
© ISO/IEC 2011 – All rights reserved

Document type: Technical Specification
Document subtype:
Document stage:
Document language: E

\\ad\dfs\users\rcs\Documents\CSGR\N1579.docx STD Version 2.1c2

WG14 Document: N1579

ISO/IEC JTC 1/SC SC 22 N 1579
Date: 2011-09-20

ISO/IEC

ISO/IEC JTC 1/SC SC 22/WG WG 14

Secretariat: ANSI

Information Technology — Programming languages, their environments
and system software interfaces — C Secure Coding Rules

Technologies de l’information — Langages de programmation, leurs environnements et interfaces du logiciel
système — C Règles de codage sécurisé

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

ISO/IEC

ii © ISO/IEC 2011 – All rights reserved

Copyright notice

This ISO document is being proposed as a base document for a Draft Technical Specification and is under
the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced,
stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording
or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's
member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC

© ISO/IEC 2011 – All rights reserved iii

Contents Page

Foreword .. vii

Introduction ... viii

1 Scope ... 1

2 Conformance ... 1

2.1 Completeness and soundness .. 2

2.2 Portability assumptions ... 2

2.3 Security focus .. 3

2.4 Taint analysis .. 3
2.4.1 Taintedness and tainted sources .. 3
2.4.2 Taintedness sinks ... 3
2.4.3 Propagation .. 4
2.4.4 Approaches to analysis .. 4
2.4.5 Sanitization ... 4
2.4.6 Tainted source macros ... 4

3 Normative references .. 5

4 Terms and definitions ... 6

5 Rules .. 8

ISO/IEC

iv © ISO/IEC 2011 – All rights reserved

5.1 Accessing an object through a pointer to an incompatible type (EXP11-C, EXP39-C) 8

5.2 Accessing freed memory (MEM30-C) .. 9

5.3 Accessing shared objects in signal handlers (SIG31-C) .. 11

5.4 Accessing volatile objects through a non-volatile pointer (EXP32-C) 11

5.5 Adding or subtracting a byte count integer to an element pointer (EXP08-C) 12

5.6 Assigning in conditional expressions (EXP18-C) ... 14

5.7 Assigning in controlling expressions (EXP15-C) .. 14

5.8 Assuming a positive remainder when using the % operator (INT10-C) 15

5.9 Assuming character data does not contain a null byte (FIO37-C) .. 16

5.10 atexit-registered handler does not return (ENV32-C) ... 17

5.11 Calling functions in the C standard library other than abort, _Exit, and signal from within a
signal handler (SIG30-C) ... 17

5.12 Calling functions with incorrect arguments (EXP37-C) .. 20

5.13 Calling signal from interruptible signal handlers (SIG34-C) ... 22

5.14 Calling system (ENV04-C) ... 22

5.15 Comparing function addresses to zero (EXP18-C) .. 23

5.16 Comparing or assigning expressions to a larger size objects (INT35-C) 24

5.17 Comparison of padding data (EXP04-C) ... 27

5.18 Converting a pointer to integer or integer to pointer (INT11-C) .. 28

5.19 Converting floating point values to types that cannot represent their value (FLP34-C) 29

5.20 Converting integer to a type that is unable to represent its value (INT31-C) 29

5.21 Converting pointer values to more strictly aligned pointer types (EXP36-C) 30

5.22 Copying a FILE object (FIO38-C) .. 31

5.23 Declaring an identifier with conflicting linkage classifications (DCL36-C) 32

5.24 Declaring the same function or object in incompatible ways (ARR31) 32

5.25 Dereferencing a null pointer (EXP34-C) .. 34

5.26 Dividing by zero (INT33-C) .. 35

5.27 Escaping of the address of an automatic object (DCL30-C) .. 35

5.28 Conversion of signed characters to wider integer types (STR34-C) 36

5.29 Use of an implied default in a switch statement (MSC01-C) .. 37

5.30 Failing to close files or free dynamic memory when they are no longer needed (FIO42-C) ... 37

5.31 Failing to detect and handle standard library errors (FIO04-C) .. 39

5.32 Failing to prevent or detect domain and range errors in math functions (FLP32-C) 46

5.33 Failing to sanitize the environment when invoking external programs (ENV03-C) 47

5.34 Forming invalid pointers by library function.. 48

5.35 Forming or using out-of-bounds pointers or array subscripts (ARR30-C) 50
5.35.1 Related Vulnerabilities .. 56

5.36 Freeing memory multiple times (MEM31-C) .. 56

5.37 Including tainted or out-of-domain input in a format string (FIO30-C) 58

5.38 Incorrectly setting and using errno (ERR30-C) .. 60
5.38.1 Library functions that set errno and return an in-band error indicator 60

ISO/IEC

© ISO/IEC 2011 – All rights reserved v

5.38.2 Library functions that set errno and return an out-of-band error indicator 61
5.38.3 Library functions that may or may not set errno ... 61
5.38.4 Library functions that do not explicitly set errno .. 62

5.39 Interleaving stream inputs and outputs without a flush or positioning call (FIO39-C) 63

5.40 Invoking an unsafe macro with arguments containing side effects (PRE31-C) 63

5.41 Modifying constant values (EXP40-C) ... 65

5.42 Modifying string literals (STR30-C) .. 65

5.43 Modifying the string returned by getenv, localeconv, setlocale, and strerror (ENV30-C) 66

5.44 Not finishing case labels with a break statement (MSC17-C) .. 68

5.45 Overflowing signed integers (INT32-C) ... 69

5.46 Passing arguments to character handling functions that are not representable as unsigned
char (STR37-C) ... 70

5.47 Passing pointers into the same object as arguments to different restrict-qualified parameters
(DCL33-C) ... 71

5.48 Performing bitwise operations on Boolean operands (EXP16-C) .. 72

5.49 Reallocating or freeing memory that was not dynamically allocated (MEM34-C) 72

5.50 Referencing uninitialized memory (EXP33-C) ... 73

5.51 Shifting signed types (INT13-C) .. 75

5.52 Subtracting or comparing two pointers that do not refer to the same array (ARR36-C) 76

5.53 Taking the size of a pointer to determine the size of the pointed-to type (EXP01-C) 77

5.54 Using a value for fsetpos that is returned from fgetpos (FIO44-C) ... 77

5.55 Using abort or assert when atexit handlers are registered (ERR06-C) 78

5.56 Using an object overwritten by getenv, localeconv, setlocale, and strerror 78

5.57 Using character values that are indistinguishable from EOF (FIO34-C) 79

5.58 Using identifiers that are reserved for the implementation (DCL37-C) 80

5.59 Using integer arithmetic to calculate a value for assignment to a floating-point variable
(FLP33-C) ... 83

5.60 Using invalid format strings (FIO00-C) .. 84

5.61 Using non-unique identifiers (DCL32-C) .. 84

5.62 Tainted, potentially mutilated, or out-of-domain integer values are used in a taintedness sink
(INT04-C) .. 85

5.63 Using the sizeof operator on an expression that contains side effects (EXP06-C) 86

5.64 Using trigraphs (PRE07-C) .. 86

5.65 Wrapping unsigned integers (INT30-C) ... 87

Annex A (normative) Intra- to Interprocedural Transformations .. 89

A.1 Function arguments and return values .. 89

A.2 Indirection ... 89

A.3 Transformation involving standard library functions ... 91

A.4 Example .. 91

Annex B (informative) Undefined Behavior ... 93

ISO/IEC

vi © ISO/IEC 2011 – All rights reserved

Bibliography ... 103

Table 1 — Soundness and completeness ..2

Table 2 — Library functions and returns ... 39

Table 3 — Example library functions and returns ... 45

Table 4 — Standard math functions and their domains and ranges .. 46

Table 5 — Functions that set errno and return an in-band error indicator ... 60

Table 6 — Library functions that set errno value and return an out-of-band error indicator 61

Table 7 — Expressions and overflow ... 69

Table 8 — Expressions and wrapping .. 87

Table B.1 — Undefined behaviors .. 93

ISO/IEC

© ISO/IEC 2011 – All rights reserved vii

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a
technical committee may decide to publish other types of normative document:

— an ISO/IEC Publicly Available Specification (ISO/IEC PAS) represents an agreement between technical
experts in an ISO working group and is accepted for publication if it is approved by more than 50 % of the
members of the parent committee casting a vote;

— an ISO/IEC Technical Specification (ISO/IEC TS) represents an agreement between the members of a
technical committee and is accepted for publication if it is approved by 2/3 of the members of the
committee casting a vote.

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a
further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is
confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an
International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS was prepared by Technical Committee ISO/TC , , Subcommittee SC SC 22, .

This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) /
table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.

ISO/IEC

viii © ISO/IEC 2011 – All rights reserved

Introduction

An essential element of secure coding in the C programming language is a set of well-documented and
enforceable coding rules. The rules specified in this technical specification apply to analyzers, including static
analysis tools and C language compiler vendors that wish to diagnose insecure code beyond the requirements
of the language standard. All rules are meant to be enforceable by static analysis.

This Technical Specification has two major subdivisions:

 preliminary elements (clauses 1-5) and

 secure coding rules (clauses 6-18).

The rules documented in this technical specification rely only on non-annotated source files and not upon
assumptions of programmer intent. However, a conforming implementation may take advantage of
annotations to inform the analyzer. The rules, as specified, are reasonably simple, although complications can
exist in identifying exceptions. Additionally, there are significant differences in rules that are intended primarily
for evaluating new code versus legacy code. Because security is the primary concern, these rules are
intended first and foremost for evaluating new code and secondarily for evaluating legacy code. Consequently,
the application of these rules to legacy code may result in false positives. However, legacy code is generally
less volatile, and many static analysis tools provide methods that eliminate the need to research each
diagnostic on every invocation of the tool. The implementation of such a mechanism is encouraged, but not
required.

 ISO/IEC

© ISO/IEC 2011 – All rights reserved 1

Information Technology — Programming languages, their
environments and system software interfaces — C Secure
Coding Rules

1 Scope

This document specifies

 rules for secure coding in the C programming language and

 code examples.

This document does not specify

 the mechanism by which these rules are enforced or

 any particular coding style to be enforced. (It has been impossible to develop a consensus on appropriate
style guidelines. Programmers should define style guidelines and apply these guidelines consistently. The
easiest way to consistently apply a coding style is with the use of a code formatting tool. Many interactive
development environments provide such capabilities.)

A set of code examples accompanies each rule in this document. Code examples are informative only and
serve to clarify the requirements outlined in the normative portion of the rule. Examples impose no normative
requirements.

Two distinct kinds of code examples are provided:

 code examples demonstrating language constructs that have weaknesses with potentially exploitable
security implications; such examples are expected to elicit a diagnostic from a conforming analyzer for the
affected language construct; and

 code examples rewritten to avoid such constructs; such examples are expected not to elicit a diagnostic.

Code examples are not intended to be complete programs. For the sake of brevity, they typically omit
#include directives of C Standard Library headers that would otherwise be necessary to provide
declarations of referenced symbols. Code examples may also declare symbols without providing their
definitions if the definitions are not essential for demonstrating a specific weakness.

Code examples are typically written in the form of one or more functions taking zero or more arguments.
Unless explicitly specified elsewhere in an example, the values of arguments are considered to be external to
a program (and obtained, for instance, as if by reading a file or an environment variable). If the code examples
used values instead of arguments, the examples might no longer demonstrate a weakness as intended.

2 Conformance

In this Technical Specification, "shall" is to be interpreted as a requirement on an analyzer; conversely, "shall
not" is to be interpreted as a prohibition.

ISO/IEC

2 © ISO/IEC 2011 – All rights reserved

A conforming analyzer shall diagnose all violations of coding rules specified in this Technical Specification.
The guidelines may be extended in an implementation-dependent manner.

Conformance is evaluated by testing the ability of analyzers to diagnose all violations of the rules represented
by the non-compliant code and not diagnose compliant code and exceptions in the whole program.
Conforming analyzers shall diagnose transformations of these rules as required by Annex B (informative)
Undefined Behavior.

Conformance is defined only with respect to source code that is visible to the analyzer. Binary-only libraries,
and calls to them, are outside the scope of these rules.

2.1 Completeness and soundness

To the greatest extent possible, an analyzer should be both complete and sound with respect to enforceable
guidelines. An analyzer is considered sound (with respect to a specific guideline) if it does not give a false-
negative result, meaning it is able to find all violations of a guideline within the entire program. An analyzer is
considered complete if it does not issue false-positive results, or false alarms. The possibilities for a given
guideline are outlined in Table 1.

Table 1 — Soundness and completeness

 False positives

F
a

ls
e

 n
e

g
a

ti
v

e
s Y N

N
Sound with

false positives
Complete and

sound

Y
Unsound with
false positives

Unsound

There are many tradeoffs in minimizing false positives and false negatives. It is obviously better to minimize
both, and there are many techniques and algorithms that do both to some degree. However, once an analysis
technology reaches the efficient frontier of what is possible without fundamental breakthroughs, it must select
a point on the curve trading off these two factors (and others, such as scalability and automation). For
automated tools on the efficient frontier that require minimal human input and that scale to large code bases,
there is often tension between false negatives and false positives.

It is easy to build tools that are in the extremes. A tool can report all of the lines in the program and have no
false negatives at the expense of large numbers of false positives. Conversely, a tool can report nothing and
have no false positives at the expense of not reporting real defects that could be detected automatically. Tools
with a high false positive rate waste the time of developers, who can lose interest in the results and, therefore,
miss the true bugs that are lost in the noise. Tools with a high number of false negatives miss many defects
that should be found. In practice, tools needs to strike a balance between the two.

The degree to which tools minimize false positive and false negative diagnostics is a quality of implementation
issue. In other words, quantitative thresholds for false positive and false negative ratios are outside the scope
of this Technical Specification.

Analyzers are trusted processes, meaning that developers rely upon their output. Consequently, developers
must ensure that this trust is not misplaced. To earn this trust, the tool supplier should, ideally, run appropriate
validation tests. While it is possible to use a validation suite to test an analyzer, no formal validation scheme
exists at this time.

2.2 Portability assumptions

A conforming analyzer shall be able to diagnose violations of guidelines for at least one C99 or C1X
implementation.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 3

The term "C99" designates ISO/IEC 9899:1999 as corrected by its Technical Corrigenda; the term "C1X"
designates the next revision of ISO/IEC 9899, currently being developed by ISO/IEC JTC 1/SC22/WG14.

An analyzer need not diagnose a rule violation if the result is documented for the target implementation and
does not cause a security flaw.

Variations in quality of implementation permit an analyzer to produce diagnostics concerning portability issues.

EXAMPLE

long i;
printf("i = %d", i);

This example can produce a diagnostic, such as the mismatch between %d and long int. This might not be
a problem for all target implementations, but it would be a portability problem for a target implementation
where int does not have the same representation as long.

2.3 Security focus

The purpose of this Technical Specification is to specify analyzable secure coding rules that can be
automatically enforced to detect security flaws in C99-conforming and C1X-conforming applications. To be
considered a security flaw, a software bug must be triggered by the actions of a malicious user or attacker. An
attacker may trigger a bug by providing malicious data or by providing inputs that execute a particular control
path that in turn executes the security flaw. Implementers are required to distinguish violations that involve
tainted data from those that do not involve tainted data.

2.4 Taint analysis

2.4.1 Taintedness and tainted sources

Some operations, particularly those on multiple operands, might have a defined domain that is a subset of the
domain described by the types of their operands. When the actual operand values are outside of the defined
domain, the result might be either undefined or at least unexpected. Examples include, for integral data types
intended to be used as array indexes, values equal to or larger than the size of the array and, if the type is
signed, any negative values. A string might not include a terminating null character within the character array
that the string pointer points to or into. Strings might also violate a constraint on their contents imposed by a
consumer, such as being a printf format string meant only for printing a fixed number of values. If the value
of an expression might be outside the domain of some operation and it comes from somewhere outside of the
program's control, such as a command line argument, data returned from a system call, or data in shared
memory, that value is said to be tainted and its origin is known as a tainted source. Again, a tainted value is
not necessarily known not to be in the domain; rather, it is not known to be in the domain. Note also that only
values, not expressions, can be tainted; in some cases the same expression can hold tainted or untainted
values along different paths.

Tainted sources are specifically

 the returned value from localeconv, fgetc, getc, getchar, fgetwc, getwc, and getwchar and

 the input values or strings produced by getenv, fscanf, vfscanf, vscanf, fgets, fread, fwscanf,
vfwscanf, vwscanf, wscanf, and fgetws.

2.4.2 Taintedness sinks

Operations whose defined domain is a subset of the domain described by their operand types are called
taintedness sinks. Any address arithmetic operation involving an integer operand is a taintedness sink for that
operand. Certain parameters of certain library functions are defined to be taintedness sinks because internally

ISO/IEC

4 © ISO/IEC 2011 – All rights reserved

those functions perform address arithmetic with those parameters, or control the allocation of a resource, or
pass those parameters on to another taintededness sink. All string input parameters to library functions are
taintedness sinks because those strings are required to be null-terminated, with the exception of strncpy
(and strncpy_s), which explicitly allows the source argument to not be null-terminated. Although one could
classify loop bounds as taintedness sinks, we choose not to do so.

2.4.3 Propagation

Generally speaking, taintedness is propagated through operations from operands to results, unless the
operation itself imposes constraints on the value of its result that subsume the constraints imposed by
taintedness sinks. In addition to operations that propagate the same sort of taintedness, there are also
operations that propagate taintedness of one sort of an operand to taintedness of a different sort for their
results, the most notable example of which is strlen propagating the taintedness of its argument with
respect to string length to the taintedness of its return value with respect to range.

2.4.4 Approaches to analysis

By definition, any tainted value flowing into a taintedness sink is a security issue, so all such cases must be
diagnosed. Doing so requires some form of data flow analysis. In its most basic form, such an analysis would
operate intraprocedurally to determine which local tainted sources flow into local taintedness sinks. Such a
limited analysis would be very weak, so the next step would be interprocedural analysis. There are multiple
ways to accomplish interprocedural analysis: top-down, bottom-up, and approaches that follow global data
flow more than they follow the call graph. For example, in a bottom-up analysis, the parameters identified in
the first step as flowing into taintedness sinks would themselves be treated as taintedness sinks at all of their
function's call sites, recursively. In addition, function return values can be identified as tainted sources and
treated accordingly at each call site. This brief sketch ignores such details as recursion and programs such as
libraries with multiple call graph roots. It also ignores the large issue of tainted data escaping into the heap or
into global or static variables.

2.4.5 Sanitization

For a tainted value to cease being tainted, something must be done to ensure that it is in the defined domain
of any operation it flows into. This process is called sanitization. Sanitization can be done in two basic ways:
replacement and termination. In sanitization by replacement, out-of-domain values are replaced by in-domain
values, and processing continues using an in-domain value in place of the original. In sanitization by
termination, the program logic terminates the path of execution when an out-of-domain value is detected,
often simply by branching around whatever code would have used the value.

In general, sanitization cannot be recognized exactly via static analysis. Tools that do taint analysis usually
provide some extra-linguistic mechanism to identify sanitizing functions that sanitize an argument (passed by
address) in place, return a sanitized version of an argument, or return a status code indicating whether the
argument is in the required domain. Because such extra-linguistic mechanisms are outside the scope of this
specification, we will instead use a set of rudimentary definitions of sanitization that will be very likely to
recognize real sanitization but might cause non-sanitizing or ineffectively sanitizing code to be construed as
sanitizing. The following definition of sanitization presupposes that the analysis is in some way maintaining a
set of constraints on each value encountered as the simulated execution progresses: a given path through the
code sanitizes a value with respect to a given taintedness sink if it restricts the range of that value to a subset
of the defined domain of the operation at that sink. For example, sanitization of signed integers with respect to
an array index operation must restrict the range of that integer value to numbers between zero and the size of
the array minus one.

2.4.6 Tainted source macros

#define GET_TAINTED_STRING(buf, buf_size) \
 do { \
 const char *taint = getenv("TAINT"); \
 if (taint == 0) { \
 exit(1); \

ISO/IEC

© ISO/IEC 2011 – All rights reserved 5

 } \
 \
 size_t taint_size = strlen(taint) + 1; \
 if (taint_size > buf_size) { \
 exit(1); \
 } \
 \
 strncpy(buf, taint, taint_size); \
 } while (0);

#define GET_TAINTED_INT(val) \
 do { \
 const char *taint = getenv("TAINT"); \
 if (taint == 0) { \
 exit(1); \
 } \
 \
 val = strtol(taint, 0, 10); \
 } while (0);

3 Normative references

The following referenced documents are indispensable for the application of the C Secure Coding Rules. For
dated references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

[ISO/IEC 9899:1999] Programming Languages – C.

[ISO/IEC 9899:1999] Cor 1:2001, Programming Languages – C – Technical Corrigendum 1.

[ISO/IEC 9899:1999] Cor 2:2004, Programming Languages – C – Technical Corrigendum 2.

[ISO/IEC 9899:1999] Cor 3:2007, Programming Languages – C – Technical Corrigendum 3.

[ISO/IEC 9899-C1X] Committee Draft of upcoming revision of Programming Languages – C.

[ISO/IEC TR 24731-1:2007] Extensions to the C Library, Part I: Bounds-checking interfaces.

[ISO/IEC TR 24731-2] ISO/IEC TR 24731-2 Extensions to the C Library, Part II: Dynamic Allocation Functions.

[ISO 31-11:1992] Quantities and units – Part 11: Mathematical signs and symbols for use in the physical
sciences and technology.

[ISO/IEC 646:1991] Information technology – ISO 7-bit coded character set for information interchange.

[ISO/IEC 2382-1:1993] Information technology – Vocabulary – Part 1: Fundamental terms.

[ISO 4217] Codes for the representation of currencies and funds.

[ISO 8601] Data elements and interchange formats – Information interchange – Representation of dates and
times.

[ISO/IEC 10646:2003] (all parts), Information technology — Universal Multiple-Octet Coded Character Set
(UCS).

[ISO/IEC/IEEE 60559] Information technology – Microprocessor Systems – Floating-Point arithmetic.

ISO/IEC

6 © ISO/IEC 2011 – All rights reserved

[IEC 61508] (all parts), Functional safety of electrical/electronic/programmable electronic safety-related
systems.

[ISO/IEC/IEEE 9945:2009] Information technology – Portable Operating System Interface (POSIX®) Base
Specifications, Issue 7.

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9899:1999, ISO/IEC 9899:201x,
ISO/IEC 2382-1:1993, and the following entries apply. Other terms are defined where they appear in italic type.
Mathematical symbols not defined in this Technical Specification are to be interpreted according to ISO 31-
11:1992.

4.1
analyzer
The mechanism that diagnoses coding flaws in software programs. This may include static analysis tools,
tools within a compiler suite, and code reviewers.

4.2
asynchronous-safe
A function is asynchronous-safe, or asynchronous-signal safe, if it can be called safely and without side
effects from within a signal handler context. That is, it must be able to be interrupted at any point to run
linearly out of sequence without causing an inconsistent state. It must also function properly when global data
might itself be in an inconsistent state.

4.3
data flow
Data flow is the tracking of values along specific paths through the code. It can be done intraprocedurally, with
various assumptions made about what happens at function call boundaries, or interprocedurally, where values
are tracked flowing into function calls (directly or indirectly) as arguments and flowing back out either as return
values or indirectly through arguments. There are varying degrees of sophistication of data flow analysis that
may or may not track values flowing into or out of the heap or take into account global variables. When this
specification refers to values flowing, the key point is contrast with variables or expressions, because a given
variable or expression may hold different values along different paths and a given value may be held by
multiple variables or expressions along a path.

4.4
dereferenceable pointer
A valid pointer that points to an object in memory.

4.5
derived type
Given an integer expression E, the derived type T of E is determined as follows:

 if E is a sizeof expression, then T is the type of the operand of the expression;

 otherwise, if E is an identifier, then T is the derived type of the expression last used to store a value in E;

 otherwise, if the derived type of each of E's subexpressions is the same, then T is that type;

 otherwise, the derived type is an unspecified character type compatible with any of char, signed char,
and unsigned char.

EXAMPLE For the following declarations:

double a[40];
size_t n0 = sizeof (int);

ISO/IEC

© ISO/IEC 2011 – All rights reserved 7

size_t n1 = 256;
size_t n2 = sizeof a / sizeof (*a);

The derived type of n0 is int, and the derived type of n1 and n2 is a (hypothetical) unspecified character type that is
compatible with any of char, signed char, and unsigned char.

4.6
exploit
A piece of software or a technique that takes advantage of a security vulnerability to violate an explicit or
implicit security policy.

4.7
invalid pointer
A pointer that is not a valid pointer.

4.8
non-dereferenceable pointer
A pointer that is not dereferenceable. The behavior of a program that attempts to use a non-dereferenceable
pointer as an operand of the indirection operator * in a context where the pointer to an object is evaluated is
undefined.

4.9
out-of-domain value
One of a set of values that is not in the domain of a particular operator or function.

4.10
persistent signal handler
A signal handler is persistent when it is running on a platform where the operating system reinstalls it each
time it is called, meaning the programmer only has to install the handler once. A signal handler is non-
persistent when it is running on a platform where it is not automatically reinstalled, meaning that the
programmer has to reinstall the handler each time he or she wants to catch a signal.

4.11
sanitize
A value, typically one that previously was tainted, is said to be sanitized when testing has confirmed that it
conforms to the constraints imposed by one or more taintedness sinks that it may flow into. One way or
another, if the value does not conform, either the path will be diverted so as not to use the value or a different,
known-conforming value will be substituted.

4.12
security flaw
A software defect that poses a potential security risk.

4.13
security policy
A set of rules and practices that specify or regulate how a system or organization provides security services to
protect sensitive and critical system resources.

4.14
static analysis
Any process for assessing code without executing it [Chess 2007, p. 3].

4.15
tainted data
A value is said to be tainted if it comes from an untrusted source (outside of the program's control) and has
not been sanitized to ensure that it conforms to any constraints on its value that consumers of the value
require, such as that a signed integer is non-negative or that a string is null terminated. Because different
sinks for the same value may impose different validity constraints on it, the notions of taintedness and
sanitization are not single-valued; a given value can be tainted with respect to one class of taintedness sinks
but sanitized (and consequently no longer tainted) with respect to a different class of sinks.

ISO/IEC

8 © ISO/IEC 2011 – All rights reserved

4.16
taintedness sink
A taintedness sink is an expression that uses a value for some specific purpose, typically in a way that places
some run-time constraint on that value necessary for the correctness of some operation. Problems occur
when a value that is not known to conform to the given constraint, such as a tainted value, can flow into a
taintedness sink.

4.17
untrusted data
Data originating from an untrusted source; for analysis purposes, any input external to the program.

4.18
valid pointer
A pointer that refers to an element within an array or one past the last element of an array. For the purposes
of this definition, a pointer to an object that is not an element of an array behaves the same as a pointer to the
first element of an array of length one with the type of the object as its element type. (See C99, Section 6.5.8
p. 4.)

For the purposes of this definition, an object can be considered to be an array of a certain number of bytes;
that number is the size of the object, as produced by the sizeof operator. (See C99, Section 6.3.2.3 p. 7.)

4.19
vulnerability
A set of conditions that allows an attacker to violate an explicit or implicit security policy.

5 Rules

5.1 Accessing an object through a pointer to an incompatible type (EXP11-C, EXP39-C)

An object shall have its stored value accessed only by an lvalue expression that has one of the following
types:

 a type compatible with the effective type of the object,

 a qualified version of a type compatible with the effective type of the object,

 a type that is the signed or unsigned type corresponding to the effective type of the object,

 a type that is the signed or unsigned type corresponding to a qualified version of the effective type of the
object,

 an aggregate or union type that includes one of the aforementioned types among its members (including,
recursively, a member of a subaggregate or contained union), or

 a character type.

The intent of this list is to specify those circumstances in which an object may or may not be aliased.

Accessing an object through a pointer to an incompatible type (other than unsigned char) is undefined
behavior (see undefined behavior 34 in Annex B).

According to Section 6.2.6.1 of C99,

Certain object representations need not represent a value of the object type. If the stored value of an object
has such a representation and is read by an lvalue expression that does not have character type, the behavior
is undefined.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 9

EXAMPLE 1 In this example, a diagnostic is required because an object of type float is incremented through a pointer
to int, ip.

void f() {
 assert(sizeof(int) == sizeof(float));

 float f = 0.0;
 int *ip = (int *)&f;

 printf("float is %f\n", f);

 (*ip)++; // diagnostic required

 printf("float is %f\n", f);
}

EXAMPLE 2 In this example, a diagnostic is required because the second and third arguments to the conditional operator,
&u.i and &u.f, have incompatible types.

void g(int which) {
 void *p;
 int j;
 union {
 int i;
 float f;
 } u;

 u.i = 1;
 p = which ? &u.i : &u.f; // diagnostic required
 if (which == 0) {
 j = *(int *)p;
 }
}

Related guidelines

CERT C Secure Coding Standard:

 EXP11-C. Do not apply operators expecting one type to data of an incompatible type

 EXP39-C. Do not access a variable through a pointer of an incompatible type

ISO/IEC TR 24772 "STR Bit Representations"

MISRA-C 2004, Rule 3.5

Bibliography

[Plum 1985] Rule 6-5

5.2 Accessing freed memory (MEM30-C)

After an allocated block of dynamic storage has been deallocated by a memory management function, the
evaluation of any pointers into the freed memory, including being dereferenced or acting as an operand of an
arithmetic operation, type cast, or right-hand side of an assignment, shall be diagnosed.

C99 identifies the situation in which undefined behavior (UB) arises as a result of accessing freed memory:

ISO/IEC

10 © ISO/IEC 2011 – All rights reserved

UB Description

168 The value of a pointer that refers to space deallocated by a call to the free or realloc function is used (7.20.3).

EXAMPLE 1 In this example, a diagnostic is required because head->next is accessed after head has been freed.

struct List { struct List *next; /* ... */ };

void free_list(struct List *head) {
 for (; head != NULL; head = head->next) { // diagnostic required
 free(head);
 }
}

EXAMPLE 2 In this example, a diagnostic is required because buf is written to after it has been freed.

int main(int argc, const char *argv[]) {
 if (argc < 2) {
 /* ... */
 }

 const size_t bufsize = strlen(argv[1]) + 1;

 char *buf = (char *)malloc(bufsize);
 if (!buf) {
 /* ... */
 }
 /* ... */
 free(buf);
 /* ... */
 strncpy(buf, argv[1], bufsize); // diagnostic required
 /* ... */
 return 0;

EXAMPLE 3 In this example, a diagnostic is required because realloc may free str1 when it returns NULL, resulting
in str1 being freed twice.

void f(char *str1, size_t size) {
 char *str2 = (char *)realloc(str1, size);
 if (str2 == NULL) {
 free(str1); // diagnostic required
 return;
 }
}

Related guidelines

CERT C Secure Coding Standard: MEM30-C. Do not access freed memory

ISO/IEC TR 24772 "DCM Dangling references to stack frames" and "XYK Dangling Reference to Heap"

MISRA-C 2004, Rule 17.6

MITRE CWE: CWE-416: Use After Free

Bibliography

[Kernighan 1988] Section 7.8.5, "Storage Management"

[OWASP] Freed Memory

ISO/IEC

© ISO/IEC 2011 – All rights reserved 11

[Seacord 2005] Chapter 4, "Dynamic Memory Management"

[Viega 2005] Section 5.2.19, "Using freed memory"

5.3 Accessing shared objects in signal handlers (SIG31-C)

Accessing values of objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t
in a signal handler shall be diagnosed because this results in undefined behavior.

EXAMPLE In this example, a diagnostic is required because the object referred to by the shared pointer err_msg is
accessed from the signal handler handler via the C standard library function strcpy.

char *err_msg;
enum { MAX_MSG_SIZE = 24 };

void handler(int signum) {
 strcpy(err_msg, "SIGINT encountered."); // diagnostic required
}

int main(void) {
 signal(SIGINT, handler);

 err_msg = (char *)malloc(MAX_MSG_SIZE);
 if (err_msg == NULL) {
 /* Handle error condition */
 }
 strcpy(err_msg, "No errors yet.");

 /* Main code loop */

 return 0;
}

Related guidelines

CERT C Secure Coding Standard: SIG31-C. Do not access or modify shared objects in signal handlers

ISO/IEC 2003 "Signals and Interrupts"

MITRE CWE: CWE-662: Improper Synchronization

Bibliography

[Dowd 2006] Chapter 13, Synchronization and State

[Open Group 2004] longjmp

[OpenBSD] signal Man Page

[Zalewski 2001]

5.4 Accessing volatile objects through a non-volatile pointer (EXP32-C)

Accessing a volatile object through a non-volatile pointer shall be diagnosed because this results in undefined
behavior.

EXAMPLE In this example, a diagnostic is required because a volatile-qualified object is accessed through a non-
volatile-qualified pointer, ip.

ISO/IEC

12 © ISO/IEC 2011 – All rights reserved

static volatile int **ipp;
static int *ip;
static volatile int i = 0;

void f() {
 ipp = &ip;
 *ipp = &i;
 if (*ip != 0) { // diagnostic required
 /* ... */
 }
}

Related guidelines

CERT C Secure Coding Standard: EXP32-C. Do not access a volatile object through a non-volatile reference

ISO/IEC TR 24772 "HFC Pointer casting and pointer type changes" and "IHN Type system"

MISRA-C 2004, Rule 11.5

5.5 Adding or subtracting a byte count integer to an element pointer (EXP08-C)

A byte count integer counts some number of bytes. An element count integer counts some number of array
elements. An element pointer points to an array that contains elements whose sizes are each greater than
one byte.

Adding or subtracting a byte count integer value to a pointer shall be diagnosed because this can result in an
invalid or incorrect pointer. Similarly, dividing the difference of two element pointers (which yields an element
count integer) by the size of the type that the pointers point to shall be diagnosed because this operation
yields a dimensionally nonsensical value. In both cases the resulting value may be either larger or smaller
than the intended value, depending on the types involved, and so may lead to either overruns or underruns,
depending on how the value is used.

The quotient of the size of an entire array object, which is itself a byte count integer, and the size of a single
element of that same array, which is also a byte count integer, is an element count integer, so it is allowed to
add or subtract such a quotient to or from an element pointer.

EXAMPLE 1 In this example, a diagnostic is required because the byte count integer sizeof(buf) is added to the
element pointer buf.

int get_int(int *data) {
 char buf[BUFSIZ];
 if (fgets(buf, BUFSIZ, stdin) == NULL) {
 return 1;
 }

 *data = strtol(buf, NULL, 0);

 return 0;
}

void collect_ints() {
 int buf[BUFSIZ];
 int *buf_ptr = buf;

 while (buf_ptr < (buf + sizeof(buf))) { // diagnostic required
 int data;
 if (get_int(&data) != 0) {
 break;
 }

ISO/IEC

© ISO/IEC 2011 – All rights reserved 13

 *buf_ptr++ = data;
 }

 /* ... */
}

EXAMPLE 2 In this example, a diagnostic is required because the element pointer end - begin is divided by the size
of the pointed-to type, sizeof(struct s).

struct s {
 int a;
 int b;
};

void f(struct s *begin, struct s *end) {
 size_t nelem = (end - begin) / sizeof(struct s); // diagnostic required
 size_t size = nelem * sizeof(struct s);

 struct s *s_copy = (struct s *)malloc(size);
 if (!s_copy) {
 /* ... */
 }

 memcpy(s_copy, begin, size);

 /* ... */
}

EXAMPLE 3 In this example, a diagnostic is required because the byte count integer skip is added to the element
pointer s.

struct big {
 unsigned long long ull_1;
 unsigned long long ull_2;
 unsigned long long ull_3;
 int si_4;
 int si_5;
};

void g() {
 size_t skip = offsetof(struct big, ull_2);
 struct big *s = (struct big *)malloc(99 * sizeof(struct big));
 if (!s) {
 /* ... */
 }

 memset(s + skip, 0, sizeof(struct big) - skip); // diagnostic required

 /* ... */
}

EXAMPLE 4 In this example, a diagnostic is required because the byte count integer wcslen(error_msg) *
sizeof(wchar_t) is added to the element pointer error_msg.

void h() {
 wchar_t error_msg[BUFSIZ];

 const wchar_t *prefix = L"Error: ";

 wcscpy(error_msg, prefix);
 fgetws(error_msg + wcslen(error_msg) * sizeof(wchar_t), // diagnostic required

ISO/IEC

14 © ISO/IEC 2011 – All rights reserved

 BUFSIZ - wcslen(prefix), stdin);

 /* ... */
}

Exception: EXP08-EX1

No diagnostic is required if the pointer is a pointer to char.

Related guidelines

CERT C Secure Coding Standard: EXP08-C. Ensure pointer arithmetic is used correctly

ISO/IEC TR 24772 "HFC Pointer casting and pointer type changes" and "RVG Pointer Arithmetic"

MITRE CWE: CWE-468: Incorrect Pointer Scaling

MISRA-C 2004, Rules 17.1-17.4

Bibliography

[Dowd 2006] Chapter 6, "C Language Issues"

[Seacord 2005] Seacord, Robert C. Secure Coding in C and C++.

5.6 Assigning in conditional expressions (EXP18-C)

Using the assignment operator in the outermost expression of a conditional expression shall be diagnosed
because this typically indicates programmer error and can result in unexpected behavior.

EXAMPLE In this example, a diagnostic is required because the assignment expression is the outermost expression of a
conditional expression.

if (a = b) { // diagnostic required
 /* ... */
}

Bibliography

[Hatton 1995] Section 2.7.2, "Errors of omission and addition"

[ISO/IEC TR 24772] "KOA Likely Incorrect Expressions"

[MITRE 2007] CWE ID 482, "Comparing instead of Assigning," CWE ID 480, "Use of Incorrect Operator"

[CERT C Secure Coding Standard] "EXP18-C. Do not perform assignments in selection statements"

5.7 Assigning in controlling expressions (EXP15-C)

Assigning a constant in the outermost expression of the controlling expression of the following shall be
diagnosed because this typically indicates programmer error and can result in unexpected behavior:

 if

 switch

 while

ISO/IEC

© ISO/IEC 2011 – All rights reserved 15

 do

 for

 ?:

EXAMPLE In this example, a diagnostic is required because the expression a = 42 contains an assignment of a
constant in the outermost expression of the controlling expression of an if statement.

void f(int a) {
 if (a = 42) { // diagnostic required
 /* ... */
 }

 /* ... */
}

Related guidelines

CERT C Secure Coding Standard: MSC02-C. Avoid errors of omission

ISO/IEC TR 24772 "KOA Likely Incorrect Expressions"

MITRE CWE:

 CWE-480: Use of Incorrect Operator

 CWE-482: Comparing instead of Assigning

Bibliography

[Hatton 1995] Section 2.7.2, "Errors of omission and addition"

5.8 Assuming a positive remainder when using the % operator (INT10-C)

Assuming a positive remainder when using the % (modulo) operator shall be diagnosed because the
remainder from the % operator can be non-positive.

EXAMPLE In this example, a diagnostic is required because the result of the expression (index + 1) % size can
be negative and is used as an index to the array list.

int insert(int index, int *list, int size, int value) {
 if (size != 0) {
 index = (index + 1) % size;
 list[index] = value; // diagnostic required
 return index;
 } else {
 return -1;
 }
}

Related guidelines

CERT C Secure Coding Standard: INT10-C. Do not assume a positive remainder when using the % operator

MITRE CWE:

 CWE-129: Improper Validation of Array Index

ISO/IEC

16 © ISO/IEC 2011 – All rights reserved

 CWE-682: Incorrect Calculation

Bibliography

[Beebe 2005] Re: Remainder (%) operator and GCC

[Microsoft 2007] C Multiplicative Operators

[Sun 2005] Appendix E, "Implementation-Defined ISO/IEC C90 Behavior"

5.9 Assuming character data does not contain a null byte (FIO37-C)

Assuming a non-zero number of non-null bytes stored by the fgets and fread functions into the initial
elements of the array shall be diagnosed because these functions can return character data that contains null
bytes.

EXAMPLE 1 In this example, a diagnostic is required because the expression buf[strlen(buf) - 1] assumes that
the first byte of the parameter to fgets, buf, is non-null.

void f() {
 char buf[BUFSIZ];

 if (fgets(buf, sizeof(buf), stdin)) {
 buf[strlen(buf) - 1] = '\0'; // diagnostic required
 puts(buf);
 }
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because no assumption is made about the first byte of
the string buf being non-null.

void f() {
 char buf[BUFSIZ];

 if (fgets(buf, sizeof(buf), stdin)) {
 char *nl = strchr(buf, '\n');
 if (nl) {
 *nl = '\0';
 }

 puts(buf);
 }
}

Related guidelines

CERT C Secure Coding Standard: FIO37-C. Do not assume that fgets() returns a nonempty string when
successful

MITRE CWE:

 CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

 CWE-241: Improper Handling of Unexpected Data Type

Bibliography

[Lai 2006] "Reading Between the Lines"

ISO/IEC

© ISO/IEC 2011 – All rights reserved 17

[Seacord 2005] Chapter 2, "Strings"

5.10 atexit-registered handler does not return (ENV32-C)

A handler registered using the atexit or at_quick_exit function that makes a call to the longjmp
function that would terminate the call to the handler shall be diagnosed because the behavior of such a
handler is undefined.

A handler registered using the atexit function that makes a call to the exit function, or a handler registered
using the at_quick_exit function that makes a call to the at_quick_exit function, shall be diagnosed
because the behavior of such a handler is undefined.

EXAMPLE 1 In this example, a diagnostic is required because the atexit-registered handler exit_handler does
not return.

void exit_handler(void) {
 exit(0); // diagnostic required
}

int main(void) {
 atexit(exit_handler);

 /* ... */
 return 0;
}

EXAMPLE 2 In this example, a diagnostic is required because the at_quick_exit-registered handler
quick_exit_handler does not return.

jmp_buf env;

void quick_exit_handler(void) {
 longjmp(env, 1); // diagnostic required
}

int main(void) {
 if (at_quick_exit(quick_exit_handler) == 0) {
 if (setjmp(env) == 0) {
 quick_exit(0);
 }
 }

 /* ... */
 return 0;
}

Related guidelines

CERT C Secure Coding Standard: ENV32-C. All atexit handlers must return normally

ISO/IEC TR 24772 "EWD Structured Programming" and "REU Termination Strategy"

MITRE CWE: CWE-705: Incorrect Control Flow Scoping

5.11 Calling functions in the C standard library other than abort, _Exit, and signal from
within a signal handler (SIG30-C)

Calling functions in the C standard library other than abort, _Exit, and signal from within a signal handler
shall be diagnosed because doing so results in undefined behavior.

ISO/IEC

18 © ISO/IEC 2011 – All rights reserved

EXAMPLE 1 In this example, a diagnostic is required because the C standard library function fprintf is called from the
signal handler handler via the function log_message.

enum { MAXLINE = 1024 };
char info[MAXLINE];

void log_message() {
 fprintf(stderr, "%s\n", info); // diagnostic required
}

void handler(int signum) {
 log_message();
}

int main(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 }

 while (1) {
 /* Main loop program code */

 log_message();

 /* More program code */
 }
 return 0;
}

EXAMPLE 2 In this example, a diagnostic is required because the C standard library function raise is called from the
signal handler int_handler.

void term_handler(int signum) {
 /* SIGTERM handling specific */
}

void int_handler(int signum) {
 /* SIGINT handling specific */
 if (raise(SIGTERM) != 0) { // diagnostic required
 /* Handle error */
 }
}

int main(void) {
 if (signal(SIGTERM, term_handler) == SIG_ERR) {
 /* Handle error */
 }
 if (signal(SIGINT, int_handler) == SIG_ERR) {
 /* Handle error */
 }

 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 }
 /* More code */

 return 0;
}

ISO/IEC

© ISO/IEC 2011 – All rights reserved 19

EXAMPLE 3 In this example, a diagnostic is required because the C standard library function longjmp is called from the
signal handler handler.

enum { MAXLINE = 1024 };
static jmp_buf env;

void handler(int signum) {
 longjmp(env, 1); // diagnostic required
}

void log_message(char *info1, char *info2) {
 static char *buf = NULL;
 static size_t bufsize;
 char buf0[MAXLINE];

 if (buf == NULL) {
 buf = buf0;
 bufsize = sizeof(buf0);
 }

 /*
 * Try to fit a message into buf, else re-allocate
 * it on the heap and then log the message.
 */

/*** VULNERABILITY IF SIGINT RAISED HERE ***/

 if (buf == buf0) {
 buf = NULL;
 }
}

int main(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 }

 char *info1;
 char *info2;

 /* info1 and info2 are set by user input here */

 if (setjmp(env) == 0) {
 while (1) {
 /* Main loop program code */
 log_message(info1, info2);
 /* More program code */
 }
 }
 else {
 log_message(info1, info2);
 }

 return 0;
}

Exception: SIG30-EX1

A signal handler that does not occur as a result of calling the abort or raise function does not need to be
diagnosed because this does not result in undefined behavior.

ISO/IEC

20 © ISO/IEC 2011 – All rights reserved

Related guidelines

CERT C Secure Coding Standard:

 SIG30-C. Call only asynchronous-safe functions within signal handlers

 SIG33-C. Do not recursively invoke the raise() function

ISO/IEC 2003 Section 5.2.3, "Signals and interrupts"

MITRE CWE: CWE-479: Signal Handler Use of a Non-reentrant Function

Bibliography

[Dowd 2006] Chapter 13, "Synchronization and State"

[Open Group 2004] longjmp

[OpenBSD] signal Manual Page

[Zalewski 2001] Delivering Signals for Fun and Profit

5.12 Calling functions with incorrect arguments (EXP37-C)

Calling a function with the wrong number or type of arguments shall be diagnosed because this results in
undefined behavior.

C99 identifies three distinct situations in which undefined behavior (UB) may arise as a result of invoking a
function using a declaration that is incompatible with its definition or with incorrect types or numbers of
arguments:

UB Description

23 A pointer is used to call a function whose type is not compatible with the pointed-to type (6.3.2.3).

36 For a call to a function without a function prototype in scope, the number of arguments does not equal the number of
parameters (6.5.2.2).

37 For call to a function without a function prototype in scope where the function is defined with a function prototype,
either the prototype ends with an ellipsis or the types of the arguments after promotion are not compatible with the
types of the parameters (6.5.2.2).

39 A function is defined with a type that is not compatible with the type (of the expression) pointed to by the expression
that denotes the called function (6.5.2.2).

EXAMPLE 1 In this example, a diagnostic is required because the C standard library function strchr is called through
the function pointer fp with incorrectly-typed arguments.

char *(*fp)();

void f() {
 char *c;
 fp = strchr;
 c = fp(12, 2); // diagnostic required
}

EXAMPLE 2 In this example, a diagnostic is required because the function copy is defined to take two arguments but is
called with three arguments.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 21

/* in another source file */
void copy(char *dst, const char *src) {
 strcpy(dst, src);
}

/* in this source file -- no copy prototype in scope */
void copy();

void g(const char *s) {
 char buf[20];
 copy(buf, s, sizeof buf); // diagnostic required
 /* ... */
}

EXAMPLE 3 In this example, a diagnostic is required because the function buginf is defined to take a variable number
of arguments but is declared in another file with no prototype and is called.

/* in another source file */
void buginf(const char *fmt, ...) {
 /* ... */
}

/* in this source file -- no buginf prototype in scope */
void buginf();

void h(void) {
 buginf("bug in function %s, line %d\n", __func__, __LINE__); // diagnostic
required
 /* ... */
}

EXAMPLE 4 In this example, a diagnostic is required because the function f is defined to take an argument of type long,
but f is called from another file with an argument of type int.

/* in somefile.c */

long f(long x) {
 return x < 0 ? -x : x;
}

/* in otherfile.c */

int g(int x) {
 return f(x); // diagnostic required
}

Related guidelines

CERT C Secure Coding Standard: EXP37-C. Call functions with the arguments intended by the API

ISO/IEC TR 24772 "OTR Subprogram Signature Mismatch"

MISRA-C 2004, Rule 16.6

MITRE CWE: CWE-628: Function Call with Incorrectly Specified Arguments

Bibliography

[MITRE 2011] CVE-2006-1174

[Spinellis 2006] Section 2.6.1, "Incorrect Routine or Arguments"

ISO/IEC

22 © ISO/IEC 2011 – All rights reserved

5.13 Calling signal from interruptible signal handlers (SIG34-C)

Calling signal from within an interruptible signal handler on platforms where signal handlers are non-
persistent shall be diagnosed because doing so presents a race window.

EXAMPLE In this example, a diagnostic is required on implementations where signal handlers are non-persistent because
the C standard library function signal is called from the signal handler handler.

void handler(int signum) {
 if (signal(signum, handler) == SIG_ERR) { // diagnostic required
 /* ... */
 }

 /* ... */
}

void f() {
 if (signal(SIGUSR1, handler) == SIG_ERR) {
 /* ... */
 }

 /* ... */
}

Related guidelines

CERT C Secure Coding Standard: SIG34-C. Do not call signal() from within interruptible signal handlers

MITRE CWE: CWE-479: Signal Handler Use of a Non-reentrant Function

5.14 Calling system (ENV04-C)

All calls to the system function shall be diagnosed. Use of the system function can result in exploitable
vulnerabilities

 when passing an unsanitized or improperly sanitized command-string originating from an untrusted
source or

 if a command is specified without a path name and the command processor path name resolution
mechanism is accessible to an attacker or

 if a relative path to an executable is specified and control over the current working directory is accessible
to an attacker or

 if the specified executable program can be spoofed by an attacker.

Although exceptions to this rule are necessary, these can only be identified on a case-by-case basis during a
code review and are, consequently, outside the scope of this guideline.

EXAMPLE 1 In this example, a diagnostic is required because a string consisting of any_cmd and untrusted data stored
in input is copied into cmdbuf and then passed as an argument to the system function to execute.

void f(char *input) {
 char cmdbuf[512];
 int len_wanted = snprintf(
 cmdbuf, sizeof(cmdbuf), "any_cmd '%s'", input
);

ISO/IEC

© ISO/IEC 2011 – All rights reserved 23

 if (len_wanted >= sizeof(cmdbuf)) {
 perror("Input too long");
 } else if (len_wanted < 0) {
 perror("Encoding error");
 } else if (system(cmdbuf) == -1) { // diagnostic required
 perror("Error executing input");
 }
}

EXAMPLE 2 In this example, a diagnostic is required because system is used to remove the .config file in the user's
home directory.

void g() {
 system("rm ~/.config"); // diagnostic required
}

Related guidelines

CERT C Secure Coding Standard: ENV04-C. Do not call system() if you do not need a command processor

ISO/IEC TR 24772 "XZQ Unquoted Search Path or Element"

MITRE CWE:

 CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

 CWE-88: Argument Injection or Modification

Bibliography

[Open Group 2004] environ, execl, execv, execle, execve, execlp, execvp — execute a file, popen,
unlink, XCU Section 2.8.2, "Exit Status for Commands"

[Wheeler 2004] Secure programmer: Call components safely.

5.15 Comparing function addresses to zero (EXP18-C)

Comparing, either explicitly or implicitly, an expression taking the address of a function to a constant zero that
is implicitly converted to a function pointer shall be diagnosed because this typically indicates programmer
error and can result in unexpected behavior. If such a comparison is intentional, this intention can be made
explicit by explicitly casting 0 or NULL to the appropriate pointer type before using it in the comparison (which
may require making the comparison itself explicit, too).

EXAMPLE 1 In this example, a diagnostic is required because the addresses of the functions getuid and geteuid are
compared to 0.

void f() {
 if (getuid == 0 // diagnostic required
 || geteuid != 0) { // diagnostic required
 /* ... */
 }

 /* ... */
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because the addresses of the functions getuid and
geteuid are compared to null function pointers of the same type.

ISO/IEC

24 © ISO/IEC 2011 – All rights reserved

typedef uid_t (*getuid_t)(void);

void f() {
 if (getuid == (getuid_t)0
 || geteuid == (getuid_t)0) {
 /* ... */
 }

 /* ... */
}

EXAMPLE 3 In this example, a diagnostic is required because the address of the function do_xyz is compared to 0.

int do_xyz(void);

void g() {
 if (do_xyz) { // diagnostic required
 /* ... */
 }

 /* ... */
}

EXAMPLE 4 In this compliant example, a diagnostic is not required because the address of the function do_xyz is
compared to a null function pointer of the same type.

int do_xyz(void);
typedef int (*do_xyz_t)(void);

void g() {
 if (do_xyz == (do_xyz_t)0) {
 /* ... */
 }

 /* ... */
}

Related guidelines

CERT C Secure Coding Standard: EXP16-C. Do not compare function pointers to constant values

ISO/IEC TR 24772 "KOA Likely Incorrect Expressions"

Bibliography

[Hatton 1995] Section 2.7.2, "Errors of omission and addition"

5.16 Comparing or assigning expressions to a larger size objects (INT35-C)

An assignment-expression (including initialization) whose right operand has an unsigned integer or floating
type smaller than that of the left operand and that is not a primary expression shall be diagnosed because the
smaller expression may either wrap (if it is of unsigned integer type) or silently overflow (if it is of floating type).

A relational-expression or equality-expression, one of whose operands has an unsigned integer or floating
type smaller than that of the other operand and that is not a primary expression, shall be diagnosed for the
same reason as above.

NOTE Expressions involving signed integer types are not subject to these requirements because signed
integer overflow is the subject of Signed integer overflow (INT32-C).

ISO/IEC

© ISO/IEC 2011 – All rights reserved 25

EXAMPLE 1 In this example, a diagnostic is required because the unsigned integer expression x + 1 is assigned to the
larger size variable y.

void f(unsigned x) {
#if UINT_MAX < ULONG_MAX
 unsigned long y = x + 1;
#elif UINT_MAX < ULLONG_MAX
 unsigned long long y = x + 1;
#else
 uintmax_t y = x + 1; // diagnostic required
#endif

 printf("x + 1 = %jd\n", (uintmax_t)y);
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because the unsigned integer expressions x + 1UL,
x + 1ULL, and x + (uintmax_t)1 have the same size as the corresponding variables they are assigned to.

void f(unsigned x) {
#if UINT_MAX < ULONG_MAX
 unsigned long y = x + 1UL;
#elif UINT_MAX < ULLONG_MAX
 unsigned long long y = x + 1ULL;
#else
 assert(x < UINTMAX_MAX);
 uintmax_t y = x + (uintmax_t)1;
#endif

 printf("x + 1 = %jd\n", (uintmax_t)y);
}

EXAMPLE 3 In this example, a diagnostic is required because the unsigned integer expression length +
BLOCK_HEADER_SIZE is compared to the larger size integer expression (unsigned long long)SIZE_MAX.

enum { BLOCK_HEADER_SIZE = 16 };

void *AllocateBlock(unsigned long length) {
 struct memBlock *mBlock;

 if (length + BLOCK_HEADER_SIZE > (unsigned long long)SIZE_MAX) { //
diagnostic required
 return NULL;
 }
 mBlock = (struct memBlock *)malloc(
 length + BLOCK_HEADER_SIZE
);
 if (!mBlock) {
 return NULL;
 }

 /* ... */

 return mBlock;
}

EXAMPLE 4 In this compliant example, a diagnostic is not required because the unsigned integer expression
(unsigned long long)length + BLOCK_HEADER_SIZE is compared to the same size integer expression
(unsigned long long)SIZE_MAX.

enum { BLOCK_HEADER_SIZE = 16 };

void *AllocateBlock(unsigned long length) {

ISO/IEC

26 © ISO/IEC 2011 – All rights reserved

 struct memBlock *mBlock;

 assert((unsigned long long)length <= ULLONG_MAX - BLOCK_HEADER_SIZE);
 if ((unsigned long long)length + BLOCK_HEADER_SIZE > (unsigned long
long)SIZE_MAX) {
 return NULL;
 }
 mBlock = (struct memBlock *)malloc(
 length + BLOCK_HEADER_SIZE
);
 if (!mBlock) {
 return NULL;
 }

 /* ... */

 return mBlock;
}

EXAMPLE 5 In this example, a diagnostic is required because the unsigned integer expression cBlocks * 16 is
assigned to the larger size variable alloc.

void *AllocBlocks(unsigned long cBlocks) {
 if (cBlocks == 0){
 return NULL;
 }

 unsigned long long alloc = cBlocks * 16; // diagnostic required
 if (alloc < UINT_MAX) {
 return malloc(cBlocks * 16);
 } else {
 return NULL;
 }
}

EXAMPLE 6 In this compliant example, a diagnostic is not required because the unsigned integer expression cBlocks
* 16ULL is assigned to the same size variable alloc.

void *AllocBlocks(unsigned long cBlocks) {
 if (cBlocks == 0) {
 return NULL;
 }

 assert((unsigned long long)cBlocks <= ULLONG_MAX / 16);
 unsigned long long alloc = cBlocks * 16ULL;

 if (alloc < UINT_MAX) {
 return malloc(cBlocks * 16);
 } else {
 return NULL;
 }
}

EXAMPLE 7 In this example, a diagnostic is required because the unsigned integer expression x * 1024 is implicitly
converted to the larger type double, and the expression may wrap.

double g(unsigned int x) {
 return x * 1024; // diagnostic required
}

EXAMPLE 8 In this compliant example, a diagnostic is not required because the type of the expression x * 1024.0 is
the same as the return type of the function.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 27

double g(unsigned int x) {
 return x * 1024.0;
}

Related guidelines

CERT C Secure Coding Standard: INT35-C. Evaluate integer expressions in a larger size before comparing or
assigning to that size

ISO/IEC TR 24772 "FLC Numeric Conversion Errors"

MITRE CWE:

 CWE-190: Integer Overflow or Wraparound

 CWE-681: Incorrect Conversion between Numeric Types

Bibliography

[Dowd 2006] Chapter 6, "C Language Issues"

[Seacord 2005] Chapter 5, "Integer Security"

5.17 Comparison of padding data (EXP04-C)

Comparison of padding data shall be diagnosed because the value of padding bits is unspecified and may
contain data initially provided by an attacker.

EXAMPLE In this example, a diagnostic is required because the C standard library function memcmp is used to compare
the structures s1 and s2, including padding data.

struct my_buf {
 char buff_type;
 size_t size;
 char buffer[50];
};

unsigned int buf_compare(
 const struct my_buf *s1,
 const struct my_buf *s2)
{
 if (!memcmp(s1, s2, sizeof(struct my_buf))) { // diagnostic required
 /* ... */
 }

 return 0;
}

Related guidelines

CERT C Secure Coding Standard: EXP04-C. Do not perform byte-by-byte comparisons involving a structure

Bibliography

[Dowd 2006] Chapter 6, "C Language Issues" (Structure Padding 284-287)

[Kernighan 1988] Chapter 6, "Structures" (Structures and Functions 129)

[Summit 1995] Question 2.8, Question 2.12

ISO/IEC

28 © ISO/IEC 2011 – All rights reserved

5.18 Converting a pointer to integer or integer to pointer (INT11-C)

Converting an integer type to a pointer type shall be diagnosed if the resulting pointer is incorrectly aligned,
does not point to an entity of the referenced type, or is a trap representation.

Converting a pointer type to an integer type shall be diagnosed if the result cannot be represented in the
integer type.

EXAMPLE 1 In this example, a diagnostic is required because the pointer ptr is converted to an integer and the integer
number is converted to a pointer.

void f() {
 char *ptr;
 unsigned int flag;
 /* ... */
 unsigned int number = (unsigned int)ptr; // diagnostic required
 number = (number & 0x7fffff) | (flag << 23);
 ptr = (char *)number; // diagnostic required
}

EXAMPLE 2 In this example, a diagnostic is required because the integer literal 0xdeadbeef is converted to a pointer.

unsigned int *g() {
 unsigned int *ptr = (unsigned int *)0xdeadbeef; // diagnostic required
 /* ... */
 return ptr;
}

Exceptions

 INT11-EX1: A null pointer can be converted to an integer; it takes on the value 0. Likewise, a 0 integer
can be converted to a pointer; it becomes the null pointer.

 INT11-EX2: Any valid pointer to void can be converted to intptr_t or uintptr_t and back with no
change in value. (This includes the underlying types if intptr_t and uintptr_t are typedefs, and any
typedefs that denote the same types as intptr_t and uintptr_t.)

void h() {
 intptr_t i = (intptr_t)(void *)&i;
 uintptr_t j = (uintptr_t)(void *)&j;

 void *ip = (void *)i;
 void *jp = (void *)j;

 assert(ip == &i);
 assert(jp == &j);
}

Related guidelines

CERT C Secure Coding Standard: INT11-C. Take care when converting from pointer to integer or integer to
pointer

ISO/IEC TR 24772 "HFC Pointer casting and pointer type changes"

MITRE CWE:

 CWE-466: Return of Pointer Value Outside of Expected Range

 CWE-587: Assignment of a Fixed Address to a Pointer

ISO/IEC

© ISO/IEC 2011 – All rights reserved 29

5.19 Converting floating point values to types that cannot represent their value (FLP34-C)

Floating point conversions that are not within range of the new type shall be diagnosed because this results in
an unspecified value.

If the value being converted is outside the range of values that can be represented, the behavior is undefined
(C99 Section 6.3.1.5).

This is overridden by Annex F.

EXAMPLE 1 In this example, a diagnostic is required because the integral part of f may not be within the range of the
new type, int.

int f(float f) {
 int i = f; // diagnostic required

 /* ... */
 return i;
}

EXAMPLE 2 In this example, a diagnostic is required because the conversions of the longer floating-point types may not
be within the range of the smaller types.

void g(long double ld, double d1) {
 float f1 = (float)d1; // diagnostic required
 float f2 = (float)ld; // diagnostic required
 double d2 = (double)ld; // diagnostic required

 /* ... */
 printf("%f %f %f\n", f1, f2, d2);
}

Related guidelines

CERT C Secure Coding Standard: FLP34-C. Ensure that floating point conversions are within range of the
new type

ISO/IEC TR 24772 "FLC Numeric Conversion Errors"

MITRE CWE: CWE-681: Incorrect Conversion between Numeric Types

Bibliography

[IEEE 754: 2006] IEEE 754-1985 Standard for Binary Floating-Point Arithmetic

5.20 Converting integer to a type that is unable to represent its value (INT31-C)

Conversion of a tainted, potentially mutilated, or out-of-domain integer value to a signed integer type, when
the possible range of values cannot be represented in the destination type, shall be diagnosed.

EXAMPLE 1 In this example, a diagnostic is required because the value of the variable z may not be representable when
it is returned from the function.

int square() {
#if INT_MAX < LONG_MAX
 typedef long wider_type;
#else
 typedef long long wider_type;
#endif

ISO/IEC

30 © ISO/IEC 2011 – All rights reserved

 int x;
 GET_TAINTED_INT(x);

 wider_type z = (wider_type)x * x;
 return z; // diagnostic required
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because the value of the variable z is always
representable when it is returned from the function.

int square() {
#if INT_MAX < LONG_MAX
 typedef long wider_type;
#else
 typedef long long wider_type;
#endif

 int x;
 GET_TAINTED_INT(x);

 wider_type z = (wider_type)x * x;

 if (INT_MIN <= z && z <= INT_MAX) {
 return z;
 } else {
 return 0;
 }
}

Related guidelines

CERT C Secure Coding Standard: INT15-C. Use intmax_t or uintmax_t for formatted IO on programmer-
defined integer types

CERT C Secure Coding Standard: INT31-C. Ensure that integer conversions do not result in lost or
misinterpreted data

ISO/IEC TR 24772 "XYY Wrap-around Error"

MITRE CWE: CWE-190: Integer Overflow or Wraparound

Bibliography

[Dowd 2006] Chapter 6, "C Language Issues" (Arithmetic Boundary Conditions, pp. 211-223)

[Seacord 2005] Chapter 5, "Integers"

[Viega 2005] Section 5.2.7, "Integer overflow"

[VU#551436] Mozilla Firefox SVG viewer vulnerable to buffer overflow

[Warren 2002] Chapter 2, "Basics"

5.21 Converting pointer values to more strictly aligned pointer types (EXP36-C)

Converting a pointer value to a pointer type that is more strictly aligned than the type the value actually points
to shall be diagnosed because this results in undefined behavior, if the actual value is unaligned with respect
to the destination type.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 31

EXAMPLE 1 In this example, a diagnostic is required because the char pointer &c is converted to the more strictly
aligned int pointer int_ptr.

void f() {
 int *int_ptr;
 char c;

 int_ptr = (int *)&c; // diagnostic required
 /* ... */
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because the value referenced by the char pointer
char_ptr has the alignment of type int.

void f() {
 char *char_ptr;
 int *int_ptr;
 int i;

 char_ptr = (char *)&i;
 int_ptr = (int *)char_ptr;
 /* ... */
}

Related guidelines

CERT C Secure Coding Standard: EXP36-C. Do not convert pointers into more strictly aligned pointer types

ISO/IEC TR 24772 "HFC Pointer casting and pointer type changes"

MISRA-C 2004, Rules 11.2 and 11.3

Bibliography

[Bryant 2003] Computer Systems: A Programmer's Perspective.

5.22 Copying a FILE object (FIO38-C)

Copying a FILE object shall be diagnosed because the copy does not need to be safe to be used as an
argument to any I/O function.

According to C99, Section 7.19.3, paragraph 6,

The address of the FILE object used to control a stream may be significant; a copy of a FILE object need not
serve in place of the original.

EXAMPLE In this example, a diagnostic is required because the FILE object stdout is copied.

int main(void) {
 FILE my_stdout = *(stdout); // diagnostic required
 if (fputs("Hello, World!\n", &my_stdout) == EOF) {
 /* ... */
 }
 return 0;
}

Related guidelines

CERT C Secure Coding Standard: FIO38-C. Do not use a copy of a FILE object for input and output

ISO/IEC

32 © ISO/IEC 2011 – All rights reserved

5.23 Declaring an identifier with conflicting linkage classifications (DCL36-C)

An identifier with conflicting linkage classifications shall be diagnosed because referencing it results in
undefined behavior.

EXAMPLE 1 In this example, a diagnostic is required because the identifiers i2 and i5 are defined as having both
internal and external linkage.

static int i1 = 10;
static int i2;

int i1; // diagnostic required
int i2; // diagnostic required

int main(void) {
 /* ... */
 return 0;
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because no identifiers are defined as having both
internal and external linkage.

int i1 = 10;
int i2;
extern int i3 = 30;

int i1;
int i2;
int i3;

int main(void) {
 /* ... */
 return 0;
}

Related guidelines

CERT C Secure Coding Standard: DCL36-C. Do not declare an identifier with conflicting linkage
classifications

MISRA-C 2004, Rule 8.1

Bibliography

[Banahan 2003] Section 8.2, "Declarations, Definitions and Accessibility"

[Kirch-Prinz 2002] C Pocket Reference.

5.24 Declaring the same function or object in incompatible ways (ARR31)

Two or more incompatible declarations of the same function or object that appear in the same program shall
be diagnosed because they result in undefined behavior.

C99 identifies three distinct situations in which undefined behavior (UB) may arise as a result of incompatible
declarations of the same function or object:

UB Description

14 Two declarations of the same object or function specify types that are not compatible (6.2.7).

ISO/IEC

© ISO/IEC 2011 – All rights reserved 33

UB Description

34 An object has its stored value accessed other than by an lvalue of an allowable type (6.5).

39 A function is defined with a type that is not compatible with the type (of the expression) pointed to by the expression
that denotes the called function (6.5.2.2).

While the effect of two incompatible declarations simply appearing in the same program may be benign on
most implementations, the effects of invoking a function through an expression whose type is incompatible
with the function definition are typically catastrophic. Similarly, the effects of accessing an object using an
lvalue of a type that is incompatible with the object definition may range from unintended information exposure
to memory overwrite to a hardware trap.

EXAMPLE 1 In this example, a diagnostic is required because the variable i has two incompatible declarations.

/* in a.c */
extern int i; // diagnostic required

int f(void) {
 return ++i;
}

/* in b.c */
short i; // diagnostic required

EXAMPLE 2 In this example, a diagnostic is required because the variable a has two incompatible declarations.

/* in a.c */
extern int *a; // diagnostic required

int g(unsigned i, int x) {
 int tmp = a[i];
 a[i] = x;
 return tmp;
}

/* in b.c */
int a[] = { 1, 2, 3, 4 }; // diagnostic required

EXAMPLE 3 In this example, a diagnostic is required because the function h has two incompatible declarations.

/* in a.c */
extern int h(int a); // diagnostic required

int main(void) {
 return h(10);
}

/* in b.c */
long h(long a) { // diagnostic required
 return a * 2;
}

EXAMPLE 4 In this example, a diagnostic is required on implementations where limitations cause the external identifiers
bash_groupname_completion_function and bash_groupname_completion_func to be identical,
because this results in incompatible declarations.

/* in bash/bashline.h */
extern char* bash_groupname_completion_function(const char*, int); // diagnostic
required

ISO/IEC

34 © ISO/IEC 2011 – All rights reserved

/* in a.c */
#include <bashline.h>

void w(const char *s, int i) {
 bash_groupname_completion_function(s, i);
}

/* in b.c */
int bash_groupname_completion_func; // diagnostic required
NOTE 1 The identifier bash_groupname_completion_function referenced above was taken from GNU Bash
version 3.2.

NOTE 2 Rule Using non-unique identifiers (DCL32-C) applies to multiple identifiers of the same type with non-unique
names.

Exception: ARR31-EX1

No diagnostic need be issued if a declaration that is incompatible with the definition occurs in a translation unit
that does not contain any definition or uses of the function or object other than possibly additional declarations.

/* a.c: */
int x = 0; /* the definition */

/* b.c: */
extern char x; /* incompatible declaration */
/* but no other references to 'x' */

Related guidelines

CERT C Secure Coding Standard: ARR31-C. Use consistent array notation across all source files

Bibliography

[Hatton 1995] Section 2.8.3

5.25 Dereferencing a null pointer (EXP34-C)

Dereferencing a tainted or out-of-domain pointer shall be diagnosed because, if such a pointer is null, doing
so results in undefined behavior.

EXAMPLE In this example, a diagnostic is required because if malloc returns NULL, then the call to memcpy will
dereference the null pointer str.

void f(const char *input_str) {
 size_t size = strlen(input_str) + 1;
 char *str = (char *)malloc(size);
 memcpy(str, input_str, size); // diagnostic required

 /* ... */
 free(str);
 str = NULL;
}

Related guidelines

CERT C Secure Coding Standard: EXP34-C. Do not dereference null pointers

ISO/IEC TR 24772 "HFC Pointer casting and pointer type changes" and "XYH Null Pointer Dereference"

MITRE CWE: CWE-476: NULL Pointer Dereference

ISO/IEC

© ISO/IEC 2011 – All rights reserved 35

Bibliography

[Jack 2007] Vector Rewrite Attack.

[van Sprundel 2006] Unusualbugs.

[Viega 2005] Section 5.2.18, "Null-pointer dereference"

5.26 Dividing by zero (INT33-C)

Tainted, potentially mutilated, and out-of-domain values that are used as the second operand to the /
operator or the % operator shall be diagnosed because they may result in divide-by-zero errors and undefined
behavior.

EXAMPLE 1 In this example, a diagnostic is required because the expression x / y can result in a divide-by-zero error.

int divide(int x) {
 int y;
 GET_TAINTED_INT(y);

 return x / y; // diagnostic required
}

EXAMPLE 2 In this example, a diagnostic is required because the expression x % y can result in a divide-by-zero error.

int modulus(int x) {
 int y;
 GET_TAINTED_INT(y);

 return x % y; // diagnostic required
}

Related guidelines

CERT C Secure Coding Standard: INT33-C. Ensure that division and modulo operations do not result in
divide-by-zero errors

MITRE CWE: CWE-369: Divide By Zero

Bibliography

[Seacord 2005] Chapter 5, "Integers"

[Warren 2002] Chapter 2, "Basics"

5.27 Escaping of the address of an automatic object (DCL30-C)

The address of an object with automatic storage duration shall not be returned from a function or held in any
pointer variable whose lifetime extends past the lifetime of the referenced object at the time the automatic
object goes out of scope.

EXAMPLE 1 In this example, a diagnostic is required because the address of the automatic object str remains in the
pointer variable p when str goes out of scope in the function dont_do_this.

const char *p;
void dont_do_this() {
 const char str[] = "This will change";
 p = str; // diagnostic required

ISO/IEC

36 © ISO/IEC 2011 – All rights reserved

}

void innocuous() {
 const char str[] = "Surprise, surprise";
 puts(str);
}

int main(void) {
 dont_do_this();
 innocuous();
 puts(p);

 return 0;
}

EXAMPLE 2 In this example, a diagnostic is required because the address of the automatic object array is returned.

int *init_array() {
 int array[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 return array; // diagnostic required
}

EXAMPLE 3 In this example, a diagnostic is required because the address of the automatic object fmt remains in the
pointer variable ptr_param when fmt goes out of scope in the function squirrel_away.

void squirrel_away(char **ptr_param) {
 char fmt[] = "Error: %s\n";

 /* ... */
 *ptr_param = fmt; // diagnostic required
}

int main(void) {
 char *ptr;
 squirrel_away(&ptr);

 /* ... */
 return 0;
}

Related guidelines

CERT C Secure Coding Standard: DCL30-C. Declare objects with appropriate storage durations

ISO/IEC TR 24772 "DCM Dangling references to stack frames"

MISRA-C 2004, Rule 8.6

Bibliography

[Coverity 2007] Coverity Prevent User’s Manual (3.3.0)

5.28 Conversion of signed characters to wider integer types (STR34-C)

Converting character data of type char or signed char to a larger integer type without having first cast the
variable to unsigned char shall be diagnosed because this can result in unexpected behavior.

EXAMPLE In this example, a diagnostic is required because the character of type char pointed to by string is
converted to int without being cast to unsigned char first.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 37

int yy_string_get(char *string) {
 int c = EOF;

 if (string && *string) {
 c = *string++; // diagnostic required
 }

 return c;
}

Related guidelines

CERT C Secure Coding Standard: STR34-C. Cast characters to unsigned char before converting to larger
integer sizes

MISRA-C 2004, Rule 6.1, "The plain char type shall be used only for the storage and use of character values."

MITRE CWE: CWE-704: Incorrect Type Conversion or Cast

5.29 Use of an implied default in a switch statement (MSC01-C)

Not checking all possible data paths in a switch statement shall be diagnosed because doing so can result
in unexpected behavior.

EXAMPLE In this example, a diagnostic is required because not all possible values of widget_type are checked for in
the switch statement.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z };

void f(enum WidgetEnum widget_type) {
 switch (widget_type) { // diagnostic required
 case WE_X:
 /* ... */
 break;
 case WE_Y:
 /* ... */
 break;
 case WE_Z:
 /* ... */
 break;
 }
}

Related guidelines

CERT C Secure Coding Standard: MSC01-C. Strive for logical completeness

ISO/IEC TR 24772 "CLL Switch statements and static analysis"

Bibliography

[Hatton 1995] Section 2.7.2, "Errors of omission and addition"

[Viega 2005] Section 5.2.17, "Failure to account for default case in switch"

5.30 Failing to close files or free dynamic memory when they are no longer needed (FIO42-C)

Failing to close files or to free dynamic memory allocations when they are no longer needed shall be
diagnosed because doing so can result in the exhaustion and manipulation of system resources.

ISO/IEC

38 © ISO/IEC 2011 – All rights reserved

EXAMPLE 1 In this example, a diagnostic is required because the file f is not closed before the call to system, which
may spawn a child process and give it access to the opened file.

void f(const char *filename) {
 FILE *f = NULL;
 const char *editor = NULL;

 f = fopen(filename, "r");
 if (f == NULL) {
 /* ... */
 }

 /* ... */
 editor = getenv("EDITOR");
 if (editor == NULL) {
 /* ... */
 }

 if (system(editor) == -1) { // diagnostic required
 /* ... */
 }

 /* ... */
}

EXAMPLE 2 In this example, a diagnostic is required because sensitive information is stored in dynamic memory and the
pointer to that memory is lost on the second call to malloc.

int main(void) {
 const char *filename = "secure.dat";

 FILE *f = fopen(filename, "r");
 if (f == NULL) {
 /* ... */
 }

 char *text_buffer = (char *)malloc(BUFSIZ);
 fgets(text_buffer, BUFSIZ, f);

 /* ... */
 text_buffer = (char *)malloc(BUFSIZ); // diagnostic required

 /* ... */
 return 0;
}

Related guidelines

CERT C Secure Coding Standard: FIO42-C. Ensure files are properly closed when they are no longer needed

MITRE CWE:

 CWE-403: Exposure of File Descriptor to Unintended Control Sphere

 CWE-404: Improper Resource Shutdown or Release

Bibliography

[Dowd 2006] Chapter 10, "UNIX Processes" (File Descriptor Leaks 582-587)

[IEEE Std 1003.1: 2008]

ISO/IEC

© ISO/IEC 2011 – All rights reserved 39

[MSDN] Inheritance (Windows)

[NAI 1998]

5.31 Failing to detect and handle standard library errors (FIO04-C)

Failure to branch conditionally on detection or absence of a standard library error condition shall be diagnosed
because this can result in undefined or unexpected behavior.

The successful completion or failure of each of the standard library functions listed in Table 2 shall be
determined either by comparing the function's return value with the value listed in the column labeled "Error
Return" or, alternatively, by calling one of the library functions mentioned in the footnotes to the same column.

Table 2 — Library functions and returns

Function Successful return Error return

aligned_alloc pointer to space NULL

asctime_s zero non-zero

at_quick_exit zero non-zero

atexit zero non-zero

bsearch pointer to matching element NULL

bsearch_s pointer to matching element NULL

btowc converted wide character WEOF

c16rtomb number of bytes (size_t)(-1)

c32rtomb number of bytes (size_t)(-1)

calloc pointer to space NULL

clock processor time (clock_t)(-1)

cnd_broadcast thrd_success thrd_error

cnd_init thrd_success thrd_nomem or thrd_error

cnd_signal thrd_success thrd_error

cnd_timedwait thrd_success thrd_timedout or thrd_error

cnd_wait thrd_success thrd_error

ctime_s zero non-zero

fclose zero EOF (negative)

fflush zero EOF (negative)

fgetc character read EOFb

fgetpos zero non-zero

fgets pointer to string NULL

fgetwc wide character read WEOFb

ISO/IEC

40 © ISO/IEC 2011 – All rights reserved

Function Successful return Error return

fopen pointer to stream NULL

fopen_s zero non-zero

fprintf number of characters (non-negative) negative

fprintf_s number of characters (non-negative) negative

fputc character written EOFa

fputs non-negative EOF (negative)

fputws non-negative EOF (negative)

fread elements read elements read

freopen pointer to stream NULL

freopen_s zero non-zero

fscanf number of conversions (non-negative) EOF (negative)

fscanf_s number of conversions (non-negative) EOF (negative)

fseek zero non-zero

fsetpos zero non-zero

ftell file position -1L

fwprintf number of wide characters (non-negative) negative

fwprintf_s number of wide characters (non-negative) negative

fwrite elements written elements written

fwscanf number of conversions (non-negative) EOF (negative)

fwscanf_s number of conversions (non-negative) EOF (negative)

getc character read EOFb

getchar character read EOFb

getenv pointer to string NULL

getenv_s pointer to string NULL

gets_s pointer to string NULL

getwc wide character read WEOFb

getwchar wide character read WEOFb

gmtime pointer to broken-down time NULL

gmtime_s pointer to broken-down time NULL

localtime pointer to broken-down time NULL

localtime_s pointer to broken-down time NULL

malloc pointer to space NULL

ISO/IEC

© ISO/IEC 2011 – All rights reserved 41

Function Successful return Error return

mblen, s != NULL number of bytes -1

mbrlen, s != NULL number of bytes or status (size_t)(-1)

mbrtoc16 number of bytes or status (size_t)(-1), errno == EILSEQ

mbrtoc32 number of bytes or status (size_t)(-1), errno == EILSEQ

mbrtowc, s != NULL number of bytes or status (size_t)(-1), errno == EILSEQ

mbsrtowcs number of non-null elements (size_t)(-1), errno == EILSEQ

mbsrtowcs_s zero non-zero

mbstowcs number of non-null elements (size_t)(-1)

mbstowcs_s zero non-zero

mbtowc, s != NULL number of bytes -1

memchr pointer to located character NULL

mktime calendar time (time_t)(-1)

mtx_init thrd_success thrd_error

mtx_lock thrd_success thrd_error

mtx_timedlock thrd_success thrd_timedout or thrd_error

mtx_trylock thrd_success thrd_busy or thrd_error

mtx_unlock thrd_success thrd_error

printf_s number of characters (non-negative) negative

putc character written EOFa

putwc wide character written WEOF

raise zero non-zero

realloc pointer to space NULL

remove zero non-zero

rename zero non-zero

setlocale pointer to string NULL

setvbuf zero non-zero

scanf number of conversions (non-negative) EOF (negative)

scanf_s number of conversions (non-negative) EOF (negative)

signal pointer to previous function SIG_ERR, errno > 0

snprintf number of characters that would be written
(non-negative)

negative

snprintf_s number of characters that would be written
(non-negative)

negative

ISO/IEC

42 © ISO/IEC 2011 – All rights reserved

Function Successful return Error return

sprintf number of non-null characters written negative

sprintf_s number of non-null characters written negative

sscanf number of conversions (non-negative) EOF (negative)

sscanf_s number of conversions (non-negative) EOF (negative)

strchr pointer to located character NULL

strerror_s zero non-zero

strftime number of non-null characters zero

strpbrk pointer to located character NULL

strrchr pointer to located character NULL

strstr pointer to located string NULL

strtod converted value zero, errno == ERANGE

strtof converted value zero, errno == ERANGE

strtoimax converted value
INTMAX_MAX or INTMAX_MIN, errno
== ERANGE

strtok pointer to first character of a token NULL

strtok_s pointer to first character of a token NULL

strtol converted value
LONG_MAX or LONG_MIN, errno ==
ERANGE

strtold converted value zero, errno == ERANGE

strtoll converted value
LLONG_MAX or LLONG_MIN, errno ==
ERANGE

strtoumax converted value UINTMAX_MAX, errno == ERANGE

strtoul converted value ULONG_MAX, errno == ERANGE

strtoull converted value ULLONG_MAX, errno == ERANGE

strxfrm length of transformed string >= n

swprintf number of non-null wide characters negative

swprintf_s number of non-null wide characters negative

swscanf number of conversions (non-negative) EOF (negative)

swscanf_s number of conversions (non-negative) EOF (negative)

thrd_create thrd_success thrd_nomem or thrd_error

thrd_detach thrd_success thrd_error

thrd_join thrd_success thrd_error

thrd_sleep zero negative

ISO/IEC

© ISO/IEC 2011 – All rights reserved 43

Function Successful return Error return

time calendar time (time_t)(-1)

timespec_get base zero

tmpfile pointer to stream NULL

tmpfile_s zero non-zero

tmpnam non-null pointer NULL

tmpnam_s zero non-zero

tss_create thrd_success thrd_error

tss_get value of thread-specific storage zero

tss_set thrd_success thrd_error

ungetc character pushed back EOF (negative; see below)

ungetwc character pushed back WEOF (negative)

vfprintf number of characters (non-negative) negative

vfprintf_s number of characters (non-negative) negative

vfscanf number of conversions (non-negative) EOF (negative)

vfscanf_s number of conversions (non-negative) EOF (negative)

vfwprintf number of wide characters (non-negative) negative

vfwprintf_s number of wide characters (non-negative) negative

vfwscanf number of conversions (non-negative) EOF (negative)

vfwscanf_s number of conversions (non-negative) EOF (negative)

vprintf_s number of characters (non-negative) negative

vscanf number of conversions (non-negative) EOF (negative)

vscanf_s number of conversions (non-negative) EOF (negative)

vsnprintf number of characters that would be written
(non-negative)

negative

vsnprintf_s number of characters that would be written
(non-negative)

negative

vsprintf number of non-null characters (non-negative) negative

vsprintf_s number of non-null characters (non-negative) negative

vsscanf number of conversions (non-negative) EOF (negative)

vsscanf_s number of conversions (non-negative) EOF (negative)

vswprintf number of non-null wide characters negative

vswprintf_s number of non-null wide characters negative

vswscanf number of conversions (non-negative) EOF (negative)

ISO/IEC

44 © ISO/IEC 2011 – All rights reserved

Function Successful return Error return

vswscanf_s number of conversions (non-negative) EOF (negative)

vwprintf_s number of wide characters (non-negative) negative

vwscanf number of conversions (non-negative) EOF (negative)

vwscanf_s number of conversions (non-negative) EOF (negative)

wcrtomb number of bytes stored (size_t)(-1)

wcschr pointer to located wide character NULL

wcsftime number of non-null wide characters zero

wcspbrk pointer to located wide character NULL

wcsrchr pointer to located wide character NULL

wcsrtombs number of non-null bytes (size_t)(-1), errno == EILSEQ

wcsrtombs_s zero non-zero

wcsstr pointer to located wide string NULL

wcstod converted value zero, errno == ERANGE

wcstof converted value zero, errno == ERANGE

wcstoimax converted value
INTMAX_MAX or INTMAX_MIN, errno
== ERANGE

wcstok pointer to first wide character of a token NULL

wcstok_s pointer to first wide character of a token NULL

wcstol converted value
LONG_MAX or LONG_MIN, errno ==
ERANGE

wcstold converted value zero, errno == ERANGE

wcstoll converted value
LLONG_MAX or LLONG_MIN, errno ==
ERANGE

wcstombs number of non-null bytes (size_t)(-1)

wcstombs_s zero non-zero

wcstoumax converted value UINTMAX_MAX, errno == ERANGE

wcstoul converted value ULONG_MAX, errno == ERANGE

wcstoull converted value ULLONG_MAX, errno == ERANGE

wcsxfrm length of transformed wide string >= n

wctob converted character EOF

wctomb, s != NULL number of bytes stored -1

wctomb_s, s != NULL number of bytes stored -1

wctrans valid argument to towctrans zero

ISO/IEC

© ISO/IEC 2011 – All rights reserved 45

Function Successful return Error return

wctype valid argument to iswctype zero

wmemchr pointer to located wide character NULL

wprintf_s number of wide characters (non-negative) negative

wscanf number of conversions (non-negative) EOF (negative)

wscanf_s number of conversions (non-negative) EOF (negative)

a Use ferror.

b Use feof and ferror.

The ungetc function does not set the error indicator, even when it fails, so it is not possible to check for
errors reliably unless it is known that the argument is not equal to EOF. C99 states that "one character of
pushback is guaranteed," so this should not be an issue if, at most, one character is ever pushed back before
reading again.

EXAMPLE In this example, a diagnostic is required because the return value of fseek is not checked for an error
condition.

void test_unchecked_return(FILE *file, long offset) {
 fseek(file, offset, SEEK_SET); // diagnostic required
}
NOTE Return values from the following functions do not need to be checked because their historical use has
overwhelmingly omitted error checking, and the consequences are not relevant to security.

Table 3 — Example library functions and returns

Function Successful return Error return

printf number of characters (non-negative) negative

putchar character written EOF 1

puts non-negative EOF (negative)

putwchar wide character written WEOF

vprintf number of characters (non-negative) negative

vwprintf number of wide characters (non-negative) negative

wprintf number of wide characters (non-negative) negative

Exceptions

 EXP12-EX1: The use of a void cast to signify programmer intent to ignore a return value from a function
need not be diagnosed.

EXAMPLE This example shows an acceptable use of this exception.

void foo(FILE *file) {
 (void)fputs("foo", file);
 /* ... */
}
 EXP12-EX2: Ignoring the return value of a function that cannot fail or whose return value cannot signify

an error condition need not be diagnosed. For example, strcpy is one such function.

ISO/IEC

46 © ISO/IEC 2011 – All rights reserved

Related guidelines

CERT C Secure Coding Standard: FIO04-C. Detect and handle input and output errors

MITRE CWE: CWE-391: Unchecked Error Condition

Bibliography

[Kettelwell 2002] Section 6, "I/O Error Checking"

[Seacord 2005] Chapter 7, "File I/O"

5.32 Failing to prevent or detect domain and range errors in math functions (FLP32-C)

Lack of prevention or detection of domain and range errors in math functions shall be diagnosed because the
value returned is not the correct result of the computation. A domain error occurs if an input argument is
outside the domain over which the mathematical function is defined. A range error occurs if the mathematical
result of the function cannot be represented in an object of the specified type because of extreme magnitude.

The following table shows standard math functions and their domains and ranges. The standard math
functions not in this table, such as atan, have no domain restrictions and do not produce range errors.

Table 4 — Standard math functions and their domains and ranges

Function Domain Range error

acos(x), asin(x) -1 <= x && x <= 1 no

atan2(y, x) x != 0 || y != 0 no

acosh(x) x >= 1 no

atanh(x) -1 < x && x < 1 no

cosh(x) , sinh(x) none yes

exp(x) , exp2(x) , expm1(x) none yes

ldexp(x, exp) none yes

log(x) , log10(x) , log2(x) x > 0 no

log1p(x) x > -1 no

ilogb(x) , logb(x) x != 0 yes

scalbn(x, n), scalbln(x, n) none yes

hypot(x, y) none yes

pow(x, y) x > 0 || (x == 0 && y > 0) || (x < 0
&& y is an integer)

yes

sqrt(x) x >= 0 no

erfc(x) none yes

lgamma(x) , tgamma(x) x != 0 && !(x < 0 && x is an integer) yes

lrint(x) , lround(x) none yes

fmod(x, y) y != 0 no

ISO/IEC

© ISO/IEC 2011 – All rights reserved 47

Function Domain Range error

nextafter(x, y),
nexttoward(x, y)

none yes

fdim(x, y) none yes

fma(x, y, z) none yes

EXAMPLE 1 In this example, a diagnostic is required because parameter x may not be in the domain of the C standard
library function sqrt.

double f(double x) {
 double result = sqrt(x); // diagnostic required
 return result * 2.0;
}

EXAMPLE 2 In this example, a diagnostic is required because the result of the call to the C standard library function cosh
is not checked for a range error.

double g(double x) {
 double result = cosh(x); // diagnostic required
 return result * 2.0;
}

EXAMPLE 3 In this example, a diagnostic is required because the parameters x and y may not be in the domain of the C
standard library function pow, and the result of the call to pow is not checked for a range error.

double h(double x, double y) {
 double result = pow(x, y); // diagnostic required
 return result * 2.0;
}

Related guidelines

CERT C Secure Coding Standard: FLP32-C. Prevent or detect domain and range errors in math functions

MITRE CWE: CWE-682: Incorrect Calculation

Bibliography

[Plum 1985] Rule 2-2

[Plum 1989] Topic 2.10, "conv - conversions and overflow"

5.33 Failing to sanitize the environment when invoking external programs (ENV03-C)

Invoking external programs that depend on the environment without first sanitizing the environment shall be
diagnosed because the invoked program can be influenced by an attacker.

EXAMPLE In this example, a diagnostic is required on POSIX systems because the environment variable IFS is not
sanitized before the call to system. If IFS is set to "." then the intended directory will not be found.

void f() {
 if (system("/bin/ls dir.`date +%Y%m%d`") == -1) { // diagnostic required
 /* ... */
 }
}

ISO/IEC

48 © ISO/IEC 2011 – All rights reserved

Related guidelines

CERT C Secure Coding Standard: ENV03-C. Sanitize the environment when invoking external programs

ISO/IEC TR 24772 "XYS Executing or Loading Untrusted Code"

MITRE CWE:

 CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

 CWE-88: Argument Injection or Modification

 CWE-426: Untrusted Search Path

Bibliography

[CA-1995-14] "Telnetd Environment Vulnerability"

[Dowd 2006] Chapter 10, "UNIX II: Processes"

[IEEE Std 1003.1: 2008] The Open Group Base Specifications Issue 7

[Open Group 2004] Chapter 8, "Environment Variables," and confstr

[Viega 2003] Section 1.1, "Sanitizing the Environment"

[Wheeler 2003] Section 5.2, "Environment Variables"

5.34 Forming invalid pointers by library function

Invoking a C library function with a pair of arguments that causes the function to form a pointer that does not
point into or just past the end of the object shall be diagnosed. In addition, invocations of functions that do not
directly lead to the formation of such pointers but that are likely to have unintended effects given the types of
the arguments or the computations used to derive their values shall be diagnosed according to the remainder
of this rule.

The motivation for this is that many C standard library functions manipulate individual objects or arrays of
objects either one element at a time or one byte at a time. With a few exceptions, such functions typically take
at least two arguments for each object (or array) they manipulate:

 a valid pointer into the object or storage for an object and

 an integer argument indicating how many elements or bytes of the object to manipulate.

When the value of the integer argument passed to such a function would cause the function to form a pointer
that does not point into or just past the end of the object pointed into by the first argument, the behavior is
undefined (see item 103 in Annex B (informative) Undefined Behavior).

For a function f taking the pair of not necessarily consecutive arguments (p, n), where p is a non-const
qualified (possibly void *) pointer and n is an integer that specifies the effective size of an object, a call to f
where n is greater than the effective size of *p shall be diagnosed.

EXAMPLE 1 In the following function definition, the effective type of *p is char and the derived type of the expression n
is a compatible character type. However, the effective size of *p is equal to nchars, which is less than n (that is,
nchars + 1). Consequently, the call to memset is diagnosed.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 49

void f1(size_t nchars) {
 char *p = (char *)malloc(nchars);
 const size_t n = nchars + 1;
 memset(p, 0, n); // diagnostic required
 /* ... */
}
For a function f taking the pair of not necessarily consecutive arguments (p, n), where p is a non-const
qualified (possibly void *) pointer and n is an integer that specifies the effective size of an object, a call to f
where where the effective type of *p is not compatible with the derived type of the expression n or unsigned
char shall be diagnosed.

EXAMPLE 2 In the following function definition, assume sizeof(int) == sizeof(float) holds. The effective
size of *p is equal to 4 * sizeof(float) which is equal to 4 * sizeof(int). However, because the effective
type of *p is float and the derived type of the expression n is int, the call to memset is diagnosed because float
is incompatible with int.

void f2() {
 float a[4];
 const size_t n= sizeof(int) * 4;
 void *p = a;

 memset(p, 0, n); // diagnostic required

 /* ... */
}
For a function g taking the triple of not necessarily consecutive arguments (p, q, n), where p is a non-const
qualified (possibly void) pointer, q is a const-qualified (possibly void) pointer, and n is an integer that
specifies the effective size of an object, a call to g where n is greater than the minimum of the effective size of
*p and the effective size of *q shall be diagnosed.

For a function g taking the triple of not necessarily consecutive arguments (p, q, n), where p is a non-const
qualified (possibly void) pointer, q is a const-qualified (possibly void) pointer, and n an integer that
specifies the effective size of an object, a call to g where the effective type of *p is incompatible with either
the effective type of *q or unsigned char shall be diagnosed.

EXAMPLE 3 In the following function definition, assume (sizeof(int) < sizeof(double)) holds. The effective
size of *p is equal to sizeof(int), the effective size of *p is equal to sizeof(double), and n is equal to
sizeof(int). Consequently, n is less than or equal to the minimum of the effective size of *p and the effective size of
*q. Furthermore, the effective type of *p (that is, int) is compatible with the derived type of the expression n (also int).
However, the effective type of *p (int) is not compatible with the effective type of *q (double), so the call to memcpy
is diagnosed.

void f4(int *a) {
 double b = 3.14;
 const size_t n = sizeof(*a);
 void *p = a;
 void *q = &b;

 memcpy(p, q, n); // diagnostic required

 /* ... */
}
For a function g taking the triple of not necessarily consecutive arguments (p, q, n), where p is a non-const
qualified (possibly void) pointer, q is a const-qualified (possibly void) pointer, and n is an integer that
specifies the effective size of an object, a call to g where the effective type of *p is not compatible with the
derived type of the expression n shall be diagnosed.

ISO/IEC

50 © ISO/IEC 2011 – All rights reserved

EXAMPLE 4 In the following function definition, assume that the effective size of *p and the effective size of *q are not
determinable. Furthermore, the effective type of *p (that is, char) is compatible with the effective type of *q (also char).
However, the effective type of *p (char) is not compatible with the derived type of the expression n (pointer to char), so
the call to memcpy is diagnosed.

void f5(char p[], const char *q) {
 const size_t n = sizeof(p); // diagnostic required
 memcpy(p, q, n);

 /* ... */
}
For an assignment expression E whose right operand is a call to a memory allocation function taking an
integer argument n, and whose left operand is of type T* or the equivalent initialization expression, the
expression E where (n < sizeof (T)) shall be diagnosed.

For an assignment expression E whose right operand is a call to a memory allocation function taking an
integer argument n, and whose left operand is of tyep T* or the equivalent initialization expression, the
expression E where T is compatible with neither the derived type of the expression n nor unsigned char
shall be diagnosed.

EXAMPLE 5 In the following function definition, assume (sizeof(wchar_t) == sizeof(wchar_t *)) holds
(that is, the size of the wchar_t type is the same as that of an object pointer). The initialization expression of q with type
T *, where T is wchar_t, is a memory allocation function called with the size argument n whose value is
(sizeof(wchar_t *) * 14), which is greater than sizeof(T) (that is, sizeof(wchar_t)). However,
because n is derived from an expression involving sizeof(wchar_t *), the derived type of the expression n is
wchar_t *, which is compatible with neither wchar_t nor unsigned char. Consequently, the expression is
diagnosed.

wchar_t *f7() {
 const wchar_t *p = L"Hello, World!";
 const size_t n = sizeof(p) * (wcslen(p) + 1);
 wchar_t *q = (wchar_t *)malloc(n); // diagnostic required

 /* ... */
 return q;
}

5.35 Forming or using out-of-bounds pointers or array subscripts (ARR30-C)

Using pointer arithmetic so that the result does not point into or just past the end of the same object, using
pointers in arithmetic expressions, or dereferencing pointers that do not point to a valid object results in
potentially exploitable undefined behavior and shall be diagnosed.

Likewise, using an array subscript so that the resulting reference does not refer to an element in the array also
results in potentially exploitable undefined behavior and shall be diagnosed.

C99 identifies four distinct situations in which undefined behavior (UB) may arise as a result of invalid pointer
operations:

UB Description

43 Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a result that
does not point into, or just beyond, the same array object.

44 Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a result that
points just beyond the array object and is used as the operand of a unary * operator that is evaluated.

46 An array subscript is out of range, even if an object is apparently accessible with the given subscript (as in the lvalue
expression a[1][7] given the declaration int a[4][5]).

ISO/IEC

© ISO/IEC 2011 – All rights reserved 51

UB Description

59 An attempt is made to access, or generate a pointer to just past, a flexible array member of a structure when the
referenced object provides no elements for that array.

103 The pointer passed to a library function array parameter does not have a value such that all address computations
and object accesses are valid.

EXAMPLE 1 In this example, a diagnostic is required if f is called with a negative argument for index because an out-of-
bounds pointer is formed.

enum { TABLESIZE = 100 };

static int table[TABLESIZE];

int *f(int index) {
 if (index < TABLESIZE) {
 return table + index; // diagnostic required
 }

 return NULL;
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because when the parameter index is negative, an
out-of-bounds pointer cannot be returned.

enum { TABLESIZE = 100 };

static int table[TABLESIZE];

int *f(int index) {
 if (0 <= index && index < TABLESIZE) {
 return table + index;
 }

 return NULL;
}

EXAMPLE 3 In this compliant example, a diagnostic is not required because the parameter index cannot be negative
and an out-of-bounds pointer cannot be returned.

enum { TABLESIZE = 100 };

static int table[TABLESIZE];

int *f(size_t index) {
 if (index < TABLESIZE) {
 return table + index;
 }

 return NULL;
}

EXAMPLE 4 In this example, a diagnostic is required because if the string path does not contain the backslash character
in the first MAX_MACHINE_NAME_LENGTH + 1 characters, then machine_name will be dereferenced past the end
pointer.

enum { MAX_MACHINE_NAME_LENGTH = 64 };

char *get_machine_name(const char *path) {
 char *machine_name = (char *)malloc(MAX_MACHINE_NAME_LENGTH + 1);

ISO/IEC

52 © ISO/IEC 2011 – All rights reserved

 if (machine_name == NULL) {
 return NULL;
 }

 while (*path != '\\') {
 *machine_name++ = *path++; // diagnostic required
 }

 *machine_name = '\0';

 return machine_name;
}

EXAMPLE 5 In this compliant example, a diagnostic is not required because the string path is guaranteed to contain a
backslash character within the first MAX_MACHINE_NAME_LENGTH characters when the string is copied to
machine_name.

enum { MAX_MACHINE_NAME_LENGTH = 64 };

char *get_machine_name(const char *path) {
 const char *machine_name_end = strchr(path, '\\');
 if (machine_name_end == NULL
 || machine_name_end >= path + MAX_MACHINE_NAME_LENGTH) {
 return NULL;
 }

 char *machine_name = (char *)malloc(MAX_MACHINE_NAME_LENGTH + 1);
 if (machine_name == NULL) {
 return NULL;
 }

 while (path != machine_name_end) {
 *machine_name++ = *path++;
 }

 *machine_name = '\0';

 return machine_name;
}

EXAMPLE 6 In this example, a diagnostic is required because a value is stored beyond the end of the array table when
the parameter pos equals the variable size.

static int *table = NULL;
static size_t size = 0;

int insert_in_table(size_t pos, int value) {
 if (pos > size) {
 int *tmp = (int *)realloc(table, sizeof(table[0]) * (pos + 1));
 if (tmp == NULL) {
 /* ... */
 }

 size = pos + 1;
 table = tmp;
 }

 table[pos] = value; // diagnostic required
 return 0;
}

ISO/IEC

© ISO/IEC 2011 – All rights reserved 53

EXAMPLE 7 In this compliant example, a diagnostic is not required because a value is stored within the bounds of the
array table when the parameter pos equals the variable size.

static int *table = NULL;
static size_t size = 0;

int insert_in_table(size_t pos, int value) {
 if (pos >= size) {
 int *tmp = (int *)realloc(table, sizeof(table[0]) * (pos + 1));
 if (tmp == NULL) {
 /* ... */
 }

 size = pos + 1;
 table = tmp;
 }

 table[pos] = value;
 return 0;
}

EXAMPLE 8 In this example, a diagnostic is required because a value is stored beyond the end of the arrays
matrix[0..4] when j has values greater than 4.

enum { COLS = 5, ROWS = 7 };
static int matrix[ROWS][COLS];

void init_matrix(int x) {
 for (size_t i = 0; i != COLS; ++i) {
 for (size_t j = 0; j != ROWS; ++j) {
 matrix[i][j] = x; // diagnostic required
 }
 }
}

EXAMPLE 9 In this compliant example, a diagnostic is not required because all values are stored within the bounds of the
arrays matrix[0..4].

enum { COLS = 5, ROWS = 7 };
static int matrix[ROWS][COLS];

void init_matrix(int x) {
 for (size_t i = 0; i != ROWS; ++i) {
 for (size_t j = 0; j != COLS; ++j) {
 matrix[i][j] = x;
 }
 }
}

EXAMPLE 10 In this example, a diagnostic is required because the expression first++ results in a pointer beyond the
end of the array buf when buf contains no elements.

struct S {
 size_t len;
 char buf[];
};

char *find(struct S *s, int c) {
 char *first = s->buf;
 char *last = s->buf + s->len;

 while (first++ != last) { // diagnostic required

ISO/IEC

54 © ISO/IEC 2011 – All rights reserved

 if (*first == (unsigned char)c) {
 return first;
 }
 }

 return NULL;
}

void g() {
 struct S *s = (struct S *)malloc(sizeof(struct S));
 s->len = 0;
 /* ... */
 char *where = find(s, '.');
 if (where == NULL) {
 return;
 }

 /* ... */
}

EXAMPLE 11 In this compliant example, a diagnostic is not required because the expression first++ does not occur
unless buf contains elements.

struct S {
 size_t len;
 char buf[];
};

char *find(struct S *s, int c) {
 char *first = s->buf;
 char *last = s->buf + s->len;

 while (first != last) {
 if (*first++ == (unsigned char)c) {
 return first;
 }
 }

 return NULL;
}

void g() {
 struct S *s = (struct S *)malloc(sizeof(struct S));
 s->len = 0;
 /* ... */
 char *where = find(s, '.');
 if (where == NULL) {
 return;
 }

 /* ... */
}

EXAMPLE 12 In this example, a diagnostic is required because the parameters passed to the standard library function
fread are calculated incorrectly, which may result in values being assigned to beyond the end of the array wbuf.

void h(FILE *file) {
 wchar_t wbuf[BUFSIZ];

 const size_t size = sizeof(wbuf[0]);
 const size_t nitems = sizeof(wbuf);

ISO/IEC

© ISO/IEC 2011 – All rights reserved 55

 size_t nread = fread(wbuf, size, nitems, file); // diagnostic required
 if (nread != nitems) {
 return;
 }

 /* ... */
}

EXAMPLE 13 In this compliant example, a diagnostic is not required because the parameters passed to the standard
library function fread are calculated correctly, which will not result in values being assigned to beyond the end of the
array wbuf.

void h(FILE *file) {
 wchar_t wbuf[BUFSIZ];

 const size_t size = sizeof(wbuf[0]);
 const size_t nitems = sizeof(wbuf) / size;

 size_t nread = fread(wbuf, size, nitems, file);
 if (nread != nitems) {
 return;
 }

 /* ... */
}

EXAMPLE 14 In this example, a diagnostic is required because the string dest may not be not be null-terminated in the
call to printf.

void f(char *src, size_t src_size) {
 char dest[BUFSIZ];

 dest[sizeof(dest) - 1] = '\0';
 src[src_size - 1] = '\0';

 strncpy(dest, src, sizeof(dest));
 printf("%s\n", dest); // diagnostic required for 'dest' as an argument to
printf
}

EXAMPLE 15 In this example, a diagnostic is required because the string cur_msg is not null-terminated when passed
to strlen.

char *cur_msg = NULL;
size_t cur_msg_size = 1024;
size_t cur_msg_len = 0;

void lessen_memory_usage() {
 char *temp;
 size_t temp_size;

 /* ... */

 if (cur_msg != NULL) {
 temp_size = cur_msg_size / 2 + 1;
 temp = realloc(cur_msg, temp_size);
 if (temp == NULL) {
 /* ... */
 }

 cur_msg = temp;

ISO/IEC

56 © ISO/IEC 2011 – All rights reserved

 cur_msg_size = temp_size;
 cur_msg_len = strlen(cur_msg); // diagnostic required for 'cur_msg' as an
argument to strlen
 }
}

5.35.1 Related Vulnerabilities

CVE-2008-1517 results from a violation of this rule. Before Mac OSX version 10.5.7, the xnu kernel accessed
an array at an unverified, user-input index, allowing an attacker to execute arbitrary code by passing an index
greater than the length of the array, thereby accessing outside memory [xorl 2009].

Related guidelines

CERT C Secure Coding Standard: ARR30-C. Do not form or use out of bounds pointers or array subscripts

ISO/IEC TR 24772 "XYX Boundary Beginning Violation," "XYY Wrap-around Error," and "XYZ Unchecked
Array Indexing"

MITRE CWE:

 CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

 CWE-121: Stack-based Buffer Overflow

 CWE-122: Heap-based Buffer Overflow

 CWE-129: Improper Validation of Array Index

 CWE-788: Access of Memory Location After End of Buffer

 CWE-805: Buffer Access with Incorrect Length Value

Bibliography

[CERT/CC 2003]

[Microsoft 2003]

[Pethia 2003]

[Seacord 2005] Chapter 1, "Running with Scissors"

[Viega 2005] Section 5.2.13, "Unchecked array indexing"

[xorl 2009] "CVE-2008-1517: Apple Mac OS X (XNU) Missing Array Index Validation"

5.36 Freeing memory multiple times (MEM31-C)

Freeing memory multiple times shall be diagnosed (subject to exceptions below) because this results in
"double-free" vulnerabilities [Seacord 2005].

EXAMPLE 1 In this example, a diagnostic is required because x could be freed twice depending on the value of
error_condition.

void f(size_t num_elem) {
 int error_condition = 0;

ISO/IEC

© ISO/IEC 2011 – All rights reserved 57

 int *x = (int *)malloc(num_elem * sizeof(int));
 if (x == NULL) {
 /* ... */
 }
 /* ... */
 if (error_condition == 1) {
 /* ... */
 free(x);
 }
 /* ... */
 free(x); // diagnostic required
 x = NULL;
}

EXAMPLE 2 In this example, a diagnostic is required because realloc may free str1 when it returns NULL, resulting
in str1 being freed twice.

void g(char *str1, size_t size) {
 char *str2 = (char *)realloc(str1, size);
 if (str2 == NULL) {
 free(str1); // diagnostic required
 return;
 }
}
According to C99 (7.20.3),

If the size of the space requested is zero, the behavior is implementation defined: either a null pointer is
returned, or the behavior is as if the size were some nonzero value, except that the returned pointer shall not
be used to access an object.

And according to 7.20.3.4,

If memory for the new object cannot be allocated, the old object is not deallocated and its value is unchanged.

If realloc is called with size equal to 0, then if a NULL pointer is returned, the old value should be
unchanged. However, there are some common but non-conforming implementations that free the pointer,
which means that calling free on the original pointer might result in a double-free vulnerability. However, not
calling free on the original pointer might result in a memory leak.

Exception: MEM31-EX1

Some library implementations accept and ignore a deallocation of already-free memory. If all libraries used by
a project have been validated as having this behavior, then this violation does not need to be diagnosed.

Related guidelines

CERT C Secure Coding Standard: MEM31-C. Free dynamically allocated memory exactly once

ISO/IEC TR 24772 "XYK Dangling Reference to Heap" and "XYL Memory Leak"

MITRE CWE: CWE-415: Double Free

Bibliography

[MIT 2005]

[OWASP] Double Free

[Seacord 2005]

ISO/IEC

58 © ISO/IEC 2011 – All rights reserved

[Viega 2005] "Doubly freeing memory"

[VU#623332]

5.37 Including tainted or out-of-domain input in a format string (FIO30-C)

Invoking any of the formatted input/output functions identified in C99 Section 7.20.6 ("Formatted input/output
functions"[ISO/IEC 9899:1999]), where the format argument references string data that is tainted or out-of-
domain with respect to character content, shall be diagnosed because this can result in undefined or
unexpected behavior. Any comparison of a character in the string to a value other than the null character
sanitizes the string. Additionally, an empty string is not considered to be tainted.

An attacker who can fully or partially control the contents of a format string can crash a vulnerable process,
view the contents of the stack, view memory content, or write to an arbitrary memory location and
consequently execute arbitrary code with the permissions of the vulnerable process [Seacord 2005].

Formatted output functions are particularly dangerous because many programmers are unaware of their
capabilities. (For example, they can write an integer value to a specified address using the %n conversion
specifier.)

EXAMPLE 1 In this example, a diagnostic is required because a format string is read from an external catalog and passed
as an argument to the vfprintf function.

void format_error(const char *filename, ...) {
 FILE *fd = fopen(filename, "r");
 if (fd == NULL) {
 /* ... */
 }

 char fmt[BUFSIZ];
 if (fgets(fmt, BUFSIZ, fd) == NULL) {
 /* ... */
 }

 va_list va;
 va_start(va, filename);
 vfprintf(stderr, fmt, va); // diagnostic required
 va_end(va);

 fclose(fd);
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because the format string that is read from an external
catalog and passed as an argument to the vfprintf function is first sanitized.

void safe_format_error(const char *filename, ...) {
 FILE *fd = fopen(filename, "r");
 if (fd == NULL) {
 /* ... */
 }

 char fmt[BUFSIZ];
 if (fgets(fmt, BUFSIZ, fd) == NULL) {
 /* ... */
 }

 /* only allow %d in the format string: */
 const char *fc;
 for (fc = fmt; *fc != '\0'; ++fc) {

ISO/IEC

© ISO/IEC 2011 – All rights reserved 59

 if (*fc == '%' && (fc[1] != '%' && fc[1] != 'd')) {
 fclose(fd);
 return;
 }
 }

 va_list va;
 va_start(va, filename);
 vfprintf(stderr, fmt, va);
 va_end(va);

 fclose(fd);
}

EXAMPLE 3 In this example, a diagnostic is required because the tainted string user may contain untrusted data.

void incorrect_password() {
 int ret;

 char user[BUFSIZ];
 GET_TAINTED_STRING(user, BUFSIZ);

 static const char MSG_FORMAT[] = "%s cannot be authenticated.\n";
 size_t size = strlen(user) + sizeof(MSG_FORMAT);
 char *msg = (char *)malloc(size);
 if (msg == NULL) {
 /* ... */
 }

 ret = snprintf(msg, size, MSG_FORMAT, user);
 free(user);
 if (ret < 0) {
 /* ... */
 } else if (ret >= size) {
 /* ... */
 }

 fprintf(stderr, msg); // diagnostic required
 free(msg);
}

EXAMPLE 4 In this compliant example, a diagnostic is not required because the argument fmt is constrained to be one of
the elements of the formats array, which is not controlled by the user.

enum int_tag { I_char, I_shrt, I_int, I_long, I_llong };
static const char *const formats[] = { "%hhi", "%hi", "%i", "%li", "%lli" };

static int fmtintv(enum int_tag tag, const char *fmt, va_list va) {
 return vfprintf(stdout, fmt, va);
}

int format_integer(enum int_tag tag, ...) {
 va_list va;
 int n;
 if (tag < I_char || I_llong < tag)
 return -1;
 va_start(va, tag);
 n = fmtintv(tag, formats[tag], va);
 va_end(va);
 return n;
}

ISO/IEC

60 © ISO/IEC 2011 – All rights reserved

Related guidelines

CERT C Secure Coding Standard: FIO30-C. Exclude user input from format strings

ISO/IEC TR 24772 "RST Injection"

MITRE CWE: CWE-134: Uncontrolled Format String

Bibliography

[Seacord 2005] Chapter 6, "Formatted Output"

[Viega 2005] Section 5.2.23, "Format string problem"

5.38 Incorrectly setting and using errno (ERR30-C)

Incorrectly setting and using errno shall be diagnosed because doing so can result in undefined or
unexpected behavior. The correct way to set and check errno is defined in the following cases.

5.38.1 Library functions that set errno and return an in-band error indicator

A program that uses errno for error checking shall set errno to zero before calling one of these library
functions, and then it shall inspect errno before a subsequent library function call.

The following functions set errno and return an in-band error indicator.

Table 5 — Functions that set errno and return an in-band error indicator

Function name Return value errno value

ftell -1L positive

stroumax UINTMAX_MAX ERANGE

strtoda , wcstod zero or ±HUGE_VAL ERANGE

strtof, wcstof zero or ±HUGE_VALF ERANGE

strtoimax INTMAX_MIN or INTMAX_MAX ERANGE

strtol, wcstol LONG_MIN or LONG_MAX ERANGE

strtold, wcstold zero or ±HUGE_VALL ERANGE

strtoll, wcstoll LLONG_MIN or LLONG_MAX ERANGE

strtoul, wcstoul ULONG_MAX ERANGE

strtoull, wcstoull ULLONG_MAX ERANGE

wcstoimax INTMAX_MIN or INTMAX_MAX ERANGE

wcstoumax UINTMAX_MAX ERANGE

a However, according to the C99 standard, if the result of strtod, strtof, or strtold (and the related wide-character

ISO/IEC

© ISO/IEC 2011 – All rights reserved 61

Function name Return value errno value

functions) underflows, "the functions return a value whose magnitude is no greater than the smallest normalized positive number in the
return type; whether errno acquires the value ERANGE is implementation-defined."

5.38.2 Library functions that set errno and return an out-of-band error indicator

A program that uses errno for error checking need not set errno to zero before calling one of these library
functions. Then, if and only if the function returned an error indicator, the program shall inspect errno before
a subsequent library function call.

The following functions set errno and return an out-of-band error indicator.

Table 6 — Library functions that set errno value and return an out-of-band error indicator

Function name Return value errno value

fgetpos non-zero positive

fgetwc WEOF EILSEQ

fputwc WEOF EILSEQ

fsetpos non-zero positive

mbrtowc (size_t)(-1) EILSEQ

mbsrtowcs (size_t)(-1) EILSEQ

signala SIG_ERR positive

wcrtomb (size_t)(-1) EILSEQ

wcsrtombs (size_t)(-1) EILSEQ

a The value of errno is indeterminate if signal returns SIG_ERR from within a signal handler that was triggered by a signal

that occurred other than as the result of a call to abort or raise.

5.38.3 Library functions that may or may not set errno

Programs shall not rely on errno after calling a function that could or could not set errno when an error
occurs because the function might have altered errno in an implementation-defined way.

The functions defined in <complex.h> could or could not set errno when an error occurs.

The functions defined in <math.h> set errno in the following conditions:

 If there is a domain error and the integer expression math_errhandling & MATH_ERRNO is non-zero,
then errno is set to EDOM.

 According to the C99 standard, "If a floating result overflows and default rounding is in effect, or if the
mathematical result is an exact infinity (for example log(0.0)), then the function returns the value of the
macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according to the return type, with the same sign as the
correct value of the function; if the integer expression math_errhandling & MATH_ERRNO is nonzero,
the integer expression errno acquires the value ERANGE" [ISO/IEC 9899:1999].

 Similarly, according to the C99 standard, "The result underflows if the magnitude of the mathematical
result is so small that the mathematical result cannot be represented, without extraordinary roundoff error,
in an object of the specified type. If the result underflows, the function returns an implementation-defined
value whose magnitude is no greater than the smallest normalized positive number in the specified type;

ISO/IEC

62 © ISO/IEC 2011 – All rights reserved

if the integer expression math_errhandling & MATH_ERRNO is nonzero, whether errno acquires the
value ERANGE is implementation-defined" [ISO/IEC 9899:1999].

The functions atof, atoi, atol, and atoll may or may not set errno when an error occurs.

5.38.4 Library functions that do not explicitly set errno

Programs shall not rely on errno to determine whether an error occurred after calling a function that does not
explicitly set errno. Such a function may set errno even when no error has occurred. All library functions
that have not been discussed yet are functions that do not explicitly set errno.

EXAMPLE 1 In this example, a diagnostic is required because errno is used for error checking and errno is not set to
zero before the C standard library function strtoul is called.

void f(const char *string) {
 char *endptr = NULL;
 unsigned long number = strtoul(string, &endptr, 0);

 if (endptr == string
 || (number == ULONG_MAX && errno == ERANGE)) { // diagnostic required
 /* ... */
 } else {
 /* ... */
 }

 /* ... */
}

EXAMPLE 2 In this example, a diagnostic is required because errno is used for error checking and the return value of
the call to the C standard library function signal is not checked before checking errno.

void g() {
 signal(SIGINT, SIG_DFL);
 if (errno != 0) { // diagnostic required
 /* ... */
 }
}

EXAMPLE 3 In this example, a diagnostic is required because errno is used for error checking and errno is checked
after the call to the C standard library function setlocale.

void h() {
 errno = 0;
 setlocale(LC_ALL, "");
 if (errno != 0) { // diagnostic required
 /* ... */
 }
}

Related guidelines

CERT C Secure Coding Standard: ERR30-C. Set errno to zero before calling a library function known to set
errno, and check errno only after the function returns a value indicating failure

MITRE CWE: CWE-456: Missing Initialization

Bibliography

[Brainbell.com] Macros and Miscellaneous Pitfalls

ISO/IEC

© ISO/IEC 2011 – All rights reserved 63

[Horton 1990] Section 11 p. 168 and Section 14 p. 254

[Koenig 1989] Section 5.4 p. 73

5.39 Interleaving stream inputs and outputs without a flush or positioning call (FIO39-C)

The following scenarios shall be diagnosed because either can result in undefined behavior:

 receiving input from a stream directly following an output to that stream without an intervening call to
fflush, fseek, fsetpos, or rewind, if the file is not at end-of-file or

 outputting to a stream after receiving input from that stream without a call to fseek, fsetpos, or rewind,
if the file is not at end-of-file

According to section 7.19.5.3 of C99,

When a file is opened with update mode both input and output may be performed on the associated stream.
However, output shall not be directly followed by input without an intervening call to the fflush function or to
a file positioning function (fseek, fsetpos, or rewind), and input shall not be directly followed by output
without an intervening call to a file positioning function, unless the input operation encounters end-of-file.
Opening (or creating) a text file with update mode may instead open (or create) a binary stream in some
implementations.

(See also undefined behavior 143, Annex B.)

EXAMPLE In this example, a diagnostic is required because fread and fwrite are called on the same file without an
intervening call to fflush, fseek, fsetpos, or rewind on the file.

void f(const char *filename, char append_data[BUFSIZ]) {
 char data[BUFSIZ];
 FILE *file;

 file = fopen(filename, "a+");
 if (file == NULL) {
 /* ... */
 }

 if (fwrite(append_data, BUFSIZ, 1, file) != BUFSIZ) {
 /* ... */
 }

 if (fread(data, BUFSIZ, 1, file) != 0) { // diagnostic required
 /* ... */
 }

 fclose(file);
}

Related guidelines

CERT C Secure Coding Standard: FIO39-C. Do not alternately input and output from a stream without an
intervening flush or positioning call

5.40 Invoking an unsafe macro with arguments containing side effects (PRE31-C)

An unsafe function-like macro is unsafe with respect to a parameter if the macro evaluates that parameter
more than once in the code expansion or never evaluates the parameter at all. Call such a parameter an
unsafe parameter. Invoking an unsafe function-like macro with an argument for an unsafe parameter

ISO/IEC

64 © ISO/IEC 2011 – All rights reserved

containing assignment, increment, decrement, volatile access, or other side effects, or a function call that
performs side effects, shall be diagnosed because this may result in undefined or unexpected behavior.

EXAMPLE 1 In this example, a diagnostic is required because an expression containing increment ++n is passed to the
unsafe function-like macro CUBE.

#define CUBE(x) ((x) * (x) * (x))

int f(int n) {
 int m = CUBE(++n); // diagnostic required

 /* ... */
 return m;
}

EXAMPLE 2 In this example, a diagnostic is required because an expression containing decrement --n is passed to the
unsafe function-like macro ABS.

#define ABS(x) (((x) < 0) ? -(x) : (x))

int g(int n) {
 int m = ABS(--n); // diagnostic required

 /* ... */
 return m;
}

EXAMPLE 3 In this example, a diagnostic is required when getc is implemented as an unsafe function-like macro
because an expression containing assignment, fptr = fopen(filename, "r"), is passed to getc.

char getch(const char *filename) {
 FILE *fptr = NULL;

 int c = getc(fptr = fopen(filename, "r")); // diagnostic required
 if (c == EOF) {
 /* ... */
 }

 return c;
}

EXAMPLE 4 In this example, a diagnostic is required when putc is implemented as an unsafe function-like macro
because an expression containing side effects fptr ? fptr : (fptr = fopen(filename, "w")) is passed
to put.

void putalpha(const char *filename) {
 FILE *fptr = NULL;

 int c = 'a';
 while (c <= 'z') {
 if (putc(c++, fptr ? fptr : (fptr = fopen(filename, "w"))) == EOF) { //
diagnostic required
 /* ... */
 }
 }
}

Related guidelines

CERT C Secure Coding Standard: PRE31-C. Avoid side-effects in arguments to unsafe macros

ISO/IEC

© ISO/IEC 2011 – All rights reserved 65

ISO/IEC TR 24772 "NMP Pre-processor Directions"

MISRA-C 2004, Rule 19.6

Bibliography

[Plum 1985] Rule 1-11

5.41 Modifying constant values (EXP40-C)

C99 Section 6.7.3, "Type qualifiers," Paragraph 5 [ISO/IEC 9899:1999], states,

If an attempt is made to modify an object defined with a const-qualified type through use of an lvalue with
non-const-qualified type, the behavior is undefined.

(See also undefined behavior 61 in Annex B.)

Attempting to modify a const-qualified object through the use of an lvalue of a non-const-qualified type shall
be diagnosed.

There are existing compiler implementations that allow const-qualified values to be modified without
generating a warning message.

EXAMPLE 1 In this example, a diagnostic is required because the constant value in the variable c is modified.

void f() {
 char const **cpp;
 char *cp;
 char const c = 'A';

 cpp = &cp; // diagnostic required
 *cpp = &c;
 *cp = 'B';
}

EXAMPLE 2 In this example, a diagnostic is required because a constant value in the array s is modified.

const char s[] = "bar";

int main(void) {
 *(char *)s = '\0'; // diagnostic required
 /* ... */
 return 0;
}

5.42 Modifying string literals (STR30-C)

Directly modifying any portion of a string literal, assigning a string literal to a pointer to non-const, or casting
a string literal to a pointer to non-const, shall be diagnosed. For the purposes of this rule, the returned value
of the library functions strpbrk, strchr, strrchr, wcspbrk, wcschr, and wcsrchr shall be treated as a
string literal if the first argument is a string literal. For the purposes of this rule, a pointer to (or array of) const
characters shall be treated as a string literal.

EXAMPLE 1 In this example, a diagnostic is required because the string literal "string literal" is modified
through the pointer p.

void f1() {
 char *p = "string literal"; // diagnostic required

ISO/IEC

66 © ISO/IEC 2011 – All rights reserved

 p[0] = 'S';
 /* ... */
}

EXAMPLE 2 In this example, a diagnostic is required because the string literal "/tmp/edXXXXXX" is modified by the
POSIX function mkstemp.

void f2() {
 mkstemp("/tmp/edXXXXXX"); // diagnostic required
 /* ... */
}

EXAMPLE 3 In this example, a diagnostic is required because the string literal "/tmp/filename" is modified through
the pointer returned from the C Standard Library function strrchr.

void f3() {
 char *last_slash = strrchr("/tmp/filename", '/');
 *last_slash = '\0'; // diagnostic required
 /* ... */
}

EXAMPLE 4 In this example, a diagnostic is required because the string literal "/tmp/filename" is modified through
the pointer returned from the C Standard Library function strrchr.

void f4() {
 *strrchr("/tmp/filename", '/') = '\0'; // diagnostic required
 /* ... */
}

EXAMPLE 5 In this example, a diagnostic is required because the string literal "/tmp/filename" is modified.

void f5() {
 "/tmp/filename"[4] = '\0'; // diagnostic required
 /* ... */
}

Exception: STR030-EX1

No diagnostic need be issued if the analyzer can determine that the value of the pointer to non-const is
never used to attempt to modify the characters of the string literal.

int main(void) {
 char *p = "abc";
 printf("%s\n", p);
 return 0;
}

Related guidelines

CERT C Secure Coding Standard: STR30-C. Do not attempt to modify string literals

Bibliography

[Plum 1991] Topic 1.26, "strings - string literals"

[Summit 1995] comp.lang.c FAQ list - Question 1.32

5.43 Modifying the string returned by getenv, localeconv, setlocale, and strerror (ENV30-C)

Modifying the objects or strings returned by the library functions listed in the table below shall be diagnosed
because doing so results in undefined behavior.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 67

C99 identifies the following three instances of undefined behavior (UB), which arise as a result of modifying
the data structures or strings returned from getenv, localeconv, setlocale, and strerror:

UB Description

114 The program modifies the string pointed to by the value returned by the setlocale function (7.11.1.1).

115 The program modifies the structure pointed to by the value returned by the localeconv function (7.11.2.1).

174 The string set up by the getenv or strerror function is modified by the program (7.20.4.5, 7.21.6.2).

EXAMPLE 1 In this example, a diagnostic is required because the string returned from the C standard library function
setlocale is modified.

void f1() {
 char *locale = setlocale(LC_ALL, 0);
 char *cats[8];
 char *sep = locale;
 cats[0] = locale;
 int i;

 for (i = 0; (sep = strstr(sep, ";:")) && i < 8; ++i) {
 *sep = '\0'; // diagnostic required
 cats[i] = ++sep;
 }

 /* ... */
}

EXAMPLE 2 In this example, a diagnostic is required because the object returned from the C standard library function
localeconv is modified.

void f2() {
 struct lconv *conv = localeconv();

 if ('\0' == conv->decimal_point[0]) {
 conv->decimal_point = "."; // diagnostic required
 }

 if ('\0' == conv->thousands_sep[0]) {
 conv->thousands_sep = ","; // diagnostic required
 }

 /* ... */
}

EXAMPLE 3 In this example, a diagnostic is required because the string returned from the C standard library function
getenv is modified.

void f3() {
 char *shell_dir = getenv("SHELL");

 if (shell_dir != NULL) {
 char *slash = strrchr(shell_dir, '/');
 if (slash) {
 *slash = '\0'; // diagnostic required
 }

 /* use shell_dir */
 }
}

ISO/IEC

68 © ISO/IEC 2011 – All rights reserved

EXAMPLE 4 In this example, a diagnostic is required because the string returned from the C standard library function
strerror is modified.

const char *f4(int error) {
 char buf[16];
 sprintf(buf, "(errno = %d)", error);

 char *error_str = strerror(error);

 strcat(error_str, buf); // diagnostic required
 return error_str;
}

Related guidelines

CERT C Secure Coding Standard: ENV30-C. Do not modify the object referenced by the return value of
certain functions

Bibliography

[Open Group 2004] getenv

5.44 Not finishing case labels with a break statement (MSC17-C)

A set of statements associated with a case label that does not end with a break statement shall be
diagnosed (subject to exceptions below) because this can result in unexpected behavior.

EXAMPLE In this example, a diagnostic is required because the case where widget_type has value WE_W lacks a
concluding break statement.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z };

void f(enum WidgetEnum widget_type) {
 switch (widget_type) {
 case WE_W: // diagnostic required
 /* ... */
 case WE_X:
 /* ... */
 break;
 case WE_Y:
 case WE_Z:
 /* ... */
 break;
 default:
 /* ... */
 break;
 }
}

Exception: MSC17-EX1

The last label in a switch statement, if it does not conclude with a break statement, need not be diagnosed.

Related guidelines

CERT C Secure Coding Standard: MSC17-C. Finish every set of statements associated with a case label with
a break statement

ISO/IEC

© ISO/IEC 2011 – All rights reserved 69

5.45 Overflowing signed integers (INT32-C)

An exceptional condition that occurs during the evaluation of an expression is undefined behavior (see
undefined behavior 33 in Annex B). The common cause of such an exception is signed integer overflow.
Because signed integer overflow is undefined behavior, implementations are allowed to silently wrap (the
most common behavior) or trap. Because signed integer overflow produces a silent wraparound in most
existing C implementations, some programmers assume that this is a well-defined behavior.

Whenever at least one operand is a tainted, potentially mutilated, or out-of-domain value, signed integer
operations that can overflow shall be diagnosed.

The following table indicates whether an expression may result in overflow (denoted by the icon) or not

(denoted by the icon).

Table 7 — Expressions and overflow

Operator Overflow Operator Overflow Operator Overflow Operator Overflow

+

 -=

<<

 <

-

 *=

>>

 >

*

 /=

&

 >=

/

 %=

|

 <=

%

 <<=

^

 ==

++

 >>=

~

 !=

--

 &=

!

 &&

=

 |=

unary +

 ||

+=

 ^=

unary -

 ?:

EXAMPLE 1 In this example, a diagnostic is required on implementations that trap on signed integer overflow because the
expression x + 1 may result in signed integer overflow.

int add(void) {
 int x;
 GET_TAINTED_INT(x);

 return x + 1; // diagnostic required
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because the expression x + 1 cannot result in
signed integer overflow.

int add(void) {
 int x;
 GET_TAINTED_INT(x);

 if (x < INT_MAX) {
 return x + 1;
 } else {
 return INT_MIN;
 }
}

ISO/IEC

70 © ISO/IEC 2011 – All rights reserved

Related guidelines

CERT C Secure Coding Standard: INT32-C. Ensure that operations on signed integers do not result in
overflow

ISO/IEC TR 24772 "XYY Wrap-around Error"

MITRE CWE: CWE-190: Integer Overflow or Wraparound

Bibliography

[Dowd 2006] Chapter 6, "C Language Issues" (Arithmetic Boundary Conditions, pp. 211-223)

[Seacord 2005] Chapter 5, "Integers"

[Viega 2005] Section 5.2.7, "Integer overflow"

[VU#551436]

[Warren 2002] Chapter 2, "Basics"

5.46 Passing arguments to character handling functions that are not representable as
unsigned char (STR37-C)

Arguments to the character handling functions in <ctype.h> that are not representable as unsigned char
shall be diagnosed because these functions are defined only for values representable as unsigned char
and the macro EOF.

The following character classification functions are affected:

isalnum isalpha isascii isblank

iscntrl isdigit isgraph islower

isprint ispunct isspace isupper

isxdigit toascii toupper tolower

EXAMPLE In this example, a diagnostic is required because the parameter to isspace, *t, may be representable as an
unsigned char.

size_t count_preceding_whitespace(const char *s) {
 const char *t = s;
 size_t length = strlen(s) + 1;

 while (isspace(*t) && (t - s < length)) { // diagnostic required
 ++t;
 }
 return t - s;
}

Related guidelines

CERT C Secure Coding Standard: STR37-C. Arguments to character handling functions must be
representable as an unsigned char

MITRE CWE:

 CWE-686: Function Call With Incorrect Argument Type

ISO/IEC

© ISO/IEC 2011 – All rights reserved 71

 CWE-704: Incorrect Type Conversion or Cast

Bibliography

[Kettelwell 2002] Section 1.1, "<ctype.h> And Characters Types"

5.47 Passing pointers into the same object as arguments to different restrict-qualified
parameters (DCL33-C)

Function arguments that are restrict-qualified pointers and reference overlapping objects shall be
diagnosed because accessing the object pointed to by a restrict-qualified pointer via another pointer
results in undefined behavior.

This corresponds to undefined behavior 65 as defined in Annex B:

An object which has been modified is accessed through a restrict-qualified pointer to a const-qualified
type, or through a restrict-qualified pointer and another pointer that are not both based on the same object.

EXAMPLE 1 In this example, a diagnostic is required because the restrict-qualified pointer parameters to memcpy,
ptr1 and ptr2, reference overlapping objects.

void abcabc() {
 char str[]= "abc123";
 char *ptr1 = str;
 char *ptr2 = str + strlen("abc");

 memcpy(ptr2, ptr1, strlen("123")); // diagnostic required
 puts(str);
}

EXAMPLE 2 In this example, a diagnostic is required because the pointer src is twice a restrict-qualifed pointer
parameter to dual_memcpy, referencing overlapping objects.

void *dual_memcpy(
 void *restrict s1, const void *restrict s2, size_t n1,
 void *restrict s3, const void *restrict s4, size_t n2
) {
 memcpy(s1, s2, n1);
 memcpy(s3, s4, n2);

 return s1;
}

void f() {
 char dest1[10];
 char dest2[10];
 char src[] = "hello";

 dual_memcpy(dest1, src, sizeof(src), dest2, src, sizeof(src)); // diagnostic
required
 puts(dest1);
 puts(dest2);
}

Related guidelines

CERT C Secure Coding Standard: DCL33-C. Ensure that restrict-qualified source and destination pointers in
function arguments do not reference overlapping objects

ISO/IEC

72 © ISO/IEC 2011 – All rights reserved

ISO/IEC TR 24772 "CSJ Passing parameters and return values"

5.48 Performing bitwise operations on Boolean operands (EXP16-C)

Applying bitwise AND (&, ampersand), bitwise OR (|, pipe), XOR (^, caret), or COMPLIMENT (~, tilde) on
a Boolean operand, where an operand is considered to be Boolean if its value is the result of a comparison, a
logical AND (&&, double-ampersand), a logical OR (||, double-pipe), or a NEGATION (!, exclamation point)
operator, shall be diagnosed unless both operands of a bitwise binary operator are Boolean. Note that the
error in these cases is often the choice of operator in the subexpression rather than the outermost operator.

EXAMPLE 1 In this example, a diagnostic is required because the bitwise AND (&) operator is applied to the Boolean
expression geteuid() == 0.

void f() {
 if (!(getuid() & geteuid() == 0)) { // diagnostic required
 /* ... */
 }
}

EXAMPLE 2 In this compliant example, a diagnostic is not required because a bitwise operator is not applied to the
Boolean expression geteuid() == 0.

void f() {
 if (!(getuid() && geteuid() == 0)) {
 /* ... */
 }
}

Related guidelines

CERT C Secure Coding Standard: EXP17-C. Do not perform bitwise operations in conditional expressions

ISO/IEC TR 24772 "KOA Likely Incorrect Expressions"

Bibliography

[Hatton 1995] Section 2.7.2, "Errors of omission and addition"

5.49 Reallocating or freeing memory that was not dynamically allocated (MEM34-C)

Calling realloc or free in cases where the ptr argument to either function may refer to memory that was
not dynamically allocated shall be diagnosed because this results in undefined behavior.

EXAMPLE 1 In this example, a diagnostic is required because the pointer parameter to realloc, buf, does not refer to
dynamically-allocated memory.

enum { BUFSIZE = 256 };

void f() {
 char buf[BUFSIZE];
 char *p;
 /* ... */
 p = (char *)realloc(buf, 2 * BUFSIZE); // diagnostic required
 /* ... */
}

EXAMPLE 2 In this example, a diagnostic is required because the pointer parameter to free, str, may not refer to
dynamically-allocated memory.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 73

enum { MAX_ALLOCATION = 1000 };

int main(int argc, const char *argv[]) {
 char *str = NULL;
 size_t len;

 if (argc == 2) {
 len = strlen(argv[1]) + 1;
 if (len > MAX_ALLOCATION) {
 /* Handle error */
 }
 str = (char *)malloc(len);
 if (str == NULL) {
 /* Handle allocation error */
 }
 strcpy(str, argv[1]);
 }
 else {
 str = "usage: $>a.exe[string]";
 printf("%s\n", str);
 }
 /* ... */
 free(str); // diagnostic required
 return 0;
}

Exception: MEM34-EX1

Some library implementations accept and ignore a deallocation of non-allocated memory (or, alternatively,
cause a runtime-constraint violation). If all libraries used by a project have been validated as having this
behavior, then this violation does not need to be diagnosed.

Related guidelines

CERT C Secure Coding Standard: MEM34-C. Only free memory allocated dynamically

ISO/IEC TR 24772 "AMV Type-breaking reinterpretation of data"

MITRE CWE:

 CWE-590: Free of Memory not on the Heap

 CWE-628: Function Call with Incorrectly Specified Arguments

Bibliography

[ISO/IEC 9899:1999] Section 7.20.3.4, "The realloc function," and Section 7.20.3.3, "The free function"

5.50 Referencing uninitialized memory (EXP33-C)

There are two main sources of uninitialized memory:

 uninitialized automatic variables and

 uninitialized memory returned by the memory management functions malloc and realloc.

Uninitialized memory has indeterminate value, which for objects of some types can be a trap representation.
Accessing uninitialized memory by an lvalue of a type other than unsigned char shall be diagnosed
because doing so has undefined behavior. Typical consequences of accessing uninitialized memory relevant

ISO/IEC

74 © ISO/IEC 2011 – All rights reserved

to security range from denial of service lead to information exposure as a result of leaking sensitive data
previously stored in a memory region.

It should be noted that while it is safe to copy a region of uninitialized storage into another location using a
function such as memcpy, after the copy, the destination region has the same "uninitialized" contents as the
source region even if it had been initialized to a determinate value before the copy.

EXAMPLE 1 In this example, a diagnostic is required because the variable sign may be uninitialized when it is accessed
in the return statement of the function is_negative.

void get_sign(int number, int *sign) {
 if (sign == NULL) {
 /* ... */
 }

 if (number > 0) {
 *sign = 1;
 } else if (number < 0) {
 *sign = -1;
 }
}

int is_negative(int number) {
 int sign;
 get_sign(number, &sign);

 return (sign < 0); // diagnostic required
}

EXAMPLE 2 In this example, a diagnostic is required because the variable error_log is uninitialized when it is passed
to sprintf.

int do_auth() {
 int result = -1;

 /* ... */
 return result;
}

void report_error(const char *msg) {
 const char *error_log;
 char buffer[24];

 sprintf(buffer, "Error: %s", error_log); // diagnostic required
 printf("%s\n", buffer);
}

int main(void) {
 if (do_auth() == -1) {
 report_error("Unable to login");
 }

 return 0;
}

EXAMPLE 3 In this example, a diagnostic is required because the elements of the array a are uninitialized when they are
accessed in the for loop.

void f(size_t n) {
 int *a = (int *)malloc(n * sizeof(int));

ISO/IEC

© ISO/IEC 2011 – All rights reserved 75

 for (size_t i = 0; i != n; ++i) {
 a[i] = a[i] ^ a[i]; // diagnostic required
 }

 /* ... */
 free(a);
}

EXAMPLE 4 In this example, a diagnostic is required because the array elements a[n..2n] are uninitialized when they
are accessed in the for loop.

void g(double *a, size_t n) {
 a = (double *)realloc(a, (n * 2 + 1) * sizeof(double));
 for (size_t i = 0; i != n * 2 + 1; ++i) {
 if (a[i] < 0) {
 a[i] = abs(a[i]); // diagnostic required
 }
 }

 /* ... */
 free(a);
}

Related guidelines

CERT C Secure Coding Standard:

 EXP33-C. Do not reference uninitialized memory

 MEM09-C. Do not assume memory allocation routines initialize memory

ISO/IEC TR 24772 "LAV Initialization of Variables"

Bibliography

[Flake 2006]

[mercy 2006]

5.51 Shifting signed types (INT13-C)

Right-shifting a value of a signed type shall be diagnosed because the result of a right shift expression whose
operand has a negative value may lead to unexpected results.

EXAMPLE In this example, a diagnostic is required because the value of i may be negative in the right shift
subexpressions in the return statement.

int32_t bswap32(int32_t i) {
 return ((i >> 24) // diagnostic required
 | ((i >> 8) & 0xff00) // diagnostic required
 | ((i << 8) & 0xff0000)
 | (i << 24));
}

Related guidelines

CERT C Secure Coding Standard: INT13-C. Use bitwise operators only on unsigned operands

ISO/IEC 2003 Section 6.5.7, "Bitwise shift operators"

ISO/IEC

76 © ISO/IEC 2011 – All rights reserved

ISO/IEC TR 24772 "STR Bit Representations," "XYY Wrap-around Error," and "XZI Sign Extension Error"

MITRE CWE: CWE-682: Incorrect Calculation

Bibliography

[Dowd 2006] Chapter 6, "C Language Issues"

5.52 Subtracting or comparing two pointers that do not refer to the same array (ARR36-C)

Subtracting or relationally comparing two pointers that do not refer to the same array object, or one element
past the same array object, shall be diagnosed (subject to exceptions below) because this results in undefined
behavior. The relational operators are >, <, >=, and <=.

C99 identifies two distinct situations in which undefined behavior (UB) may arise as a result of using pointers
that do not point to the same object:

UB Description

45 Pointers that do not point into, or just beyond, the same array object are subtracted (6.5.6).

50
Pointers that do not point to the same aggregate or union (nor just beyond the same array object) are compared using
relational operators (6.5.8).

EXAMPLE In this example, a diagnostic is required because the pointers string and (char **)next_num_ptr
are subtracted and do not refer to the same array.

enum { SIZE = 256 };

void f() {
 int nums[SIZE];
 char *strings[SIZE];
 int *next_num_ptr = nums;
 int free_bytes;

 /* ... */
 /* increment next_num_ptr as array fills */

 free_bytes = strings - (char **)next_num_ptr; // diagnostic required
 /* ... */
}

Exceptions

 ARR36-EX1: Comparing two pointers within the same object does not need to be diagnosed.

 ARR36-EX2: Subtracting two pointers to char within the same object does not need to be diagnosed.

Related guidelines

CERT C Secure Coding Standard: ARR36-C. Do not subtract or compare two pointers that do not refer to the
same array

MITRE CWE: CWE-469: Use of Pointer Subtraction to Determine Size

Bibliography

[Banahan 2003] Section 5.3, "Pointers," and Section 5.7, "Expressions involving pointers"

ISO/IEC

© ISO/IEC 2011 – All rights reserved 77

5.53 Taking the size of a pointer to determine the size of the pointed-to type (EXP01-C)

Using the sizeof operator on a pointer type shall be diagnosed because this is often a sign of programmer
error and can result in undefined or unexpected behavior.

EXAMPLE In this example, a diagnostic is required because the sizeof operator is applied to the pointer variable
d_array.

double *allocate_array(size_t num_elems) {
 double *d_array;

 if (num_elems > SIZE_MAX / sizeof(d_array)) { // diagnostic required
 /* ... */
 }

 d_array = (double *)malloc(sizeof(d_array) * num_elems); // diagnostic
required
 if (d_array == NULL) {
 /* ... */
 }

 return d_array;
}

Related guidelines

CERT C Secure Coding Standard: EXP01-C. Do not take the size of a pointer to determine the size of the
pointed-to type

MITRE CWE: CWE-467: Use of sizeof() on a Pointer Type

Bibliography

[Drepper 200] Section 2.1.1, "Respecting Memory Bounds"

[Viega 2005] Section 5.6.8, "Use of sizeof on a pointer type"

5.54 Using a value for fsetpos that is returned from fgetpos (FIO44-C)

Using an offset value for fsetpos, other than the value returned from fgetpos, shall be diagnosed because
this results in undefined behavior.

EXAMPLE In this example, a diagnostic is required because an offset value other than the one returned from fgetpos is
used in a call to fsetpos.

FILE *opener(const char *filename) {
 fpos_t offset;

 if (filename == NULL) {
 /* ... */
 }

 FILE *file = fopen(filename, "r");
 if (file == NULL) {
 /* ... */
 }

 memset(&offset, 0, sizeof(offset));

ISO/IEC

78 © ISO/IEC 2011 – All rights reserved

 if (fsetpos(file, &offset) != 0) { // diagnostic required
 /* ... */
 }

 return file;
}

Related guidelines

CERT C Secure Coding Standard: FIO44-C. Only use values for fsetpos() that are returned from fgetpos()

5.55 Using abort or assert when atexit handlers are registered (ERR06-C)

Using assert or abort in a program where atexit handlers are registered shall be diagnosed because
these functions terminate the program and do not execute atexit handlers.

EXAMPLE In this example, a diagnostic is required because the C standard library function-like macro assert is called
while the atexit handler cleanup is registered.

void cleanup() {
 /* ... */
}

int main(int argc, char *argv[]) {
 if (atexit(cleanup) != 0) {
 /* ... */
 }

 assert(argc > 1); // diagnostic required

 /* ... */
 return 0;
}

Related guidelines

CERT C Secure Coding Standard: ERR06-C. Understand the termination behavior of assert() and abort()

ISO/IEC TR 24772 "REU Termination Strategy"

5.56 Using an object overwritten by getenv, localeconv, setlocale, and strerror

Using the object pointed to by the pointer returned by the getenv, localeconv, setlocale, and
strerror functions after a subsequent call to the function shall be diagnosed because the object may be
overwritten by the subsequent call to the function.

EXAMPLE 1 In this example, a diagnostic is required because the string returned by the first call to the C standard library
function getenv is accessed, after the second call to getenv, in the call to the C standard library function strcmp.

int f() {
 char *tmpvar = getenv("TMP");
 char *tempvar = getenv("TEMP");

 if (!tmpvar || !tempvar) {
 /* ... */
 }

 return strcmp(tmpvar, tempvar) == 0; // diagnostic required

ISO/IEC

© ISO/IEC 2011 – All rights reserved 79

}

EXAMPLE 2 In this example, a diagnostic is required because the string returned by the first call to the C standard library
function setlocale is accessed, after the second call to setlocale, in the third call to setlocale.

void g(const char *name) {
 const char *save = setlocale(LC_ALL, 0);
 if (setlocale(LC_ALL, name)) {
 /* ... */
 }

 setlocale(LC_ALL, save); // diagnostic required
}

EXAMPLE 3 In this example, a diagnostic is required because the pointer returned from the first call to the C standard
library function strerror is accessed in the call to fprintf after the second call to strerror.

void h(const char *a, const char *b) {
 errno = 0;
 unsigned long x = strtoul(a, NULL, 0);
 int e1 = ULONG_MAX == x ? errno : 0;

 errno = 0;
 unsigned long y = strtoul(b, NULL, 0);
 int e2 = ULONG_MAX == y ? errno : 0;

 fprintf(stderr, "parsing results: %s, %s",
 strerror(e1), strerror(e2)); // diagnostic required

}

Related guidelines

CERT C Secure Coding Standard: ENV00-C. Do not store the pointer to the string returned by getenv()

ISO/IEC TR 24731-2

Bibliography

[MSDN] _dupenv_s and _wdupenv_s, getenv_s, _wgetenv_s

[Open Group 2004] Chapter 8, and "Environment Variables", strdup

[Viega 2003] Section 3.6, "Using Environment Variables Securely"

5.57 Using character values that are indistinguishable from EOF (FIO34-C)

The following library character functions have return type int and return character values and the value EOF.

fgetc getc getchar

If the return value of one of the above library functions is stored into a variable of type char, any comparison
of that stored value to a constant equal to the value of EOF shall be diagnosed because a character type
cannot represent all character values plus the value of EOF.

Similarly, the following library wide-character functions have return type wint_t and return wide-character
values and the value WEOF.

ISO/IEC

80 © ISO/IEC 2011 – All rights reserved

fgetwc getwc getwchar

If the return value of one of the above library functions is stored into a variable of type wchar_t, any
comparison of that stored value to a constant equal to the value of WEOF shall be diagnosed because a wide-
character type cannot represent all character values plus the value of WEOF.

EXAMPLE 1 In this example, a diagnostic is required because the result of the call to the C standard library function
getchar is stored into a variable of type char, c, and c is compared to EOF.

void f() {
 char buf[BUFSIZ];
 char c;
 size_t i = 0;

 while ((c = getchar())
 != '\n' && c != EOF) { // diagnostic required
 if (i < BUFSIZ - 1) {
 buf[i++] = c;
 }
 }

 buf[i] = '\0';
 printf("%s\n", buf);
}

EXAMPLE 2 In this example, a diagnostic is required because the result of the call to the C standard library function
getwc is stored into a variable of type wchar_t, wc, and wc is compared to WEOF.

void g() {
 char buf[BUFSIZ];
 wchar_t wc;
 size_t i = 0;

 while ((wc = getwc(stdin))
 != '\n' && wc != WEOF) { // diagnostic required
 if (i < BUFSIZ - 1) {
 buf[i++] = wc;
 }
 }

 buf[i] = '\0';
 printf("%s\n", buf);
}

Related guidelines

CERT C Secure Coding Standard: FIO34-C. Use int to capture the return value of character IO functions

ISO/IEC TR 24731-1:2007 Section 6.5.4.1, "The gets_s function"

Bibliography

[NIST 2006] SAMATE Reference Dataset Test Case ID 000-000-088

5.58 Using identifiers that are reserved for the implementation (DCL37-C)

According to ISO/IEC 9899:TC3 Section 7.1.3 on reserved identifiers,

ISO/IEC

© ISO/IEC 2011 – All rights reserved 81

 All identifiers that begin with an underscore and either an uppercase letter or another underscore are
always reserved for any use.

 All identifiers that begin with an underscore are always reserved for use as identifiers with file scope in
both the ordinary and tag name spaces.

 Each macro name in any of the subclauses (including the future library directions) is reserved for use as
specified if any one of its associated headers is included, unless explicitly stated otherwise.

 All identifiers with external linkage (including future library directions) are always reserved for use as
identifiers with external linkage.

 Each identifier with file scope listed in any of the above subclauses (including the future library directions)
is reserved for use as a macro name and as an identifier with file scope in the same name space if any
one of its associated headers is included.

No other identifiers are reserved.1 The behavior of a program that declares or defines an identifier in a context
in which it is reserved or defines a reserved identifier as a macro name is undefined. See also undefined
behavior 100 of Annex J of C99. Trying to define a reserved identifier can result in its name conflicting with
that used in implementation, which may or may not be detected at compile time.

NOTE The POSIX ® standard extends the set of identifiers reserved by C99 to include an open-ended set of its own. See
section 2.2 Compilation Environment in \[IEEE Std 1003.1: 2008\].

EXAMPLE 1 In this example, a diagnostic is required because the reserved identifier errno is redefined.

extern int errno; // diagnostic required

EXAMPLE 2 In this example, a diagnostic is required because the identifier MY_HEADER_H defined in the header guard
is reserved because it begins with an underscore and an uppercase letter.

#ifndef _MY_HEADER_H_
#define _MY_HEADER_H_ // diagnostic required

/* contents of <my_header.h> */

#endif /* _MY_HEADER_H_ */

EXAMPLE 3 In this compliant example, a diagnostic is not required because the identifier MY_HEADER_H defined in the
header guard is not reserved.

#ifndef MY_HEADER_H
#define MY_HEADER_H

/* contents of <my_header.h> */

#endif /* MY_HEADER_H */

EXAMPLE 4 In this example, a diagnostic is required because the file scope identifiers _max_limit and _limit are
reserved because they begin with an underscore.

#include <stddef.h> /* for size_t */

static const size_t _max_limit = 1024; // diagnostic required
size_t _limit = 100; // diagnostic required

unsigned int getValue(unsigned int count) {
 return count < _limit ? count : _limit;
}

ISO/IEC

82 © ISO/IEC 2011 – All rights reserved

EXAMPLE 5 In this compliant example, a diagnostic is not required because the file scope identifiers max_limit and
limit are not reserved because they do not begin with an underscore.

#include <stddef.h> /* for size_t */

static const size_t max_limit = 1024;
size_t limit = 100;

unsigned int getValue(unsigned int count){
 return count < limit ? count : limit;
}

EXAMPLE 6 In this example, a diagnostic is required because the identifier MAX_SIZE is reserved in the header
<stdint.h> and the identifier INTFAST16_LIMIT_MAX is reserved because it begins with INT and ends with
_MAX.

#include <inttypes.h> /* for int_fast16_t and PRIdFAST16 */

static const int_fast16_t INTFAST16_LIMIT_MAX = 12000; // diagnostic required

void print_fast16(int_fast16_t val) {
 enum { MAX_SIZE = 80 }; // diagnostic required
 char buf[MAX_SIZE];

 if (INTFAST16_LIMIT_MAX < val) {
 sprintf(buf, "The value is too large");
 } else {
 snprintf(buf, MAX_SIZE, "The value is %" PRIdFAST16, val);
 }

 /* ... */
}

EXAMPLE 7 In this compliant example, a diagnostic is not required because the identifiers BUFSIZE and
MY_INTFAST16_UPPER_LIMIT are not reserved.

#include <inttypes.h> /* for int_fast16_t and PRIdFAST16 */

static const int_fast16_t MY_INTFAST16_UPPER_LIMIT = 12000;

void print_fast16(int_fast16_t val) {
 enum { BUFSIZE = 80 };
 char buf[BUFSIZE];

 if (MY_INTFAST16_UPPER_LIMIT < val) {
 sprintf(buf, "The value is too large");
 } else {
 snprintf(buf, BUFSIZE, "The value is %" PRIdFAST16, val);
 }

 /* ... */
}

EXAMPLE 8 In this example, a diagnostic is required because the identifiers for the C standard library functions malloc
and free are reserved.

#include <stddef.h>

void *malloc(size_t nbytes) { // diagnostic required
 void *ptr;
 /* ... */

ISO/IEC

© ISO/IEC 2011 – All rights reserved 83

 /* allocate storage from own pool and set ptr */
 return ptr;
}

void free(void *ptr) { // diagnostic required
 /* ... */
 /* return storage to own pool */
}

EXAMPLE 9 In this compliant example, a diagnostic is not required because the reserved identifiers malloc and free
are not used to define functions.

#include <stddef.h>

void *my_malloc(size_t nbytes) {
 void *ptr;
 /* ... */
 /* allocate storage from own pool and set ptr */
 return ptr;
}

void my_free(void *ptr) {
 /* ... */
 /* return storage to own pool */
}

Bibliography

[ISO/IEC 9899:1999] Section 7.1.3, "Reserved Identifiers"

[IEEE Std 1003.1: 2008] Section 2.2 "The Compilation Environment"

5.59 Using integer arithmetic to calculate a value for assignment to a floating-point variable
(FLP33-C)

Using integer arithmetic to calculate a value for assignment to a floating-point variable shall be diagnosed
because this may lead to a loss of information.

EXAMPLE In this example, a diagnostic is required because the values assigned to the floating-point variables d, e, and f
are calculated using integer arithmetic.

void f() {
 short a = 533;
 int b = 6789;
 long c = 466438237;

 float d = a / 7; // diagnostic required
 double e = b / 30; // diagnostic required
 double f = c * 789; // diagnostic required

 printf("%f %f %f\n", d, e, f);
}

Related guidelines

CERT C Secure Coding Standard: FLP33-C. Convert integers to floating point for floating point operations

MITRE CWE:

 CWE-681: Incorrect Conversion between Numeric Types

ISO/IEC

84 © ISO/IEC 2011 – All rights reserved

 CWE-682: Incorrect Calculation

Bibliography

[Hatton 1995] Section 2.7.3, "Floating-point misbehavior"

5.60 Using invalid format strings (FIO00-C)

Supplying an unknown or invalid conversion specification; an invalid combination of flag character, precision,
length modifier, conversion specifier; or a number and type of arguments to a formatted IO function that do not
match the conversion specifiers in the format string shall be diagnosed because it results in undefined
behavior.

EXAMPLE In this example, a diagnostic is required because the arguments to printf do not match the conversion
specifiers in the supplied format string.

void f() {
 const char *error_msg = "Resource not available to user.";
 int error_type = 3;
 /* ... */
 printf("Error (type %s): %d\n", error_type, error_msg); // diagnostic required
}

Related guidelines

CERT C Secure Coding Standard: FIO00-C. Take care when creating format strings

MITRE CWE: CWE-686: Function Call With Incorrect Argument Type

5.61 Using non-unique identifiers (DCL32-C)

Using non-unique external identifiers at file scope or internal identifiers in the same scope shall be diagnosed
because this can result in unexpected behavior.

Section 5.2.4.1 of the C Standard defines the following minimum requirements for uniqueness:

 63 significant initial characters in an internal identifier or a macro name (each universal character name or
extended source character is considered a single character) and

 31 significant initial characters in an external identifier (each universal character name specifying a short
identifier of 0000FFFF or less is considered 6 characters, each universal character name specifying a
short identifier of 00010000 or more is considered 10 characters, and each extended source character is
considered the same number of characters as the corresponding universal character name, if any).

Rule Declaring the same function or object in incompatible ways (ARR31) prohibits excessively long identifiers
from resulting in incompatible declarations.

EXAMPLE 1 In this example, a diagnostic is required because the external identifiers
global_symbol_definition_lookup_table_a and
global_symbol_definition_lookup_table_b are not unique because the first 31 characters are identical.

extern int *global_symbol_definition_lookup_table_a;
extern int *global_symbol_definition_lookup_table_b; // diagnostic required

EXAMPLE 2 In this example, a diagnostic is required because the external identifiers
\U00010401\U00010401\U00010401\U00010401 and
\U00010401\U00010401\U00010401\U00010402 are not unique because the first three universal character
names are identical.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 85

extern int *\U00010401\U00010401\U00010401\U00010401;
extern int *\U00010401\U00010401\U00010401\U00010402; // diagnostic required

Exception: DCL32-EX1

Code written for implementations that support longer restrictions need not be diagnosed.

Related guidelines

CERT C Secure Coding Standard: DCL32-C. Guarantee that mutually visible identifiers are unique

ISO/IEC TR 24772 "AJN Choice of Filenames and Other External Identifiers" and "YOW Identifier name
reuse"

MISRA-C 2004, Rules 5.1 and 8.9

5.62 Tainted, potentially mutilated, or out-of-domain integer values are used in a taintedness
sink (INT04-C)

Values that are tainted, potentially mutilated, or out-of-domain integers and are used in an integer taintedness
sink shall be diagnosed because doing so can result in undefined or unexpected behavior.

Taintedness sinks for integers are

 in any pointer arithmetic, including array indexing;

 as a length or size of an object (for example, the size of a variable-length array);

 as the bound of access to an array (for example, a loop counter); and

 function arguments of type size_t or rsize_t (for example, an argument to a memory allocation
function).

EXAMPLE 1 In this example, a diagnostic is required because the tainted integer size is used to declare the size of the
variable length array vla.

void f(const char *str) {
 size_t size;
 GET_TAINTED_INT(size);
 char vla[size]; // diagnostic required

 strncpy(vla, str, size);
 vla[size - 1] = '\0';

 /* ... */
}

EXAMPLE 2 In this example, a diagnostic is required because the tainted integer color_index is used in pointer
arithmetic to index into the array table.

const char *table[] = { "black", "white", "blue", "green" };

const char *set_background_color() {
 int color_index;
 GET_TAINTED_INT(color_index);

 const char *color = table[color_index]; // diagnostic required

 /* ... */

ISO/IEC

86 © ISO/IEC 2011 – All rights reserved

 return color;
}

Related guidelines

CERT C Secure Coding Standard: ARR32-C. Ensure size arguments for variable length arrays are in a valid
range

CERT C Secure Coding Standard: INT04-C. Enforce limits on integer values originating from untrusted
sources

ISO/IEC TR 24772 "XYX Boundary Beginning Violation" and "XYZ Unchecked Array Indexing"

Bibliography

[Griffiths 2006]

[Seacord 2005] Chapter 5, "Integer Security"

5.63 Using the sizeof operator on an expression that contains side effects (EXP06-C)

Using the sizeof operator on an expression that contains side effects shall be diagnosed because doing so
is often a sign of programmer error. The sizeof operator does not evaluate its operand if the operand‘s type
is not a variable-length array.

EXAMPLE In this example, a diagnostic is required because the sizeof operator is applied to an expression containing
side effects, a++.

int f(int a) {
 return sizeof(a++); // diagnostic required
}

Related guidelines

CERT C Secure Coding Standard: EXP06-C. Operands to the sizeof operator should not contain side effects

5.64 Using trigraphs (PRE07-C)

Trigraphs shall be diagnosed because their use can result in unexpected behavior.

EXAMPLE 1 In this example, a diagnostic is required because the trigraph sequence ??/ is used.

void f(int a) {
 // what is the value of a now??/
 a++;
 // diagnostic required
 /* ... */
}

EXAMPLE 2 In this example, a diagnostic is required because the trigraph sequence ??! is used.

void g(size_t i) {
 if (i > 9000) {
 if (puts("Over 9000!??!") == EOF) { // diagnostic required
 /* ... */
 }
 }
}

ISO/IEC

© ISO/IEC 2011 – All rights reserved 87

Related guidelines

CERT C Secure Coding Standard: PRE07-C. Avoid using repeated question marks

MISRA-C 2004, Rule 4.2

5.65 Wrapping unsigned integers (INT30-C)

Unsigned integer wrapping must be diagnosed when the resulting tainted, potentially mutilated value, or out-
of-domain value, is used in a taintedness sink. Taintedness sinks include function arguments of type size_t
or rsize_t or the size of a variable-length array.

A taintedness sink is an operation that can misbehave in a security-relevant manner, if supplied with certain
operand values, so all operands to these operations must be implicitly or explicitly sanitized in some manner
to ensure they do not have an unexpected value. Examples of taintedness sinks are memory allocation
operations, such as malloc or VLA bounds, pointer or integer operands to pointer arithmetic (either p+i or
p[i]), and buffer size arguments to library or system calls, such as strncpy, read, or write.

If an operation is performed on an untainted value that can produce either an undefined result, such as the
result of signed integer overflow, or a defined but unexpected result, such as unsigned integer overflow, we
say that the result of such an operation is mutilated. A mutilated value can be just as dangerous as a tainted
value because it also can differ either in sign or dramatically in magnitude from what the programmer expects.

Using tainted or mutilated values as arguments to or operands of taintedness sinks shall be diagnosed
because this can result in unexpected behavior.

The following table indicates which operators can result in wrapping.

Table 8 — Expressions and wrapping

Operator Wrap Operator Wrap Operator Wrap Operator Wrap

+

 -=

<<

 <

-

 *=

>>

 >

*

 /=

&

 >=

/

 %=

|

 <=

%

 <<=

^

 ==

++

 >>=

~

 !=

--

 &=

!

 &&

=

 |=

unary +

 ||

+=

 ^=

unary -

 ?:

EXAMPLE In this example, a diagnostic is required because all of the arithmetic operations may result in unsigned integer
wrapping. The results of the operations are used in taintedness sinks.

void f() {
 unsigned int ui1, ui2, result;
 char array[BUFSIZ];
 char *p, *q;

 GET_TAINTED_INT(ui1);

ISO/IEC

88 © ISO/IEC 2011 – All rights reserved

 GET_TAINTED_INT(ui2);

 result = ui1 + ui2;
 array[result] = 0; // diagnostic required

 p = (char *)malloc(ui1 - ui2); // diagnostic required

 result = ui1 * ui2;
 ++result;

 q = array + result; // diagnostic required

 /* ... */
}

Related guidelines

CERT C Secure Coding Standard: INT30-C. Ensure that unsigned integer operations do not wrap

ISO/IEC TR 24772 "XYY Wrap-around Error"

MITRE CWE: CWE-190: Integer Overflow or Wraparound

Bibliography

[Dowd 2006] Chapter 6, "C Language Issues" (Arithmetic Boundary Conditions, pp. 211-223)

[Seacord 2005] Chapter 5, "Integers"

[Viega 2005] Section 5.2.7, "Integer overflow"

[VU#551436]

[Warren 2002] Chapter 2, "Basics"

[Wojtczuk 2008]

ISO/IEC

© ISO/IEC 2011 – All rights reserved 89

Annex A (normative) Intra- to Interprocedural Transformations

Rather than giving interprocedural examples of each relevant rule, the basic examples in many cases can be
intraprocedural, and a set of interprocedural examples can be derived from those by applying various
transformations to source code.

 Function arguments and return values

 Indirection

 Transformation involving standard library functions

 Example

A.1 Function arguments and return values

The simplest case is a rule involving only one value, such as Detect and Handle Input and Output Errors. The
following is an intraprocedural example:

int result = write(fd, buf, length);
 if (result == length) /* checking for success */
 ...
The basic interprocedural transformations are to pass the value into a function or return it from a function:

void check_it(int length, int result)
 {
 if (result == length) /* checking for success */
 ...
 }

 ...
 check_it(length, write(fd, buf, length));
int xwrite(int fd, void *buf, int length)
 {
 return write(fd, buf, length); /* return for checking elsewhere */
 }

 ...
 int result = xwrite(fd, buf, length);
 if (result == length) /* checking for success */
 ...

A.2 Indirection

The next transformation is to add indirection:

void check_indirect(int length, int *result)
 {
 if (*result == length) /* checking for success */
 ...
 }

ISO/IEC

90 © ISO/IEC 2011 – All rights reserved

 ...
 int result = write(fd, buf, length);
 check_indirect(length, &result);
void return_result_thru_param(int fd, void *buf, int length, int *result)
 {
 *result = write(fd, buf, length);
 }

 ...
 int result;
 return_result_thru_param(fd, buf, length, &result);
 if (result == length) /* checking for success */
 ...
Indirection can also involve fields of structs or unions. Theoretically, indirection can be applied recursively, but
modeling this causes scaling issues for many analysis frameworks.

When a rule involves multiple values, such as Do Not Use Invalid Array Indexing (where a violation is an
interaction between an array and an index), these transformations apply separately or in combination to each
of the values. The following is a simple intraprocedural example:

int array[2];
 int index = 2;
 array[index] = 0; /* violation */
Applying some of the interprocedural transformations yields

void indexer(int *array, int index)
 {
 array[index] = 0;
 }

 ...
 int array[2];
 int index = 2;
 indexer(array, index); /* violation */
or

static int array[2];
 int *get_array()
 {
 return array;
 }

 ...
 get_array()[2] = 0; /* violation */
or

struct array_params {
 int *array;
 int index;
 };

 void indexer(struct array_params *ap)
 {
 ap->array[ap->index] = 0;
 }

ISO/IEC

© ISO/IEC 2011 – All rights reserved 91

 ...
 int array[2];
 struct array_params params;
 params.array = array;
 params.index = 2;
 indexer(¶ms); /* violation */
One could argue that these violations actually involve four steps: the array, the index, the address arithmetic,
and the dereference. In theory, each of these elements could occur in different functions:

int *add(int *base, int offset)
 {
 return base + offset;
 }

 ...
 int array[2];
 int index = 2;
 add(array, index) = 0; / violation */
However, it is not clear whether we want to treat array indexing as an "atomic" operation or simply as the
composition of address arithmetic and dereferencing.

A.3 Transformation involving standard library functions

The following transformation involves tracing the flow of data through the C Standard Library function
strchr() that returns a pointer to an element in the array specified by its first argument if the element's
value equals that of the second argument, and a null pointer otherwise. Because the effects and the return
value of the function are precisely specified, an analyzer can determine that the assignment to the *slash
object, in fact, modifies an element of the const array pathname, potentially causing undefined behavior.

const char* basename(const char *pathname) {
 char *slash;

 slash = strchr(pathname, '/');
 if (slash) {
 slash++ = '\0'; / violates EXP40-C. Do not modify constant values */
 return slash;
 }

 return pathname;
}

A.4 Example

Just for fun, let's put these all together and see just how non-obvious such a seemingly simple bug can be to
diagnose:

struct trouble {
 int *array;
 int index;
 int *effective_address;
 };

 void set_array(struct trouble *t, int *array)
 {
 t->array = array;

ISO/IEC

92 © ISO/IEC 2011 – All rights reserved

 }

 void set_index(struct trouble *t, int *index)
 {
 t->index = *index;
 }

 void compute_effective_address(struct trouble *t)
 {
 t->effective_address = t->array + t->index;
 }

 void store(struct trouble *t, int value)
 {
 *t->effective_address = value;
 }

 ...
 int array[2];
 int index = 2; /* part of violation */
 struct trouble t;
 set_array(t, array); /* part of violation */
 set_index(t, &index); /* part of violation */
 compute_effective_address(&t); /* part of violation */
 store(&t, 0); /* violation */

ISO/IEC

© ISO/IEC 2011 – All rights reserved 93

Annex B (informative) Undefined Behavior

According to C99 (as summarized in Section 2 of Annex J therein), the behavior of a program is undefined in
the circumstances outlined in the table below. The "Class" column in the table identifies the nature of the
undefined behavior as outlined in Annex L of N1494, the Working Draft of the International Standard,
Programming languages — C, from which the descriptions in the table below come. The parenthesized
section numbers refer to the section of C99 that identifies the undefined behavior.

Symbol Classification

Critical Undefined Behavior

Bounded Undefined Behavior

Undefined Behavior (information/confirmation needed)

Table B.1 — Undefined behaviors

UB Class Description

1

A "shall" or "shall not" requirement that appears outside of a constraint is violated (clause 4).

2

A nonempty source file does not end in a new-line character that is not immediately preceded by a
backslash character or that ends in a partial preprocessing token or comment (5.1.1.2).

3

Token concatenation produces a character sequence matching the syntax of a universal character name
(5.1.1.2).

4

A program in a hosted environment does not define a function named main using one of the specified
forms (5.1.2.2.1).

5

A character not in the basic source character set is encountered in a source file, except in an identifier, a
character constant, a string literal, a header name, a comment, or a preprocessing token that is never
converted to a token (5.2.1).

6

An identifier, comment, string literal, character constant, or header name contains an invalid multibyte
character or does not begin and end in the initial shift state (5.2.1.2).

7

The same identifier has both internal and external linkage in the same translation unit (6.2.2).

8

An object is referred to outside of its lifetime (6.2.4).

9

The value of a pointer to an object whose lifetime has ended is used (6.2.4).

10

The value of an object with automatic storage duration is used while it is indeterminate (6.2.4, 6.7.8, 6.8).

11

A trap representation is read by an lvalue expression that does not have character type (6.2.6.1).

12

A trap representation is produced by a side effect that modifies any part of the object using an lvalue
expression that does not have character type (6.2.6.1).

13

The arguments to certain operators could produce a negative zero result, but the implementation does not
support negative zeros (6.2.6.2).

14

Two declarations of the same object or function specify types that are not compatible (6.2.7).

15

Conversion to or from an integer type produces a value outside the range that can be represented
(6.3.1.4).

ISO/IEC

94 © ISO/IEC 2011 – All rights reserved

UB Class Description

16

Demotion of one real floating type to another produces a value outside the range that can be represented
(6.3.1.5).

17

An lvalue does not designate an object when evaluated (6.3.2.1).

18

A non-array lvalue with an incomplete type is used in a context that requires the value of the designated
object (6.3.2.1).

19

An lvalue having array type is converted to a pointer to the initial element of the array, and the array object
has register storage class (6.3.2.1).

20

An attempt is made to use the value of a void expression, or an implicit or explicit conversion (except to
void) is applied to a void expression (6.3.2.2).

21

Conversion of a pointer to an integer type produces a value outside the range that can be represented
(6.3.2.3).

22

Conversion between two pointer types produces a result that is incorrectly aligned (6.3.2.3).

23

A pointer is used to call a function whose type is not compatible with the pointed-to type (6.3.2.3).

24

An unmatched ' or " character is encountered on a logical source line during tokenization (6.4).

25

A reserved keyword token is used in translation phase 7 or 8 for some purpose other than as a keyword
(6.4.1).

26

A universal character name in an identifier does not designate a character whose encoding falls into one of
the specified ranges (6.4.2.1).

27

The initial character of an identifier is a universal character name designating a digit (6.4.2.1).

28

Two identifiers differ only in nonsignificant characters (6.4.2.1).

29

The identifier __func__ is explicitly declared (6.4.2.2).

30

The program attempts to modify a string literal (6.4.5).

31

The characters ', back-slash, ", /, or /* occur in the sequence between the < and > delimiters, or the
characters ', back-slash, //, or /* occur in the sequence between the " delimiters, in a header name
preprocessing token (6.4.7).

32

Between two sequence points, an object is modified more than once, or is modified and the prior value is
read other than to determine the value to be stored (6.5).

33

An exceptional condition occurs during the evaluation of an expression (6.5).

34

An object has its stored value accessed other than by an lvalue of an allowable type (6.5).

35

An attempt is made to modify the result of a function call, a conditional operator, an assignment operator,
or a comma operator, or to access it after the next sequence point (6.5.2.2, 6.5.15, 6.5.16, 6.5.17).

36

For a call to a function without a function prototype in scope, the number of arguments does not equal the
number of parameters (6.5.2.2).

37

For call to a function without a function prototype in scope where the function is defined with a function
prototype, either the prototype ends with an ellipsis or the types of the arguments after promotion are not
compatible with the types of the parameters (6.5.2.2).

ISO/IEC

© ISO/IEC 2011 – All rights reserved 95

UB Class Description

38

For a call to a function without a function prototype in scope where the function is not defined with a
function prototype, the types of the arguments after promotion are not compatible with those of the
parameters after promotion (with certain exceptions) (6.5.2.2).

39

A function is defined with a type that is not compatible with the type (of the expression) pointed to by the
expression that denotes the called function (6.5.2.2).

40

The operand of the unary * operator has an invalid value (6.5.3.2).

41

A pointer is converted to other than an integer or pointer type (6.5.4).

42

The value of the second operand of the / or % operator is zero (6.5.5).

43

Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a
result that does not point into, or is just beyond, the same array object (6.5.6).

44

Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a
result that points just beyond the array object and is used as the operand of a unary * operator that is
evaluated (6.5.6).

45

Pointers that do not point into, or just beyond, the same array object are subtracted (6.5.6).

46

An array subscript is out of range, even if an object is apparently accessible with the given subscript (as in
the lvalue expression a[1][7] given the declaration int a[4][5]) (6.5.6).

47

The result of subtracting two pointers is not representable in an object of type ptrdiff_t (6.5.6).

48

An expression is shifted by a negative number or by an amount greater than or equal to the width of the
promoted expression (6.5.7).

49

An expression having signed promoted type is left-shifted, and either the value of the expression is
negative or the result of shifting would be not be representable in the promoted type (6.5.7).

50

Pointers that do not point to the same aggregate or union (nor just beyond the same array object) are
compared using relational operators (6.5.8).

51

An object is assigned to an inexactly overlapping object or to an exactly overlapping object with
incompatible type (6.5.16.1).

52

An expression that is required to be an integer constant expression does not have an integer type; has
operands that are not integer constants, enumeration constants, character constants, sizeof
expressions whose results are integer constants, or immediately cast floating constants; or contains casts
(outside operands to sizeof operators) other than conversions of arithmetic types to integer types (6.6).

53

A constant expression in an initializer is not, or does not evaluate to, one of the following: an arithmetic
constant expression, a null pointer constant, an address constant, or an address constant for an object
type plus or minus an integer constant expression (6.6).

54

An arithmetic constant expression does not have arithmetic type; has operands that are not integer
constants, floating constants, enumeration constants, character constants, or sizeof expressions; or
contains casts (outside operands to sizeof operators) other than conversions of arithmetic types to
arithmetic types (6.6).

55

The value of an object is accessed by an array-subscript[], member-access . or ->, address &, or
indirection * operator or a pointer cast in creating an address constant (6.6).

56

An identifier for an object is declared with no linkage, and the type of the object is incomplete after its
declarator, or after its init-declarator if it has an initializer (6.7).

57

A function is declared at block scope with an explicit storage-class specifier other than extern (6.7.1).

ISO/IEC

96 © ISO/IEC 2011 – All rights reserved

UB Class Description

58

A structure or union is defined as containing no named members (6.7.2.1).

59

An attempt is made to access, or generate a pointer to just past, a flexible array member of a structure
when the referenced object provides no elements for that array (6.7.2.1).

60

When the complete type is needed, an incomplete structure or union type is not completed in the same
scope by another declaration of the tag that defines the content (6.7.2.3).

61

An attempt is made to modify an object defined with a const-qualified type through use of an lvalue with
non-const-qualified type (6.7.3).

62

An attempt is made to refer to an object defined with a volatile-qualified type through use of an lvalue
with non-volatile-qualified type (6.7.3).

63

The specification of a function type includes any type qualifiers (6.7.3).

64

Two qualified types that are required to be compatible do not have the identically qualified version of a
compatible type (6.7.3).

65

An object that has been modified is accessed through a restrict-qualified pointer to a const-qualified
type, or through a restrict-qualified pointer and another pointer that are not both based on the same
object (6.7.3.1).

66

A restrict-qualified pointer is assigned a value based on another restricted pointer whose associated
block neither began execution before the block associated with this pointer, nor ended before the
assignment (6.7.3.1).

67

A function with external linkage is declared with an inline function specifier, but is not also defined in
the same translation unit (6.7.4).

68

Two pointer types that are required to be compatible are not identically qualified, or are not pointers to
compatible types (6.7.5.1).

69

The size expression in an array declaration is not a constant expression and evaluates at program
execution time to a nonpositive value (6.7.5.2).

70

In a context requiring two array types to be compatible, they do not have compatible element types, or
their size specifiers evaluate to unequal values (6.7.5.2).

71

A declaration of an array parameter includes the keyword static within the[and] and the
corresponding argument does not provide access to the first element of an array with at least the specified
number of elements (6.7.5.3).

72

A storage-class specifier or type qualifier modifies the keyword void as a function parameter type list
(6.7.5.3).

73

In a context requiring two function types to be compatible, they do not have compatible return types, or
their parameters disagree in use of the ellipsis terminator or the number and type of parameters (after
default argument promotion, when there is no parameter type list or when one type is specified by a
function definition with an identifier list) (6.7.5.3).

74

The value of an unnamed member of a structure or union is used (6.7.8).

75

The initializer for a scalar is neither a single expression nor a single expression enclosed in braces (6.7.8).

76

The initializer for a structure or union object that has automatic storage duration is neither an initializer list
nor a single expression that has compatible structure or union type (6.7.8).

77

The initializer for an aggregate or union, other than an array initialized by a string literal, is not a brace-
enclosed list of initializers for its elements or members (6.7.8).

ISO/IEC

© ISO/IEC 2011 – All rights reserved 97

UB Class Description

78

An identifier with external linkage is used, but, in the program, there does not exist exactly one external
definition for the identifier, or the identifier is not used and there exist multiple external definitions for the
identifier (6.9).

79

A function definition includes an identifier list, but the types of the parameters are not declared in a
following declaration list (6.9.1).

80

An adjusted parameter type in a function definition is not an object type (6.9.1).

81

A function that accepts a variable number of arguments is defined without a parameter type list that ends
with the ellipsis notation (6.9.1).

82

The } that terminates a function is reached, and the value of the function call is used by the caller (6.9.1).

83

An identifier for an object with internal linkage and an incomplete type is declared with a tentative definition
(6.9.2).

84

The token defined is generated during the expansion of a #if or #elif preprocessing directive, or the
use of the defined unary operator does not match one of the two specified forms prior to macro
replacement (6.10.1).

85

The #include preprocessing directive that results after expansion does not match one of the two
header name forms (6.10.2).

86

The character sequence in an #include preprocessing directive does not start with a letter (6.10.2).

87

There are sequences of preprocessing tokens within the list of macro arguments that would otherwise act
as preprocessing directives (6.10.3).

88

The result of the preprocessing operator # is not a valid character string literal (6.10.3.2).

89

The result of the preprocessing operator ## is not a valid preprocessing token (6.10.3.3).

90

The #line preprocessing directive that results after expansion does not match one of the two well-
defined forms, or its digit sequence specifies zero or a number greater than 2147483647 (6.10.4).

91

A non-STDC #pragma preprocessing directive that is documented as causing translation failure or some
other form of undefined behavior is encountered (6.10.6).

92

A #pragma STDC preprocessing directive does not match one of the well-defined forms (6.10.6).

93

The name of a predefined macro, or the identifier defined, is the subject of a #define or #undef
preprocessing directive (6.10.8).

94

An attempt is made to copy an object to an overlapping object by use of a library function, other than as
explicitly allowed (e.g., memmove) (clause 7).

95

A file with the same name as one of the standard headers, not provided as part of the implementation, is
placed in any of the standard places that are searched for included source files (7.1.2).

96

A header is included within an external declaration or definition (7.1.2).

97

A function, object, type, or macro that is specified as being declared or defined by some standard header
is used before any header that declares or defines it is included (7.1.2).

98

A standard header is included while a macro is defined with the same name as a keyword (7.1.2).

99

The program attempts to declare a library function itself, rather than via a standard header, but the
declaration does not have external linkage (7.1.2).

ISO/IEC

98 © ISO/IEC 2011 – All rights reserved

UB Class Description

100

The program declares or defines a reserved identifier, other than as allowed by 7.1.4 (7.1.3).

101

The program removes the definition of a macro whose name begins with an underscore and either an
uppercase letter or another underscore (7.1.3).

102

An argument to a library function has an invalid value or a type not expected by a function with variable
number of arguments (7.1.4).

103

The pointer passed to a library function array parameter does not have a value such that all address
computations and object accesses are valid (7.1.4).

104

The macro definition of assert is suppressed in order to access an actual function (7.2).

105

The argument to the assert macro does not have a scalar type (7.2).

106

The CX_LIMITED_RANGE, FENV_ACCESS, or FP_CONTRACT pragma is used in any context other
than outside all external declarations or preceding all explicit declarations and statements inside a
compound statement (7.3.4, 7.6.1, 7.12.2).

107

The value of an argument to a character handling function is neither equal to the value of EOF nor
representable as an unsigned char (7.4).

108

A macro definition of errno is suppressed in order to access an actual object, or the program defines an
identifier with the name errno (7.5).

109

Part of the program tests floating-point status flags, sets floating-point control modes, or runs under non-
default mode settings, but was translated with the state for the FENV_ACCESS pragma "off" (7.6.1).

110

The exception-mask argument for one of the functions that provide access to the floating-point status flags
has a nonzero value not obtained by bitwise OR of the floating-point exception macros (7.6.2).

111

The fesetexceptflag function is used to set floating-point status flags that were not specified in the
call to the fegetexceptflag function that provided the value of the corresponding fexcept_t
object (7.6.2.4).

112

The argument to fesetenv or feupdateenv is neither an object set by a call to fegetenv or
feholdexcept, nor is it an environment macro (7.6.4.3, 7.6.4.4).

113

The value of the result of an integer arithmetic or conversion function cannot be represented (7.8.2.1,
7.8.2.2, 7.8.2.3, 7.8.2.4, 7.20.6.1, 7.20.6.2, 7.20.1).

114

The program modifies the string pointed to by the value returned by the setlocale function (7.11.1.1).

115

The program modifies the structure pointed to by the value returned by the localeconv function
(7.11.2.1).

116

A macro definition of math_errhandling is suppressed or the program defines an identifier with the
name math_errhandling (7.12).

117

An argument to a floating-point classification or comparison macro is not of real floating type (7.12.3,
7.12.14).

118

A macro definition of setjmp is suppressed in order to access an actual function, or the program defines
an external identifier with the name setjmp (7.13).

119

An invocation of the setjmp macro occurs other than in an allowed context (7.13.2.1).

120

The longjmp function is invoked to restore a nonexistent environment (7.13.2.1).

ISO/IEC

© ISO/IEC 2011 – All rights reserved 99

UB Class Description

121

After a longjmp, there is an attempt to access the value of an object of automatic storage class with
non-volatile-qualified type, local to the function containing the invocation of the corresponding
setjmp macro, that was changed between the setjmp invocation and longjmp call (7.13.2.1).

122

The program specifies an invalid pointer to a signal handler function (7.14.1.1).

123

A signal handler returns when the signal corresponded to a computational exception (7.14.1.1).

124

A signal occurs as the result of calling the abort or raise function, and the signal handler calls the
raise function (7.14.1.1).

125

A signal occurs other than as the result of calling the abort or raise function, and the signal handler
refers to an object with static storage duration other than by assigning a value to an object declared as
volatile sig_atomic_t, or calls any function in the standard library other than the abort
function, the _Exit function, or the signal function (for the same signal number) (7.14.1.1).

126

The value of errno is referred to after a signal occurred other than as the result of calling the abort or
raise function and the corresponding signal handler obtained a SIG_ERR return from a call to the
signal function (7.14.1.1).

127

A signal is generated by an asynchronous signal handler (7.14.1.1).

128

A function with a variable number of arguments attempts to access its varying arguments other than
through a properly declared and initialized va_list object, or before the va_start macro is invoked
(7.15, 7.15.1.1, 7.15.1.4).

129

The macro va_arg is invoked using the parameter ap that was passed to a function that invoked the
macro va_arg with the same parameter (7.15).

130

A macro definition of va_start, va_arg, va_copy, or va_end is suppressed in order to access an
actual function, or the program defines an external identifier with the name va_copy or va_end
(7.15.1).

131

The va_start or va_copy macro is invoked without a corresponding invocation of the va_end macro
in the same function, or vice versa (7.15.1, 7.15.1.2, 7.15.1.3, 7.15.1.4).

132

The type parameter to the va_arg macro is not such that a pointer to an object of that type can be
obtained simply by postfixing a * (7.15.1.1).

133

The va_arg macro is invoked when there is no actual next argument, or with a specified type that is not
compatible with the promoted type of the actual next argument, with certain exceptions (7.15.1.1).

134

The va_copy or va_start macro is called to initialize a va_list that was previously initialized by
either macro without an intervening invocation of the va_end macro for the same va_list (7.15.1.2,
7.15.1.4).

135

The parameter parmN of a va_start macro is declared with the register storage class, with a function or
array type, or with a type that is not compatible with the type that results after application of the default
argument promotions (7.15.1.4).

136

The member designator parameter of an offsetof macro is an invalid right operand of the . operator
for the type parameter, or designates a bit-field (7.17).

137

The argument in an instance of one of the integer-constant macros is not a decimal, octal, or hexadecimal
constant, or it has a value that exceeds the limits for the corresponding type (7.18.4).

138

A byte input/output function is applied to a wide-oriented stream, or a wide character input/output function
is applied to a byte-oriented stream (7.19.2).

ISO/IEC

100 © ISO/IEC 2011 – All rights reserved

UB Class Description

139

Use is made of any portion of a file beyond the most recent wide character written to a wide-oriented
stream (7.19.2).

140

The value of a pointer to a FILE object is used after the associated file is closed (7.19.3).

141

The stream for the fflush function points to an input stream or to an update stream in which the most
recent operation was input (7.19.5.2).

142

The string pointed to by the mode argument in a call to the fopen function does not exactly match one of
the specified character sequences (7.19.5.3).

143

An output operation on an update stream is followed by an input operation without an intervening call to
the fflush function or a file positioning function, or an input operation on an update stream is followed
by an output operation with an intervening call to a file positioning function (7.19.5.3).

144

An attempt is made to use the contents of the array that was supplied in a call to the setvbuf function
(7.19.5.6).

145

There are insufficient arguments for the format in a call to one of the formatted input/output functions, or an
argument does not have an appropriate type (7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2).

146

The format in a call to one of the formatted input/output functions or to the strftime or wcsftime
function is not a valid multibyte character sequence that begins and ends in its initial shift state (7.19.6.1,
7.19.6.2, 7.23.3.5, 7.24.2.1, 7.24.2.2, 7.24.5.1).

147

In a call to one of the formatted output functions, a precision appears with a conversion specifier other than
those described (7.19.6.1, 7.24.2.1).

148

A conversion specification for a formatted output function uses an asterisk to denote an argument-supplied
field width or precision, but the corresponding argument is not provided (7.19.6.1, 7.24.2.1).

149

A conversion specification for a formatted output function uses a # or 0 flag with a conversion specifier
other than those described (7.19.6.1, 7.24.2.1).

150

A conversion specification for one of the formatted input/output functions uses a length modifier with a
conversion specifier other than those described (7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2).

151

An s conversion specifier is encountered by one of the formatted output functions, and the argument is
missing the null terminator (unless a precision is specified that does not require null termination) (7.19.6.1,
7.24.2.1).

152

An n conversion specification for one of the formatted input/output functions includes any flags, an
assignment-suppressing character, a field width, or a precision (7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2).

153

A % conversion specifier is encountered by one of the formatted input/output functions, but the complete
conversion specification is not exactly %% (7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2).

154

An invalid conversion specification is found in the format for one of the formatted input/output functions, or
the strftime or wcsftime function (7.19.6.1, 7.19.6.2, 7.23.3.5, 7.24.2.1, 7.24.2.2, 7.24.5.1).

155

The number of characters transmitted by a formatted output function is greater than INT_MAX (7.19.6.1,
7.19.6.3, 7.19.6.8, 7.19.6.10).

156

The result of a conversion by one of the formatted input functions cannot be represented in the
corresponding object, or the receiving object does not have an appropriate type (7.19.6.2, 7.24.2.2).

157

A c, s, or[conversion specifier is encountered by one of the formatted input functions, and the array
pointed to by the corresponding argument is not large enough to accept the input sequence (and a null
terminator if the conversion specifier is s or[) (7.19.6.2, 7.24.2.2).

ISO/IEC

© ISO/IEC 2011 – All rights reserved 101

UB Class Description

158

A c, s, or[conversion specifier with an l qualifier is encountered by one of the formatted input functions,
but the input is not a valid multibyte character sequence that begins in the initial shift state (7.19.6.2,
7.24.2.2).

159

The input item for a %p conversion by one of the formatted input functions is not a value converted earlier
during the same program execution (7.19.6.2, 7.24.2.2).

160

The vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf,
vfwscanf, vswprintf, vswscanf, vwprintf, or vwscanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in an invocation of va_end) after the
function returns (7.19.6.8, 7.19.6.9, 7.19.6.10, 7.19.6.11, 7.19.6.12, 7.19.6.13, 7.19.6.14, 7.24.2.5,
7.24.2.6, 7.24.2.7, 7.24.2.8, 7.24.2.9, 7.24.2.10).

161

The contents of the array supplied in a call to the fgets, gets, or fgetws function are used after a
read error occurred (7.19.7.2, 7.19.7.7, 7.24.3.2).

162

The file position indicator for a binary stream is used after a call to the ungetc function where its value
was zero before the call (7.19.7.11).

163

The file position indicator for a stream is used after an error occurred during a call to the fread or
fwrite function (7.19.8.1, 7.19.8.2).

164

A partial element read by a call to the fread function is used (7.19.8.1).

165

The fseek function is called for a text stream with a nonzero offset, and either the offset was not returned
by a previous successful call to the ftell function on a stream associated with the same file or whence
is not SEEK_SET (7.19.9.2).

166

The fsetpos function is called to set a position that was not returned by a previous successful call to the
fgetpos function on a stream associated with the same file (7.19.9.3).

167

A non-null pointer returned by a call to the calloc, malloc, or realloc function with a zero
requested size is used to access an object (7.20.3).

168

The value of a pointer that refers to space deallocated by a call to the free or realloc function is used
(7.20.3).

169

The pointer argument to the free or realloc function does not match a pointer earlier returned by
calloc, malloc, or realloc, or the space has been deallocated by a call to free or realloc
(7.20.3.2, 7.20.3.4).

170

The value of the object allocated by the malloc function is used (7.20.3.3).

171

The value of any bytes in a new object allocated by the realloc function beyond the size of the old
object are used (7.20.3.4).

172

The program executes more than one call to the exit function (7.20.4.3).

173

During the call to a function registered with the atexit function, a call is made to the longjmp function
that would terminate the call to the registered function (7.20.4.3).

174

The string set up by the getenv or strerror function is modified by the program (7.20.4.5, 7.21.6.2).

175

A command is executed through the system function in a way that is documented as causing termination
or some other form of undefined behavior (7.20.4.6).

176

A searching or sorting utility function is called with an invalid pointer argument, even if the number of
elements is zero (7.20.5).

ISO/IEC

102 © ISO/IEC 2011 – All rights reserved

UB Class Description

177

The comparison function called by a searching or sorting utility function alters the contents of the array
being searched or sorted, or returns ordering values inconsistently (7.20.5).

178

The array being searched by the bsearch function does not have its elements in proper order (7.20.5.1).

179

The current conversion state is used by a multibyte/wide character conversion function after changing the
LC_CTYPE category (7.20.7).

180

A string or wide-string utility function is instructed to access an array beyond the end of an object (7.21.1,
7.24.4).

181

A string or wide-string utility function is called with an invalid pointer argument, even if the length is zero
(7.21.1, 7.24.4).

182

The contents of the destination array are used after a call to the strxfrm, strftime, wcsxfrm, or
wcsftime function in which the specified length was too small to hold the entire null-terminated result
(7.21.4.5, 7.23.3.5, 7.24.4.4.4, 7.24.5.1).

183

The first argument in the very first call to the strtok or wcstok is a null pointer (7.21.5.8, 7.24.4.5.7).

184

The type of an argument to a type-generic macro is not compatible with the type of the corresponding
parameter of the selected function (7.22).

185

A complex argument is supplied for a generic parameter of a type-generic macro that has no
corresponding complex function (7.22).

186

The argument corresponding to an s specifier without an l qualifier in a call to the fwprintf function
does not point to a valid multibyte character sequence that begins in the initial shift state (7.24.2.11).

187

In a call to the wcstok function, the object pointed to by ptr does not have the value stored by the
previous call for the same wide string (7.24.4.5.7).

188

An mbstate_t object is used inappropriately (7.24.6).

189

The value of an argument of type wint_t to a wide-character classification or case-mapping function is
neither equal to the value of WEOF nor representable as a wchar_t (7.25.1).

190

The iswctype function is called using a different LC_CTYPE category from the one in effect for the call
to the wctype function that returned the description (7.25.2.2.1).

191

The towctrans function is called using a different LC_CTYPE category from the one in effect for the
call to the wctrans function that returned the description (7.25.3.2.1).

ISO/IEC

© ISO/IEC 2011 – All rights reserved 103

Bibliography

[Banahan 2003] Banahan, Mike; Brady, Declan; & Doran, Mark. The C Book, Featuring the ANSI C Standard.
Addison-Wesley, 1991.

[Beebe 2005] Beebe, Nelson H. F. Re: Remainder (%) operator and GCC. http://gcc.gnu.org/ml/gcc-
help/2005-11/msg00141.html (2005).

[Brainbell.com] Brainbell.com. Advice & Warnings for C Tutorials.
http://www.brainbell.com/tutors/c/Advice_and_Warnings_for_C/ (2011)

[Bryant 2003] Bryant, Randal E., & O'Halloran, David. Computer Systems: A Programmer's Perspective.
Prentice Hall, 2003 (ISBN 0-13-034074-X).

[CERT 2010] CERT C Secure Coding Standard https://www.securecoding.cert.org/confluence/x/HQE (2010).

[CERT/CC 2003] Finlay, Ian A. CERT Advisory CA-2003-16, Buffer Overflow in Microsoft RPC.
http://www.cert.org/advisories/CA-2003-16.html (July 2003).

 [Chess 2007] Chess, Brian, & West, Jacob. Secure Programming with Static Analysis. Addison-Wesley 2007.

[Coverity 2007] Coverity Prevent User’s Manual (3.3.0), 2007.

[Dowd 2006] Dowd, M., McDonald, J., & Schuh, J. The Art of Software Security Assessment: Identifying and
Preventing Software Vulnerabilities. Boston, MA: Addison-Wesley, 2006.

[Drepper 2009 Drepper, Ulrich. Defensive Programming for Red Hat Enterprise Linux (and What To Do If
Something Goes Wrong). http://web.sunybroome.edu/~antonakos_j/cst203/buffer/defprogramming.pdf (April 8,
2009).

[Flake 2006] Flake, Halvar. "Attacks on uninitialized local variables."
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf (2006).

[Fortify 2006] Fortify Software Inc. Fortify Taxonomy: Software Security Errors.
https://www.fortify.com/vulncat/en/vulncat/index.html (2009).

[Griffiths 2006] Griffiths, Andrew. "Clutching at straws: When you can shift the stack pointer."
http://arsouyes.org/index.php?id=248 (2006).

[Hatton 1995] Hatton, Les. Safer C: Developing Software for High-Integrity and Safety-Critical Systems. New
York: McGraw-Hill Book Company, 1995 (ISBN 0-07-707640-0).

[Horton 1990] Horton, Mark R. Portable C Software. Upper Saddle River, NJ: Prentice-Hall, Inc., 1990
(ISBN:0-13-868050-7).

[IEC 61508-1-7: 2010] International Electrotechnical Commission. Functional safety of
electrical/electronic/programmable electronic safety-related systems, Parts 1-7. IEC 61508, Ed. 2.0.
International Electrotechnical Commission, 2010.

[IEEE Std 1003.1: 2008] Institute of Electrical and Electronics Engineers. The Open Group Base
Specifications Issue 7 IEEE Std 1003.1, 2008 Edition. See also ISO/IEC 9945-2008 and Open Group 08.
Institute of Electrical and Electronics Engineers, 2008.

[IEEE 754: 2006] Institute of Electrical and Electronics Engineers. Standard for Binary Floating-Point
Arithmetic (IEEE 754-1985). Institute of Electrical and Electronics Engineers, 2006.

ISO/IEC

104 © ISO/IEC 2011 – All rights reserved

[ISO 4217: 2008] International Organization for Standardization. Codes for the representation of currencies
and funds. Geneva, Switzerland: International Organization for Standardization, 2008.

[ISO 8601: 2004] International Organization for Standardization. Data elements and interchange formats –
Information interchange – Representation of dates and times. Geneva, Switzerland: International Organization
for Standardization, 2004.

[ISO/IEC 2003] International Organization for Standardization/International Electrotechnical Commission..
Rationale for International Standard — Programming Languages — C, Revision 5.10. Geneva, Switzerland:
International Organization for Standardization, April 2003.

[ISO/IEC TR 24772: 2010] International Organization for Standardization/International Electrotechnical
Commission. ISO/IEC TR 24772. Information Technology — Programming Languages — Guidance to
Avoiding Vulnerabilities in Programming Languages through Language Selection and Use. Geneva,
Switzerland: International Organization for Standardization, March 2010.

[Jack 2007] Jack, Barnaby. Vector Rewrite Attack. http://cansecwest.com/slides07/Vector-Rewrite-Attack.pdf.
(May 2007).

[Kernighan 1988] Kernighan , Brian W., & Ritchie, Dennis M. The C Programming Language, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

[Kettelwell 2002] Kettlewell, Richard. C Language Gotchas. http://www.greenend.org.uk/rjk/2001/02/cfu.html
(February 2002).

[Kirch-Prinz 2002] Kirch-Prinz, Ulla & Prinz, Peter. C Pocket Reference. Sebastopol, CA: O'Reilly, November
2002 (ISBN: 0-596-00436-2).

[Koenig 1989] Koenig, Andrew. C Traps and Pitfalls. Reading, MA: Addison-Wesley Professional, January 1,
1989.

[Lai 2006] Lai, Ray. "Reading Between the Lines." OpenBSD Journal, October 2006.

[mercy 2006] mercy. Exploiting Uninitialized Data, January 2006.

[Microsoft 2003] Microsoft Security Bulletin MS03-026, "Buffer Overrun In RPC Interface Could Allow Code
Execution (823980)," September 2003.

[Microsoft 2007] C Language Reference, 2007.

[MISRA 2004] Motor Industry Software Reliabililty Association. MISRA-C 2004: Guidelines for the Use of the
C Language in Critical Systems. MISRA 2004.

[MIT 2005] MIT. "MIT krb5 Security Advisory 2005-003," 2005.

[MITRE 2007] MITRE. Common Weakness Enumeration, Draft 9, April 2008.

[MITRE 2011] Common Vulnerabilities and Exposures List. http://cve.mitre.org/cve/cve.html (2011).

[MSDN 2011] Microsoft Developer Network. http://msdn.microsoft.com/en-us/ms348103 (2011).

[Murenin 2007] Murenin, Constantine A. "cnst: 10-year-old pointer-arithmetic bug in make(1) is now gone,
thanks to malloc.conf and some debugging," June 2007.

[NAI 1998] Network Associates Inc. Bugtraq: Network Associates Inc. Advisory (OpenBSD), 1998.

[NIST 2006] NIST. SAMATE Reference Dataset, 2006.

[OpenBSD] Berkley Software Design, Inc. Manual Pages, June 2008.

ISO/IEC

© ISO/IEC 2011 – All rights reserved 105

[Open Group 2004] The Open Group and the IEEE. The Open Group Base Specifications Issue 6, IEEE Std
1003.1, 2004 Edition, 2004.

[OWASP 2011] Open Web Application Security Project. OWASP Foundation, 2011.

[Pethia 2003] Pethia, Richard D. "Viruses and Worms: What Can We Do About Them?" September 10, 2003.

[Plum 1985] Plum, Thomas. Reliable Data Structures in C. Kamuela, HI: Plum Hall, Inc., 1985 (ISBN 0-
911537-04-X).

[Plum 1989] Plum, Thomas, & Saks, Dan. C Programming Guidelines, 2nd ed. Kamuela, HI: Plum Hall, 1989
(ISBN 0911537074).

[Plum 1991] Plum, Thomas. C++ Programming. Kamuela, HI: Plum Hall, 1991 (ISBN 0911537104).

[Seacord 2005] Seacord, Robert C. Secure Coding in C and C++. Boston, MA: Addison-Wesley, 2005. See
http://www.cert.org/books/secure-coding for news and errata.

[Spinellis 2006] Spinellis, Diomidis. Code Quality: The Open Source Perspective. Addison-Wesley, 2006.

[van Sprundel 2006] van Sprundel, Ilja. Unusualbugs, 2006.

[Summit 1995] Summit, Steve. C Programming FAQs: Frequently Asked Questions. Boston, MA: Addison-
Wesley, 1995 (ISBN 0201845199).

[Summit 2005] Summit, Steve. comp.lang.c Frequently Asked Questions, 2005.

[Sun 2005] C User's Guide. 819-3688-10. Sun Microsystems, Inc., 2005.

[Viega 2003] Viega, John, & Messier, Matt. Secure Programming Cookbook for C and C++: Recipes for
Cryptography, Authentication, Networking, Input Validation & More. Sebastopol, CA: O'Reilly, 2003 (ISBN 0-
596-00394-3).

[Viega 2005] Viega, John. CLASP Reference Guide Volume 1.1. Secure Software, 2005.

[VU#551436] Giobbi, Ryan. Vulnerability Note VU#551436, Mozilla Firefox SVG viewer vulnerable to buffer
overflow, 2007.

[VU#623332] Mead, Robert. Vulnerability Note VU#623332, MIT Kerberos 5 contains double free vulnerability
in "krb5_recvauth()" function, 2005.

[Warren 2002] Warren, Henry S. Hacker's Delight. Boston, MA: Addison Wesley Professional, 2002 (ISBN
0201914654).

[Wheeler 2003] Wheeler, David. Secure Programming for Linux and Unix HOWTO, v3.010, March 2003.

[Wheeler 2004] Wheeler, David. Secure programmer: Call components safely. December 2004.

[Wojtczuk 2008] Wojtczuk, Rafal. "Analyzing the Linux Kernel vmsplice Exploit." McAfee Avert Labs Blog,
February 13, 2008.

[xorl 2009] xorl. xorl %eax, %eax.

[Zalewski 2001] Zalewski, Michal. Delivering Signals for Fun and Profit: Understanding, exploiting and
preventing signal-handling related vulnerabilities, May 2001.

