
1

Introduction to N1031

Walk through, issues, and rationale

Components of N1031

• New functions that protect against buffer
overflow and always produce null
terminated strings

• New reentrant versions of old functions

• New random number generator for
cryptography

Guiding Principles

• If safe alternative exists, don’t create a new
function

• Not a war against null terminated strings
– Most functions trust that input string

parameters are null terminated

– Output string parameters get a length argument

• Allow for compile-time checking for good
programming

2

Guiding Principles

• Where possible, have functions return a
code indicating success or reason for failure
– regularity

– helps with compile-time checking

• Failed functions should produce output
values that prohibit carrying on as if no
error occurred

• Minimize effort to port to new library

Which headers?

• One header for all the new functions?
– Messy, no functional grouping

• Parallel system of headers? Eg, <string_s.h>
– Lots of useful functions from old header, so

both old and new headers will be included

• Put new functions in header as old versions?
– Natural, but namespace issues

Namespace issues

• 7.26 Future Library Directions

• Many of the names fit the patterns for
names that can be added to the headers
– str* to <string.h>

• Many of the names do not fit the patterns
– *scanf to <stdio.h>

– wmem* to <wchar.h>

3

Possibilities

• Add allowed names to headers and protect
via a macro names not allowed

#ifdef __USE_SECURE_LIB__

int fscanf_s(FILE * restrict stream,

 const char * restrict format, ...);

#endif

Possibilities

• Or, protect all new names via macro

• Might minimize compatibility problems for
“bad” programs that step on Standard
namespace

• Easy rule to remember

Discussion/Straw Poll

• In favor of adding functions to existing
headers?

• In favor of protecting all new functions via
a macro

• Any better name for the
__USE_SECURE_LIB__ macro?

4

Return value

• Return an errno value

• zero is success

• ERANGE used to indicate output buffer too
small

• Precedent from Single Unix Spec

• E2BIG as an alternative to ERANGE?

int verses typedef

• int is a rather bland type

• Could have
typedef int errcode_t;

errcode_t strncpy_s(

 char *restrict s1,

 size_t s1max,

 const char *restrict s2,

 size_t n);

Discussion/Straw Poll

• In favor in principle to making the return
value an indication of success / failure?

• In favor in principle to making the return
value an errno value?

• In favor using errno_t as the return type
when functions return an errno value?

5

scanf_s family

• Considered using maximum field width to
express capacity of receiving variable

• Insufficient for wscanf family where
“%22s” means input a token of up to 22
wide chars and store into a multibyte string
of locale-dependent size

rand_s()

• Expect better description next draft

• Might exploit hardware random number
generators

• Might lack
– user specified seed

– restarting a sequence of random numbers

strncpy_s

strncpy_s(a, sizeof a, b, sizeof b);

• succeeds if and only if a null terminated
string from "b" fits in "a". In this form,
strncpy_s is equivalent to a safe version of
strcpy.

6

strncpy_s

• If you don't know the actual size of the
array b but you trust that it is either null
terminated or has a size greater than sizeof
a, you can make the call:

strncpy_s(a, sizeof a, b, sizeof a);

strncpy_s

• If you want a truncating version of
strncpy_s, and you trust that b is either null
terminated or has a size greater than sizeof
a, you can make a call like:

strncpy_s(a, sizeof a, b, (sizeof a)-1);

strncpy_s

• Paragraph 5 allows for efficient copy

• Paragraph 5 also allows for strncpy()-like
null padding

• Paragraph 5 probably should become a
global statement about any string result

7

Discussion/Straw Poll

• In favor of the license given paragraph 5?

• In favor of making paragraph 5 apply to
string results from other functions when a
bound for the output array is known?

• Recommend for or against null padding like
strncpy?

Programming Practices Annex

• Should the TR have an informational Annex
listing functions to be avoided in favor of
new functions?

Implementation Issues

• Should the Security TR contain sections
addressing quality of implementation issues
like parameter validation for old functions,
checks for NULL pointers, etc?

8

Rationale

• Should Rationale be provided for the TR?

• Interspersed or parallel document or
Annex?

Proposals for next draft

Feature Macro

• Predefined macro indicating library is
available?

9

New Functions

int strcpy_s(char *restrict s1, size_t s1max, const char
*restrict s2);

int strcat_s(char *restrict s1, size_t s1max, const char *restrict
s2);

int wcscpy_s(wchar_t *restrict s1, size_t s1max, const
wchar_t *restrict s2);

int wcscat_s(wchar_t *restrict s1, size_t s1max, const wchar_t
*restrict s2);

Failing scanf_s

• Any variables not successfully read into by
scanf_s should be set to values designed to
prevent accidental uses of those variables.

scanf_s(“%s %s”, a, sizeof a, b, sizeof b);

• If scanf_s returns 1 because EOF prevented
reading b, then b[0] should be set to ‘\0’

Unix Compatibility

• In some cases, these functions were inspired
by or similar to functions in the Single Unix
Spec.

• A careful comparison with the Single Unix
Spec will accompany the next draft

