered (including within a nested compound statement), or until the end of the compound
statement; at the end of a compound statement the state for the pragma is restored to its condition
just before the compound statement. If this pragma is used in any other context, the behavior is
undefined.

7.18a.6 Fixed-point arithmetic <stdfix.h>

7.18a.6.1 The fixed-point arithmetic operation support functions

Synopsis

#include <stdfix.h>
int mulir(int, fract);
long int mulilr(long int, long fract);
int mulik(int, accum);
long int mulilk(long int, long accum);

int divir(int, fract);
long int divilr(long int, long fract);
int divik(int, accum);
long int divilk(long int, long accum);

fract rdivi(int, int);
long fract lrdivi(long int, long int);
accum kdivi(int, int);
long accum lkdivi(long int, long int);

int idivr(fract, fract);
long int idivlr(long fract, long fract);
int idivk(accum, accum);
long int idivlk(long accum, long accum);

ISO/IEC DTR 18037

29 © ISO 2003 – All rights reserved

unsigned int muliur(unsigned int, unsigned fract);
unsigned long int muliulr(

unsigned long int, unsigned long fract);
unsigned int muliuk(unsigned int, unsigned accum);
unsigned long int muliulk(

unsigned long int, unsigned long accum);

unsigned int diviur(unsigned int, unsigned fract);
unsigned long int diviulr(

unsigned long int, unsigned long fract);
unsigned int diviuk(unsigned int, unsigned accum);
unsigned long int diviulk(

unsigned long int, unsigned long accum);

unsigned fract urdivi(unsigned int, unsigned int);
unsigned long fract ulrdivi(

unsigned long int, unsigned long int);
unsigned accum ukdivi(unsigned int, unsigned int);
unsigned long accum ulkdivi(

unsigned long int, unsigned long int);

unsigned int idivur(unsigned fract, unsigned fract);
unsigned long int idivulr(

unsigned long fract, unsigned long fract);
unsigned int idivuk(unsigned accum, unsigned accum);
unsigned long int idivulk(

unsigned long accum, unsigned long accum);

Description

The above functions compute the mathematically exact result of the multiplication or division
operation on the operands with the indicated types, and return a value with the indicated type.

Returns

For functions returning an integer value, the return value is rounded towards zero. For functions
returning a fixed-point value, the return value is saturated on overflow. If the second operand of one
of the divide functions is zero, the behavior is undefined.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 30

7.18a.6.2 The fixed-point absolute value functions

Synopsis

#include <stdfix.h>
short fract abshr(short fract f);
fract absr(fract f);
long fract abslr(long fract f);
short accum abshk(short accum f);
accum absk(accum f);
long accum abslk(long accum f);

Description

The above functions compute the absolute value of a fixed-point value f.

Returns

The functions return |f|. If the exact result cannot be represented, the saturated result is returned.

7.18a.6.3 The fixed-point rounding functions

Synopsis

#include <stdfix.h>
short fract roundhr(short fract f, int n);
fract roundr(fract f, int n);
long fract roundlr(long fract f, int n);
short accum roundhk(short accum f, int n);
accum roundk(accum f, int n);
long accum roundlk(long accum f, int n);
unsigned short fract rounduhr(unsigned short fract f, int n);
unsigned fract roundur(unsigned fract f, int n);
unsigned long fract roundulr(unsigned long fract f, int n);
unsigned short accum rounduhk(unsigned short accum f, int n);
unsigned accum rounduk(unsigned accum f, int n);
unsigned long accum roundulk(unsigned long accum f, int n);

Description

The above functions compute the value of f, rounded to the number of fractional bits specified in n.
The rounding applied is to-nearest, with unspecified rounding direction in the halfway case.
Fractional bits beyond the rounding point are set to zero in the result. The value of n must be
nonnegative and less than the number of fractional bits in the fixed-point type of f.

ISO/IEC DTR 18037

31 © ISO 2003 – All rights reserved

Returns

The rounding functions return the rounded result, as specified. If the value of n is negative or larger
than the number of fractional bits in the fixed-point type of f, the result is unspecified. If the exact
result cannot be represented, the saturated result is returned.

7.18a.6.4 The fixed-point countls functions

Synopsis

#include <stdfix.h>
int countlshr(short fract f);
int countlsr(fract f);
int countlslr(long fract f);
int countlshk(short accum f);
int countlsk(accum f);
int countlslk(long accum f);
int countlsuhr(unsigned short fract f);
int countlsur(unsigned fract f);
int countlsulr(unsigned long fract f);
int countlsuhk(unsigned short accum f);
int countlsuk(unsigned accum f);
int countlsulk(unsigned long accum f);

Description

The integer return value of the above functions is defined as follows:
- if the value of the fixed-point argument f is non-zero, the return value is the largest integer k for

which the expression f<<k does not overflow;
- if the value of the fixed-point argument is zero, an integer value is returned that is at least as

large as N-1, where N is the total number of (nonpadding) bits of the fixed-point type of the
argument.

Note: if the value of the fixed-point argument is zero, the recommended return value is exactly N-1.

Returns

The countls functions return the integer value as indicated.

7.18a.6.5 The bitwise fixed-point to integer conversion functions

Synopsis

#include <stdfix.h>
int_hr_t bitshr(short fract f);
int_r_t bitsr(fract f);

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 32

int_lr_t bitslr(long fract f);
int_hk_t bitshk(short accum f);
int_k_t bitsk(accum f);
int_lk_t bitslk(long accum f);
int_uhr_t bitsuhr(unsigned short fract f);
int_ur_t bitsur(unsigned fract f);
int_ulr_t bitsulr(unsigned long fract f);
int_uhk_t bitsuhk(unsigned short accum f);
int_uk_t bitsuk(unsigned accum f);
int_ulk_t bitsulk(unsigned long accum f);

Description

The above functions return an integer value equal to the fixed-point value of f multiplied by 2F,
where F is the number of fractional bits in the type of f. The result type is an integer type big
enough to hold all valid result values for the given fixed-point argument type. For example, if the
fract type has 15 fractional bits, then after the declaration

fract a = 0.5;

the value of bitsr(a) is 0.5 * 2^15 = 0x4000.

Returns

The above functions return the value of the argument as an integer bit pattern as indicated.

7.18a.6.6 The bitwise integer to fixed-point conversion functions

Synopsis

#include <stdfix.h>
short fract hrbits(int n);
fract rbits(int n);
long fract lrbits(int n);
short accum hkbits(int n);
accum kbits(int n);
long accum lkbits(int n);
unsigned short fract uhrbits(unsigned int n);
unsigned fract urbits(unsigned int n);
unsigned long fract ulrbits(unsigned int n);
unsigned short accum uhkbits(unsigned int n);
unsigned accum ukbits(unsigned int n);
unsigned long accum ulkbits(unsigned int n);

ISO/IEC DTR 18037

33 © ISO 2003 – All rights reserved

Description

The above functions return an fixed-point value equal to the integer value of the argument divided
by 2F, where F is the number of fractional bits in the fixed-point result type of the function. For
example, if fract has 15 fractional bits, then the value of rbits(0x2000) is 0.25.

Returns

The above functions return the indicated value.

7.18a.6.7 Type-generic fixed-point functions

For each of the fixed-point absolute value functions in 7.18a.6.2, the fixed-point rounding functions
in 7.18a.6.3 and the fixed-point countls functions in 7.18a.6.4, a type-generic macro is defined as
follows:

type-generic macro
the fixed-point absolute value functions absfx
the fixed-point rounding functions roundfx
the fixed-point countls functions countlsfx

7.18a.6.8 Numeric conversion functions

Synopsis

#include <stdfix.h>
short fract strtohr(const char * restrict nptr,

char ** restrict endptr);
fract strtor(const char * restrict nptr,

char ** restrict endptr);
long fract strtolr(const char * restrict nptr,

char ** restrict endptr);

short accum strtohk(const char * restrict nptr,
char ** restrict endptr);

accum strtok(const char * restrict nptr,
char ** restrict endptr);

long accum strtolk(const char * restrict nptr,
char ** restrict endptr);

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 34

unsigned short fract strtouhr(const char * restrict nptr,
char ** restrict endptr);

unsigned fract strtour(const char * restrict nptr,
char ** restrict endptr);

unsigned long fract strtoulr(const char * restrict nptr,
char ** restrict endptr);

unsigned short accum strtouhk(const char * restrict nptr,
char ** restrict endptr);

unsigned accum strtouk(const char * restrict nptr,
char ** restrict endptr);

unsigned long accum strtoulk(const char * restrict nptr,
char ** restrict endptr);

Description

The strtohr, strtor, strtolr, strtohk, strtok, strtolk, strtouhr, strtour,
strtoulr, strtouhk, strtouk and strtoulk functions convert the initial portion of the
string pointed to by nptr to short fract, fract, long fract, short accum, accum,
long accum, unsigned short fract, unsigned fract, unsigned long fract,
unsigned short accum, unsigned accum, and unsigned long accum
representation, respectively. First, they decompose the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the isspace function), a
subject sequence resembling a fixed -point constant; and a final string of one or more unrecognized
characters, including the terminating null character of the input string. Then, they attempt to convert
the subject sequence to a fixed-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

- a nonempty sequence of decimal digits optionally containing a decimal-point character, then an
optional exponent part as defined in 6.4.4.3;

- a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point character, then an optional binary exponent part as defined in 6.4.4.3.

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

If the subject sequence has the expected form for a fixed-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a
fixed-point constant according to the rules of 6.4.4.3, except that the decimal-point character is used
in place of a period, and that if neither an exponent part nor a decimal-point character appears in a
decimal fixed-point number, or if a binary exponent part does not appear in a hexadecimal fixed-

ISO/IEC DTR 18037

35 © ISO 2003 – All rights reserved

point number, an exponent part of the appropriate type with value zero is assumed to follow the last
digit in the string. If the subject sequence begins with a minus sign, the sequence is interpreted as
negated. A pointer to the final string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

The value resulting from the conversion is rounded as necessary in an implementation-defined
manner.

In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

Returns

The functions return the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, a saturated result is
returned (according to the return type and sign of the value), and the value of the macro ERANGE is
stored in errno.

Clause 7.19.6.1 - The fprintf function, paragraph 4, third bullet, change begin of first sentence to

An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X
conversions, the number of digits to appear after the decimal-point character for a, A, e, E, f, F, r,
R, k and K conversions, . . .

Clause 7.19.6.1 - The fprintf function, paragraph 6, the '#' bullet, change begin of fourth sentence
to

For a, A, e, E, f, F, g, G, r, R, k and K conversions, . . .

Clause 7.19.6.1 - The fprintf function, paragraph 6, the 'o' bullet, change begin of first sentence to

For d, i, o, u, x, X, a, A, e, E, f, F, g, G, r, R, k and K conversions, . . .

Clause 7.19.6.1 - The fprintf function, paragraph 7, the 'h' bullet, add before last semicolon:

that a following r, R, k or K conversion specifier applies to a short fixed-point type argument.

Clause 7.19.6.1 - The fprintf function, paragraph 7, the 'l (ell)' bullet, add before last semicolon:

that a following r, R, k or K conversion specifier applies to a fixed-point type argument;

Clause 7.19.6.1 - The fprintf function, paragraph 8, add new bullet before the 'c' bullet:

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 36

r, R, k, K A signed fixed-point fract type (r), an unsigned fract type (R), a signed accum type
(k) or an unsigned accum type (K) representing a fixed-point number is converted to
decimal notation in the style [-]ddd.ddd, where the number of digits after the decimal-
point character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is zero and the # flag is not specified, no decimal-point
character appears. If a decimal-point character appears, at least one digit appears
before it. The value is rounded to the appropriate number of digits.

Clause 7.19.6.1 - The fprintf function, paragraph 13, change beginning of first sentence to

For e, E, f, F, g, G, r, R, k and K conversions, . . .

Clause 7.19.6.2 - The fscanf function, paragraph 11, the 'h' bullet, add at the end of the first
sentence:

or that a following r, R, k or K conversion specifier applies to an argument with type pointer to short
fixed-point type.

Clause 7.19.6.2 - The fscanf function, paragraph 11, the 'l (ell)' bullet, insert after last semicolon:

that a following r, R, k or K conversion specifier applies to an argument with type pointer to long
fixed-point type;

Clause 7.19.6.2 - The fscanf function, paragraph 12, add new bullet before the 'c' bullet:

r, R, k, K Matches an optionally signed fixed-point number, whose format is the same as
expected for the subject sequence of the strtofx functions. The corresponding
argument shall be a pointer to a signed fract type (r), a pointer to an unsigned fract
type (R), a pointer to a signed accum type (k), or a pointer to an unsigned fract type
(K).

ISO/IEC DTR 18037

37 © ISO 2003 – All rights reserved

3 Named address spaces and named-register storage classes

3.1 Overview and principles of named address spaces

3.1.1 Additional address spaces

Embedded applications are often implemented on processors with multiple independent address
spaces. An embedded processor may have separate address spaces, for example, for a general-
purpose memory, for smaller, faster memories, for code and constant data, and for I/O accesses.
Typically, the distinction between various address spaces is built into the processor's instruction set,
with accesses to different spaces requiring distinctly different instructions. For more discussion on
address spaces, see Annex B of this Technical Report.

ISO/IEC 9899:1999 stipulates that all objects are allocated in a single, common address space. For
the purpose of this Technical Report, the C language is extended to support additional address
spaces. When not specified otherwise, objects are allocated by default in a generic address space,
which corresponds to the single address space of ISO/IEC 9899:1999. In addition to the generic
address space, an implementation may support other, named address spaces. Objects may be
allocated in these alternate address spaces, and pointers may be defined that point to objects in
these address spaces. It is intended that pointers into an address space only need be large enough
to support the range of addresses in that address space.

The named address space approach, as described in this clause, enables application portability
between systems with similar memory configurations. This portability is at source code level, and
not at binary or execution level.

3.1.2 Address-space type qualifiers

Each address space other than the generic one has a unique name in the form of an identifier.
Address space names are ordinary identifiers, sharing the same name space as variables and
typedef names. Any such names follow the same rules for scope as other ordinary identifiers (such
as typedef names). An implementation may provide an implementation-defined set of intrinsic
address spaces that are, in effect, predefined at the start of every translation unit. The names of
intrinsic address spaces must be reserved identifiers (beginning with an underscore and an
uppercase letter or with two underscores). An implementation may also optionally support a means
for new address space names to be defined within a translation unit.

An address space name can be used in a declaration to specify the address space in which an
object will be allocated. The C syntax for type qualifiers is extended to include an address space
name as a valid type qualifier. If the type of an object is qualified by an address space name, the
object is allocated in the specified address space; otherwise, the object is allocated in the generic
address space. Note that, since a function is not an object, address-space type qualifiers cannot be
used with functions.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 38

Example:
If an implementation provides intrinsic address spaces with names _X and _Y, the following
are valid declarations:

_X char a, b, c;
// Declares three characters in address space _X

_X const int *p;
// Declares a pointer in the generic address space
// that points to a constant int object in
// address space _X

_X struct { int a; char b; } *_Y q;
// Declares a pointer in address space _Y that points
// to a structure in address space _X

There are some constraints on the use of address-space type qualifiers. The most significant
constraint is that an address space name cannot be used to qualify an object that has automatic
storage duration. This implies, in particular, that variables declared inside a function cannot be
allocated in a named address space unless they are also explicitly declared as static or
extern.

For the examples above, the declarations of a, b, c, and q would have to be outside any function to
be valid. The declaration of p would be acceptable within a function, because p itself would be in
the generic address space.

Other limitations are detailed in clause 3.3 below.

3.1.3 Address space nesting and rules for pointers

Address spaces may overlap in a nested fashion. For any two address spaces, either the address
spaces must be disjoint, they must be equivalent, or one must be a subset of the other. Other forms
of overlapping are not permitted. If an object is in address space A and A is a subset of address
space B, the object is simultaneously in address space B.

An implementation must define the relationship between all pairs of address spaces. (The complete
set of address spaces includes the generic address space plus any address spaces that may be
defined within a translation unit, if the implementation supports such definitions within a program.)
There is no requirement that named address spaces (intrinsic or otherwise) be subsets of the
generic address space.

As determined by its type, every pointer points into a specific address space, either the generic
address space or a named address space. A pointer into an address space can only point to
locations in that address space (including any subset address spaces).

ISO/IEC DTR 18037

39 © ISO 2003 – All rights reserved

A non-null pointer into an address space A can be cast to a pointer into another address space B,
but such a cast is undefined if the source pointer does not point to a location in B. Note that if A is a
subset of B, the cast is always valid; however, if B is a subset of A, the cast is valid only if the
source pointer refers to a location in B. A null pointer into one address space can be cast to a null
pointer into any overlapping address space.

If a pointer into address space A is assigned to a pointer into a different address space B, a
constraint requires that A be a subset of B. (As usual, this constraint can be circumvented by a cast
of the source pointer before the assignment.)

3.1.4 Standard library support

The standard C library (ISO/IEC 9899:1999 clause 7 - Libraries) is unchanged; the library's
functions and objects continue to be declared only with regard to the generic address space. One
consequence is that pointers into named address spaces cannot be passed as arguments to library
functions except in the special case that the named address spaces are subsets of the generic
address space. Likewise, library functions such as malloc that allocate memory do so only for the
generic address space; there are no standard functions for allocating space in other address
spaces.

3.2 Overview and principles of named-register storage classes

3.2.1 Access to machine registers

Embedded applications sometimes need to access processor registers that are not addressable in
any of the machine's address spaces. The reasons for accessing such a register might include:

- the application must manipulate the register to achieve certain side effects;

- memory is at a premium and the register is needed as a storage location; and/or

- other software (e.g., an operating system) expects certain information to be stored in the
register.

For the purpose of this Technical Report, the C language is extended to permit the allocation of
variables within named registers. Allocating a variable in a named register essentially establishes
the variable as an alias for that register.

3.2.2 Named-register storage-class specifiers

Just like named address spaces, each of the registers supported by an implementation has a
unique name in the form of an identifier. Register names are ordinary identifiers, sharing the same

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 40

name space as variables and typedef names. Any such names follow the same rules for scope as
other ordinary identifiers (just like typedef names and address space names). An implementation
may provide an implementation-defined set of intrinsic register names that are, in effect, predefined
at the start of every translation unit. The names of intrinsic registers must be reserved identifiers
(beginning with an underscore and an uppercase letter or with two underscores). An
implementation may also optionally support a means for new register names to be defined within a
translation unit.

The C syntax for storage-class specifiers is extended to include the sequence

register register-name

(i.e., the register keyword followed by a register name identifier) as a valid storage-class
specifier. Such a storage-class specifier is a named-register storage-class specifier, not to be
confused with a register storage-class specifier which ISO/IEC 9899:1999 defines as being the
register keyword alone.

A named-register storage-class specifier is permitted only for identifiers designating an object. Like
the plain register storage class, the address-of operator & cannot be used to take the address of an
identifier declared with a named-register storage class. However, in contrast to plain register,
an identifier declared with a named-register storage class has external linkage and static storage
duration. Thus, named-register storage classes operate more like extern than plain register.

As there is only one instance of any machine register, a program may not have in the same scope
more than one identifier with the same named-register storage class. Furthermore, the type of an
object declared with a named-register storage class cannot be an array and must not be of a size
larger than the register itself. If the type of the object is smaller than the register, the portion of the
register that actually corresponds to the declared identifier is implementation-defined.

Examples:
Assuming _DP and _CC are the names of intrinsic registers, the following are possible valid
declarations:

register _DP volatile unsigned char direct_page_reg;

register _CC volatile struct {
int is_IRQ : 1;
int disable_FIRQ : 1;
int half_carry : 1;
int disable_IRQ : 1;
int negative : 1;
int zero : 1;
int overflow : 1;
int carry : 1;

} cond_reg;

ISO/IEC DTR 18037

41 © ISO 2003 – All rights reserved

However, a declaration associating a different identifier with one of the same registers is not
permitted:

register _DP volatile unsigned char DP_reg;
// Not allowed; conflicts with previous declaration of
// direct_page_reg.

3.2.3 Ensuring correct side effects via objects allocated in registers

If reading from or writing to a register has a side effect in the machine (as is often the case for I/O
registers), an object allocated in a named register may need to be declared volatile to ensure
that accesses to the object (and hence to the register) occur as they appear in the C source code.
Even then, it is important to be aware that ISO/IEC 9899:1999 (Clause 6.7.3, paragraph 6)
stipulates

What constitutes an access to an object that has volatile-qualified type is implementation-
defined.

Thus, in theory at least, achieving a specific sequence of reads from and writes to a physical
register depends on implementation-defined behavior, even if the C object allocated in the register
is declared volatile. In practice, to avoid this problem, the C code will likely need to be written
in a conservative style.

3.2.4 Relationship between named registers and I/O-register designators

Whether register names as defined above are also valid I/O-register designators as defined in
clause 4 is implementation-defined. An implementation may or may not permit storage-class
register names to be used as I/O-register designators in the functions of clause 4 such as iord and
iowr. In particular, although an implementation may support the basic I/O hardware addressing of
clause 4, it might at the same time not provide any intrinsic named registers or any means by which
other named registers can be declared in a program.

3.3 Detailed changes to ISO/IEC 9899:1999

This clause details the modifications to ISO/IEC 9899:1999 needed to incorporate the functionality
of named address spaces and named-register storage classes overviewed in Clauses 3.1 and 3.2 of
this Technical Report. The changes listed in this clause are limited to syntax and semantics;
examples, (forward) references and other descriptive information are omitted. The modifications are
ordered according to the clauses of ISO/IEC 9899:1999 to which they refer. If a clause of
ISO/IEC 9899:1999 is not mentioned, no changes to that clause are needed. New clauses are
indicated with (NEW CLAUSE), however resulting changes in the existing numbering are not

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 42

indicated; the clause number mm.nna of new clause indicates that this clause follows immediately
clause mm.nn at the same level.

Clause 6.2.1 - Scopes of identifiers, change the first sentence of paragraph 1 to:

An identifier can denote an object; a function; an address space; a named register; a tag or a
member of a structure, union, or enumeration; a typedef name; a label name; a macro name; or a
macro parameter.

Clause 6.2.1 - Scopes of identifiers, replace the first two sentences of paragraph 4 with:

Every other identifier has scope determined by the placement of its declaration (in a declarator or
type specifier), if any. (The names of intrinsic address spaces and intrinsic registers are implicitly
declared as specified in 6.2.4a and 6.7.1.1 below.) If the identifier is implicitly declared, or if the
declarator or type specifier that declares the identifier appears outside of any block or list of
parameters, the identifier has file scope, which terminates at the end of the translation unit.

Clause 6.2.1 - Scopes of identifiers, add at the start of paragraph 7:

Identifiers that are implicitly declared have scope that begins at the start of a translation unit.

Clause 6.2.2 - Linkages of identifiers, add a new paragraph between existing paragraphs 3 and 4:

If the declaration of an identifier contains a named-register storage-class specifier, the identifier has
external linkage.

Clause 6.2.2 - Linkages of identifiers, change paragraph 6 to:

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without either a named-register storage-class specifier or the storage-class specifier
extern.

Clause 6.2.4a - Address spaces (NEW CLAUSE)

Objects are allocated in one or more address spaces. A unique generic address space always
exists. Every address space other than the generic one has a unique name in the form of an
identifier. Address spaces other than the generic one are called named address spaces. An object
is always completely allocated into at least one address space. Unless otherwise specified, objects
are allocated in the generic address space.

ISO/IEC DTR 18037

43 © ISO 2003 – All rights reserved

Some (possibly empty) implementation-defined set of named address spaces are intrinsic. The
name of an intrinsic address space shall begin with an underscore and an uppercase letter or with
two underscores (and hence is a reserved identifier as defined in 7.1.3). There is no declaration for
the name of an intrinsic address space in a translation unit; the identifier is implicitly declared with a
scope covering the entire translation unit.

An implementation may optionally support an implementation-defined syntax for declaring other (not
intrinsic) named address spaces.

Each address space (intrinsic or otherwise) exists for the entire execution of the program.

If address space A encloses address space B, then every location (address) within B is also
within A. (Either A or B may be the generic address space.) The property of “enclosing" is
transitive: if A encloses B and B encloses a third address space C, then A also encloses C. Every
address space encloses itself.

For every pair of distinct address spaces A and B, it is implementation-defined whether A
encloses B.

If one address space encloses another, the two address spaces overlap, and their combined
address space is the one that encloses the other. If two address spaces do not overlap, they are
disjoint, and no location (address) within one is also within the other. (Thus if two address spaces
share a location, one address space must enclose the other.)

Clause 6.2.5 - Types, replace the second sentence of paragraph 25 with:

Each unqualified type has several qualified versions of its type,38) corresponding to the combinations
of one, two, or all three of the const, volatile, and restrict qualifiers, and all combinations
of any subset of these three qualifiers with one address space qualifier. (Syntactically, an address
space qualifier is an address space name, so there is an address space qualifier for each visible
address space name.)

Clause 6.2.5 - Types, replace paragraph 26 with three paragraphs:

The qualifiers const, volatile, and restrict are access qualifiers. An additionally access-
qualified version of a type is the same type with any (or no) additional access qualifiers (if type T is
an additionally access-qualified version of type S, then T and S are in the same address space).

If type T is qualified by the address space qualifier for address space A, then "T is in A". If type T is
not qualified by an address space qualifier, then T is in the generic address space. If type T is in
address space A, a pointer to T is also a "pointer into A", and the referenced address space of the
pointer is A.

A pointer to void in any address space shall have the same representation and alignment
requirements as a pointer to a character type in the same address space.39) Similarly, pointers to

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 44

differently access-qualified versions of compatible types shall have the same representation and
alignment requirements. All pointers to structure types in the same address space shall have the
same representation and alignment requirements as each other. All pointers to union types in the
same address space shall have the same representation and alignment requirements as each
other. Pointers to other types need not have the same representation or alignment requirements.

Clause 6.3.2.3 - Pointers, replace the first two paragraphs with three paragraphs:

If, as provided below, a pointer into one address space is converted to a pointer into another
address space, then unless the original pointer is a null pointer (defined below) or the location
referred to by the original pointer is within the second address space, the behavior is undefined.
(For the original pointer to refer to a location within the second address space, the two address
spaces must overlap.)

A pointer to void in any address space may be converted to or from a pointer to any incomplete or
object type. A pointer to any incomplete or object type in some address space may be converted to
a pointer to void in an enclosing address space and back again; the result shall compare equal to
the original pointer.

A pointer to a type may be converted to a pointer to a differently access-qualified version of the type
(but with the same address-space qualifier, if any); the original and converted pointers shall
compare equal.

Clause 6.3.2.3 - Pointers, replace the last sentence of paragraph 4 with:

If the referenced address spaces of the original and converted pointers are disjoint, the behavior is
undefined. Any two null pointers whose referenced address spaces overlap shall compare equal.

Clause 6.5 - Expressions, replace the first four bullets of paragraph 7 with two bullets:

- an additionally access-qualified version of a type compatible with the effective type of the object,

- a type that is the signed or unsigned type corresponding to an additionally access-qualified
version of the effective type of the object,

Clause 6.5.2.2 - Function calls, change the second bullet of paragraph 6 to:

- both types are pointers to unqualified or access-qualified versions of a character type or void in
the same address space.

ISO/IEC DTR 18037

45 © ISO 2003 – All rights reserved

Clause 6.5.2.5 - Compound literals, add another constraint paragraph:

If the compound literal occurs inside the body of a function, the type name shall not be qualified by
an address-space qualifier.

Clause 6.5.3.2 - Address and indirection operators, change the end of paragraph 1 to:

... and is not declared with the register storage-class specifier or with a named-register storage-
class specifier.

Clause 6.5.8 - Relational operators, add another constraint paragraph:

If the two operands are pointers into different address spaces, the address spaces must overlap.

Clause 6.5.8 - Relational operators, add a new paragraph between existing paragraphs 3 and 4:

If the two operands are pointers into different address spaces, one of the address spaces encloses
the other. The pointer into the enclosed address space is first converted to a pointer to the same
reference type except with any address-space qualifier removed and any address-space qualifier of
the other pointer's reference type added. (After this conversion, both operands are pointers into the
same address space.)

Clause 6.5.9 - Equality operators, add another constraint paragraph:

If the two operands are pointers into different address spaces, the address spaces must overlap.

Clause 6.5.9 - Equality operators, replace paragraph 5 with:

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If both operands
are pointers, each of the following conversions is performed as applicable:

- If the two operands are pointers into different address spaces, one of the address spaces
encloses the other. The pointer into the enclosed address space is first converted to a pointer to
the same reference type except with any address-space qualifier removed and any address-
space qualifier of the other pointer's reference type added. (After this conversion, both
operands are pointers into the same address space.)

- Then, if one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of void, the former is converted to the type of the latter.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 46

Clause 6.5.15 - Conditional operator, add another constraint paragraph:

If the second and third operands are pointers into different address spaces, the address spaces
must overlap.

Clause 6.5.15 - Conditional operator, change the first sentence of paragraph 6 to:

If both the second and third operands are pointers or one is a null pointer constant and the other is a
pointer, the result type is a pointer to a type qualified with all the access qualifiers of the referenced
types of both operands, and qualified with the address-space qualifier for the combined address
space of the referenced address spaces of the two operands or with no address-space qualifier if
the combined address space is the generic one.

Clause 6.5.16.1 - Simple assignment, change the third and fourth bullets of paragraph 1 to:

- both operands are pointers to qualified or unqualified versions of compatible types, the
referenced address space of the left encloses the referenced address space of the right, and the
referenced type of the left has all the access qualifiers of the referenced type of the right;

- one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified
or unqualified version of void, the referenced address space of the left encloses the referenced
address space of the right, and the referenced type of the left has all the access qualifiers of the
referenced type of the right;

Clause 6.7.1 - Storage-class specifiers, in paragraph 1, add to the syntax options for storage-
class-specifier:

register register-name

register-name:
identifier

Clause 6.7.1 - Storage-class specifiers, add three new constraint paragraphs:

A named-register storage-class specifier shall only be used in the declaration of an object. The type
of an object declared with a named-register storage-class specifier shall not be an array, shall not
be qualified by an address-space qualifier, and shall be of a size that is not larger than the size of
the named register.

If an object is declared with a named-register storage-class specifier, every declaration of that object
shall include the same named-register storage-class specifier.

ISO/IEC DTR 18037

47 © ISO 2003 – All rights reserved

For any named register, there shall be no more than one object declared with the named-register
storage-class specifier of that name within the same scope.

Clause 6.7.1 - Storage-class specifiers, add a new paragraph between existing paragraphs 4 and
5:

A storage-class specifier of the syntax register register-name is a named-register storage-class
specifier, corresponding to the given register name. Register names are discussed in 6.7.1.1.

Clause 6.7.1.1 - Named registers (NEW CLAUSE)

An implementation may recognize some number of named registers, which are intended to be
extraordinary storage locations that are not treated as ordinary address-space locations. Accessing
the value of a named register may have additional, unspecified side effects. A named register has
an implementation-defined fixed size and may or may not have an address in some address space.

Every named register has a unique name in the form of an identifier.

Some (possibly empty) implementation-defined set of named registers are intrinsic registers. The
name of an intrinsic register shall begin with an underscore and an uppercase letter or with two
underscores (and hence is a reserved identifier as defined in 7.1.3). There is no declaration for the
name of an intrinsic register in a translation unit; the identifier is implicitly declared with a scope
covering the entire translation unit.

An implementation may optionally support an implementation-defined syntax for declaring other (not
intrinsic) named registers.

An object declared with a named-register storage-class specifier is allocated in the named register
indicated by the specifier (thus, in effect, associating the object with the register). If the object has a
size smaller than the register, the correspondence of bits between the object and the register is
unspecified.

If more than one object in a program is declared with the same named-register storage-class
specifier, the behavior is undefined.

Clause 6.7.2.1 - Structure and union specifiers, add a new constraint paragraph:

The specifier-qualifier-list in the declaration of a member of a structure or union shall not include an
address space qualifier.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 48

Clause 6.7.3 - Type qualifiers, in paragraph 1, add to the syntax options for type-qualifier:

address-space-name

address-space-name:
identifier

Clause 6.7.3 - Type qualifiers, add three new constraint paragraphs:

No type shall be qualified by qualifiers for two or more different address spaces.

The type of an object with automatic storage duration shall not be qualified by an address-space
qualifier.

A function type shall not be qualified by an address-space qualifier.

ISO/IEC DTR 18037

49 © ISO 2003 – All rights reserved

4 Basic I/O hardware addressing

4.1 Rationale

Embedded applications often must interact with specialized I/O devices, such as real-time sensors,
motors, and LCD displays. At the lowest level, these devices are accessed and controlled through a
set of special hardware registers (I/O registers) that device driver software can read and/or write.

Although different embedded systems typically have their own unique collections of hardware
devices, it is not unusual for otherwise very different systems to have virtually identical interfaces to
similar devices.

Ideally it should be possible to compile C or C++ source code which operates directly on I/O
hardware registers with different compiler implementations for different platforms and get the same
logical behavior at runtime. As a simple portability goal the driver source code for a given I/O
hardware should be portable to all processor architectures where the hardware itself can be
connected.

4.1.1 Basic Standardization Objectives

A standardization method for basic I/O hardware addressing must be able to fulfil three
requirements at the same time:

- A standardized interface must not prevent compilers from producing machine code that has no
additional overhead compared to code produced by existing proprietary solutions. This
requirement is essential in order to get widespread acceptance from the marketplace.

- The I/O driver source code modules should be completely portable to any processor system
without any modifications to the driver source code being required [i.e. the syntax should
promote I/O driver source code portability across different execution environments.]

- A standardized interface should provide an “encapsulation” of the underlying access
mechanisms to allow different access methods, different processor architectures, and different
bus systems to be used with the same I/O driver source code [i.e. the standardization method
should separate the characteristics of the I/O register itself from the characteristics of the
underlying execution environment (processor architecture, bus system, addresses, alignment,
endianness, etc.].

4.2 Terminology

The following is an overview of the concepts related to basic I/O hardware addressing and short
definitions of the terms used in this Technical Report:

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 50

- IO and I/O are short notations for Input-Output.

- An I/O device is a hardware unit which uses I/O registers to create a data interface between a
processor and the external world.

- An I/O register is the basic data unit in an I/O device.

- An I/O device driver is software which operates on I/O registers in an I/O device.

- The logical I/O register is the register unit as it is seen from the I/O hardware. The language
data type used for holding the I/O register data must have a bit-width equal to, or larger than, the
bit-width of logical I/O register. The bit-width of the logical I/O register may be larger than the
bit-width of the I/O device data bus or the processor data bus.

- I/O register access is the process of transferring data between an I/O register and one of the
compiler’s native data storage objects. In a program this process is defined via an I/O register
designator specification for the given I/O register or I/O register buffer.

- An I/O register designator specification specifies I/O access properties related to the I/O
register itself (for instance the I/O register bit width and I/O register endianness) and properties
related to the I/O register access method (for instance processor address space and address
location).

- An I/O register designator encapsulates an I/O register designator specification -- the sum of
all of a register’s properties plus the properties of its access method – and uniquely identifies a
single I/O register or I/O register buffer. The main purpose of the I/O register designator is to
hide this information from the I/O device driver code, in order to make the I/O device driver code
independent of any particular processor (or compiler).

- Multiple I/O registers of equal size may form an I/O register buffer. All registers in the I/O
register buffer are addressed using the same I/O register designator. An I/O register buffer
element is referenced with an index in the same manner as a C array.

- An I/O device may contain multiple I/O registers. These registers can be combined into an I/O
group which is portable as a specification for a single hardware unit (for instance an I/O chip, an
I/O cell, a plug-in board etc.).

- Typically common I/O access properties for the I/O registers in an I/O register group are defined
by the I/O group designator.

- Typical I/O access properties which are defined and encapsulated via the I/O register
designator are the following:
• The access methods used for I/O register access. Access methods refer to the various

ways that I/O registers can be addressed and I/O devices can be connected in a given
hardware platform. Typical methods are direct addressing, indexed addressing, and
addressing via I/O access drivers. Different methods have different I/O access properties.

ISO/IEC DTR 18037

51 © ISO 2003 – All rights reserved

Common for all access methods is that all access properties are encapsulated by the I/O
register designator.

• If all the access properties defined by the I/O register designator specification can be
initialized at compile time then its designator is called a static designator.

• If some access properties defined by the I/O register designator specification are initialized
at compile time and others require initialization at run time, then its designator is called a
dynamic designator.

• I/O registers within the same I/O group shall share the same platform related
characteristics. Only the I/O register characteristics and address information will vary
between the I/O register designator specifications.

• Direct designators are designators that are fully initialized either at compile time or by an
iogroup_acquire operation.

• Indirect designators are designators that are fully initialized by an iogroup_map operation.
• The I/O driver will determine whether a designator is a direct designator or an indirect

designator only for the purpose of mapping (initializing) an I/O group designator.
• If the bit-width of the logical I/O register is larger than the bit width of the I/O device data bus,

then seen from the processor system the logical I/O register will consist of two or more
partial I/O registers. In such cases the I/O register endianness will be specified by the
designator specification. The I/O register endianness is not related to any endianness used
by the processor system or compiler.

• If the bit-width of the logical I/O register is larger than the bit width of the processor data bus
or the bit width of the I/O device data bus, then a single logical I/O register access
operation will consist of multiple partial I/O register access operations. Such properties
may be encapsulated by a single I/O register designator for the logical I/O register.

These concepts and terms are described in greater detail in the following clauses.

4.3 Basic I/O Hardware addressing header <iohw.h>

The purpose of the I/O hardware access functions defined in a new header file <iohw.h> is to
promote portability of I/O device driver source code across different execution environments.

4.3.1 Standardization principles

The I/O access functions create a simple and platform independent interface between I/O driver
source code and the underlying access methods used when addressing the I/O registers in a given
platform.

The primary purpose of the interface is to separate characteristics which are portable and specific
for a given I/O register, for instance the register bit width, from characteristics which are related to a
specific execution environment, for instance the I/O register address, the processor bus type and
endianness, device bus size and endianness, address interleaving, the compiler access method etc.
Use of this separation principle enables I/O driver source code itself to be portable to all platforms
where the I/O registers can be connected.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 52

In portable driver source code, an I/O register must always be referred to a symbolic name, the
I/O-register designator. The symbolic name must refer to a complete definition of the access
method used with the given register. A standardized I/O syntax approach creates a conceptually
simple model for I/O registers:

symbolic name for I/O register ↔ complete definition of the access method

When porting the I/O driver source code to a new platform, only the definition of the symbolic name
encapsulating the access properties needs to be updated.

4.3.2 The abstract model

The standardization of basic I/O hardware addressing is based on a three layer abstract model:

The portable I/O device driver source code
The user’s I/O register designator definitions

The vendor’s <iohw.h> implementation

The top layer contains the I/O driver code supplied by the hardware vendor or written by a driver
developer. The source code in this layer is intended to be fully portable to any platform where the
I/O hardware can be connected. This code must only access I/O hardware registers via the
standardized I/O functions described in this clause. Each I/O register must be identified using a
symbolic name, the I/O register designator, and referred to only by that name. These names are
supplied by the author of the driver code.

The middle layer associates symbolic names with complete I/O register designator specifications for
the I/O registers in the given platform. This layer associates a symbolic name with a complete
access-specification for the I/O register in the given platform. The I/O register designator definitions
in this layer are the only part which must be updated when the I/O driver source code is ported to a
different platform.

The bottom layer is the implementation of the <iohw.h> header. It provides prototypes for the
functions defined in this clause and specifies the various different access methods supported by the
given processor and platform architecture. This layer is typically implemented by the compiler
vendor. The features provided by this layer, and used by the middle layer, may depend on intrinsic
compiler capabilities.

Annex C contains some general considerations, which should be addressed when a compiler
vendor implements the iohw functionality.

ISO/IEC DTR 18037

53 © ISO 2003 – All rights reserved

4.3.2.1 Structuring for I/O driver portability

I/O driver portability is achieved by using a minimum of three modules, one for each of the abstract
layers:

I/O driver module The I/O driver source code. Portable across compilers and platforms.
Includes the other header files below.

“iodriv_hw.h” Specifies the I/O-register designators used by the I/O driver module and
maps the I/O-register designators to an access method specific for the
given execution environment.
The name of this header file is arbitrary. The creator of the I/O driver
module must only define the header file name and the symbolic names for
the I/O-register designators. The rest is implemented and maintained by
the user of the I/O driver module.

<iohw.h> Standard header. Defines I/O functions in this standard and the access
methods which can be used with I/O-register designator specifications.
Typically specific for a given compiler. Implemented by the compiler
vendor.

Example:

#include <iohw.h>
#include "iodriv_hw.h" // I/O register definitions for target

unsigned char mybuf[10];
//..
iowr(MYPORT1, 0x8); // write single register
for (int i = 0; i < 10; i++)
 mybuf[i] = iordbuf(MYPORT2, i); // read register array

The device driver programmer only sees the characteristics of the I/O register itself. The underlying
platform, bus architecture, and compiler implementation do not matter during driver programming.
The underlying system hardware may later be changed without modifications to the I/O driver
source code being necessary.

4.3.2.2 Typical information required by the user of a portable I/O driver module

In order to enable I/O driver library users later to define the I/O register designators and the I/O
group designators for a specific platform, a portable I/O driver library based on the <iohw.h>
interface should (in addition to the library source code) provide at least the following information to
the library user:

- All symbolic names for I/O registers and I/O groups used by the library.

- IO device and register type information for all designators:
• The bit width of the logical I/O register;

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 54

• The designator type: a single I/O register, an I/O register buffer or an I/O register group;
• Bit width of the I/O device data bus;
• Endianness of I/O registers in the I/O device (if any register has a logical width larger than

the I/O device data bus);
• Relative address offset of registers in the device (if the device contains more than one

register);
• Whether the I/O device driver assumes the use of indirect designators.

4.4 Specifying I/O registers

For the purpose of this Technical Report, a new standard header <iohw.h> defined that provides
compiler support for accessing hardware I/O registers. It is not assumed that an implementation has
prior knowledge of all the I/O registers a program may access. Therefore, a program must in
general supply information about an I/O register before the register can be accessed.

4.4.1 I/O-register designators

Within a C program, a machine's I/O registers are specified by I/O-register designators. An I/O-
register designator may be an identifier or some other, implementation-specific construct. An
implementation must support I/O-register designators in the form of identifiers; other forms of I/O-
register designators may be supported but might not be portable to all implementations.

Any unique, non-reserved identifier can be defined as a designator for an I/O register. The
definition of the identifier includes the size and access method of the I/O register. The means,
however, by which an identifier is defined as an I/O-register designator are entirely implementation-
defined.

By choosing convenient identifiers as designators for registers, a programmer can create device
driver code with the expectation that the identifiers can be defined to refer to the actual I/O registers
on any machine supporting the same interface. So long as the only important differences from one
platform to another are the access methods for the registers, device driver code can be ported to a
new platform simply by updating the designator definitions for the new platform.

Additional issues and recommendations concerning I/O-register designators are discussed in
Annexes C and D of this Technical Report.

4.4.2 Accesses to individual I/O registers

The <iohw.h> header declares a number of functions and/or macros for accessing an I/O register
given an I/O-register designator. Each "function" defined by the <iohw.h> header may actually
be implemented either as a function or as a function-like macro that expands into an expression
having the effects described for the function. If a function is implemented as a function-like macro,
there will ordinarily not be a corresponding actual function declared or defined within the library.

ISO/IEC DTR 18037

55 © ISO 2003 – All rights reserved

The functions iord and iordl take an I/O-register designator argument and return a value read
from the designated register. The register is read as an unsigned integer of the size of the register.
This integer is then converted to the result type of the function (unsigned int for iord or
unsigned long for iordl), and the converted value is returned as the function result.

For writing to registers, the functions iowr and iowrl take two arguments, an I/O-register
designator and an unsigned integer, and write the integer to the designated register. The integer
argument (unsigned int for iowr or unsigned long for iowrl) is converted to an
unsigned integer of the size of the register, and this converted value is then written to the register.
The result type of iowr and iowrl is void.

Example:

If dev_status and dev_out are I/O-register designators defined in the file
"iodriv_hw.h", the following is possible valid code:

#include <iohw.h>
#include "iodriv_hw.h" /* Platform-specific designator
 definitions. */

// Wait until controller is no longer busy.
while (iord(dev_status) & STATUS_BUSY) /* do nothing */;

// Write value to controller.
iowr(dev_out, ch);

Besides simple read and write operations, three read-modify-write operations are supported,
corresponding to the bit-wise logical operations AND, OR, and XOR. The functions ioand, ioor,
and ioxor take as arguments an I/O-register designator and an unsigned int value (the same
arguments as iowr). For each function, the designated register is first read as if with iord. The
corresponding bitwise logical operation is then performed between the value read and the integer
argument, and this result is written back to the register as if with iowr. The result type of the
functions is void. The functions ioandl, ioorl, and ioxorl are unsigned long versions
of the same (a read is performed as if by iordl, and a write is performed as if by iowrl).

4.4.3 I/O register buffers

Besides individual I/O registers, an I/O-register designator may also designate an I/O register buffer,
which is essentially an array of I/O registers. As with a C array, an integer index must be supplied
to access a specific register in an I/O register buffer.

The <iohw.h> header declares the functions iordbuf, iordbufl, iowrbuf, iowrbufl,
ioorbuf, ioorbufl, ioandbuf, ioandbufl, ioxorbuf, and ioxorbufl, corresponding

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 56

to the functions for accessing individual I/O registers. These -buf versions of the access functions
each take an additional argument supplying the index for the I/O register to access. The type of the
index argument is ioindex_t, an integer type defined in <iohw.h>.

Example:

If ctrl_buffer is defined in the file ctrl_regs.h as an I/O-register designator for an
I/O register buffer, the following is possible valid code:

#include <iohw.h>
#include "ctrl_regs.h" // Platform-specific designator
 // definitions.

unsigned char buf[CTRL_BUFSIZE];

 // Copy buffer contents.
for (int i = 0; i < CTRL_BUFSIZE; i++)
 buf[i] = iordbuf(ctrl_buffer, i);

Two I/O buffer indexes index and index+1 refer to two adjacent I/O registers in the I/O device. Note
that this may be different from adjacent address locations in the underlying platform. See Annex C
for a more detailed discussion.

As with an ordinary array, a larger index refers to a platform location at a higher address.

Unlike an ordinary array, the valid locations within an I/O register buffer might not be "dense"; any
index might not correspond to an actual I/O register in the buffer. (A programmer should be able to
determine the valid indices from documentation for the I/O device or the machine.) If an I/O register
buffer is accessed at an invalid index, the behavior is undefined.

4.4.4 I/O groups

An I/O group is an arbitrary collection of I/O-register designators. Each I/O group is intended to
encompass all the designators for a single hardware device. Certain operations are supported only
for I/O groups; these operations apply to the members of an I/O group as a whole. Whether an I/O-
register designator can be a member of more than one group is implementation-defined.

Like I/O registers, an I/O group is specified by an I/O-group designator, which is an identifier or
some other implementation-specific construct. Any unique nonreserved identifier can be defined as
a designator for an I/O group. As with I/O-register designators, the means by which an identifier can
be defined as an I/O-group designator are implementation-defined. Other forms of I/O-group
designators may be supported but might not be portable to all implementations.

ISO/IEC DTR 18037

57 © ISO 2003 – All rights reserved

4.4.5 Direct and indirect designators

Each I/O-register designator is either direct or indirect. An indirect I/O-register designator has a
definition that does not fully specify the register or register buffer to which the designator refers.
Before any accesses can be performed with it, an indirect designator must be mapped to refer to a
specific register or register buffer. A direct I/O-register designator, by contrast, has a definition that
fully specifies the register or register buffer to which the designator refers. A direct designator
always refers to the same register or register buffer and cannot be changed.

An indirect I/O-register designator is mapped by associating it with a direct I/O-register designator.
Accesses to the indirect designator then occur as though with the direct designator to which the
indirect designator is mapped. An indirect I/O-register designator can be remapped any number of
times; accesses through the designator always occur with respect to its latest mapping.

An implementation is not required to support indirect designators. If an implementation does
support indirect designators, it may place arbitrary restrictions on the direct designators to which a
specific indirect designator can be mapped. Typically, an indirect designator will be defined to be of
a certain "kind", capable of mapping to some subclass of access methods. An indirect designator
can be mapped to a direct designator only if the direct designator's access method is compatible
with the indirect designator. Such issues are specific to an implementation.

For an I/O group, the members of the group must be either all direct designators or all indirect
designators. An I/O-group designator is either direct or indirect, according to the members of the
I/O group it designates.

4.4.6 Operations on I/O groups

4.4.6.1 Acquiring access to I/O registers

For some implementations, it may be necessary to acquire an I/O register or I/O register buffer
before it can be accessed. What constitutes “acquiring” a register is specific to an implementation.

The <iohw.h> header declares two functions, iogroup_acquire and iogroup_release,
each taking a single direct I/O-group designator as an argument. The iogroup_acquire
function acquires every register referred to by the group, and the iogroup_release function
releases every register referred to by the group. If there is no need to acquire some I/O register or
I/O register buffer, these functions have no effect for that register or register buffer.

Example:
In an implementation for a hosted environment, an invocation of iogroup_acquire might
call the operating system to map the physical I/O registers of the group into a block of
addresses in the process's address space so that they can be accessed. In the same
implementation, an invocation of iogroup_release would call the operating system to
unmap the I/O registers, making them inaccessible to the process.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 58

4.4.6.2 Mapping indirect designators

The <iohw.h> header declares a function iogroup_map taking two arguments, the first an
indirect I/O-group designator and the second a direct I/O-group designator. The function maps each
indirect I/O-register designator in the first group to a corresponding direct I/O-register designator in
the second group. The correspondence between members of the two I/O groups is determined in
an implementation-defined way. (For example, if I/O-group designators are defined with their
members listed in a particular order, the correspondence could be determined by matching the first
member of one group with the first member of the other, etc.)

Example:

If dev_hw.h defines two indirect I/O-register designators, dev_config and dev_data,
an indirect I/O-group designator dev_group with both dev_config and dev_data as
members, and two direct I/O-group designators dev1_group and dev2_group, the
following is possible valid code:

#include <iohw.h>
#include "dev_hw.h" // Platform-specific designator
 // definitions.

// Portable device driver function.
uint8_t get_dev_data(void)
 {
 iowr(dev_config, 0x33);
 return iord(dev_data);
 }

// Read data from device 1.
iogroup_map(dev_group, dev1_group);
uint8_t d1 = get_dev_data();

// Read data from device 2.
iogroup_map(dev_group, dev2_group);
uint8_t d2 = get_dev_data();

4.5 Detailed changes to ISO/IEC 9899:1999

This clause details the modifications to ISO/IEC 9899:1999 needed to incorporate the basic I/O
hardware addressing functionality overviewed in clauses 4.1 through 4.4 of this Technical Report.
The changes listed in this clause are limited to syntax and semantics; examples, forward
references, and other descriptive information are omitted.

One new clause is added to ISO/IEC 9899:1999 covering the new library header <iohw.h>; this
new clause (designated as clause 7.8.a) is to be inserted between the current clauses 7.8 and 7.9
of the C standard. No changes to other clauses are needed.

ISO/IEC DTR 18037

59 © ISO 2003 – All rights reserved

Clause 7.8a - Basic I/O hardware addressing "<iohw.h>" (NEW CLAUSE)

The header <iohw.h> declares a type and defines macros and/or declares functions for accessing
implementation-specific I/O registers.

The type declared is

ioindex_t

which is the unsigned integer type of an index into an I/O register buffer.

Any "function" declared in <iohw.h> as described below may alternatively be implemented as a
function-like macro defined in <iohw.h>. (If a function in <iohw.h> is implemented as a
function-like macro, there need not be an actual function declared or defined as described, despite
the use of the word function.) Any invocation of such a function-like macro shall expand to code
that evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.

7.8a.1 - I/O registers

An I/O register is a storage location that is addressable within some address space. An I/O register
has a size and an access method, which is the method by which an implementation accesses the
register at execution time. An I/O register is accessed (read or written) as an unsigned integer
whose representation (in the register) is implementation-defined and need not conform to any
available integer type. An I/O register may need to be acquired before it can be accessed. (I/O
registers are acquired with the iogroup_acquire function described in 7.8a.3.1.)

Accesses to an I/O register may have unspecified side effects that may be unknown to the
implementation, and an I/O register may be modified in ways unknown to the implementation.
Accesses to I/O registers performed by functions declared in <iohw.h> are therefore treated as
side effects which respect sequence points.

An I/O register buffer is a collection of I/O registers indexed by an integer of type ioindex_t and
otherwise sharing a common size and access method. The set of valid indices for the I/O registers
in an I/O register buffer may be any subset of the nonnegative integers of type ioindex_t; the set
of valid indices need not be contiguous and need not include zero.

An I/O-register designator refers (except as stipulated below) to a specific individual I/O register or a
specific I/O register buffer. Functions that access I/O registers take an I/O-register designator
argument to determine the register to access. An implementation shall support at least one of the
following as a valid I/O-register designator for any individual I/O register or I/O register buffer:

- any ordinary identifier that is not a reserved identifier, defined by some implementation-defined
means; and/or

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 60

- any object-like macro name that is not a reserved identifier, defined in accordance with some
implementation-defined convention.

An implementation may optionally support other, implementation-defined forms of I/O-register
designators.

Each I/O-register designator is either direct or indirect. A direct I/O-register designator refers to a
specific I/O register or I/O register buffer as determined by the designator's definition. An indirect
I/O-register designator does not refer to a specific I/O register or I/O register buffer until the
designator has been mapped to a direct I/O-register designator. Once mapped, an indirect I/O-
register designator can subsequently be remapped (mapped again) to the same or a different direct
I/O-register designator. An indirect I/O-register designator refers to the same I/O register or I/O
register buffer as the direct designator to which it was last mapped. (I/O-register designators are
mapped with the iogroup_map function described in 7.8a.3.2.)

An indirect I/O-register designator is compatible with a direct I/O-register designator if it is possible
to map the indirect designator to the direct designator. An I/O-register designator that refers to an
individual I/O register is not compatible with an I/O-register designator that refers to an I/O register
buffer, and vice versa. Otherwise, whether a specific indirect I/O-register designator is compatible
with a specific direct I/O-register designator is implementation-defined.

An implementation need not support a means for indirect I/O-register designators to be defined.

An I/O-register designator covers an I/O register if it refers to the I/O register or it refers to an I/O
register buffer that includes the register.

7.8a.2 - I/O groups

An I/O group is a collection of I/O-register designators. It is intended that each I/O group
encompass all the designators for a single hardware controller or device.

The members of an I/O group shall be either all direct designators or all indirect designators. An I/O
group is direct if its members are direct. An I/O group is indirect if its members are indirect.

An I/O group shall not have as members two or more I/O-register designators that cover the same
I/O register. Whether an I/O-register designator can be a member of more than one I/O group at the
same time is implementation-defined.

An I/O-group designator specifies an I/O group. An implementation shall support at least one of the
following as a valid I/O-group designator for any supported I/O group:

- any ordinary identifier that is not a reserved identifier, defined by some implementation-defined
means; and/or

- any object-like macro name that is not a reserved identifier, defined in accordance with some
implementation-defined convention.

ISO/IEC DTR 18037

61 © ISO 2003 – All rights reserved

7.8a.3 - I/O group functions

7.8a.3.1 - The iogroup_acquire and iogroup_release functions

Synopsis

#include <iohw.h>
void iogroup_acquire(iogroup_designator);
void iogroup_release(iogroup_designator);

Description

The iogroup_acquire function acquires a collection of I/O registers; the iogroup_release
function releases a collection of I/O registers. Releasing an I/O register undoes the act of acquiring
the register. The functions acquire or release all the I/O registers covered by the I/O-register
designators that are members of the I/O group designated by iogroup_designator. If the I/O group
is indirect, the behavior is undefined.

An I/O register is only said to be acquired between an invocation of iogroup_acquire that
acquires the register and the next subsequent invocation of iogroup_release, if any, that
releases the register. If iogroup_release releases an I/O register that is not at the time
acquired, or if iogroup_acquire acquires an I/O register that is at the time already acquired, the
behavior is undefined.

Acquiring or releasing an I/O register is treated as a side effect which respects sequence points.

If an implementation can access a particular I/O register without needing it to be first acquired, the
act of acquiring and the act of releasing the register may have no real effect.

7.8a.3.2 - The iogroup_map function

Synopsis

#include <iohw.h>
void iogroup_map(iogroup_designator, iogroup_designator);

Description

The iogroup_map function maps the indirect I/O-register designators in the I/O group designated
by the first iogroup_designator to the corresponding direct I/O-register designators in the I/O group
designated by the second iogroup_designator. The first I/O group shall be indirect, and the second
I/O group shall be direct. The correspondence between members of the two I/O groups is
implementation-defined and shall be one-to-one. If an indirect I/O-register designator is mapped to
a direct I/O-register designator with which it is not compatible, the behavior is undefined.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 62

7.8a.4 - I/O register access functions

If a register is accessed (read or written) when it is not acquired, the behavior is undefined. If an
indirect I/O-register designator is given as an argument to one of the functions below and the
designator has not been mapped, the behavior is undefined.

7.8a.4.1 - The iord functions

Synopsis

#include <iohw.h>
unsigned int iord(ioreg_designator);
unsigned long iordl(ioreg_designator);

Description

The functions iord and iordl read the individual I/O register referred to by ioreg_designator and
return the value read. The I/O register is read as an unsigned integer of its size; the read value is
then converted to the result type, and this converted value is returned.

7.8a.4.2 - The iordbuf functions

Synopsis

#include <iohw.h>
unsigned int iordbuf(ioreg_designator, ioindex_t ix);
unsigned long iordbufl(ioreg_designator, ioindex_t ix);

Description

The functions iordbuf and iordbufl read one of the I/O registers in the I/O register buffer
referred to by ioreg_designator and return the value read. The functions are equivalent to iord
and iordl, respectively, except that the I/O register read is the one with index ix in the I/O
register buffer referred to by ioreg_designator. If ix is not a valid index for the I/O register buffer,
the behavior is undefined.

7.8a.4.3 - The iowr functions

Synopsis

#include <iohw.h>
void iowr(ioreg_designator, unsigned int a);
void iowrl(ioreg_designator, unsigned long a);

ISO/IEC DTR 18037

63 © ISO 2003 – All rights reserved

Description

The functions iowr and iowrl write the individual I/O register referred to by ioreg_designator.
The unsigned integer a is converted to an unsigned integer of the size of the I/O register, and this
converted value is written to the I/O register.

7.8a.4.4 - The iowrbuf functions

Synopsis

#include <iohw.h>
void iowrbuf(ioreg_designator, ioindex_t ix, unsigned int a);
void iowrbufl(ioreg_designator, ioindex_t ix, unsigned long a);

Description

The functions iowrbuf and iowrbufl write one of the I/O registers in the I/O register buffer
referred to by ioreg_designator. The functions are equivalent to iowr and iowrl, respectively,
except that the I/O register written is the one with index ix in the I/O register buffer referred to by
ioreg_designator. If ix is not a valid index for the I/O register buffer, the behavior is undefined.

7.8a.4.5 - The ioor, ioand, and ioxor functions

Synopsis

#include <iohw.h>
void ioand(ioreg_designator, unsigned int a);
void ioor(ioreg_designator, unsigned int a);
void ioxor(ioreg_designator, unsigned int a);

void ioorl(ioreg_designator, unsigned long a);
void ioandl(ioreg_designator, unsigned long a);
void ioxorl(ioreg_designator, unsigned long a);

Description

The functions ioand, ioandl, ioor, ioorl, ioxor, and ioxorl modify the individual I/O
register referred to by ioreg_designator. The function ioand has a behavior equivalent to

iowr(ioreg_designator, iord(ioreg_designator) & a)

except that the ioreg_designator is not evaluated twice (assuming it is an expression).
Likewise, the function ioor has a behavior equivalent to

iowr(ioreg_designator, iord(ioreg_designator) | a)

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 64

and the function ioxor has a behavior equivalent to

iowr(ioreg_designator, iord(ioreg_designator) ^ a)

Corresponding equivalencies apply for ioandl, ioorl, and ioxorl, but with the unsigned
long functions iordl and iowrl replacing iord and iowr.

7.8a.4.6 - The ioorbuf, ioandbuf, and ioxorbuf functions

Synopsis

#include <iohw.h>
void ioandbuf(ioreg_designator, ioindex_t ix, unsigned int a);
void ioorbuf(ioreg_designator, ioindex_t ix, unsigned int a);
void ioxorbuf(ioreg_designator, ioindex_t ix, unsigned int a);

void ioandbufl(ioreg_designator, ioindex_t ix, unsigned long a);
void ioorbufl(ioreg_designator, ioindex_t ix, unsigned long a);
void ioxorbufl(ioreg_designator, ioindex_t ix, unsigned long a);

Description

The functions ioandbuf, ioorbuf, ioxorbuf, ioorbufl, ioandbufl, and ioxorbufl
modify one of the I/O registers in the I/O register buffer referred to by ioreg_designator. The
functions are equivalent to ioand, ioandl, ioor, ioorl, ioxor, and ioxorl, respectively,
except that the I/O register modified is the one with index ix in the I/O register buffer referred to by
ioreg_designator. If ix is not a valid index for the I/O register buffer, the behavior is undefined.

ISO/IEC DTR 18037

65 © ISO 2003 – All rights reserved

Annex A - Fixed-poin t arithmetic

A.1 Fixed-point datatypes

A.1.1 Introduction

A.1.1.1 The fixed-point data types

The set of representable floating-point values (which is a subset of the real values) is characterized
by a sign, a precision and the position of the radix point. For those values that are commonly
denoted as floating-point values, the characterizing parameters are defined within a format (such as
the IEEE formats or the VAX floating-point formats), usually supported by hardware instructions,
that defines the size of the container, the size (and position within the container) of the exponent,
and the size (and position within the container) of the sign. The remaining part of the container then
contains the mantissa. [The formats discussed in this clause are assumed to be binary floating-
point formats, with sizes expressed in bits. A generalization to other radixes (like radix-10) is
possible, but not done here.] The value of the exponent then defines the position of the radix point.
Common hardware support for floating-point operations implements a limited number of floating-
point formats, usually characterized by the size of the container (32-bits, 64-bits etc); within the
container the number of bits allocated for the exponent (and thus for the mantissa) is fixed. For
programming languages this leads to a small number of distinct floating-point data types (for C
these are float, double, and long double), each with its own set of representable values.

For fixed-point types, the story is slightly more complicated: a fixed-point value is characterized by
its precision (the number of databits in the fixed-point value) and an optional signbit, while the
position of the radix point is defined implicitly (i.e., outside the format representation): it is not
possible to deduct the position of the radix point within a fixed-point data value (and hence the value
of that fixed-point data value!) by simply looking at the representation of that data value. It is
however clear that, for proper interpretation of the values, the hardware (or software) implementing
the operations on the fixed-point values should know where the radix point is positioned. From a
theoretical point of view this leads (for each number of databits in a fixed-point data type) to an
infinite number of different fixed-point data types (the radix point can be located anywhere before, in
or after the bits comprising the value).
There is no (known) hardware available that can implement all possible fixed-point data types, and,
unfortunately, each hardware manufacturer has made its own selection, depending on the field of
application of the processor implementing the fixed-point data type. Unless a complete dynamic or
a parameterized typesystem is used (not part of the current C standard, hence not proposed here),
for programming language support of fixed-point data types a number of choices need to be made
to limit the number of allowable (and/or supported or to be supported) fixed-point data types. In
order to give some guidance for those choices, some aspects of fixed-point data values and their
uses are investigated here.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 66

For the sake of this discussion, a fixed-point data value is assumed to consist of a number of
databits and a signbit. On some systems, the signbit can be used as an extra databit, thereby
creating an unsigned fixed-point data type with a larger (positive) maximum value.
Note that the size of (the number of bits used for) a fixed-point data value does not necessarily
equal the size of the container in which the fixed-point data value is contained (or through which the
fixed-point data value is addressed): there may be gaps here!

Most (all?) modern hardware uses two's complement arithmetic for integers. The hardware
implementation of fixed-point arithmetic uses the same mechanisms and representations as the
integer implementation on that same hardware. Hence, although the C standard allows other types
of implementations for integers, this Technical Report requires exclusively two's complement
behaviour for fixed-point arithmetic.

A.1.1.2 Classification of Fixed Point Types

As stated before, it is necessary, when using a fixed-point data value, to know the place of the radix
point. There are several possibilities.
- The radix point is located immediately to the right of the rightmost (least significant) bit of the

databits. This is a form of the ordinary integer data type, and does not (for this discussion) form
part of the fixed-point data types.

- The radix point is located further to the right of the rightmost (least significant) bit of the databits.
This is a form of an integer data type (for large, but not very precise integer values) that is
normally not supported by (fixed-point) hardware. For this Technical Report, these fixed-point
data types will not be taken into account.

- The radix point is located to the left of (but not adjacent to) the leftmost (most significant) bit of
the databits. It is not clear whether this category should be taken into account: when the radix
point is only a few bits away, it could be more 'natural' to use a data type with more bits; in any
case this data type can be simulated by using appropriate normalize (shift left/right) operations.
There is no known fixed-point hardware that supports this data type.

- The radix point is located immediately to the left of the leftmost (most significant) bit of the
databits. This data type has values (for signed data types) in the interval (-1,+1), or (for
unsigned data types) in the interval [0,1). This is a very common, hardware supported, fixed-
point data type. In the rest of this clause, this fixed-point data type will be called the type-A
fixed-point data type. Note that for each number of databits, there are one (signed) or two
(signed and unsigned) possible type-A fixed-point data types.

- The radix point is located somewhere between the leftmost and the rightmost bit of the databits.
The data values for this fixed-point data type have an integral part and a fractional part. Some
of these fixed-point data types are regularly supported by hardware. In the rest of this clause,
this fixed-point data type will be called the type-B fixed-point data type. For each number of
databits N, there are (N-1) (signed) or (2*N-1) (signed and unsigned) possible type-B fixed-point
data types.

Apart from the position of the radix point, there are three more aspects that influence the amount of
possible fixed-point data types: the presence of a signbit, the number of databits comprising the
fixed-point data values and the size of the container in which the fixed-point data values are stored.
In the embedded processor world, support for unsigned fixed-point data types is rare; normally only
signed fixed-point data types are supported. However, to disallow unsigned fixed-point arithmetic

ISO/IEC DTR 18037

67 © ISO 2003 – All rights reserved

from programming languages (in general, and from C in particular) based on this observation,
seems overly restrictive.

There are two further design criteria that should be considered when defining the nature of the fixed-
point data types:
- it should be possible to generate optimal fixed-point code for various processors, supporting

different sized fixed-point data types (examples could include an 8-bit fixed-point data type, but
also a 6-bit fixed-point data type in an 8-bit container, or a 12-bit fixed-point data type in a 16-bit
container);

- it should be possible to write fixed-point algorithms that are independent of the actual fixed-point
hardware support. This implies that a programmer (or a running program) should have access
to all parameters that define the behavior of the underlying hardware (in other words: even if
these parameters are implementation-defined).

A.1.1.3 Recommendations for Fixed Point Types in C

With the above observations in mind, the following recommendations are made.
1. Introduce signed and unsigned fixed-point data types, and use the existing signed and

unsigned keywords (in the 'normal' C-fashion) to distinguish these types. Omission of either
keyword implies a signed fixed-point data type.

2. Introduce a new keyword and type-specifier _Fract (similar to the existing keyword int), and
define the following three standard signed fixed-point types (corresponding to the type-A fixed-
point data types, as described above): short _Fract, _Fract and long _Fract. The
supported (or required) underlying fixed-point data types are mapped on the above in an
implementation-defined manner, but in a non-decreasing order with respect to the number of
databits in the corresponding fixed-point data value. Note that there is not necessarily a
correspondence between a fixed-point data type designator and the type of its container: when
an 18-bit and a 30-bit fixed-point data type are supported, the 18-bit will probably have the
short _Fract type and the 30-bit type will probably have the _Fract type, while the
containers of these types will be the same.

3. Introduce a new keyword and type-specifier _Accum, and define the following three standard
signed fixed-point types (corresponding to the type-B fixed-point data types, as described
above): short _Accum, _Accum and long _Accum, with similar representation
requirements as for the _Fract type.

4. If more fixed-point data types are needed, (or if there is a need to better distinguish certain fixed-
point data types), an approach similar to the <stdint.h> approach could be taken, whereby
fract_leN_t could designate a (type-A) fixed-point data type with at least N databits, while
fract_leM_leN_t could designate a (type-B) fixed-point data type with at least M integral
bits and N fractional bits. Note that the introduction of these generalized fixed-point data types
is currently not included in the main text of this Technical Report.

5. In order for the programmer to be able to write portable algorithms using fixed-point data types,
information on (and/or control over) the nature and precision of the underlying fixed-point data
types should be provided. The normal C-way of doing this is by defining macro names (like
SFRACT_FBIT etc.) that should be defined in an implementation-defined manner.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 68

The C standard , with its defined keywords, allows for yet another size for fixed-point data types:
long long fract. The specified three sizes were considered to be enough for the current
systems, the long long variant might, for the time being, be added by an implementation in an
implementation-defined manner.

A.2 Number of data bits in _Fract versus _Accum

At some point it was considered to require that the number of fractional bits in a _Fract type would
be exactly the same as the number of fractional bits in the corresponding _Accum type. The
reason for this was that _Accum can be viewed upon as the placeholder sums of _Fracts. This
requirement would be fulfilled for implementations on typical DSP processors. However, it was
chosen not to make this a strict requirement because other machine classes would have trouble
using their hardware supported data types when implementing the fractional data types. A
discussion on this issue is given below.

A type for accumulating sums cannot always be fixed at the same number of fractional bits
as the associated fractional type.

Many SIMD architectures do not support fixed-point types that have the same number of
fractional bits as a fractional type, plus some integer bits. To manufacture accumulator
types that are not supported by the hardware would add overhead and often require a loss of
parallelism. Also, often there is no way to detect a carry out of a packed data type, so even
the simple implementation of providing one SIMD word of fractions plus one SIMD word of
integer bits is not always available.

In addition, manufacturing accumulator types of artificial widths is usually unnecessary since
there are already accumulator types supported by the hardware. This means that the
language needs to be flexible enough to allow the existing hardware-supported data types to
be used rather than imposing a strict model that hampers performance.

For example, Radiax pairs 16-bit objects into a 32-bit SIMD word. The accumulator type
provided for arithmetic on these objects is 40 bits wide per object, composed of 32 fractional
bits and 8 integer bits. There is no other accumulator type supported. An artificial
requirement that exactly 16 fractional bits be available would severely impact performance,
and would have the surprising effect that addition would become much slower than
multiplication.

In the VIS architecture, the supported hardware types that can be used as accumulation
types sometimes have more fractional bits than the underlying fractional types, and
sometimes fewer, but never the same number. Also, there is no direct path between SIMD
registers (which overload the floating-point registers) and the integer registers, so
constructing an artificial type involves not only a loss of parallelism but also extra loads and
stores to move data between the SIMD registers and the integer registers.

ISO/IEC DTR 18037

69 © ISO 2003 – All rights reserved

The proposal to fix an accum's fractional bits at the same number as the underlying fract
type is therefore prohibitively expensive on some architectures and needs to be removed.

A signed accum type has to have at least as many integral bits as the corresponding unsigned
accum type because the usual arithmetic conversions prescribe that, when signed and unsigned
fixed-point types are mixed, the unsigned type is converted to the corresponding signed type, and
this should go without loss of magnitude; note also that the notion 'integral bits' does not include the
sign bit.

A.3 Possible Data Type Implementations

By way of example, these tables show the fixed-point formats we would suggest for various classes
of processors:

--- signed _Fract --- --- signed _Accum ---
short middle long short middle long

typical desktop processor s.7 s.15 s.31 s8.7 s16.15 s32.31
typical 16-bit DSP s.15 s.15 s.31 s8.15 s8.15 s8.31
typical 24-bit DSP s.23 s.23 s.47 s8.23 s8.23 s8.47

Intel MMX s.7 s.15 s.31 s8.7 s16.15 s32.31
PowerPC AltiVec s.7 s.15 s.31 s8.7 s16.15 s32.31
Sun VIS s.7 s.15 s.31 s8.7 s16.15 s32.31
MIPS MDMX s.7 s.15 s.31 s8.7 s8.15 s17.30
Lexra Radiax s.7 s.15 s.31 s8.7 s8.15 s8.31
ARM Piccolo s.7 s.15 s.31 s8.7 s16.15 s16.31

--- unsigned _Fract --- --- unsigned _Accum ---
short middle long short middle long

typical desktop processor .8 .16 .32 8.8 16.16 32.32
typical 16-bit DSP .16 .16 .32 8.16 8.16 8.32
typical 24-bit DSP .24 .24 .48 8.24 8.24 8.48

Intel MMX .8 .16 .32 8.8 16.16 32.32
PowerPC AltiVec .8 .16 .32 8.8 16.16 32.32
Sun VIS .8 .16 .32 8.8 16.16 32.32
MIPS MDMX .8 .16 .32 8.8 8.16 16.32
Lexra Radiax .8 .16 .32 8.8 8.16 8.32
ARM Piccolo .8 .16 .32 8.8 16.16 16.32

(The "typical" DSPs referred to in the table cannot address units in memory smaller than 16 or 24
bits, which is why these processors aren't expected to support a short _Fract smaller than
_Fract.)

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 70

A.4 Overflow and Rounding

Fixed-point data types are often used in situations where floating-point data types otherwise would
have been used. Typically because the underlying hardware does not support floating-point
operations directly for various reasons. One important property of fixed-point data types is the fixed
dynamic range. To exploit the dynamic range, data are often scaled so overflow will occur with a
certain likelihood. Therefore overflow behavior is important for fixed-point data types. Saturation on
overflow is often preferred. Furthermore saturation on overflow is often supported in hardware by
processors that naturally operate on fixed-point data types. This TR introduces saturating fixed-
point types next to non saturating fixed-point types (called primary fixed-point types).

It was decided to give the programmer control over the general behavior of operands declared
without an explicit fixed-point overflow type-qualifier by two pragmas, FX_FRACT_OVERFLOW and
FX_ACCUM_OVERFLOW, for fract and accum types respectively. The default behavior of this
pragma is default (implying an undefined behavior), but a programmer can choose to change the
default behavior to saturation on overflow with these pragmas. This is subject to the usual scoping
rules for pragmas.

Generally it is required that if a value cannot be represented exactly by the fixed-point type, it should
be rounded up or down to the nearest representable value in either direction. It was chosen not to
specify this further as there is no common path chosen for this in hardware implementations, so it
was decided to leave this implementation defined.
The above requirement to precision means that the result should be within 1 unit in last place (ulp).
Processors that support fixed-point arithmetic in hardware have no problems in meeting this
precision requirement without loss of speed. However, processors that will implement this with
integer arithmetic may suffer a speed penalty to get to the 1 ulp result.
One such type of processors would be would be mainstream 32-bit processors, on which
"long fract" might reasonably be implemented as 32 bits (format s.31). A multiplication of two 32-bit
"long fract"s to a "long fract" result would typically be compiled as a 32 x 32 -> 64-bit integer
multiplication followed by a shift right by 31 bits, keeping only the bottom 32 bits at the end. On
many of these processors, the 64-bit product would be obtained in two 32-bit registers (say, R0 and
R1) and then the 31-bit shift across the register pair would take three instructions:

 shift R0 left 1 bit
 shift R1 right 31 bits (an unsigned shift)
 OR R1 into R0

which leaves the 32-bit "long fract" result in R0. But note that the most significant 31 bits of the
result are already available in R0 after the first shift; the other two instructions serve only to move
the last, least significant bit into position. If the product is permitted to be up to 2 ulps in error, an
implementation could choose instead to leave the least significant bit zero and dispense with the
last two instructions.

ISO/IEC DTR 18037

71 © ISO 2003 – All rights reserved

Although a 1-ulp bound is preferable the above example shows significant savings that will justify a
larger bound. Therefore the user is allowed to choose speed over precision with a pragma,
FX_FULL_PRECISION. The default state of this pragma is implementation-defined.

A.5 Type conversions, usual arithmetic conversions

The fixed-point data types are positioned 'between' the integer data types and the floating-point data
types: if only integer data types are involved then the current standard rules (cf. 6.3.1.1 and 6.3.1.8)
are followed, when fixed-point operands but no floating-point operands are involved the operation
will be done using fixed-point data types, otherwise everything will be converted to the appropriate
floating-point data type.

Since it is likely that an implementation will support more than one (type-A and/or type-B) fixed-point
data type, in order to assure arithmetic consistency it should be well-defined to which fixed-point
data type a type is converted to before an operation involving fixed-point and integer data values is
performed. There are several approaches that could be followed here:
- define that the result of any operation on fixed-point data types should be as if the operation is

done using infinite precision. This gives an implementation the possibility to choose an
implementation dependent optimal way of calculating the result (depending on the required
precision of the expression by selecting certain fixed-point operations, or, maybe, emulate the
fixed-point expression in a floating-point unit), as long as the required result is obtained.

- to define an extended fixed-point data type to which every operand is converted before the
operation. It is then important that the programmer has access to the parameters of this
extended fixed-point type in order to control the arithmetic and its results. This could either be
the 'largest' type-B fixed-point data type (if supported), or the 'largest' type-A fixed-point data
type.

For the combination of an integer type and a fixed-point type, or the combination of a _Fract type
and an _Accum type, the usual arithmetic conversions may lead to useless results or to gratuitous
loss of precision. Consider the case of converting an integer to a _Fract type. This will only be
useful for the integer values 0 and –1. The same case can be made for mixing _Fract and
_Accum types. Therefore the approach taken was to define that the result of any operation
involving fixed-point types should be as if the operation is done using infinite precision. This
deviates from the usual arithmetic conversions, in that no common type whereto both operands are
converted is defined. Rather it can be said that the operation is performed directly with the value of
the two operands, without any change in value due to usual arithmetic conversions. The resulting
value of the operation is then subject to overflow and rounding as specified by its result type.

The mentioned approach gives the expected results for multiplication and division operations
involving an integer and a fixed-point type operand, and is also used for addition and subtraction
operations. In these latter cases, when the fixed-point type is a _Fract type, the operation will
result in an overflow for practically all values of the integer operand. It was decided not to disallow
the combinations of integer and fixed-point type operands for addition and subtraction operations,
but to encourage implementations to produce a warning when these operations are encountered.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 72

A.6 Operations invo lving fixed-point types

The decision not to promote integers to fixed-point to balance the operands is clearly a departure
from the way C is normally defined and, in particular, the way the same operations work when
integer and floating-point operands are mixed. The inconsistency has been introduced because
integer values often cannot be promoted honestly to fixed-point types. None of the _Fract types
has any integer bits, and an implementation may have as few as four integer bits in its _Accum
types.
On such an implementation, it is impossible to convert an integer with a value larger than 8 to any
fixed-point type, which leaves only a limited range of integers to work with. Consider, for example,
the problem of dividing a fixed-point value by a (non-constant) integer value which could be as large
as 15.

The floating-point types have the property that (on all known machines) the range of all the integers
fits within even the smallest floating-point type, so converting an integer to floating-point at worst
suffers a rounding error (and often not even that). This is definitely not the case for the fixed-point
types. On the other hand, unlike with floating-point, fixed-point and integer values have very similar
representations, and their operations have similar implementations in hardware. Thus, it is less
trouble for an implementation to mix integer and fixed-point operands and perform the calculation
directly than it would be for floating-point.

The result type of an operation involving fixed-point types is the type with the higher rank. When
mixing integer and fixed-point types, fixed-point types are chosen to have higher rank. The reason
for this choice is based on the common case where a fixed-point value is multiplied by a factor of 2,
and when a fixed-point type is divided by an integer value. The natural result type in this case is the
fixed-point type.

As specified in the clause "Overflow and Rounding", two types of overflow handling are defined for
the fixed-point types: saturating and default. Generally, if either operand has a saturating fixed-point
type, the result type of the operation will be a saturating fixed-point type.

A.7 Excep tion for 1 and –1 Multiplication Results

The rule about 1 and -1 multiplication results is needed to permit an important optimization for sum-
of-products calculations on many DSPs (sum-of-products being primarily what DPSs are designed
to do). Using the long accum type for the accumulator that holds the running sum, a sum-of-
products (or dot product) can be naturally coded as:

 fract a[N], b[N];
 long accum acc = 0;
 for (ix = 0; ix < N; ++ix) {
 acc += (long accum) a[ix] * b[ix];
 }

ISO/IEC DTR 18037

73 © ISO 2003 – All rights reserved

While the above would be the obvious code, on many DSPs the multiply-accumulate hardware
really does this:

 acc += (long accum) ((sat long fract) a[ix] * b[ix]);

In other words, the product is saturated to the long fract format before being added into the
accumulator. The only detectable difference between this and the code above occurs when "a[ix]"
and "b[ix]" are both -1, in which case the product is 1, which cannot be represented exactly as a
long fract. In this case (and only this case), the DSP hardware saturates the 1 to the
maximum long fract value before adding.

With the original code above, the rules in the clause on "Overflow and Rounding" require that the
product be represented exactly if the result type permits it. Since a 1 can always be represented
exactly by a long accum, the rounding rules do not permit the 1 to be replaced by the maximum
long fract value. (Note that the long fract type makes no appearance in the original
code.) Unfortunately, on processors that only support sum-of-product operations that saturate the
product to long fract, it is not possible to implement the code above efficiently as written
without some compromise. Rather than relax the rounding rules in general, a special case has
been made to cover this condition.

A.8 Linguistic Variables and unsigned _Fract: an example of unsigned fixed-point

The Linguistic variables definition and manipulation have been identified as a major application area
that use unsigned _Fract variables as a storage requirement. Linguistic variables normalize
the data of interest to an application between the values of 0 and 1. In applications the value
associated with a linguistic variable is an expression of a degree of truth unlike Boolean variables
that take on the value of either 0 or 1. Fuzzy logic functions combining linguistic variables also
return logic values scaled between 0 and 1.

Linguistic variables are used in many non-linear complex applications, in consumer applications,
non-linear process control, animation, pattern recognition and financial applications.

Applications that use linguistic variables depend on the size of a linguistic variable in the application
to determine the precision in which the results are computed. Applications that use linguistic
variables select a resolution to be used throughout the application. Typical linguistic variables in
commercial applications are 8 or 16 bits in size. Other sizes have been seen in commercial
applications but would be impacted less by using their signed counterpart.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 74

Annex B - Named ad dress spaces and named-register storage classes

B.1 Embedded systems extended memory support

B.1.1 Modifiers for named address spaces

Applications on small-scale embedded systems run in a non-hosted environment, and on resource-
constrained systems. Compilers for such systems are responsible for freeing the application
developer from most, but not all, target-specific responsibilities. Embedded systems, including most
consumer electronics products and DSP-driven devices, are optimized to support the requirements
of their intended applications. Their central processors generally contain many separate address
spaces. C language support for these systems extends the C linear address space to an address
space that, although linear within memory spaces, is not always created equal. Application
developers need the vocabulary to efficiently express how their application uses the target
hardware.

Named address space type modifiers allow the application developer to express a very specific
requirement, that variables be associated with a specific memory space. In turn, the compiler will
be able to generate more efficient code for the target implementation.

B.1.1.1 User-defined device drivers

Many embedded systems include memory that can only be accessed with some form of device
driver. These include memories accessed by serial data busses (I2C, SPI), and on-board
non-volatile memory that must be programmed under software control. Device-driver memory
support is used in applications where the details of the access method can be separated from the
details of the application.

In contrast to memory-mapped I/O, the extended memory layout and its use should be
administrated by the compiler/linker.

Language support for embedded systems needs to address the following issues:
1) Memory with user-defined device drivers. User-defined device drivers are required for

reading and writing user-defined memory.
• Memory-read functions take as an argument an address in the user-defined memory

space, and return data of a user-defined size.
• Memory-write functions take two arguments, an address in the user-defined memory

space and data with a user-specified size.
• Applications require support for multiple user-defined address spaces.
•� All memory in a specific named address space may not necessarily have contiguous

addressing. It is common to find that memory, even though accessed through a
common means, may have gaps in it structure. In similar way some named address
space memory may have physical address aliases.

ISO/IEC DTR 18037

75 © ISO 2003 – All rights reserved

2) The compiler is responsible for:
• Allocating variables, according to the needs of the application, in "normal" address

space, and in space accessed by the user-defined memory device drivers.
• Making calls to device drivers, when accessing variables supported by user-defined

device drivers.
• Automating the process of casting and accessing the data.

3) Application variables in user-defined memory areas:
• Need to support all of the available data types. For example, declarations for

fundamental data types, arrays and structures.
• Users need to direct the compiler to use a specific memory area.
• The compiler needs to be free to use a user-defined memory area as a generic,

general-purpose memory area, for the purpose of a variable spill area.

B.1.2 Application-defined multiple address space support

Inherent processor-architecture based address spaces are implementation-defined and provided by
the compiler for that processor architecture and as such will be available to all applications normally
supported by the processor. Examples include accesses to various native data spaces, or data
spaces where write and read operations are not symmetrical (f.i., flash memories where read
operations may run at full speed, while write operations occur through some driver code).

User-defined named address spaces are part of an application specific address space. The support
code for user defined address space may very well be portable across many applications and quite
possibly many different processors, but its nature is essentially part of an application. Data access
to user defined named address spaces are often through I2C, microwire, or compact flash memory
parts. Accesses to 'normal' address spaces may be handled by the compiler or may be resolved by
the linker, for the user defined address spaces the modifier names need to be associated with user
supplied access code.

The addressmod is a method to encapsulate the memory declaration, to tie variable declarations
to device drivers, and to provide the compiler the information necessary to generate the code that is
required to access the variables that are declared by an application. User-defined memory could be
global in nature, or local to one program segment.

Typical implementations of the address space modifiers are in project application specific header
files.

addressmod (memory_space_name,
Read_access,
Write_access,
[optional additional address base and ranges])
;

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 76

Read and write access is assumed to be byte wide. The resolution of data types other than
character size is implementation-defined and may be resolved either in the
compiler or the read and write device drivers.

Read_access points to a user defined macro, function or inline function that the compiler will
use to read variables assigned by the compiler in the named memory space.

Write_access points to user defined macro, function or inline function that is used to read
from the defined memory space.

Address base and size information is optional and implementation-defined. In many systems it may
be defined at link time as part of the conventional linking process or at
compile time.
Note that this is perhaps an odd place to define the physical address space.
A named address space can be an application specific address space or
simply a name designed to group variables for some common purpose. The
generated code, especially if either an inline function or macro is used for an
access definition, may be significantly optimized (in the absence of a good
optimizing linker) through a compile time optimization familiar with specific
address information. It is possible to define physical address space
information at the linking phase in the traditional manner.

B.1.3 I/O register definition for intrinsic or user defined address spaces

Input/Output registers may be located within any of the address spaces: either intrinsic address
spaces or new address spaces defined by addressmod as part of an application. The _Access
modifier provides a means to extend the information associated with the declaration. The
_Access modifier associates the address, the memory space and the access limits to a C
declaration. The _Access modifier is an extension and alternative to the register declaration
examples described in Clause 3. The following is the definition of a declaration using the _Access
modifier.

[register] _Access (memory_space_name, address
[, access_method [, size [, endian]]]) declaration ;

The minimum declaration using the _Access modifier requires two arguments:
memory_space_name and address, defined as follows:
- memory_space_name is any defined named address space, either intrinsic or an address space

defined by addressmod;
- address is an integer expression resolvable at translation time, designating the memory

address.

The _Access modifier has three optional arguments that further may be used to define the access
to the variables declared by declaration; these arguments are defined as follows:

ISO/IEC DTR 18037

77 © ISO 2003 – All rights reserved

- access method defines the hardware based access restrictions typically found on Input/Output
registers, and is one of read_write, read, write, or read_modify_write; the default
is full access (read_modify_write);

- size is the physical size in bytes of the hardware object; the default size is 1. In general size will
be equal to sizeof(declaration), however this is not guaranteed. When size is not
equal to the size of the declaration then the usual C conversion rules apply;

- endian is one of little_endian or big_endian, and defines the byte order of the
physical hardware. The default value for endian is the same as the default endian value of the
compiler and target processor; endian is never needed when the size is 1 and may be omitted
when the endianness of the hardware object to be accessed is always the same as the
endianness of the processor it is connected to.

The described declaration is consistent with ordinary C variable declarations (clause 6.7 of the
ISO/IEC 9899:1999 C standard). While creating this document the question arose about the
meaning of keyword register in the declaration. Since the variable defined using an _Access
modifier may be any C declaration including arrays, the meaning of register can be interpreted
either as referring to a data object that cannot be the object of a pointer, or simply a register
definition. The conclusion was that register would remain in the _Access specification and the
question of its precise meaning and use will be revisited at some point in the future after experience
has been gained with the _Access definition

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 78

Annex C - Implemen ting the <iohw.h> header

C.1 General

The <iohw.h> header defines a standardized function syntax for basic I/O hardware addressing.
This header should normally be created by the compiler vendor.

While this standardized function syntax for basic I/O hardware addressing provides a simple, easy-
to-use method for a programmer to write portable and hardware-platform-independent I/O driver
code, the <iohw.h> header itself may require careful consideration to achieve an efficient
implementation.

This clause gives some guidelines for implementers on how to implement the <iohw.h> header in
a relatively straightforward manner given a specific processor and bus architecture.

Other approaches for implementing the <iohw.h> header are under consideration; in a later
version of this document, such other approaches may be included next to, or as replacement of, the
approach given here.

C.1.1 Recommended steps

Briefly, the recommended steps for implementing the <iohw.h> header are:

1. Get an overview of all the possible and relevant ways the I/O register hardware is typically
connected with the given bus hardware architectures, and get an overview of the basic software
methods typically used to address such I/O hardware registers.

2. Define a number of I/O functions, macros and I/O-register designators which support the
relevant I/O access methods for the intended compiler market.

3. Provide a way to select the right I/O function at compile time and generate the right machine
code based on the I/O access properties related to the I/O-register designators.

C.1.2 Compiler considerations

In practice, an implementation will often require that very different machine code is generated for
different I/O access cases. Furthermore, with some processor architectures, I/O hardware access
will require the generation of special machine instructions not typically used when generating code
for the traditional C memory model.

Selection between different code generation alternatives must be determined solely from the
I/O-register designator declaration for each I/O register. Whenever possible this access method

ISO/IEC DTR 18037

79 © ISO 2003 – All rights reserved

selection should be implemented such that it may be determined entirely at compile time, in order to
avoid any runtime or machine code overhead.

For a compiler vendor, selection between code generation alternatives can always be implemented
by supporting different intrinsic access-specification types and keywords designed specially for the
given processor architecture, in addition to the standard types and keywords defined by the
language.

Simple <iohw.h> implementations limited to the most basic functionality can be implemented
efficiently using a mixture of macros, in-line functions and intrinsic types or functions. See Annex D
regarding simple macro implementations.

Full featured implementations of <iohw.h> will require direct compiler support for I/O-register
designators.

C.2 Overview of I/O Hardware Connection Options

The various ways an I/O register can be connected to processor hardware are determined primarily
by combinations of the following three hardware characteristics:

1. The bit width of the logical I/O register.
2. The bit width of the data-bus of the I/O device.
3. The bit width of the processor-bus.

C.2.1 Multi-Addressing and I/O Register Endianness

If the width of the logical I/O register is greater than the width of the I/O device data bus, an I/O
access operation will require multiple consecutive addressing operations.

The I/O register endianness information describes whether the MSB or the LSB byte of the logical
I/O register is located at the lowest processor bus address.
(Note that the I/O register endianness has nothing to do with the endianness of the underlying
processor hardware architecture).

Table: Logical I/O register / I/O device addressing overview2

I/O device bus widths

8-bit device bus 16-bit device bus 32-bit device bus 64-bit device bus

Logical I/O register
widths

LSB-MSB MSB-
LSB

LSB-
MSB

MSB-
LSB

LSB-MSB MSB-
LSB

LSB-
MSB

MSB-
LSB

8-bit register Direct n/a n/a n/a

16-bit register r8{0-1} r8{1-0} Direct n/a n/a

2 Note, that this table describes some common bus and register widths for I/O devices. A given platform may use other
register and bus widths.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 80

32-bit register r8{0-3} r8{3-0} r16{0-1} r16{1-0} Direct n/a

64-bit register r8{0-7} r8{7-0} r16{0,3} r16{3,0} R32{0,1} r32{1,0} Direct
(For byte-aligned address ranges)

C.2.2 Address Interleaving

If the size of the I/O device data bus is less than the size of the processor data bus, buffer register
addressing will require the use of address interleaving.

Example:

If the processor architecture has a byte-aligned addressing range and a 32-bit processor
data bus, and an 8-bit I/O device is connected to the 32-bit data bus, then three adjacent
registers in the I/O device will have the processor addresses:

<addr + 0>, <addr + 4>, <addr + 8>

This can also be written as
<addr + interleaving*0>, <addr+interleaving*1>, <addr+interleaving*2>

where interleaving = 4.

Table: Interleaving overview: (bus to bus interleaving relations)

Processor bus widthsI/O device bus
widths

8-bit bus 16-bit bus 32-bit bus 64-bit bus

8-bit device bus Interleaving 1 interleaving 2 Interleaving 4 interleaving 8

16-bit device bus n/a interleaving 2 Interleaving 4 interleaving 8

32-bit device bus n/a n/a Interleaving 4 interleaving 8

64-bit device bus n/a n/a n/a interleaving 8
(For byte-aligned address ranges)

C.2.3 I/O Connection Overview:

The two tables above when combined shows all relevant cases for how I/O hardware registers can
be connected to a given processor hardware bus, thus:

ISO/IEC DTR 18037

81 © ISO 2003 – All rights reserved

Table: Interleaving between adjacent I/O registers in buffer

Device bus Processor data bus width

width=8 width=16 width=32 width=64

I/O
Register

width Bus
width

LSB
MSB

No.
Opr.

size 1 size 2 size 4 size 8

8-bit 8-bit n/a 1 1 2 4 8

LSB 2 2 4 8 168-bit

MSB 2 2 4 8 16
16-bit

16-bit n/a 1 n/a 2 4 8

LSB 4 4 8 16 328-bit

MSB 4 4 8 16 32

LSB 2 n/a 4 8 1616-bit

MSB 2 n/a 4 8 16

32-bit

32-bit n/a 1 n/a n/a 4 8

MSB 8 8 16 32 648-bit

LSB 8 8 16 32 64

LSB 4 n/a 8 16 3216-bit

MSB 4 n/a 8 16 32

LSB 2 n/a n/a 8 1632-bit

MSB 2 n/a n/a 8 16

64-bit

64-bit n/a 1 n/a n/a n/a 8
(For byte-aligned address ranges)

C.2.4 Generic buffer index

The interleaving distance between two logically adjacent registers in an I/O register array can be
calculated from 3:

1. The size of the logical I/O register in bytes.
2. The processor data bus width in bytes.
3. The device data bus width in bytes.

3 For systems with byte aligned addressing

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 82

Conversion from I/O register index to address offset can be calculated using the following general
formula:

Address_offset = index *
 sizeof(logical_IO_register) *
 sizeof(processor_data_bus) /
 sizeof(device_data_bus)

Assumptions:
• address range is byte-aligned;
• data bus widths are a whole number of bytes;
• width of the logical_IO_register is greater than or equal to the width of the

device_data_bus;
• width of the device_data_bus is less than or equal to the processor_data_bus.

C.3 I/O-register designators for different I/O addressing methods

A processor may have more than one addressing range4. For each processor addressing range an
implementer should consider the following typical addressing methods:

- Address is defined at compile time.
The address is a constant. This is the simplest case and also the most common case with
smaller architectures.

- Base address initiated at runtime.
Variable base-address + constant-offset. I.e. the I/O-register designator must contain an
address pair (identification of base address register + logical address offset).

The user-defined base-address is normally initialized at runtime (by some platform-dependent
part of the program). This also enables a set of I/O driver functions to be used with multiple
instances of the same iohw.

- Indexed bus addressing
Also called orthogonal or pseudo-bus addressing. It is a common way to connect a large
number of I/O registers to a bus, while still only occupying only a few addresses in the processor
address space.
This is how it works: First the index-address (or pseudo-address) of the I/O register is written to
an address bus register located at a given processor address. Then the data read/write
operation on the pseudo-bus is done via the following processor address, i.e., the I/O-register
designator must contain an address pair (the processor-address of indexed bus, and the
pseudo-bus address (or index) of the I/O register itself).

This access method also makes it particularly easy for a user to connect common I/O devices
that have a multiplexed address/data bus, to a processor platform with non-multiplexed busses

4 Processors with a single addressing range only uses memory mapped I/O.

ISO/IEC DTR 18037

83 © ISO 2003 – All rights reserved

using a minimum amount of glue logic. The driver source code for such an I/O device is then
automatically made portable to both types of bus architecture.

- Access via user-defined access driver functions.
These are typically used with larger platforms and with small single device processors (e.g. to
emulate an external bus). In this case the I/O-register designator must contain pointers or
references to access functions.

The access driver solution makes it possible to connect a given I/O driver source library to any kind
of platform hardware and platform software using the appropriate platform-specific interface
functions.

In general, an implementation should always support the simplest addressing case, whether it is the
constant-address or base-address method that is used will depend on the processor architecture.
Apart from this, an implementer is free to add any additional cases required to satisfy a given
domain.
Because of the different number of parameters required and parameter ranges used in an I/O-
register designator, it is often convenient to define a number of different I/O-register designator
formats for the different access methods

C.4 Atomic operation

It is a requirement of the <iohw.h> implementation that in each I/O function a given partial I/O
register5 is addressed exactly once during a READ or a WRITE operation and exactly twice during a
READ-modify-WRITE operation.

It is recommended that each I/O function in an <iohw.h> implementation, be implemented such that
the I/O access operation becomes atomic whenever possible.

However, atomic operation is not guaranteed to be portable across platforms for READ-modify-
WRITE operations (ioor, ioand, ioxor) or for multi-addressing cases.

The reason for this is simply that many processor architectures do not have the instruction set
features required for assuring atomic operation.

C.5 Read-modify-write operations and multi-addressing cases.

In general READ-modify-WRITE operations should do a complete READ of the I/O register,
followed by the operation, followed by a complete WRITE to the I/O register.

It is therefore recommended that an implementation of multi-addressing cases should not use
READ-modify-WRITE machine instructions during partial register addressing operations.

5 A 32 bit logical register in a device with an 8-bit data bus contains 4 partial I/O registers

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 84

The rationale for this restriction is to use the lowest common denominator of multi-addressing
hardware implementations in order to support as wide a range of I/O hardware register
implementation as possible.

For instance, more advanced multi-addressing I/O register implementations often take a snap-shot
of the whole logical I/O register when the first partial register is being read, so that data will be
stable and consistent during the whole read operation. Similarly, write registers are often made
“double-buffered” so that a consistent data set is presented to the internal logic at the time when the
access operation is completed by the last partial write.

Such hardware implementations often require that each access operation be completed before the
next access operation is initiated.

C.6 I/O initialization

With respect to the standardization process it is important to make a clear distinction between I/O
hardware (device) related initialization and platform related initialization. Typically three types of
initialization are related to I/O:
1. I/O device initialization.
2. I/O access initialization.
3. I/O base access initialization.

Here only I/O access initialization and I/O base access initialization is relevant for basic I/O
hardware addressing.

I/O device initialization is a natural part of a hardware driver and should always be considered as a
part of the I/O driver application itself. This initialization is done using the standard functions for
basic I/O hardware addressing. I/O device initialization is therefore not a topic for the
standardization process.

I/O access initialization concerns the initialization and definition of I/O-register designator objects.
This process is implementation-defined. It depends both on the platform and processor architecture
and also on which underlying access methods are supported by the <iohw.h> implementation.

If runtime initialization is needed this can more efficiently be implemented by splitting the access
information in an I/O-register designator containing only static information and an I/O-group
designator containing a mixture of dynamic and static information. Initialization at runtime can then
be controlled from the user driver level via the I/O hardware interface. The function:

iogroup_acquire(iogroup_designator)

can be used as a portable way to specify in the source code where and when such initialization
should take place.

I/O base initialization is used if some of the address information is first available at runtime, or if, for
instance, the same I/O driver code needs to service multiple I/O devices of the same type.
Initialization and release of runtime resources related to access bases:

ISO/IEC DTR 18037

85 © ISO 2003 – All rights reserved

iogroup_acquire(iogroup_designator)
iogroup_release(iogroup_designator)

If multiple devices are serviced by the same driver code then switching between the devices can be
done re-initialization of the I/O-group designator information. The function:

iogroup_map(iogroup_designator dest, iogroup_designator src)

provides a portable way to do this.

With most freestanding environments and embedded systems the platform hardware is well defined,
so all I/O-group designators for I/O registers used by the program can be completely defined at
compile time. For such platforms runtime I/O base initialization is not an issue.

With larger processor systems I/O hardware is often allocated dynamically at runtime. Here the
I/O-group designators information can only be partly defined at compile time. Some platform
software dependent part of it must be initialized at runtime.

When designing the I/O-group designator object a compiler implementer should therefore make a
clear distinction between static information and dynamic information; i.e. what can be defined and
initialized at compile time and what must be initialized at runtime.
Depending on the implementation method and depending on whether the I/O-group designator
objects need to contain dynamic information, the I/O-group designator object may or may not
require an instantiation in data memory. Better execution performance can usually be achieved if
more of the information is static.

C.7 Intrinsic Features for I/O Hardware Access

The implementation of I/O hardware access may require for many platforms the use of special
machine instructions not otherwise used with the normal C memory model. It is recommended that
the compiler vendor provide the necessary intrinsics for operating on any special addressing range
supported by the processor.

An I/O hardware implementation should completely encapsulate any intrinsic functionality.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 86

Annex D - Migration path for <iohw.h> implementations

D.1 Migration path for <iohw.h> implementations

It may take some time before compilers have full featured support for I/O-register designators and
I/O-group designators based on intrinsic functionality. Until then efficient I/O hardware
implementations with a limited feature set can be implemented using C macros. This enables new
I/O driver functions based on the I/O hardware interface for basic I/O hardware addressing to be
used with existing older compilers.

D.2 <iohw.h> implementation based on C macros

This chapter illustrates a generic and flexible implementation technique for creating efficient
<iohw.h> header implementations based on C macros. This can be done in a relatively
straightforward manner common for all processor architectures.

D.2.1 The access specification method

The generic syntax specification in annex D.2 defines a number of individual access specification
parameters which are combined to form the I/O-register designator for a given I/O register. A
similar approach is used with this implementation method except that an access type for a given I/O
register must be defined by concatenation of the names for the access parameters. For example:

#define portname_TYPE <bus>_<method>_<size>_<device bus>_<limitations>
 MM DIRECT 8 DEVICE8 RO
 IO DIRECT_BUF 16 DEVICE8L WO
 INDEXED 32 DEVICE8H RW
 INDEXED_BUF DEVICE16 RMW
 BASED DEVICE16L
 BASED_BUF DEVICE16H
 DRIVER DEVICE32

Any additional access parameters required by the given <bus>_<method> access method must be
defined separately in a similar manner:

#define portname_<parameter_name>

Example:
The full I/O-register designator for direct memory mapped access to a 16-bit write-only
register in an 8-bit device consists of two definitions, the access type and the address
location:

#define PORTA_TYPE MM_DIRECT_16_DEVICE8L_WO /* PORTA access type */
#define PORTA_ADDR 0x12000 /* PORTA address */

ISO/IEC DTR 18037

87 © ISO 2003 – All rights reserved

D.2.2 An <iohw.h> implementation technique

The <iohw.h> header can be implemented using a technique called macro specialization.

The macro specialization technique uses the following implementation procedure. The I/O access
function macros ioxx(..) undergo a number of nested macro expansions until it ends in either a
special macro for the given access operation, or in a diagnostic message. A diagnostic message
can occur if either the specified access method is not supported by the implementation, or if an
illegal I/O operation is detected in the source code.

The implementation procedure (without detection of access limitations) follow these steps:
1 Define macros which translate ioxx(portname) to portname_TYPE and adds the

operation type. This defines the access methods.
2 Translate the access methods to specialized macro names.
3 Define code generation all for the access types and operations in specialized macros.

If more informative error diagnostics and detection of access limitations is wanted an extra
expansion level must be used:
1 Define macros which translate ioxx(portname) to portname_TYPE and adds the

operation type. This defines the access methods.
2a Translate the access methods to specialized access operation names.
2b Produce informative diagnostic for illegal access operations and translate legal operations

to specialized macro names.
3 Define code generation for all the access types and operations in specialized macros.

D.2.3 Features

The <iohw.h> implementation technique proposed has the following advantages:
- The specification of an I/O register only requires few source lines pr register.
- The specification syntax is similar across different processor architectures.
- The specification syntax is uniform across compiler implementations.
- Only the code generation macros in step 3 may require modifications in order to adapt an

existing implementation to fit a new compiler for the same processor.
- If the access methods are the same and new the processor architecture is similar only the code

generation macros in step 3 may require adjustments to the new processor architecture.
- New access methods can be added (or deleted) to suit a particular execution environment or

market segment without interaction to the other access method implementations.
- Each access method can be optimized individually for maximum performance with respect to

execution speed and memory foot print. For instance by use of compiler intrinsic features.

The <iohw.h> implementation technique proposed has the following disadvantages:
- Addition of read/write limitation detection tends to lead to code bloat.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 88

D.2.4 The <iohw.h> header

The implementation header below implements the following typical access methods to illustrate the
implementation principle:
- 8-bit register and 8-bit register buffer in a memory mapped device.
- 16-bit register and 16-bit register buffer in a memory mapped device
- 16-bit register and 16-bit register buffer in a 8-bit memory mapped device
- 8-bit register and 8-bit register buffer in a I/O mapped device
- 8-bit register and 8-bit register buffer in a device on an I/O mapped indexed bus.

The example assumes the processor hardware two addressing ranges, a 16-bit wide addressing
range (memory mapped devices) and an 8-bit wide addressing range (I/O mapped devices).

//************************* Start of IOHW ************************************
#ifndef IOHW_H
#define IOHW_H
#include <stdint.h> /* uintN_t types */

// Define standard function macros for I/O hardware access.
// Translates symbolic I/O register name to an access type
#define iord(NAME) NAME##_TYPE(RD,NAME,0)
#define iowr(NAME,PVAL) NAME##_TYPE(WR,NAME,(PVAL))
#define ioor(NAME,PVAL) NAME##_TYPE(OR,NAME,(PVAL))
#define ioand(NAME,PVAL) NAME##_TYPE(AND,NAME,(PVAL))
#define ioxor(NAME,PVAL) NAME##_TYPE(XOR,NAME,(PVAL))

#define iordbuf(NAME,INDEX) NAME##_TYPE(RD,NAME,(INDEX),0)
#define iowrbuf(NAME,INDEX,VAL) NAME##_TYPE(WR,NAME,(INDEX),(VAL))
#define ioorbuf(NAME,INDEX,VAL) NAME##_TYPE(OR,NAME,(INDEX),(VAL))
#define ioandbuf(NAME,INDEX,VAL) NAME##_TYPE(AND,NAME,(INDEX),(VAL))
#define ioxorbuf(NAME,INDEX,VAL) NAME##_TYPE(XOR,NAME,(INDEX),(VAL))

// In this macro implementation the integer and long version
// of the iohw functions are equal
#define iordl(NAME) NAME##_TYPE(RD,NAME,0)
#define iowrl(NAME,PVAL) NAME##_TYPE(WR,NAME,(PVAL))
#define ioorl(NAME,PVAL) NAME##_TYPE(OR,NAME,(PVAL))
#define ioandl(NAME,PVAL) NAME##_TYPE(AND,NAME,(PVAL))
#define ioxorl(NAME,PVAL) NAME##_TYPE(XOR,NAME,(PVAL))

#define iordbufl(NAME,INDEX) NAME##_TYPE(RD,NAME,(INDEX),0)
#define iowrbufl(NAME,INDEX,VAL) NAME##_TYPE(WR,NAME,(INDEX),(VAL))
#define ioorbufl(NAME,INDEX,VAL) NAME##_TYPE(OR,NAME,(INDEX),(VAL))
#define ioandbufl(NAME,INDEX,VAL) NAME##_TYPE(AND,NAME,(INDEX),(VAL))
#define ioxorbufl(NAME,INDEX,VAL) NAME##_TYPE(XOR,NAME,(INDEX),(VAL))

#define iogroup_acquire(NAME) NAME##_INIT
#define iogroup_release(NAME) NAME##_EXIT
#define iogroup_map(DNAME,SNAME) ((DNAME##_ADR) = (SNAME##_ADR))

//*** Translate access type for register to specialized macros for the operations ****
// Also resolve most address, index and interleaving calculations here, this
// enable single register access and buffer access can share code generation macros.
// Unsupported access methods, that is methods not defined here, will results in a
// compile time error (undefined symbol)

ISO/IEC DTR 18037

89 © ISO 2003 – All rights reserved

// Memory mapped I/O buffer and register access 8-bit
#define MM_DIR_BUF_8_DEV8(OPR,NAME,INDEX,VAL) \
 MM_DIR_8_DEV8_##OPR(NAME##_ADR+(INDEX)*MM_INTL,(VAL))
#define MM_DIR_8_DEV8(OPR,NAME,VAL) MM_DIR_8_DEV8_##OPR(NAME##_ADR,(VAL))

// Memory mapped I/O buffer and register access 16-bit
#define MM_DIR_BUF_16_DEV16(OPR,NAME,INDEX,VAL) \
 MM_DIR_16_DEV16_##OPR(NAME##_ADR+(INDEX)*MM_INTL,(VAL))
#define MM_DIR_16_DEV16(OPR,NAME,VAL) MM_DIR_16_DEV16_##OPR(NAME##_ADR,(VAL))

// Memory mapped I/O buffer and register access 16-bit register in 8-bit device
#define MM_DIR_BUF_16_DEV8L(OPR,NAME,INDEX,VAL) \
 MM_DIR_16_DEV8L_##OPR(NAME##_ADR+(INDEX)*MM_INTL*2,(VAL),MM_INTL)
#define MM_DIR_16_DEV8L(OPR,NAME,VAL) MM_DIR_16_DEV8L_##OPR(NAME##_ADR,(VAL),MM_INTL)

// I/O indexed bus mapped 8-bit buffer and buffer
#define IO_DIR_BUF_8_DEV8(OPR,NAME,INDEX,VAL) \
 IO_DIR_8_DEV8_##OPR(NAME##_ADR+(INDEX)*IO_INTL,(VAL))
#define IO_DIR_8_DEV8(OPR,NAME,VAL) IO_DIR_8_DEV8_##OPR(NAME##_ADR,(VAL))

// I/O indexed bus mapped 8-bit register and buffer
#define IO_IDX_8_DEV8(OPR,NAME,VAL) \
 IO_IDX_8_DEV8_##OPR(NAME##_ADR,(VAL),NAME##_SUBADR,IO_INTL)
#define IO_IDX_BUF_8_DEV8(OPR,NAME,INDEX,VAL) \
 IO_IDX_8_DEV8_##OPR(NAME##_ADR+(INDEX)*IO_INTL,(VAL),NAME##_SUBADR,IO_INTL)

/* Add access types for other access methods to be supported here */

//****** Some access support macros and intrinsic features *********************

#define MM_ACCESS(TYPE, lADR) (*((TYPE volatile *)(lADR)))
#define IO_INP(a) _inp((unsigned short)(a))
#define IO_OUTP(a,b) _outp((unsigned short)(a),(unsigned char)(b))

#define MM_INTL 2 /* Interleaving factor for 16-bit memory mapped bus (fixed) */
#define IO_INTL 1 /* Interleaving factor for 8-bit I/O bus (fixed here) */

typedef union { // This compiler uses byte alignment so we can use
 uint16_t w; // a union for fast 8/16-bit conversion
 struct {
 uint8_t b0; // LSB byte
 uint8_t b1; // MSB byte
 }b;
 } iohw_union16;

//******************* Start of Code generation macros ************************
/* MM_DIR_8_DEV8 */
#define MM_DIR_8_DEV8_RD(ADR,VAL) (MM_ACCESS(uint8_t,ADR))
#define MM_DIR_8_DEV8_WR(ADR,VAL) (MM_ACCESS(uint8_t,ADR) = (uint8_t)VAL)
#define MM_DIR_8_DEV8_OR(ADR,VAL) (MM_ACCESS(uint8_t,ADR) |= (uint8_t)VAL)
#define MM_DIR_8_DEV8_AND(ADR,VAL) (MM_ACCESS(uint8_t,ADR) &= (uint8_t)VAL)
#define MM_DIR_8_DEV8_XOR(ADR,VAL) (MM_ACCESS(uint8_t,ADR) ^= (uint8_t)VAL)

/* MM_DIR_16_DEV16 */
#define MM_DIR_16_DEV16_RD(ADR,VAL) (MM_ACCESS(uint16_t,ADR))
#define MM_DIR_16_DEV16_WR(ADR,VAL) (MM_ACCESS(uint16_t,ADR) = (uint16_t)VAL)
#define MM_DIR_16_DEV16_OR(ADR,VAL) (MM_ACCESS(uint16_t,ADR) |= (uint16_t)VAL)
#define MM_DIR_16_DEV16_AND(ADR,VAL) (MM_ACCESS(uint16_t,ADR) &= (uint16_t)VAL)
#define MM_DIR_16_DEV16_XOR(ADR,VAL) (MM_ACCESS(uint16_t,ADR) ^= (uint16_t)VAL)

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 90

/* MM_DIR_16_DEV8L */
#define MM_DIR_16_DEV8L_RD(ADR,VAL,INTL) (MM_ACCESS(uint8_t,ADR) * 256 + \
 MM_ACCESS(uint8_t,ADR + INTL))
#define MM_DIR_16_DEV8L_WR(ADR,VAL,INTL) { \
 iohw_union16 temp; \
 temp.w = (uint16_t)VAL; /* Rule C.4 */ \
 MM_ACCESS(uint8_t,ADR) = temp.b.b1; \
 MM_ACCESS(uint8_t,ADR+INTL) = temp.b.b0; \
 }
#define MM_DIR_16_DEV8L_OR(ADR,VAL,INTL) MM_DIR_16_8L_OPR(ADR,VAL,INTL,|)
#define MM_DIR_16_DEV8L_AND(ADR,VAL,INTL) MM_DIR_16_8L_OPR(ADR,VAL,INTL,&)
#define MM_DIR_16_DEV8L_XOR(ADR,VAL,INTL) MM_DIR_16_8L_OPR(ADR,VAL,INTL,^)
#define MM_DIR_16_8L_OPR(ADR,VAL,INTL,OPR) { /* Common for | & ^ */ \
 iohw_union16 temp; \
 temp.w = (uint16_t)VAL; /* Rule C.4 */ \
 temp.b.b1 OPR##= MM_ACCESS(uint8_t,ADR); /* Rule C.5 */ \
 temp.b.b0 OPR##= MM_ACCESS(uint8_t,ADR+INTL); \
 MM_ACCESS(uint8_t,ADR) = temp.b.b1; \
 MM_ACCESS(uint8_t,ADR+INTL) = temp.b.b0; \
 }

/* IO_DIR_8_DEV8 */
#define IO_DIR_8_DEV8_RD(ADR,VAL) (IO_INP(ADR))
#define IO_DIR_8_DEV8_WR(ADR,VAL) (IO_OUTP(ADR,VAL))
#define IO_DIR_8_DEV8_OR(ADR,VAL) (IO_OUTP(ADR,VAL | IO_INP(ADR)))
#define IO_DIR_8_DEV8_AND(ADR,VAL) (IO_OUTP(ADR,VAL & IO_INP(ADR)))
#define IO_DIR_8_DEV8_XOR(ADR,VAL) (IO_OUTP(ADR,VAL ^ IO_INP(ADR)))

/* IO_INDEXED_8_DEV8 */
#define IO_IDX_8_DEV8_RD(ADR,VAL,SUBADR,INTL) (IO_OUTP(ADR,SUBADR),IO_INP(ADR+INTL))
#define IO_IDX_8_DEV8_WR(ADR,VAL,SUBADR,INTL) (IO_OUTP(ADR,SUBADR),IO_OUTP(ADR+INTL,VAL))
#define IO_IXD_8_DEV8_OR(ADR,VAL,SUBADR,INTL) IO_IDX_8_OPR(ADR,VAL,SUBADR,INTL,|)
#define IO_IXD_8_DEV8_AND(ADR,VAL,SUBADR,INTL) IO_IDX_8_OPR(ADR,VAL,SUBADR,INTL,&)
#define IO_IXD_8_DEV8_XOR(ADR,VAL,SUBADR,INTL) IO_IDX_8_OPR(ADR,VAL,SUBADR,INTL,^)
#define IO_IXD_8_OPR(ADR,VAL,SUBADR,INTL,OPR) { /* common for | & ^*/\
 unsigned char tmp = VAL; /* Rule C.4 */\
 IO_OUTP(ADR,SUBADR); \
 tmp OPR##= IO_INP(ADR+INTL); \
 IO_OUTP(ADR,SUBADR); \
 IO_OUTP(ADR+INTL,tmp); \
 }

/* Add code generation macros for other supported access methods here */

endif
//*********************** End of IOHW ***************************

ISO/IEC DTR 18037

91 © ISO 2003 – All rights reserved

D.2.5 The user’s I/O-register designator definitions

For each I/O-register designator (each symbolic name) a complete definition of the access method
must be created. With this I/O hardware implementation the user must define the access_type and
any address information.

These platform dependent I/O register definitions are normally placed in a separate header file.
Here called "iohw_my_hardware".

//****** Start of user I/O register definitions (IOHW_MY_HARDWARE) ******
#ifndef IOHW_MY_HARDWARE
#define IOHW_MY_HARDWARE

#define MYPORTS_INIT {/* No initialization needed in this system */}
#define MYPORTS_RELEASE {/* No release needed in this system */}

#define MYPORT1_TYPE MM_DIR_8_DEV8 // 8-bit register in 8-bit device,
#define MYPORT1_ADR 0xc0000 // memory mapped, use direct access

#define MYPORT2_TYPE MM_DIR_16_DEV16 // 16-bit register in 16-bit device,
#define MYPORT2_ADR 0xc8000 // memory mapped, use direct access

#define MYPORT3_TYPE MM_DIR_16_DEV8L // 16-bit register in 8-bit device,
#define MYPORT3_ADR 0xc8040 // memory mapped, use direct access

#define MYPORT4_TYPE IO_DIR_8_DEV8 // 8-bit register in 8-bit device,
#define MYPORT4_ADR 0x2345 // I/O bus mapped, use direct access

#define MYPORT5_TYPE IO_IDX_8_DEV8 // 8-bit register in 8-bit device,
#define MYPORT5_ADR 0x2345 // I/O indexed bus mapped, use indexed access
#define MYPORT5_SUBADR 0x56

#define MYPORT6_TYPE MM_DIR_BUF_8_DEV8 // 8-bit register buffer in 8-bit device,
#define MYPORT6_ADR 0xb0000 // memory mapped, use direct access

#define MYPORT7_TYPE MM_DIR_BUF_16_DEV16 // 16-bit register buffer in 16-bit device,
#define MYPORT7_ADR 0xb8000 // memory mapped, use direct access

#define MYPORT8_TYPE MM_DIR_BUF_16_DEV8L // 16-bit register buffer in 8-bit device,
#define MYPORT8_ADR 0xb4000 // memory mapped, use direct access

#define MYPORT9_TYPE IO_DIR_BUF_8_DEV8 // 8-bit register buffer in 8-bit device,
#define MYPORT9_ADR 0x2345 // I/O bus mapped, use direct access

#define MYPORT10_TYPE IO_IDX_BUF_8_DEV8 // 8-bit register buffer in 8-bit device,
#define MYPORT10_ADR 0x2345 // I/O indexed bus mapped, use indexed access
#define MYPORT10_SUBADR 0x56

#endif

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 92

D.2.6 The driver function

The driver function should include <iohw.h> and the user I/O register definitions for the target
system "iohw_my_hardware". The example below tests some operations on the previous I/O
register definitions.

#include <iohw.h> // includes stdint.h
#include "iohw_my_hardware" // My register definitions

uint8_t cdat;
uint16_t idat;

void my_test_driver (void)
 {
 iogroup_acquire(MYPORTS);

 cdat = iord(MYPORT1); // 8-bit memory mapped register
 iowr(MYPORT1,0x12);

 iowr(MYPORT2,idat); // 16-bit memory mapped register
 ioor(MYPORT3, 0x2334); // 16-bit memory mapped register in 8-bit chip

 ioand(MYPORT4,0x34); // 8-bit I/O mapped register
 ioxor(MYPORT5,0xf0); // 8-bit I/O mapped register on indexed bus

 cdat = iordbuf(MYPORT6,20); // 8 bit memory mapped register

 iowrbuf(MYPORT7,43,0x3458); // 16-bit memory mapped register
 ioorbuf(MYPORT8,43,idat); // 16-bit memory mapped register in 8 bit chip

 ioandbuf(MYPORT9,43,0x02); // 8 bit I/O mapped register
 ioxorbuf(MYPORT10,43,0x12); // 8 bit I/O mapped register on indexed bus

 iogroup_release(MYPORTS);
 }

ISO/IEC DTR 18037

93 © ISO 2003 – All rights reserved

Annex E - Functiona lity not included in this Technical Report

E.1 Circular buffers

The concept of circular buffers is widely used within the signal processing community. An example
of the use of the concept of circular buffers is in a FIR filter, where it is used to reduce the number of
memory accesses. The functionality of a FIR filter can described in this way with current C:

int x[N+1]; // data values
int h[N+1]; // coefficient values
long int accu = 0;

x[0] = new_value;

accu = x[N] * h[N];

for(i=N-1; i>0; i--)
{
 accu += (long int) x[i] * h[i];
 x[i]= x[i-1];
}

The data value copy in the last statement in the for loop would be unnecessary, if the concept of a
circular buffer was employed here, reducing the number of memory accesses. Many digital signal
processors have direct support in their addressing hardware to provide zero-overhead circular
addressing. Zero-overhead means here that calculating the address for an access to a circular
buffer can be done in the same time as performing a regular address calculation, including the
wrap-around check and, if necessary, the execution of the wrap-around. However there are often
many restrictions on how hardware supported circular addressing can be used. E.g., only address
increments by one are allowed in some implementations, and there may be requirements to the size
and/or alignment of the buffer.

Since the functional specifications of the support for circular addressing in various processors is so
diverse, it is difficult to define an abstract model that can be used in a natural manner in the
C language, and that also can be translated efficiently for the various hardware paradigms.
Therefore, in this Technical Report no proposals are made for language extensions to support
circular buffers. Should, in the future, a single approach towards circular addressing become
dominant in the market, then an appropriate C language construct could be defined.

Some current approaches to circular addressing are given below.
- Add a new keyword (for instance, circ) to the C language, that allows a programmer to

indicate that an array or pointer with this qualifier is to be accessed with circular addressing.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 94

- Another solution is to define a new library function or macro, CIRC(), which could be used in the
following manner:

int *p;

p = CIRC(p+1, /* array info */);
// this does an increment by one of p

Array info in this example covers the starting address and end address of the address range
where circular addressing is desired. A compiler for an architecture that has direct hardware
support for circular addressing is then free to optimize this function call away, and exploit the
capabilities of the hardware.

- In the current C language there is provision to specify circular buffers, however only when using
array index notation:

accum += (long int) x[i % N]*h[i];
It is possible for a clever optimizer to recognize that this in fact is a circular buffer and exploit the
hardware support for this. This has the advantage that the use of circular buffers is already
possible within the current C language, but it requires the programmer to use array indices
rather than pointers. Furthermore it is not possible to specify any alignment constraint on the
allocated buffer, which might be necessary for the underlying hardware implementation.

No preferred solution is specified here.

E.2 Complex data types

In this Technical Report no complex fixed-point data types are been defined. However in the
C language, complex data types are already existing for floating-point numbers. As fract and
accum types can be viewed upon as an alternative to floating-point numbers in some applications it
is worthwhile considering extending the definition of complex types in C to include fract and accum
bases. It will be beneficial for the user community to standardize such data types as they have a
clear usage in an area like communications signal processing.

E.3 Consideration of BCD data types for Embedded Systems

It was briefly considered to include some form of Binary Coded Decimal (BCD) as part of the
Embedded Systems C Technical Report. BCD types have been frequently proposed for embedded
systems and financial applications. As the area of application for BCD types is too diverse, and
since in this version of this Technical Report only binary types are considered, it was decided not to
include BCD types.

E.4 Modwrap overflow

Next to the saturated overflow behavior, sometimes another overflow behavior is desired: modular
wrap-around. This exploits an important property of two's complement representation of fixed-point

ISO/IEC DTR 18037

95 © ISO 2003 – All rights reserved

data types, and is used in e.g. sums-of-products calculation, where the sum of a number of the
individual products may overflow, but the full sum does not overflow. In this case modular wrap-
around on overflow may be used.

Modular wrap-around overflow handling can be defined as follows:
For unsigned fixed-point types, the source value is replaced by a value within the range of
the fixed-point type that is congruent (in the mathematical sense) to the source value modulo
2N, where N is the number of integral bits in the fixed-point type. (For example, for unsigned
fract types, N equals 0, and the source value is replaced by a value between 0 and 1 that
is congruent to the source value modulo 1.) For signed fixed-point types, the source value is
replaced by a value within the fixed-point range that is congruent to the source value modulo
2(N+1), where N again is the number of integral bits in the fixed-point type. (In either case, the
effect is to discard all bits above the most significant bit of the fixed-point format.)

At some point, inclusion in this TR of an additional type qualifier (_Modwrap) to specify modular
wrap-around on overflow for the fixed-point types was considered. However, seeing its marginal
use and the added complexity of an extra type qualifier it was decided not to include this
functionality in the current text.
Implementations are however free to provide mechanisms to support the modwrap functionality.

ISO/IEC DTR 18037

© ISO 2003 – All rights reserved 96

Annex F - C++ Comp atibility and Migration issues

It is recognized that the functionality, described in the Technical Report, might also be useful in
environments where C++ is the dominant programming language. At the same time it is recognized
that the preferred C++ syntax and mechanisms to incorporate the described functionality is different.

In programming environments where the same code is envisioned to be used for both C and C++ it
is recommended to use a programming style that can easily support programming paradigms from
both communities. Unfortunately this programming style will neither be a C style or a C++ style.
In the absence of a formally agreed approach to this problem, this clause gives some guidelines on
how to use the functionality specified in this Technical Report in a C++ environment.

F.1 Fixed-point Arithmetic

Implementation of fixed-point arithmetic in C++ is simple and straightforward. Each fixed-point type
(such as sat long fixed) can be provided as a C++ class (such as class sat_long_fixed)
which provides its own set of overloaded operators. The fixed-point type-balancing rules can be
implemented by providing several dozen specific operand types for each overloaded operator. The
constructor syntax of C++ provides a method for conversion from integer and floating types to fixed-
point types.

F.2 Multiple Address Spaces Support

Named address space support could be added to C++ only as an extension; it would not be
implementable within the class library. Such an extension would not conflict with existing features of
C++.

F.3 Basic I/O Hardware Addressing

Regarding the C++ compatibility of iohw.h, refer to ISO/IEC TR 18015 (C++ Performance). That
Technical Report contains extensive discussion of methods for implementing the iohw capability in
C++, making use of the templates capability of C++.

