
©ISO/IEC WG14 N1031

Introduction
1 Traditionally, the C Library has contained many functions that trust the programmer to

provide output character arrays big enough to hold the result being produced. Not only
do these functions not check that the arrays are big enough, they frequently lack the
information needed to perform such checks. While it is possible to write safe, robust, and
error-free code using the existing library, the library tends to promote programming styles
that lead to mysterious failures if a result is too big for the provided array.

2 Perhaps the most common programming style is to declare character arrays large enough
to handle most practical cases. However, if the program encounters strings too large for it
to process, data is written past the end of arrays overwriting other variables in the
program. The program never gets any indication that a problem exists, and so never has a
chance to recover or to fail gracefully.

3 Worse, this style of programming has compromised the security of computers and
networks. Daemons are given carefully prepared data that overflows buffers and tricks
the daemons into granting access that should be denied.

4 If the programmer writes runtime checks to verify lengths before calling library
functions, then those runtime checks frequently duplicate work done inside the library
functions, which discover string lengths as a side effect of doing their job.

5 This technical report provides alternative functions for the C library that promote safer,
more secure programming. The functions verify that output buffers are large enough for
the intended result and return a failure indicator if they are not. Data is never written past
the end of an array. All string results are null terminated.

6 This technical report also addresses another problem that complicates writing robust
code: functions that are not reentrant because they return pointers to static objects owned
by the function. Such functions can be troublesome since a previously returned result can
change if the function is called again, perhaps by another thread.

7 The remaining feature of this technical report is a new random number generator that is
suitable for use in cryptography.

Introduction 1

WG14 N1031 ©ISO/IEC

1. Scope
1 This Technical Report specifies a series of extensions of the programming language C,

specified by International Standard ISO/IEC 9899:1999.

2 International Standard ISO/IEC 9899:1999 provides important context and specification
for this Technical Report. This Technical Report should be read as if Clause 3 of this
Technical Report was merged into the parallel structure of named Subclauses of Clause 7
of ISO/IEC 9899:1999.

2. Normative references
1 The following normative documents contain provisions which, through reference in this

text, constitute provisions of this Technical Report. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. Howev er, parties
to agreements based on this Technical Report are encouraged to investigate the possibility
of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid International Standards.

2 ISO/IEC 9899:1999, Information technology — Programming languages, their
environments and system software interfaces — Programming Language C.

3 ISO 31−11:1992, Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology.

4 ISO/IEC 646, Information technology — ISO 7-bit coded character set for information
interchange.

5 ISO/IEC 2382−1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms.

6 ISO 4217, Codes for the representation of currencies and funds.

7 ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times.

8 ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

9 IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously
designated IEC 559:1989).

2 General §2

©ISO/IEC WG14 N1031

3. Library

3.1 Introduction

3.1.1 Standard headers

1 Functions defined by this technical report are only defined by their respective headers
only if __USE_SECURE_LIB__ is defined as a macro name at the point in the source
file where the appropriate header is included.

2 If a given standard header is included more than once in a given scope, then it is
undefined behavior if __USE_SECURE_LIB__ is defined for some inclusions and not
for others.

3.1.2 Use of errno

1 An implementation may set errno for the functions defined in this technical report, but
is not required to.

§3.1.2 Library 3

WG14 N1031 ©ISO/IEC

3.2 Input/output <stdio.h>

If the macro __USE_SECURE_LIB__ is defined as a macro name at the point in the
source file where <stdio.h> is included, then <stdio.h> defines the following
macros.

L_tmpnam_s

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated by the tmpnam_s
function;

TMP_MAX_S

which expands to an integer constant expression that is the maximum number of unique
file names that can be generated by the tmpnam_s function.

3.2.1 Operations on files

3.2.1.1 The tmpnam_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdio.h>
int tmpnam_s(char *s, size_t maxsize);

Description

2 The tmpnam_s function generates a string that is a valid file name and that is not the
same as the name of an existing file.1) The function is potentially capable of generating
TMP_MAX_S different strings, but any or all of them may already be in use by existing
files and thus not be suitable return values. The lengths of these strings shall be less than
the value of the L_tmpnam_s macro.

3 The tmpnam_s function generates a different string each time it is called.

4 The implementation shall behave as if no library function calls the tmpnam_s function.

Returns

5 If no suitable string can be generated, or if the length of the string is not less than the
value of maxsize, the tmpnam_s function writes a null character to s[0] (only if
maxsize is greater than zero) and returns ERANGE.

1) Files created using strings generated by the tmpnam_s function are temporary only in the sense that

their names should not collide with those generated by conventional naming rules for the

implementation. It is still necessary to use the remove function to remove such files when their use

is ended, and before program termination.

4 Library §3.2.1.1

©ISO/IEC WG14 N1031

6 Otherwise, the tmpnam_s function writes the string in the array pointed to by s and
returns zero.

Environmental limits

7 The value of the macro TMP_MAX_S shall be at least 25.

3.2.2 Formatted input/output functions

3.2.2.1 The fscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdio.h>
int fscanf_s(FILE * restrict stream,

const char * restrict format, ...);

Description

2 The fscanf_s function is equivalent to fscanf except that the c, s, and [conversion
specifiers apply to a pair of arguments (unless assignment suppression is indicated by a
*). The first of these arguments is the same as for fscanf. That argument is
immediately followed in the argument list by the second argument, which has type
size_t and gives the number of elements in the array pointed to by the first argument of
the pair. If the first argument points to a scalar object, it is considered to be an array of
one element.2)

3 A matching failure occurs if the number of elements in a receiving object is insufficient to
hold the converted input (including any trailing null character).

Returns

4 The fscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the fscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

2) If the format is known at translation time, an implementation may issue a diagnostic for any argument

used to store the result from a c, s, or [conversion specifier if that argument is not followed by an

argument of type size_t. A limited amount of checking may be done if even if the format is not

known at translation time. For example, an implementation may issue a diagnostic for each argument

after format that has of type pointer to one of char, signed char, unsigned char, or void

that is not followed by an argument of type size_t. The diagnostic could warn that unless the

pointer is being used with a conversion specifier using the hh length modifier, a length argument must

follow the pointer argument. Another useful diagnostic could flag any non-pointer argument

following format that did not have type size_t.

§3.2.2.1 Library 5

WG14 N1031 ©ISO/IEC

5 EXAMPLE 1 The call:

#define __USE_SECURE_LIB__
#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf_s(stdin, "%d%f%s", &i, &x, name, (size_t) 50);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence
thompson\0.

6 EXAMPLE 2 The call:

#define __USE_SECURE_LIB__
#include <stdio.h>
/* ... */
int n; char s[5];
n = fscanf_s(stdin, "%s", s, sizeof s);

with the input line:

hello

will assign to n the value 0 since a matching failure occurred because the sequence hello\0 requires an
array of six characters to store it. No assignment to s occurs.

3.2.2.2 The scanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdio.h>
int scanf_s(const char * restrict format, ...);

Description

2 The scanf_s function is equivalent to fscanf_s with the argument stdin
interposed before the arguments to scanf_s.

Returns

3 The scanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the scanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

6 Library §3.2.2.2

©ISO/IEC WG14 N1031

3.2.2.3 The sscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdio.h>
int sscanf_s(const char * restrict s,

const char * restrict format, ...);

Description

2 The sscanf_s function is equivalent to fscanf_s, except that input is obtained from
a string (specified by the argument s) rather than from a stream. Reaching the end of the
string is equivalent to encountering end-of-file for the fscanf_s function. If copying
takes place between objects that overlap, the behavior is undefined.

Returns

3 The sscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the sscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

3.2.2.4 The vfscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdarg.h>
#include <stdio.h>
int vfscanf_s(FILE * restrict stream,

const char * restrict format,
va_list arg);

Description

2 The vfscanf_s function is equivalent to fscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vfscanf_s function does not invoke the
va_end macro.3)

3) As the functions vfscanf_s, vscanf_s, and vsscanf_s invoke the va_arg macro, the value

of arg after the return is indeterminate.

§3.2.2.4 Library 7

WG14 N1031 ©ISO/IEC

Returns

3 The vfscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vfscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

3.2.2.5 The vscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdarg.h>
#include <stdio.h>
int vscanf_s(const char * restrict format,

va_list arg);

Description

2 The vscanf_s function is equivalent to scanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vscanf_s function does not invoke the
va_end macro.3)

Returns

3 The vscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

3.2.2.6 The vsscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdarg.h>
#include <stdio.h>
int vsscanf_s(const char * restrict s,

const char * restrict format,
va_list arg);

Description

2 The vsscanf_s function is equivalent to sscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vsscanf_s function does not invoke the
va_end macro.3)

8 Library §3.2.2.6

©ISO/IEC WG14 N1031

Returns

3 The vsscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

3.2.3 Character input/output functions

3.2.3.1 The gets_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdio.h>
char *gets_s(char *s, int n);

Description

2 The gets_s function reads at most one less than the number of characters specified by n
from the stream pointed to by stdin, into the array pointed to by s. No additional
characters are read after a new-line character (which is discarded) or after end-of-file.
Although a new-line character counts towards number of characters read, it is not stored
in the array. A null character is written immediately after the last character read into the
array.

Returns

3 The gets_s function returns s if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

§3.2.3.1 Library 9

WG14 N1031 ©ISO/IEC

3.3 General utilities <stdlib.h>

If the macro __USE_SECURE_LIB__ is defined as a macro name at the point in the
source file where <stdlib.h> is included, then <stdlib.h> defines the macro

RAND_S_MAX

which expands to an integer constant expression that is the maximum value returned by
the rand_s function.

3.3.1 Pseudo-random sequence generation functions

3.3.1.1 The rand_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdlib.h>
int rand_s(void);

Description

2 The rand_s function computes a sequence of pseudo-random integers in the range 0 to
RAND_S_MAX.

3 These random numbers are generated using methods appropriate for use in cryptography.

Returns

4 The rand_s function returns a pseudo-random integer.

Environmental limits

5 The value of the RAND_S_MAX macro shall be at least 32767.

3.3.2 Communication with the environment

3.3.2.1 The getenv_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdlib.h>
int getenv_s(char * restrict value, size_t maxsize,

const char * restrict name);

Description

2 The getenv_s function searches an environment list, provided by the host environment,
for a string that matches the string pointed to by name. If that name is found and the
length of the string associated with the matched list member is less than maxsize, then

10 Library §3.3.2.1

©ISO/IEC WG14 N1031

the associated string is copied to the array pointed to by value. Otherwise, if maxsize
is greater than zero, then value[0] is set to a null character.

3 The set of environment names and the method for altering the environment list are
implementation-defined.

Returns

4 The getenv_s function returns zero if the specified name is found and the length of the
associated string is less than maxsize. Otherwise, ERANGE is returned.

3.3.3 Searching and sorting utilities

1 These utilities make use of a comparison function to search or sort arrays of unspecified
type. Where an argument declared as size_t nmemb specifies the length of the array
for a function, nmemb can have the value zero on a call to that function; the comparison
function is not called, a search finds no matching element, and sorting performs no
rearrangement. Pointer arguments on such a call shall still have valid values, as described
in Subclause 7.1.4 of ISO/IEC 9899:1999.

2 The implementation shall ensure that the second argument of the comparison function
(when called from bsearch_s), or both arguments (when called from qsort_s), are
pointers to elements of the array.4) The first argument when called from bsearch_s
shall equal key.

3 The comparison function shall not alter the contents of the array. The implementation
may reorder elements of the array between calls to the comparison function, but shall not
alter the contents of any individual element.

4 When the same objects (consisting of size bytes, irrespective of their current positions
in the array) are passed more than once to the comparison function, the results shall be
consistent with one another. That is, for qsort_s they shall define a total ordering on
the array, and for bsearch_s the same object shall always compare the same way with
the key.

5 A sequence point occurs immediately before and immediately after each call to the
comparison function, and also between any call to the comparison function and any
movement of the objects passed as arguments to that call.

4) That is, if the value passed is p, then the following expressions are always nonzero:

((char *)p - (char *)base) % size == 0

(char *)p >= (char *)base

(char *)p < (char *)base + nmemb * size

§3.3.3 Library 11

WG14 N1031 ©ISO/IEC

3.3.3.1 The bsearch_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdlib.h>
void *bsearch_s(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *k, const void *y, void *context),
void *context);

Description

2 The bsearch_s function searches an array of nmemb objects, the initial element of
which is pointed to by base, for an element that matches the object pointed to by key.
The size of each element of the array is specified by size.

3 The comparison function pointed to by compar is called with three arguments. The first
two point to the key object and to an array element, in that order. The function shall
return an integer less than, equal to, or greater than zero if the key object is considered,
respectively, to be less than, to match, or to be greater than the array element. The array
shall consist of: all the elements that compare less than, all the elements that compare
equal to, and all the elements that compare greater than the key object, in that order.5)

The third argument to the comparison function is the context argument passed to
bsearch_s. The sole use of context by bsearch_s is to pass it to the comparison
function.6)

Returns

4 The bsearch_s function returns a pointer to a matching element of the array, or a null
pointer if no match is found. If two elements compare as equal, which element is
matched is unspecified.

5) In practice, the entire array is sorted according to the comparison function.

6) The context argument is for the use of the comparison function in performing its duties. For

example, it might specify a collating sequence used by the comparison function.

12 Library §3.3.3.1

©ISO/IEC WG14 N1031

3.3.3.2 The qsort_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdlib.h>
void qsort_s(void *base, size_t nmemb, size_t size,

int (*compar)(const void *x, const void *y, void *context),
void *context);

Description

2 The qsort_s function sorts an array of nmemb objects, the initial element of which is
pointed to by base. The size of each object is specified by size.

3 The contents of the array are sorted into ascending order according to a comparison
function pointed to by compar, which is called with three arguments. The first two
point to the objects being compared. The function shall return an integer less than, equal
to, or greater than zero if the first argument is considered to be respectively less than,
equal to, or greater than the second. The third argument to the comparison function is the
context argument passed to qsort_s. The sole use of context by qsort_s is to
pass it to the comparison function.7)

4 If two elements compare as equal, their order in the resulting sorted array is unspecified.

Returns

5 The qsort_s function returns no value.

7) The context argument is for the use of the comparison function in performing its duties. For

example, it might specify a collating sequence used by the comparison function.

§3.3.3.2 Library 13

WG14 N1031 ©ISO/IEC

3.4 String handling <string.h>

3.4.1 Copying functions

3.4.1.1 The memcpy_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <string.h>
int memcpy_s(void * restrict s1,

size_t s1max,
const void * restrict s2,
size_t n);

Description

2 If n is less than or equal to s1max, the memcpy_s function copies n characters from the
object pointed to by s2 into the object pointed to by s1. Otherwise, the memcpy_s
function stores zeros in the first s1max characters of the object pointed to by s1.

3 If copying takes place between objects that overlap, the behavior is undefined.

Returns

4 The memcpy_s function returns zero if n is less than or equal to s1max. Otherwise,
ERANGE is returned.

3.4.1.2 The memmove_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <string.h>
int memmove_s(void *s1, size_t s1max, const void *s2, size_t n);

Description

2 If n is less than or equal to s1max, the memmove_s function copies n characters from
the object pointed to by s2 into the object pointed to by s1. This copying takes place as
if the n characters from the object pointed to by s2 are first copied into a temporary array
of n characters that does not overlap the objects pointed to by s1 or s2, and then the n
characters from the temporary array are copied into the object pointed to by s1.

3 If n is greater than s1max, the memmove_s function stores zeros in the first s1max
characters of the object pointed to by s1.

14 Library §3.4.1.2

©ISO/IEC WG14 N1031

Returns

4 The memmove_s function returns zero if n is less than or equal to s1max. Otherwise,
ERANGE is returned.

3.4.1.3 The strncpy_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <string.h>
int strncpy_s(char * restrict s1,

size_t s1max,
const char * restrict s2,
size_t n);

Description

2 If s1max is equal to zero, then strncpy_s returns ERANGE.

3 Otherwise, if n is greater than or equal to s1max, then the behavior of the strncpy_s
function depends upon whether there is a null character in the first s1max characters of
the array pointed to by s2. If there is a null character, then the characters pointed to by
s2 up to and including the null character are copied to the array pointed to by s1. If there
is no null character, then s1[0] is set to the null character.

4 Otherwise, if n is less than s1max, then the strncpy_s function copies not more than
n characters (characters that follow a null character are not copied) from the array
pointed to by s2 to the array pointed to by s1. If no null character was copied from s2,
then s1[n] is set to a null character.

5 All elements following the terminating null character (if any) written by strncpy_s in
the array of s1max characters pointed to by s1 take unspecified values when
strncpy_s returns.8)

6 If copying takes place between objects that overlap, the behavior is undefined.

Returns

7 The strncpy_s function returns ERANGE if s1max equals zero, or if n is greater than
or equal to s1max and there is no null character in the first s1max characters of s2.
Otherwise, zero is returned.9)

8) This allows an implementation to copy characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

§3.4.1.3 Library 15

WG14 N1031 ©ISO/IEC

8 EXAMPLE 1 The strncpy_s function can be used to copy a string without the danger that the result
will not be null terminated or that characters will be written past the end of the destination array.

#define __USE_SECURE_LIB__
#include <string.h>
/* ... */
char src1[100] = "hello";
char src2[7] = {’g’, ’o’, ’o’, ’d’, ’b’, ’y’, ’e’};
char dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = strncpy_s(dst1, 6, src1, 100);
r2 = strncpy_s(dst2, 5, src2, 7);
r3 = strncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence hello\0.
The second call will assign to r2 the value ERANGE and to dst2 the sequence \0.
The third call will assign to r3 the value zero and to dst3 the sequence good\0.

3.4.2 Concatenation functions

3.4.2.1 The strncat_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <string.h>
int strncat_s(char * restrict s1,

size_t s1max,
const char * restrict s2,
size_t n);

Description

2 Let, m have the value s1max - strlen_s(s1, s1max) upon entry to
strncat_s.

3 If m is equal to zero,10) then strncat_s returns ERANGE.

4 Otherwise, if n is greater than or equal to m, then the behavior of the strncat_s
function depends upon whether there is a null character in the first m characters of the
array pointed to by s2. If there is a null character, then the characters pointed to by s2 up
to and including the null character are appended to the end of the string pointed to by s1.
The initial character from s2 overwrites the null character at the end of s1. If there is no
null character in the first m characters of the array pointed s2 then s1[0] is set to the
null character.

9) A zero return value implies that all of the requested characters from the string pointed to by s2 fit

within the array pointed to by s1 and that the result in s1 is null terminated.

10) This means that s1 was not null terminated upon entry to strncat_s.

16 Library §3.4.2.1

©ISO/IEC WG14 N1031

5 Otherwise, if n is less than m, then the strncat_s function appends not more than n
characters (characters that follow a null character are not copied) from the array pointed
to by s2 to the end of the string pointed to by s1. The initial character from s2
overwrites the null character at the end of s1. If no null character was copied from s2,
then s1[s1max-m+n] is set to a null character.

6 All elements following the terminating null character (if any) written by strncat_s in
the array of s1max characters pointed to by s1 take unspecified values when
strncat_s returns.11)

7 If copying takes place between objects that overlap, the behavior is undefined.

Returns

8 The strncat_s function returns ERANGE if m equals zero, or if n is greater than or
equal to m and there is no null character in the first m characters of s2. Otherwise, zero is
returned.12)

9 EXAMPLE 1 The strncat_s function can be used to copy a string without the danger that the result
will not be null terminated or that characters will be written past the end of the destination array.

#define __USE_SECURE_LIB__
#include <string.h>
/* ... */
char s1[100] = "good";
char s2[6] = "hello";
char s3[6] = "hello";
char s4[7] = "abc";
char s5[1000] = "bye";
int r1, r2, r3, r4;
r1 = strncat_s(s1, 100, s5, 1000);
r2 = strncat_s(s2, 6, "", 1);
r3 = strncat_s(s3, 6, "X", 2);
r4 = strncat_s(s4, 7, "defghijklmn", 3);

After the first call r1 will have the value zero and s1 will be the sequence goodbye\0.
After the second call r2 will have the value zero and s2 will be the sequence hello\0.
After the third call r3 will have the value ERANGE and s3 will be the sequence \0.
After the fourth call r4 will have the value zero and s4 will be the sequence abcdef\0.

11) This allows an implementation to append characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

12) A zero return value implies that all of the requested characters from the string pointed to by s2 were

appended to the string pointed to by s1 and that the result in s1 is null terminated.

§3.4.2.1 Library 17

WG14 N1031 ©ISO/IEC

3.4.3 Search functions

3.4.3.1 The strtok_r function

Synopsis

1 #define __USE_SECURE_LIB__
#include <string.h>
char *strtok_r(char * restrict s1,

const char * restrict s2,
char ** restrict ptr);

Description

2 A sequence of calls to the strtok_r function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The third argument points to a caller-provided char pointer into which the
strtok_r function stores information necessary for it to continue scanning the same
string.

3 The first call in a sequence has a non-null first argument and stores an initial value in the
object pointed to by ptr. Subsequent calls in the sequence have a null first argument and
the object pointed to by ptr is required to have the value stored by the previous call in
the sequence, which is then updated. The separator string pointed to by s2 may be
different from call to call.

4 The first call in the sequence searches the string pointed to by s1 for the first character
that is not contained in the current separator string pointed to by s2. If no such character
is found, then there are no tokens in the string pointed to by s1 and the strtok_r
function returns a null pointer. If such a character is found, it is the start of the first token.

5 The strtok_r function then searches from there for a character that is contained in the
current separator string. If no such character is found, the current token extends to the
end of the string pointed to by s1, and subsequent searches in the same string for a token
return a null pointer. If such a character is found, it is overwritten by a null character,
which terminates the current token.

6 In all cases, the strtok_r function stores sufficient information in the pointer pointed
to by ptr so that subsequent calls, with a null pointer for s1 and the unmodified pointer
value for ptr, shall start searching just past the element overwritten by a null character
(if any).

Returns

7 The strtok_r function returns a pointer to the first character of a token, or a null
pointer if there is no token.

18 Library §3.4.3.1

©ISO/IEC WG14 N1031

8 EXAMPLE

#define __USE_SECURE_LIB__
#include <string.h>
static char str1[] = "?a???b,,,#c";
static char str2[] = "\t \t";
char *t, *ptr1, *ptr2;

t = strtok_r(str1, "?", &ptr1); // t points to the token "a"
t = strtok_r(NULL, ",", &ptr1); // t points to the token "??b"
t = strtok_r(str2, " \t", &ptr2); // t is a null pointer
t = strtok_r(NULL, "#,", &ptr1); // t points to the token "c"
t = strtok_r(NULL, "?", &ptr1); // t is a null pointer

3.4.4 Miscellaneous functions

3.4.4.1 The strerror_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <string.h>
int strerror_s(char *s, size_t maxsize, int errnum);

Description

2 The strerror_s function maps the number in errnum to a locale-specific message
string. Typically, the values for errnum come from errno, but strerror_s shall
map any value of type int to a message.

3 If the length of the string is less than maxsize, then the string is copied to the array
pointed to by s.

4 Otherwise, if maxsize is greater than zero, then maxsize-1 characters are copied
from the string to the array pointed to by s and then s[maxsize-1] is set to the null
character. Then, if maxsize is greater than 3, then s[maxsize-2],
s[maxsize-3], and s[maxsize-4] are set to the character period (.).

Returns

5 The strerror_s function returns ERANGE if the length of the desired string was
greater than or equal to maxsize. Otherwise, the strerror_s function returns zero.

§3.4.4.1 Library 19

WG14 N1031 ©ISO/IEC

3.4.4.2 The strlen_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <string.h>
size_t strlen_s(const char *s, int maxsize);

Description

2 The strlen_s function computes the length of the string pointed to by s.

Returns

3 The strlen_s function returns the number of characters that precede the terminating
null character. If there is no null character in the first maxsize characters of s then
strlen_s returns maxsize.

20 Library §3.4.4.2

©ISO/IEC WG14 N1031

3.5 Date and time <time.h>

3.5.1 Time conversion functions

1 Like the strftime function, the asctime_s and ctime_s, functions do not return a
pointer to a static object, and other library functions are permitted to call them.

3.5.1.1 The asctime_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <time.h>
int asctime_s(char *s, size_t maxsize, const struct tm *timeptr);

Description

2 The asctime_s function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

char *asctime_s(char *s, size_t maxsize, const struct tm *timeptr)
{

static const char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return strncpy_s(s, maxsize, result, 26);
}

Returns

3 The asctime_s function returns zero if maxsize is greater than or equal to 26.
Otherwise, it returns ERANGE.
§3.5.1.1 Library 21

WG14 N1031 ©ISO/IEC

3.5.1.2 The ctime_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <time.h>
int ctime_s(char *s, size_t maxsize, const time_t *timer);

Description

2 The ctime_s function converts the calendar time pointed to by timer to local time in
the form of a string. It is equivalent to

asctime_s(s, maxsize, localtime(timer))

Returns

3 The ctime_s function returns zero if maxsize is greater than or equal to 26.
Otherwise, it returns ERANGE.

22 Library §3.5.1.2

©ISO/IEC WG14 N1031

3.6 Extended multibyte and wide character utilities <wchar.h>

3.6.1 Formatted wide character input/output functions

3.6.1.1 The fwscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdio.h>
#include <wchar.h>
int fwscanf_s(FILE * restrict stream,

const wchar_t * restrict format, ...);

Description

2 The fwscanf_s function is equivalent to fwscanf except that the c, s, and [
conversion specifiers apply to a pair of arguments (unless assignment suppression is
indicated by a *). The first of these arguments is the same as for fwscanf. That
argument is immediately followed in the argument list by the second argument, which has
type size_t and gives the number of elements in the array pointed to by the first
argument of the pair. If the first argument points to a scalar object, it is considered to be
an array of one element.13)

3 A matching failure occurs if the number of elements in a receiving object is insufficient to
hold the converted input (including any trailing null character).

Returns

4 The fwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the fwscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

13) If the format is known at translation time, an implementation may issue a diagnostic for any argument

used to store the result from a c, s, or [conversion specifier if that argument is not followed by an

argument of type size_t. A limited amount of checking may be done if even if the format is not

known at translation time. For example, an implementation may issue a diagnostic for each argument

after format that has of type pointer to one of char, signed char, unsigned char, or void

that is not followed by an argument of type size_t. The diagnostic could warn that unless the

pointer is being used with a conversion specifier using the hh length modifier, a length argument must

follow the pointer argument. Another useful diagnostic could flag any non-pointer argument

following format that did not have type size_t.

§3.6.1.1 Library 23

WG14 N1031 ©ISO/IEC

3.6.1.2 The swscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <wchar.h>
int swscanf_s(const wchar_t * restrict s,

const wchar_t * restrict format, ...);

Description

2 The swscanf_s function is equivalent to fwscanf_s, except that the argument s
specifies a wide string from which the input is to be obtained, rather than from a stream.
Reaching the end of the wide string is equivalent to encountering end-of-file for the
fwscanf_s function.

Returns

3 The swscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the swscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

3.6.1.3 The vfwscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf_s(FILE * restrict stream,

const wchar_t * restrict format,
va_list arg);

Description

2 The vfwscanf_s function is equivalent to fwscanf_s, with the variable argument
list replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vfwscanf_s function does not invoke the
va_end macro.14)

14) As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the

value of arg after the return is indeterminate.

24 Library §3.6.1.3

©ISO/IEC WG14 N1031

Returns

3 The vfwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vfwscanf_s function returns the number of
input items assigned, which can be fewer than provided for, or even zero, in the event of
an early matching failure.

3.6.1.4 The vswscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdarg.h>
#include <wchar.h>
int vswscanf_s(const wchar_t * restrict s,

const wchar_t * restrict format,
va_list arg);

Description

2 The vswscanf_s function is equivalent to swscanf_s, with the variable argument
list replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vswscanf_s function does not invoke the
va_end macro.14)

Returns

3 The vswscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vswscanf_s function returns the number of
input items assigned, which can be fewer than provided for, or even zero, in the event of
an early matching failure.

3.6.1.5 The vwscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <stdarg.h>
#include <wchar.h>
int vwscanf_s(const wchar_t * restrict format,

va_list arg);

Description

2 The vwscanf_s function is equivalent to wscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vwscanf_s function does not invoke the
va_end macro.14)

§3.6.1.5 Library 25

WG14 N1031 ©ISO/IEC

Returns

3 The vwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vwscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

3.6.1.6 The wscanf_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <wchar.h>
int wscanf_s(const wchar_t * restrict format, ...);

Description

2 The wscanf_s function is equivalent to fwscanf_s with the argument stdin
interposed before the arguments to wscanf_s.

Returns

3 The wscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the wscanf_s function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

3.6.2 General wide string utilities

3.6.2.1 Wide string copying functions

3.6.2.1.1 The wcsncpy_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <wchar.h>
int wcsncpy_s(wchar_t * restrict s1,

size_t s1max,
const wchar_t * restrict s2,
size_t n);

Description

2 If s1max is equal to zero, then wcsncpy_s returns ERANGE.

3 Otherwise, if n is greater than or equal to s1max, then the behavior of the wcsncpy_s
function depends upon whether there is a null wide character in the first s1max wide
characters of the array pointed to by s2. If there is a null wide character, then the wide

26 Library §3.6.2.1.1

©ISO/IEC WG14 N1031

characters pointed to by s2 up to and including the null wide character are copied to the
array pointed to by s1. If there is no null wide character, then s1[0] is set to the null
wide character.

4 Otherwise, if n is less than s1max, then the wcsncpy_s function copies not more than
n wide characters (wide characters that follow a null wide character are not copied) from
the array pointed to by s2 to the array pointed to by s1. If no null wide character was
copied from s2, then s1[n] is set to a null wide character.

5 All elements following the terminating null wide character (if any) written by
wcsncpy_s in the array of s1max wide characters pointed to by s1 take unspecified
values when wcsncpy_s returns.15)

Returns

6 The wcsncpy_s function returns ERANGE if s1max equals zero, or if n is greater than
or equal to s1max and there is no null wide character in the first s1max wide characters
of s2. Otherwise, zero is returned.16)

7 EXAMPLE 1 The wcsncpy_s function can be used to copy a wide string without the danger that the
result will not be null terminated or that wide characters will be written past the end of the destination
array.

#define __USE_SECURE_LIB__
#include <wchar.h>
/* ... */
wchar_t src1[100] = L"hello";
wchar_t src2[7] = {L’g’, L’o’, L’o’, L’d’, L’b’, L’y’, L’e’};
wchar_t dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = wcsncpy_s(dst1, 6, src1, 100);
r2 = wcsncpy_s(dst2, 5, src2, 7);
r3 = wcsncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence of wide characters hello\0.
The second call will assign to r2 the value ERANGE and to dst2 the sequence of wide characters \0.
The third call will assign to r3 the value zero and to dst3 the sequence of wide characters good\0.

15) This allows an implementation to copy wide characters from s2 to s1 while simultaneously checking

if any of those wide characters are null. Such an approach might write a wide character to every

element of s1 before discovering that the first element should be set to the null wide character.

16) A zero return value implies that all of the requested wide characters from the wide string pointed to by

s2 fit within the array pointed to by s1 and that the result in s1 is null terminated.

§3.6.2.1.1 Library 27

WG14 N1031 ©ISO/IEC

3.6.2.1.2 The wmemcpy_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <wchar.h>
int wmemcpy_s(wchar_t * restrict s1,

size_t s1max,
const wchar_t * restrict s2,
size_t n);

Description

2 If n is less than or equal to s1max, the wmemcpy_s function copies n wide characters
from the object pointed to by s2 into the object pointed to by s1. Otherwise, the
wmemcpy_s function stores zeros in the first s1max wide characters of the object
pointed to by s1.

Returns

3 The wmemcpy_s function returns zero if n is less than or equal to s1max. Otherwise,
ERANGE is returned.

3.6.2.1.3 The wmemmove_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <wchar.h>
int wmemmove_s(wchar_t *s1, size_t s1max, const wchar_t *s2,

size_t n);

Description

2 If n is less than or equal to s1max, the wmemmove_s function copies n wide characters
from the object pointed to by s2 into the object pointed to by s1. This copying takes
place as if the n wide characters from the object pointed to by s2 are first copied into a
temporary array of n wide characters that does not overlap the objects pointed to by s1
or s2, and then the n wide characters from the temporary array are copied into the object
pointed to by s1.

3 If n is greater than s1max, the wmemmove_s function stores zeros in the first s1max
wide characters of the object pointed to by s1.

Returns

4 The wmemmove_s function returns zero if n is less than or equal to s1max. Otherwise,
ERANGE is returned.

28 Library §3.6.2.1.3

©ISO/IEC WG14 N1031

3.6.2.2 Wide string concatenation functions

3.6.2.2.1 The wcsncat_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <wchar.h>
int wcsncat_s(wchar_t * restrict s1,

size_t s1max,
const wchar_t * restrict s2,
size_t n);

Description

2 Let, m have the value s1max - wcslen_s(s1, s1max) upon entry to
wcsncat_s.

3 If m is equal to zero,17) then wcsncat_s returns ERANGE.

4 Otherwise, if n is greater than or equal to m, then the behavior of the wcsncat_s
function depends upon whether there is a null wide character in the first m wide
characters of the array pointed to by s2. If there is a null wide character, then the wide
characters pointed to by s2 up to and including the null wide character are appended to
the end of the wide string pointed to by s1. The initial wide character from s2
overwrites the null wide character at the end of s1. If there is no null wide character in
the first m wide characters of the array pointed s2 then s1[0] is set to the null wide
character.

5 Otherwise, if n is less than m, then the wcsncat_s function appends not more than n
wide characters (wide characters that follow a null wide character are not copied) from
the array pointed to by s2 to the end of the wide string pointed to by s1. The initial wide
character from s2 overwrites the null wide character at the end of s1. If no null wide
character was copied from s2, then s1[s1max-m+n] is set to a null wide character.

6 All elements following the terminating null wide character (if any) written by
wcsncat_s in the array of s1max wide characters pointed to by s1 take unspecified
values when wcsncat_s returns.18)

17) This means that s1 was not null terminated upon entry to wcsncat_s.

18) This allows an implementation to append wide characters from s2 to s1 while simultaneously

checking if any of those wide characters are null. Such an approach might write a wide character to

ev ery element of s1 before discovering that the first element should be set to the null wide character.

§3.6.2.2.1 Library 29

WG14 N1031 ©ISO/IEC

Returns

7 The wcsncat_s function returns ERANGE if m equals zero, or if n is greater than or
equal to m and there is no null wide character in the first m wide characters of s2.
Otherwise, zero is returned.19)

8 EXAMPLE 1 The wcsncat_s function can be used to copy a wide string without the danger that the
result will not be null terminated or that wide characters will be written past the end of the destination
array.

#define __USE_SECURE_LIB__
#include <wchar.h>
/* ... */
wchar_t s1[100] = L"good";
wchar_t s2[6] = L"hello";
wchar_t s3[6] = L"hello";
wchar_t s4[7] = L"abc";
wchar_t s5[1000] = L"bye";
int r1, r2, r3, r4;
r1 = wcsncat_s(s1, 100, s5, 1000);
r2 = wcsncat_s(s2, 6, L"", 1);
r3 = wcsncat_s(s3, 6, L"X", 2);
r4 = wcsncat_s(s4, 7, L"defghijklmn", 3);

After the first call r1 will have the value zero and s1 will be the wide character sequence goodbye\0.
After the second call r2 will have the value zero and s2 will be the wide character sequence hello\0.
After the third call r3 will have the value ERANGE and s3 will be the wide character sequence \0.
After the fourth call r4 will have the value zero and s4 will be the wide character sequence abcdef\0.

3.6.2.3 Miscellaneous functions

3.6.2.3.1 The wcslen_s function

Synopsis

1 #define __USE_SECURE_LIB__
#include <wchar.h>
size_t wcslen_s(const wchar_t *s, int maxsize);

Description

2 The wcslen_s function computes the length of the wide string pointed to by s.

Returns

3 The wcslen_s function returns the number of wide characters that precede the
terminating null wide character. If there is no null wide character in the first maxsize
wide characters of s then wcslen_s returns maxsize.

19) A zero return value implies that all of the requested wide characters from the wide string pointed to by

s2 were appended to the wide string pointed to by s1 and that the result in s1 is null terminated.

30 Library §3.6.2.3.1

	Introduction
	1. Scope
	2. Normative references
	3. Library
	3.1 Introduction
	3.1.1 Standard headers

	3.1.2 Use of errno

	3.2 <stdio.h>
	3.2.1 Operations on files
	3.2.1.1 tmpnam_s

	3.2.2 Formatted input/output functions
	3.2.2.1 fscanf_s, etc

	3.2.3 Character input/output functions
	3.2.3.1 gets_s

	3.3 <stdlib.h>
	3.3.1 Pseudo-random sequence generation functions
	3.3.1.1 rand_s

	3.3.2 Communication with the environment
	3.3.2.1 getenv_s

	3.3.3 Searching and sorting utilities
	3.3.3.1 bsearch_s
	3.3.3.2 qsort_s

	3.4 <string.h>
	3.4.1 Copying functions
	3.4.1.1 memcpy_s
	3.4.1.2 memmove_s
	3.4.1.3 strncpy_s

	3.4.2 Concatenation functions
	3.4.2.1 strncat_s

	3.4.3 Search functions
	3.4.3.1 strtok_r

	3.4.4 Miscellaneous functions
	3.4.4.1 strerror_s
	3.4.4.2 strlen_s

	3.5 <time.h>
	3.5.1 Time conversion functions
	3.5.1.1 asctime_s
	3.5.1.2 ctime_s

	3.6 <wchar.h>
	3.6.1 Formatted wide character input/output functions
	3.6.1.1 fwscanf_s, etc

	3.6.2 General wide string utilities
	3.6.2.1 Wide string copying functions
	3.6.2.1.1 wcsncpy_s
	3.6.1.1.2 wmemcpy_s
	3.6.2.1.3 wmemmove_s

	3.6.2.2 Wide string concatenation functions
	3.6.2.2.1 wcsncat_s

	3.6.2.3 Miscellaneous functions
	3.6.2.3.1 wcslen_s

