Introduction to N1031

Walk through, issues, and rationale

Components of N1031

New functions that protect against buffer
overflow and always produce null
terminated strings

New reentrant versions of old functions
New random number generator for
cryptography

Guiding Principles

If safe aternative exists, don’t create a new
function
Not awar against null terminated strings

— Most functions trust that input string
parameters are null terminated

— Output string parameters get alength argument
Allow for compile-time checking for good
programming

Guiding Principles

» Where possible, have functions return a
code indicating success or reason for failure
— regularity
— helps with compile-time checking
* Failed functions should produce output
values that prohibit carrying on asif no
error occurred

* Minimize effort to port to new library

Which headers?

» One header for al the new functions?
— Messy, no functional grouping
* Parallel system of headers? Eg, <string_s.h>

— Lots of useful functions from old header, so
both old and new headers will be included

» Put new functionsin header as old versions?
— Natural, but namespace issues

Namespace issues

 7.26 Future Library Directions

» Many of the namesfit the patterns for
names that can be added to the headers
— str* to <string.h>

» Many of the names do not fit the patterns
— *scanf to <stdio.h>
—wmem* to <wchar.h>

Possibilities

» Add allowed names to headers and protect
viaamacro names not allowed

#ifdef __USE SECURE LIB_ _

int fscanf_s(FILE * restrict stream
const char * restrict format, ...);

#endi f

Possibilities

* Or, protect all new names via macro

» Might minimize compatibility problems for
“bad” programs that step on Standard
namespace

* Easy ruleto remember

Discussion/Straw Poll

* Infavor of adding functionsto existing
headers?

* Infavor of protecting al new functions via
amacro

» Any better name for the
__USE_SECURE_LI B__ macro?

Return value

* Return an errno value
* ZEroissuccess

» ERANGE used to indicate output buffer too
small

* Precedent from Single Unix Spec
» E2BIG as an alternative to ERANGE?

| nt versestypedef

* i nt isarather bland type

* Could have
typedef int errcode_t;
errcode_t strncpy_s(
char *restrict sli,
size_t silmex,
const char *restrict s2,
size_t n);

Discussion/Straw Poll

* Infavor in principle to making the return
value an indication of success/ failure?

* Infavor in principle to making the return
value an errno value?

» Infavor using er r no_t asthereturn type
when functions return an errno value?

scanf_s family

» Considered using maximum field width to
express capacity of receiving variable

* Insufficient for wscanf family where
“%22s” means input atoken of up to 22
wide chars and store into a multibyte string
of locale-dependent size

rand_<()

» Expect better description next draft

» Might exploit hardware random number
generators

* Might lack
— user specified seed
— restarting a sequence of random numbers

strncpy_s

strncpy_s(a, sizeof a, b, sizeof b);

* succeedsif and only if anull terminated
string from "b" fitsin"a". Inthisform,
strncpy_sis equivalent to a safe version of
strepy.

strncpy_s

* If you don't know the actual size of the
array b but you trust that it is either null

terminated or has a size greater than sizeof
a, you can make the call:

strncpy_s(a, sizeof a, b, sizeof a);

strncpy_s

* If you want atruncating version of
strncpy_s, and you trust that b is either null

terminated or has a size greater than sizeof
a, you can make acal like:

strncpy_s(a, sizeof a, b, (sizeof a)-1);

strncpy_s

* Paragraph 5 allows for efficient copy

* Paragraph 5 also allows for strncpy()-like
null padding

* Paragraph 5 probably should become a
global statement about any string result

Discussion/Straw Poll

* Infavor of the license given paragraph 5?

* Infavor of making paragraph 5 apply to
string results from other functions when a
bound for the output array is known?

» Recommend for or against null padding like
strnepy?

Programming Practices Annex

» Should the TR have an informational Annex
listing functions to be avoided in favor of
new functions?

Implementation Issues

» Should the Security TR contain sections
addressing quality of implementation issues
like parameter validation for old functions,
checksfor NULL pointers, etc?

Rationae

» Should Rationale be provided for the TR?

* Interspersed or parallel document or
Annex?

Proposals for next draft

Feature Macro

* Predefined macro indicating library is
available?

New Functions

int strcpy_s(char *restrict sl, size_t slmax, const char
*restrict s2);

int strcat_s(char *restrict s1, size_t slmax, const char *restrict
s2);

int wescpy_s(wchar_t *restrict s1, size_t slmax, const
wchar_t *restrict s2);

int wescat_s(wchar_t *restrict s1, size_t slmax, const wchar_t
*restrict s2);

Failing scanf_s
» Any variables not successfully read into by
scanf_s should be set to values designed to
prevent accidental uses of those variables.

scanf_s(*%s %s’, a, sizeof a, b, sizeof b);

* |If scanf_sreturns 1 because EOF prevented
reading b, then b[0] should be set to ‘\O’

Unix Compatibility

* In some cases, these functions were inspired
by or similar to functionsin the Single Unix
Spec.

A careful comparison with the Single Unix
Spec will accompany the next draft

